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Abstract. We prove a conjecture of Dipendra Prasad on the Ext-branching
from GLn+1(F ) to GLn(F ), where F is a p-adic field, give a projectivity criterion,
and derive some interesting consequences.

1. Introduction

Decomposing a smooth representation of GLn+1(F ), when restricted to GLn(F ),
is a well known and well studied problem that was initiated in a paper of Prasad
[Pr1]. Today, this problem is a part of a large family of Gan-Gross-Prasad restriction
problems [GGP] that are at the center of much research in Representation Theory
and Number Theory. In order to describe what is known, and what is new in this
paper, let Gn = GLn(F ) and let Alg(Gn) be the category of smooth representations
of Gn. For every π ∈ Alg(Gn), let Wh(π) be the space of Whittaker functionals
on π. If π is irreducible then Wh(π) is one or zero dimensional. We say that π is
generic or degenerate, respectively. Let π1 be an irreducible representation of Gn+1.
One of the most significant results in the subject is that the restriction of π1 to Gn
is multiplicity free [AGRS], [AG], [SZ], that is, for every irreducible representation
π2 of Gn,

dimHomGn(π1, π2) ≤ 1

and it is one if both representations are generic. On the other hand, Dipendra
Prasad proved in [Pr2] the following beautiful formula:

EP(π1, π2) :=
∑

(−1)i dimExtiGn
(π1, π2) = dimWh(π1) · dimWh(π2).

In particular, the formula implies that EP(π1, π2) = 1 if both representations are
generic. Since dimHomGn(π1, π2) = 1, Prasad had conjectured that ExtiGn

(π1, π2)
vanish for i > 0 if both representations are generic.

The first main result in this paper is a proof of this conjecture. In [Ch3], we
shall generalize the result to other Bessel and Fourier-Jacobi models (in the sense
of [GGP]). The proof is based on the theory of Bernstein-Zelevinsky derivatives
[BZ1], [BZ2] with the following, additional ingredient. The theory of derivatives
describes how a smooth representation of Gn+1 restricts to the mirabolic subgroup
Mn+1. However, instead of Mn+1 one can consider the transpose M>

n+1 of Mn+1,

and develop a theory of derivatives with respect to M>
n+1. Thus we have two no-

tions of derivatives: those with respect to Mn+1 are called right derivatives and
those with respect to M>

n+1 are called left derivatives. These two derivatives are

related by the outer automorphism of Gn+1 defined by θn+1(g) = (g−1)>. Since
1
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M>
n+1 is not conjugated to Mn+1 in Gn+1, the information provided by left and

right derivatives taken together is stronger, and is essential to our combinatorial
arguments. Let us illustrate the argument when π1 is the Steinberg representation
of GL2(F ). Let ν(g) = |g| be a character of GL1. The theory of derivatives implies
that the restriction of π1 to GL1(F ) is given by the following Bernstein-Zelevinsky
filtration

0 → Cc(F
×) → π1 → C → 0

where Cc(F
×) is the space of locally constant, compactly supported functions on

F×, and GL1(F ) acts on C by the character ν or ν−1, depending whether we use
right or left derivatives, respectively. Thus, for a given character π2 of GL1(F ),
one can clearly arrange that the character on the quotient C in the above sequence
is different from π2. Now higher extension spaces vanish since Cc(F

×) is projec-
tive. Even multiplicity one statement is clear since it holds for Cc(F

×). The gen-
eral case, restricting from Gn+1 to Gn, follows this strategy. The bottom piece
of the Bernstein-Zelevinsky filtration of π1 is the Gelfand-Graev representation of
Gn, thus vanishing of higher extensions, and multiplicity one for generic represen-
tations, follow from projectivity [CS], and multiplicity one for the Gelfand-Graev
representation of Gn, respectively.

The theory of left and right derivatives is expected to have more applications on
restiction problems. In [Ch2], we further prove that there are no isomorphic irre-
ducible quotients (and submodules) for the i-th left and i-th right shifted deriva-
tives of an irreducible representation of Gn unless the derivatives are the highest one.
Such result has consequences on the indecomposability of a restricted representation
as well as to the submodule restriction problem.

Let Kr be the r-th principal congruence subgroup in Gn. Let π ∈ Alg(Gn) be
generated by the subspace πKr of Kr-fixed vectors (so π is contained in finitely

many Bernstein components). Then the left (i)π and the right π(i) derivative are

related by the isomorphism (π(i))∨ ∼= (i)(π∨). We establish this as a consequence
of a “second adjointness isomorphism” for Bernstein-Zelevinsky derivatives, that
naturally involves the left derivative, proved in the appendix. This result is of
independent interest.

The second main result is a projectivity criterion for the representation π1 of
Gn+1, when restricted to Gn, formulated in [Ch2]. In [Ch2], we shall use the criteria
to classify all irreducible representations which are projective when restricted from
Gn+1 to Gn. Assume that π1 is projective as Gn-module. Then higher extension
spaces vanish without assuming that π2 is generic. Now assume that π1 or π2 is
degenerate. Then EP(π1, π2) = 0 by the Prasad’s formula. If π2 is a quotient of
π1 then ExtiGn

(π1, π2) 6= 0 for some i > 0, and this contradicts projectivity of π1.
Thus a necessary condition for π1 to be Gn-projective is that it is generic and all its
irreducible quotients are generic. In this paper we show that this is also a sufficient
condition. The proof relies heavily on the Hecke algebra methods from our earlier
paper [CS]. Moreover, if π1 is projective, we identify each Bernstein component of
π1 with an explicit projective Hecke algebra module, independent of π1. We also
show that the necessary condition is satisfied if π1 is an essentially square integrable
representation. Therefore essentially square integrable representations of Gn+1 are
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projective Gn-modules, and any two such representations are isomorphic as Gn-
modules. This result generalizes the classical result of Bernstein and Zelevinsky
which says that any two cuspidal representations of Gn+1 are isomorphic when
restricted to the mirabolic subgroup Mn+1 of Gn+1.

Finally we would like to point the following consequence of our results to the
submodule restriction problem: HomGn(π2, π1) (note that π1 and π2 have switched
the places). The two restriction problems are related by a cohomological duality,
due to Nori and Prasad [NP] (also see [Ch]),

ExtiGn
(π2, π1)

∨ ∼= Ext
d(π2)−i
Gn

(π1, D(π2)),

where d(π2) is the cohomological dimension of π2 and D(π2) is the Aubert involute
of π2. This duality gives an additional importance to the cohomological restric-
tion problem studied in this paper. Since d(π2) > 0, due to the presence of one-
dimensional center in Gn, it follows that HomGn(π2, π1) = 0 for all irreducible π2
if π1 is projective, in particular, this is true if π1 is an essentially square integrable
representation.

2. Bernstein-Zelevinsky derivatives

In this section we study Bernstein-Zelevinsky derivatives, or simply derivatives, as
functors from Alg(Gn) to Alg(Gn−i). We state a “second adjointness isomorphism”
for these functors, as well as an Ext version of the formula. Mirabolic group will
appear in the next section.

2.1. Notation. Let Gn = GLn(F ), where F is p-adic field. Let ν(g) = |det(g)| be
the character of Gn, where | · | is the absolute value on F . Let Bn be the Borel
subgroup of Gn consisting of upper triangular matrices and let Un be the unipotent
radical of Bn. Let

Rn−i =

{(

g x
0 u

)

: g ∈ Gn−i, u ∈ Ui, x ∈ Matn−i,i(F )

}

.

We have an obvious Levi decomposition Rn−i = Gn−iEn−i, where En−i is the
unipotent radical of Rn−i. Moreover, En−i = Nn−iUi where Nn−i is the unipotent
radical of the maximal parabolic subgroup Pn−i consisting of block upper triangular
matrices and Levi factor Gn−i ×Gi. Fix a non-zero additive character ψ of F . Let
ψi be the character of En−i defined by

ψi ( 1 x0 u ) = ψ(u1,2 + . . .+ ui−1,i)

where u1,2, . . . , ui−1,i are the entries of u above the diagonal. Let δRi
be the modular

character of Rn−i. The modular character is trivial on the unipotent radical En−i,
and it is equal to νi on the Levi factor Gn−i. Let π be a smooth representation of
Gn on a vector space V . The right i-th Bernstein-Zelevinsky derivative of π is a
smooth representation π(i) of Gn−i on the vector space V (i) defined by

V (i) = V/〈π(e)v − ψi(e)v : e ∈ En−i, v ∈ V 〉.
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The representation π(i) is the natural action of the Levi factor Gn−i on V (i) twisted

by δ
−1/2
Rn−i

, that is, Bernstein-Zelevinsky derivatives in this paper are normalized, as

is parabolic induction and corresponding Jacquet functors.

From the definition of derivatives, the factorization Rn−i = Gn−iEn−i, and the
Frobenius reciprocity, one can easily prove the “first adjointness” isomorphism for
right Bernstein-Zelevinsky derivatives: For any smooth representation π of Gn and
smooth representation σ of Gn−i:

HomGn(π, Ind
Gn

Rn−i
(σ ⊗ ψi)) ∼= HomGn−i

(π(i), σ).

We called the derivative right because there is also a left derivative, which is
taken with respect to the transpose of the groups used to define right derivatives.
More precisely, the underlying vector space for the left derivative (i)π is

(i)V = V/〈π(e)v − ψ>
i (e)v : e ∈ E>

n−i, v ∈ V 〉,

where ψ>
i is the character of E>

n−i defined by

ψ>
i ( 1 0

x u ) = ψ̄(u2,1 + . . .+ ui,i−1).

Let θn(g) = (g−1)> be the outer automorphism of Gn where g> is the transpose of
g. Then the left derivative of π is related to the right derivative by the identity

(i)π = θn−i(θn(π)
(i)).

LetKr be the r-th principal congruence subgroup inGn. Let π be a representation
of Gn generated by πKr , the space of Kr-fixed vectors in π. By 4.2 Theorem in
[BZ1], any submodule of π is also generated by its subspace of Kr-fixed vectors.
Thus representations of Gn generated by Kr-fixed vectors form a categorical direct
summand. The following is the “second adjointness” isomorphism for left Bernstein-
Zelevinsky derivatives, proved in the appendix.

Lemma 2.1. Let Kr be the r-th principal congruence subgroup in Gn. For any

representation π of Gn generated by πKr , and any smooth representation σ of Gn−i,

HomGn(ind
Gn

Rn−i
(σ ⊗ ψ̄i), π) ∼= HomGn−i

(σ, (i)π).

This isomorphism is functorial in both σ and π.

We now derive some consequences of the two adjointness isomorphisms. The first
consequence is a relationship between right and left derivatives via the contragredi-
ent:

Lemma 2.2. Let Kr be the r-th principal congruence subgroup in Gn. Let π be a

representation of Gn generated by πKr . Then (π(i))∨ ∼= (i)(π∨).

Proof. If we insert π∨ in Lemma 2.1 then, for every smooth representation σ of
Gn−i,

HomGn(ind
Gn

Rn−i
(σ ⊗ ψ̄i), π

∨) ∼= HomGn−i
(σ, (i)(π∨)).

On the other hand, by Proposition 4.2 in [Pr2],

HomGn(ind
Gn

Rn−i
(σ ⊗ ψ̄i), π

∨) ∼= HomGn−i
(σ, (π(i))∨)
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Thus we have an isomorphism

HomGn−i
(σ, (π(i))∨) ∼= HomGn−i

(σ, (i)(π∨))

functorial in σ. Now we regard the functors

h1 := HomGn−i
(., (π(i))∨), h2 := HomGn−i

(., (i)(π∨))

as objects in the functor category F which contains contravariant functors from the
category of representations of Gn−i to the category of abelain groups. The Yoneda
lemma (see e.g. Lemma 4.3.5 [St]) asserts that there are natural isomorphisms

HomF (h1, h2) ∼= HomGn−i
((π(i))∨, (i)(π∨))

and

HomF (h2, h1) ∼= HomGn−i
((i)(π∨), (π(i))∨).

The naturality is in the sense of loc. cit. and so h1 ∼= h2 in F implies (i)(π∨) ∼=
(π(i))∨.

�

Remark: The statement of Lemma 2.1 is optimal in the sense that it cannot be
extended to all smooth representations π. To that end, observe that Lemma 2.2, the
case i = n, says that we have an isomorphism of vector spaces (π∨)Un,ψn

∼= (πUn,ψn
)∨

for every Gn-module π generated by πKr . Let π be any smooth Gn-module. It can
be written as a direct sum

π ∼= ⊕∞
r=1πr

where πr is generated by πKr
r and π

Kr−1

r = 0. Then

π∨ ∼= ⊕∞
r=1π

∨
r

hence π∨Un,ψn
is a direct sum of (π∨r )Un,ψn

∼= ((πr)Un,ψn
)∨. But (πUn,ψn

)∨ is a product

of ((πr)Un,ψn
)∨, hence much larger unless the sum over r is finite.

The following is not needed in this work, however, it is used in the sequel of
this paper [Ch2] to prove that both, socle and co-socle, of derivatives of irreducible
representations are multiplicity free, see Proposition 2.5 in loc. cit..

Lemma 2.3. Let π be an irreducible representation of Gn. The socle of (i)π is

isomorphic to the co-socle of (i)π. In particular, if the irreducible subquotients of
(i)π are multiplicity free, then (i)π is a direct sum of its irreducible subquotients.

Proof. The key observation is that, in view of Lemma 2.2, we have two ways to
compute (i)π:

(i)π = θn−i(θn(π)
(i)) = ((π∨)(i))∨.

Since π is irreducible, we have θn(π) ∼= π∨, and if we denote by σ either of two iso-

morphic representations θn(π)
(i) and (π∨)(i), we see that on one hand (i)π is obtained

from σ by applying a co-variant functor θ, and on the other hand by applying the
contra-variant functor taking the contragradient. Since these two functors coincide
on irreducible representations, the corollary follows. �
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Lemma 2.4. For any representation π of Gn generated by πKr and smooth repre-

sentation σ of Gn−i,

ExtjGn
(indGn

Rn−i
(σ ⊗ ψ̄i), π) ∼= ExtjGn−i

(σ, (i)π).

Proof. In order to compute the right hand side we need to use a projective resolution
of σ. Using the induction in stages,

indGn

Rn−i
(σ ⊗ ψ̄i) ∼= IndGn

Pn−i
(σ � indGi

Ui
(ψ̄i)).

The Gelfand-Graev representation indGi

Ui
(ψ̄i) is projective by Corollary A.6 [CS].

Thus, if σ is projective it follows that indGn

Rn−i
(σ ⊗ ψ̄i) is projective, since the par-

abolic induction takes projective modules into projective modules. So we have
shown that taking a projective resolution of σ also gives a projective resolution of
indGn

Rn−i
(σ ⊗ ψ̄i). Hence the lemma follows from Lemma 2.1.

�

2.2. Zelevinsky segments. Here we follow [Ze]. Let ρ be a cuspidal representation
of Gr. For any a, b ∈ C with b − a ∈ Z≥0, we have a Zelevinsky segment let
∆ = [νaρ, νa+1ρ, . . . , νbρ]. The absolute length of ∆ is defined to be r(b − a + 1),
and the relative b−a+1. We can truncate ∆ form each side to obtain two segments
of absolute length r(b− a):

−∆ = [νa+1ρ, . . . , νbρ] and ∆− = [νaρ, . . . , νb−1ρ].

Moreover, if we perform the truncation k-times, the resulting segments will be
denoted by (k)∆ and ∆(k). The induced representation νaρ × νa+1ρ × . . . × νbρ
contains a unique irreducible submodule denoted by 〈∆〉.

Proposition 2.5. Let i > 0 be an integer. The i-th left and right derivatives of 〈∆〉
vanish unless i = r when

(r)〈∆〉 = 〈−∆〉 and 〈∆〉(r) = 〈∆−〉.

Corollary 2.6. Let ∆1, . . . ,∆k be segments. Let π be an irreducible subquotient

of 〈∆1〉 × . . . × 〈∆k〉. If a right derivative of π is generic, then every ∆j is of the

relative length one or two, and if the relative length is two, then ∆−
j contributes to

the cuspidal support of the right derivative of π. Similarly, if a left derivative of π
is generic, then −∆j contributes to the cuspidal support of the left derivative.

Proof. Observe that 〈∆〉 is generic if and only if the relative length of ∆ is one.
By the Leibniz rule, a right derivative of 〈∆1〉 × . . . × 〈∆k〉 has a filtration whose
subquotients are 〈∆′

1〉 × . . . × 〈∆′
k〉 where ∆′

j is ∆j or ∆−
j . This representation is

generic if and only if the relative length of every ∆j is one or two, and if it is two
then ∆′

j = ∆−
j . �

We summarize some other results from [Ze] that we shall need. The induced
representation νaρ × νa+1ρ × . . . × νbρ also contains a unique irreducible quotient
denoted by St(∆). This representation is an essentially square integrable represen-
tation i.e. its matrix coefficients are square integrable when restricted to the derived
subgroup. Every essentially square integrable representation is isomorphic to St(∆)
for some segment ∆.
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Proposition 2.7. Let i > 0 be an integer. The i-th left and right derivatives of

St(∆) vanish unless i = jr, for some integer j, when

(i)St(∆) = St(∆(j)) and St(∆)(i) = St((j)∆).

Finally, let m = {∆1, . . . ,∆k} be a multisegment, that is, a multiset of segments.
Let

St(m) = St(∆1)× . . .× St(∆k).

We observe that this representation depends on the ordering of the segments, but
its semi-simplification does not. One say that m is generic if no two segments are
linked, see page 184 in [Ze]. Then, by Theorems 4.2 and 9.7 in [Ze], St(m) is an
irreducible generic representation, and every such representation arises in this way.

3. Bernstein-Zelevinsky filtration

In this section we begin our study of the restriction problem from Gn+1 to Gn.
Using the second adjointness formula, for both left and right derivatives, we prove
that degenerate representations of Gn cannot be quotients of essentially square
integrable representations of Gn+1.

3.1. Bernstein-Zelevinsky functors. Let Mn+1 ⊆ Gn+1 be the mirabolic sub-
group

Mn+1 =

{(

g u
0 1

)

: g ∈ Gn, u ∈ Matn,1(F )

}

.

be the mirabolic subgroup ofGn+1. We have an obvious Levi decompositionMn+1 =
GnEn. Abusing notation, let ψ be the character of En defined by ψ(u) = ψ(un)
where un is the bottom entry of the column vector u. Note that the stabilizer of ψ
in Gn is Mn. We have a pair of functors

Φ− : Alg(Mn+1) → Alg(Mn) and Φ+ : Alg(Mn) → Alg(Mn+1)

defined by Φ−(τ) = τEn,ψ and Φ+(τ) = ind
Mn+1

MnEn
(τ � ψ). We also have a pair of

functors

Ψ− : Alg(Mn+1) → Alg(Gn) and Ψ+ : Alg(Gn) → Alg(Mn+1)

where Ψ−(τ) = τEn and Ψ+ is simply the inflation. All functors are normalized as
in [BZ2]. Any τ ∈ Alg(Mn+1) has an Mn+1-filtration

τn ⊂ . . . ⊂ τ0 = τ

where, τi = (Φ+)i(Φ−)i(τ), and

τi/τi+1 = (Φ+)iΨ+Ψ−(Φ−)i(τ).

Observe that Ψ−(Φ−)i(τ) = τ (i+1), is the (i+1)-th derivative, and the subquotients
of the filtration, considered as Gn-modules, are

τi/τi+1
∼= indGn

Rn−i
(ν1/2 · τ (i+1)

� ψi),

where we have used notation from the previous section. In particular, τn is a multiple
of the Gelfand-Graev representation. We derive some consequences of this filtration
that we shall need later.
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Lemma 3.1. Let τ ∈ Alg(Mn+1) such that its derivatives are all finitely generated.

When τ is considered a Gn-module, its Bernstein components are finitely generated.

Proof. Recall that Pn−i ⊇ Rn−i is the maximal parabolic subgroup of Gn with
the Levi factor Gi × Gn−i. Using induction in stages, the i-th subquotient in the
Bernstein-Zelevinsky filtration of τ can be written as

IndGn

Pn−i
(ν1/2 · τ (i+1)

� indGi

Ui
(ψi)).

By the assumption τ (i+1) is a finitely generated Gn−i-module and the Bernstein

components of the Gelfand-Graev representation indGi

Ui
(ψi) are finitely generated

[BH]. Lemma follows since parabolic induction sends finitely generated modules to
finitely generated modules by 3.11 in [BD]. �

Lemma 3.2. Let π1 ∈ Alg(Gn+1) and π2 an admissible representation of Gn. If π2
is a quotient of π1 then, for some i, j ≥ 0.

HomGn−i
(ν1/2 · π

(i+1)
1 , (i)π2) 6= 0 and HomGn−j

(ν−1/2 · (j+1)π1, π
(j)
2 ) 6= 0.

Proof. In order to prove the first isomorphism, we restrict π1 to Gn, by way of
Mn+1, and use the second adjointness formula. For the second we restrict to Gn,
by way of M>

n+1, i.e. we reverse the roles of left and right derivatives. �

3.2. Essentially square integrable representations.

Theorem 3.3. Let ∆ = [νaρ, . . . , νbρ] be a segment of absolute length n+1, where

ρ is a cuspidal representation of Gr. Let π be an irreducible Gn-module. If π is a

quotient of St(∆) then π is generic.

Proof. Let l = b − a + 1, in particular, n + 1 = lr. Assume that π is degenerate.
Let m = {∆1, . . . ,∆k} be a multi-segment, from the Zelevinsky classification, such
that π is the unique submodule of 〈∆1〉× . . .×〈∆k〉. Since π is degenerate, by 9.10
in [Ze] one segment in m has the relative length at least two. If π is a quotient of

St(∆) then, by Lemma 3.2, (i)π contains ν1/2 · St(∆)(i+1) as a generic submodule
for some i. Now we can apply Corollary 2.6 : the relative length of each segment
in m is one or two, and one of them is [νc−1/2ρ, νc+1/2ρ] where νc+1/2ρ contributes

to the cuspidal support of ν1/2 · St(∆)(i+1). It follows that ν1/2 · St(∆)(i+1) is a

generalized Steinberg representation corresponding to a segment ending in νb+1/2,
and containing νc+1/2ρ. Thus, for every d = c, . . . , b, νd+1/2ρ contributes to the
cuspidal support of (i)π as well as to the cuspidal support of π. Similarly, if we use
the second identity in Lemma 3.2, then for every d = a, . . . , c, νd−1/2ρ contributes
to the cuspidal support of π. We see that m contains segments of total relative
length ≥ l and absolute length (l+1)r = n+1+ r > n. This is a contradiction. �

4. Vanishing of Ext’s

The purpose of this section is to prove:

Theorem 4.1. Let π1 be an irreducible generic representation of Gn+1 and π2 an

irreducible generic representation of Gn. Then

ExtiGn
(π1, π2) = 0 if i > 0 and HomGn(π1, π2) = C.
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Let us explain the strategy of the proof. Fix π2, and assume that π2 is a sub-
quotient of ρ1 × . . . × ρk where ρi are cuspidal representations. Let m(π1) be the
integer that counts the number of cuspidal representations ρ in the support of π1
such that ρ is an unramified twist of a ρi, for some 1 ≤ i ≤ k. The proof is by
induction on m(π1). The base case m(π1) = 0 is easy. It is deduced from the
Bernstein-Zelevinsky filtration of π1 where the bottom piece is the Gelfand-Graev
representation of Gn. Assume now that π1 = St(m1) and π2 = St(m2) for a pair
of generic multisegments m1 and m2 i.e. no two segments in mi are linked. Let
∆ = [νaρ, . . . , νbρ] be a segment in m1 such that ρ contributes to m(π2). Assume
that ∆ is also a shortest such segment. Write π1 = St(∆)×π where π = St(m) and
m = m1\∆. Let r be the integer such that ρ ∈ Alg(Gr). Let ρ′ ∈ Alg(Gr) be another
cuspidal representation such that no unramified twist of ρ′ appears in the cuspidal
supports of π1 and π2. Now both ρ′×St(−∆)×π and ρ′×St(∆−)×π ∈ Alg(Gn+1)
are irreducible and satisfy the induction assumption. We shall use this information
to prove the theorem for π1.

4.1. Transfer. Let l = s + r. Recall that Ps is the maximal parabolic of Gl with
the Levi Gs×Gr. Starting with σ ∈ Alg(Gs) and τ ∈ Alg(Mr) one can manufacture
two representations of Ml. The first one is obtained by the (normalized) induction
from Ps ∩Ml and, abusing notation, denoted by σ × τ . The second is obtained by
the normalized induction from P>

s ∩Ml but only after σ is multiplied by ν−1/2, see
[BZ2] page 457, where the definition uses a different subgroup, but conjugated in
Ml. This representation is denoted by τ × σ.

Our interest in these representations comes from the following, 4.13 Proposition
in [BZ2].

Proposition 4.2. Let ρ ∈ Alg(Gr), σ ∈ Alg(Gs) and τ ∈ Alg(Mr). Let ρ|M and

σ|M denote restrictions to Mr and Ms, respectively.

(1) There exists an exact sequence in Alg(Ml)

0 → (ρ|M )× σ → ρ× σ → ρ× (σ|M ) → 0

(2) If Ω is any of the four functors Φ± and Ψ±, then

Ω(σ × τ) = σ × Ω(τ).

(3) Ψ−(τ × σ) = Ψ−(τ)× σ, and there exists an exact sequence in Alg(Ml−1)

0 → Φ−(τ)× σ → Φ−(τ × σ) → Ψ−(τ)× (σ|M ) → 0

Proposition 4.3. Let ∆ = [νaρ, . . . , νbρ] be a segment where ρ ∈ Alg(Gr). Let τr =
(Φ+)r−1(1) ∈ Alg(Mr), the Gelfand-Graev module. Then St(∆)|M is isomorphic to

τr × St(−∆).

Proof. Recall that ρ|M ∼= τr (this is true for every cuspidal representation). Note
that St(∆) is a quotient of νaρ× St(−∆). By Proposition 4.2 (1), we have an exact
sequence of mirabolic subgroup modules

0 → τr × St(−∆) → νaρ× St(−∆) → νaρ× (St(−∆)|M ) → 0

By Proposition 4.2 (2), any derivative of the quotient in the above sequence is equal

to νaρ× St((k)∆) with k > 1. Since νaρ and (k)∆ are not linked, the corresponding
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subquotients in the Bernstein-Zelevinsky filtration are irreducible as mirabolic sub-
group modules. Observe that they are non-isomorphic to the subquotients of the
Bernstein-Zelevinsky filtration of St(∆). Hence the projection from νaρ × St(−∆)
onto St(∆), restricted to τr × St(−∆) gives the desired isomorphism. �

Now we arrive to a key result:

Corollary 4.4. Let ρ, ρ′ ∈ Alg(Gr) be any two irreducible cuspidal representa-

tions. Let ∆ = [νaρ, . . . , νbρ], and π ∈ Alg(Gs). Then we have an isomorphism of

mirabolic modules

St(∆)|M × π ∼= ρ′|M × (St(−∆)× π).

Proof. By Proposition 4.3, we can substitute St(∆)|M = τr×St(−∆). Furthermore,
we have a natural isomorphism

(τr × St(−∆))× π ∼= τr × (St(−∆))× π)

given by the induction in stages in two different orders. We finish by observing that
τr = ρ′|M . �

Now we continue with the proof of vanishing for π1 = St(∆) × π, notation as
in the start of the section. By Proposition 4.2 (1) there is an exact sequence in
Alg(Mn+1)

0 → (St(∆)|M )× π → St(∆)× π → St(∆)× (π|M ) → 0.

Likewise, there is an exact sequence in Alg(Mn+1)

0 → ρ′|M × (St(−∆)× π) → ρ′ × (St(−∆)× π) → ρ′ × (St(−∆)× π)|M → 0.

Note that the submodules in the two sequences are isomorphic by Corollary 4.4.
Furthermore, by the choice of ρ′,

ExtiGn
(ρ′ × (St(−∆)× π)|M , π2) = 0 if i ≥ 0.

Now we can apply the induction assumption to ρ′ × St(−∆)× π and conclude that

ExtiGn
((St(∆)|M )× π, π2) = 0 if i > 0 and ∼= C if i = 0.

Hence, in order to establish the conjecture for the pair (π1, π2), it suffices to show
that

ExtiGn
(St(∆)× (π|M ), π2) = 0 if i ≥ 0,

and to do this it suffices to show vanishing for each subquotient in the Bernstein-
Zelevinsky filtration of St(∆)× (π|M ). By Proposition 4.2 part (2), the derivatives
of St(∆) × (π|M ) are computed on the second factor. Thus, combining with the
second adjointness formula, it suffices to show that

• ExtjGn
(ν1/2St(∆)× π(i+1), (i)π2) = 0 for i, j ≥ 0.

Alternatively, by reversing the roles of left and right derivatives, it suffices to show
that

• ExtjGn
(ν−1/2St(∆)× (i+1)π, π

(i)
2 ) = 0 for i, j ≥ 0.
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Hence it suffices to show that the cuspidal support of ν1/2(St(∆) × π(i+1)) and

of (i)π2 are different for all i, or, they are different for ν−1/2(St(∆) × (i+1)π) and

π
(i)
2 for all i. The strategy is to show that, if both statements fail, then m2 contains

linked segments.

4.2. Combinatorics. Let m = {∆1, . . . ,∆k} be a multisegment. Then St(m) is
generic but reducible if some segments are linked. However, if ∆i and ∆j are linked,
then they can be replaced by ∆i∩∆j and ∆i∪∆j . This process (called recombina-
tion henceforth) eventually leads to a generic segment such that the corresponding
irreducible generic representation is the unique generic subquotient in St(m). Im-
portant observation is that the recombination does not change the cuspidal support.
The following is a key lemma.

Lemma 4.5. Let m be a generic multisegment and m
′ a multisegment obtained

by truncating m from the right. Then the generic segment corresponding to m
′ by

recombination is also obtained from m by truncating from the right.

Proof. This is proved by induction on the number of steps in the recombination
process. If that number is 0 there is nothing to prove. Otherwise there is a pair of
linked segments ∆′ and ∆′′ in m

′ such that the first step in the recombination is
replacing ∆′ and ∆′′ by ∆′ ∩∆′′ and ∆′ ∪∆′′. It is trivial to see that the resulting
multisegment is also obtained by right truncation from m. The proof follows by
induction. �

4.3. Finishing the proof. Let l = b− a+ 1 be the relative length of ∆. We note
that (i)π2 is glued from St(m′

2) where m
′
2 runs over all multisegments obtained from

m2 by truncating from the right i-times (in the sense of absolute length). By the

previous lemma the cuspidal support of (i)π2 is given by such generic multisegments.
Likewise, St(∆)× π(i+1) is glued from St(∆)× St(′m) where ′

m runs over all multi-
segments obtained from m by truncating from the left i+1-times, and to determine
the cuspidal support we need to consider only generic ′

m. However, {∆}∪ ′
m needs

not be generic. There could be segments in ′
m linked to ∆. Since ∆ is not linked

to any segment in m and ′
m is obtained from m by left truncation, it follows that

linking occurs over the right end point of ∆. Let ∆0 be the longest segment in ′
m

linked to ∆. It is easy to see that ∆ ∪ ∆0 is a segment in the generic multiseg-
ment corresponding to {∆} ∪ ′

m by the recombination process. Note that ∆ ∪∆0

starts with νaρ and is of relative length at least l. Thus the cuspidal supports of
ν1/2(St(∆)×π(i+1)) and (i)π2 can have a point in common only if m2 contains a seg-

ment starting with νa+1/2ρ and of relative length at least l. Similarly, the cuspidal

supports of ν−1/2(St(∆) × (i+1)π) and π
(i)
2 can have a point in common only if m2

contains a segment ending with νb−1/2ρ and of length at least l. In other words we
have constructed a pair of linked segments in m2, a contradiction. This completes
the proof of the Ext-vanishing theorem.

5. Hecke algebra methods

The main goal of this section is to prove that an irreducible representation π1
of Gn+1 when restricted to Gn is projective if π1 is generic and all its irreducible
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Gn-quotients are generic. The proof uses Hecke algebras and identifies all Bernstein
components of a projective π1 with the sign-projective module of the Hecke algebra
corresponding to the Bushnell-Kutzko type [BK1], [BK2], [BK3]. As a consequence,
any two projective representations of Gn+1 are isomorphic when restricted to Gn.

5.1. Hecke algebras. Let ∆ = [νaρ, . . . , νbρ] be a Zelevinsky segment. Let m =
b−a+1. The Bernstein component of St(∆) is equivalent to the category of represen-
tations of a Hecke algebra Hm arising from a simple Bushnell-Kutzko type τ∆, that
is, if π is a smooth representation in the Bernstein component, then Hom(τ∆, π) is
the corresponding Hm-module. The algebra Hm is isomorphic to the Iwahori Hecke
algebra of GLm(E), for some field E. Thus, as an abstract algebra, Hm is generated
by θ1, . . . , θm, and Tw (w ∈ Sm) satisfying the following relations (see, e.g. [Ho, (50)
and (57)]):

(1) θkθl = θlθk for any k, l = 1, . . . ,m;
(2) Tskθk− θk+1Tsk = (q− 1)θk, where q is a prime power depending on τ∆ and

sk is the transposition of numbers k and k + 1;
(3) Tskθl = θlTsk if l 6= k, k + 1;
(4) (Tsk −q)(Tsk +1) = 0, where sk is as in (2), and Tw satisfies a braid relation.

Let Am = C[θ±1
1 , . . . , θ±1

m ] and HSm be the span of Tw, w ∈ Sm. Then Hm
∼=

Am ⊗HSm . The finite dimensional algebra HSm has a one dimensional sign repre-
sentation sgn(Tw) = (−1)`(w), where ` is the length function on Sm. An irreducible
representation π in the component is Whittaker generic if and only if Hom(τ∆, π)
contains the sign type as HSm-module [CS].

Let ∆1, . . . ,∆r be segments such that for i 6= j, the cuspidal representations ρi
and ρj are not unramified twists of each other. The Bernstein component of St(∆1)×
· · · × St(∆r) is equivalent to the category of representations of a Hecke algebra H
arising from a semi-simple Bushnell-Kutzko type τ . We have H ∼= Hm1

⊗· · ·⊗Hmr

and H ∼= A⊗HS where A ∼= Am1
⊗ · · · ⊗ Amr and HS

∼= HSm1
⊗ · · · ⊗ HSmr

. The
subalgebra A is isomorphic to the ring of Laurent polynomials in m = m1+ . . .+mr

variables, while HS is spanned by Tw, w ∈ S = Sm1
× · · · × Smr . An irreducible

representation π in the component can be written as π1 × · · · × πr where πi is in
the component of St(∆i), thus it clear that π is Whittaker generic if and only if
Hom(τ, π) contains the sign type of HS .

5.2. Some projective modules. Let χ be a character of A. The H-module H⊗Aχ
is called a principal series representation of H. A twisted Steinberg representation of
H is any one-dimensional H-module such that the restriction to HS is the sign type.
For example, if π = St(∆1) × · · · × St(∆r), then Hom(τ, π) is a twisted Steinberg
representation.

The following is Theorem 2.1 in [CS]. (It is stated there for H arising from the sin-
gleton partition (m) but the proof is applicable to a general partition (m1, . . . ,mr)).

Theorem 5.1. Let Π be an H-module. Assume that

(1) Π is projective and finitely generated.

(2) dimHomH(Π, π) ≤ 1 for an irreducible principal series representation π.
(3) A twisted Steinberg representation is a quotient of Π.
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Then Π ∼= H⊗HS
sgn. Conversely, H⊗HS

sgn satisfies the above properties.

As in [CS], we have the following corollary.

Corollary 5.2. Let Γ be the summand of the Gelfand-Graev representation corre-

sponding to the Bernstein component of St(∆1) × · · · × St(∆r). Then we have an

isomorphism Hom(τ,Γ) ∼= H⊗HS
sgn of H-modules.

5.3. Projectivity for Hecke algebras. Let Z be the center of H. Recall that
Z = AS , in particular, H is a finitely generated Z-module. Let J be a maximal
ideal in Z. Let Ĥ denote the J -adic completion of H [AM]. For every H-module Π,

let Π̂ denote the J -adic completion of Π. If Π is finitely generated, then Π̂ ∼= Ĥ⊗HΠ.

Theorem 5.3. Let Π be a finitely generated H-module and J a maximal ideal in

Z. Let π be the unique irreducible H-module annihilated by J and containing the

sign type. Assume that

(1) dimHomH(Π, π) = 1
(2) Π has no other irreducible quotients annihilated by J .

(3) Π contains a torsion free element for A.

Then Π̂ ∼= Ĥ ⊗HS
sgn.

Proof. In order to simplify notation, write Σ = H ⊗HS
sgn. Since Π is finitely

generated, Π̂/J Π̂ ∼= Π/JΠ is a finite dimensional H-module, annihilated by J . By
(2) it must be generated by the sign type subspace. Let r be the dimension of the
sign type in Π/JΠ. By Frobenius reciprocity, we have a surjection f : Σ⊕r → Π/JΠ
which descends to a surjection f̄ : (Σ/JΣ)⊕r → Π/JΠ. Observe that f̄ is bijective
on the sign type, since the sign type in Σ/JΣ is one-dimensional. Since π is the
unique irreducible quotient of Σ/JΣ and f̄ is bijective on the sign type, it follows
that πr is a quotient of Π/JΠ. This forces r = 1 by (1) and, by Nakayama lemma,

we have a surjection f̂ : Σ̂ → Π̂. Since Σ̂ ∼= Â, as Â-modules, (3) implies that the
surjection is in fact an isomorphism.

�

Corollary 5.4. Let Π be a finitely generated H-module and J a maximal ideal in Z.

Assume that the conditions of Theorem 5.3 are satisfied. Then, for all H-modules

σ annihilated by J and for all i > 0,

ExtiH(Π, σ) = 0.

Proof. To compute ExtiH(Π, σ) we take a sufficiently long free resolution of Π

· · · → Hr → Hs → Π → 0.

Let Ẑ be the J -adic completion of Z. By Proposition 10.13 in [AM], the completion

of finitely generated Z-modules is isomorphic to tensoring by Ẑ. Since Ẑ is a flat
Z-module, by Proposition 10.14 in [AM] , it follows that

· · · → Ĥr → Ĥs → Π̂ → 0

is also exact. Now, since σ is annihilated by J , it is easy to check that

ExtiH(Π, σ)
∼= Exti

Ĥ
(Π̂, σ).
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The latter spaces are trivial for i > 0 by projectivity of Ĥ ⊗HS
sgn. �

Corollary 5.5. Let Π be a finitely generated H-module. Assume that the conditions

of Theorem 5.3 are satisfied for every maximal ideal in Z. Then Π ∼= H⊗HS
sgn.

Proof. Corollary 5.4 implies that ExtiH(Π, σ) = 0, i > 0, for all finite length modules
σ. Since Π is also finitely generated, it is projective by Theorem A.1 in the appendix
of [CS]. Now we can apply Theorem 5.1. �

5.4. Projectivity for groups. Now we can apply the Hecke-module results to
the restriction problem, one Bernstein component at the time. Let π1 be an irre-
ducible generic representation of Gn+1 and fix a Bushnell-Kutzko type τ for Gn.
Let Π = Hom(τ, π1) be the corresponding H-module. Note that the conditions (1)
and (3) in Theorem 5.3 are satisfied for every maximal ideal J . Indeed, the condi-
tion (1) because all irreducible generic Gn-representations are quotients of π1 with
multiplicity one and (3) because π1, restricted to Gn, contains the Gelfand-Graev
representation whose τ component is a free A-module. Theorem 5.3 implies the
following local Ext vanishing result for groups.

Theorem 5.6. Let π1 be an irreducible generic representation of Gn+1. Let J be a

maximal ideal of the Bernstein center of Gn. Assume that no degenerate irreducible

representation of Gn annihilated by J is a quotient of π1. Then ExtiGn
(π1, π2) = 0,

i > 0, for all irreducible representation π2 of Gn annihilated by J .

Finally, we have [Ch2]:

Theorem 5.7. Let π1 be an irreducible generic representation of Gn+1 whose irre-

ducible Gn-quotients are all generic. Then π1, considered a Gn-module, is projective.

Moreover, any two such representations of Gn+1 are isomorphic as Gn-modules.

This holds for all essentially square integrable representation of Gn+1.

Proof. Indeed, by Corollary 5.5, Hom(τ, π1) ∼= H ⊗HS
sgn for any Bernstein com-

ponent of π1. Thus every component of π1 is a projective Gn-module independent
of π1, as long as π1 has no degenerate quotients. And these conditions are satisfied
for essentially square integrable representations by Theorem 3.3.

�

6. Appendix

In this appendix we prove Lemma 2.1, that is, the second adjointness isomorphism
for Bernstein-Zelevisky derivatives. The key ingredient is Rodier’s approximation
[Ro] of the Whittaker character by characters of compact pro-p groups.

6.1. Groups. Let F be a p-adic field, R its ring of integers and P the maximal
ideal generated by a prime $. Let ψ be the character of F of conductor R. Let
G = GLn(F ) and let U be the group of unipotent upper triangular matrices in G.
Let ψU : U → C be a Whittaker character defined by

ψU (u) = ψ(u1,2 + · · ·+ un−1,n)

where ui,j denote the entries of the matrix u.
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For every natural number r, let Lr be the lattice in Mn(F ) consisting of all
matrices whose entries are in P r. Then

Kr = 1 + Lr

is a principal congruence subgroup of G. Let t = (ti) ∈ G be a diagonal matrix such
that ti/ti+1 = $2 for i = 1, . . . , n − 1. Let Hr = t−rKrt

r. Let B> be the Borel
subgroup of lower-triangular matrices. Then we have a parhoric decomposition

Hr = (Hr ∩B
>)(Hr ∩ U).

The sequence of groups Hr ∩ B
> is decreasing with trivial intersection, while the

sequence of groups Hr ∩U is increasing with union U . Let ψr be a character of Hr

defined by

ψr(g) = ψ(g1,2 + · · ·+ gn−1,n).

Observe that

ψr|Hr∩U = ψU |Hr∩U .

6.2. Representations. Let π be a smooth G-module. For every non-negative in-
teger r we have a projection map Pr : π → πHr,ψr defined by

Pr(v) = vol(Hr)
−1

∫

Hr

ψ̄r(u)π(g)v dg.

For r ≤ s we have maps isr : π
Hr,ψr → πHs,ψs defined by restricting Ps to πHr,ψr .

From the parahoric decomposition of Hr, it is easy to see that

isr(v) = vol(Hs ∩ U)−1

∫

Hs∩U
ψ̄s(u)π(u)v du.

This formula, in turn, implies that these maps form a direct system i.e. its ◦ i
s
r = itr,

for r ≤ s ≤ t. We have natural maps ir : π
Hr,ψr → πU,ψU

. Observe that is ◦ i
s
r = ir.

Hence we have a map from a direct limit

iπ : lim
r
πHr,ψr → πU,ψU

.

Proposition 6.1. For every smooth G-module π the map iπ is an isomorphism of

vector spaces.

Proof. Surjectivity: Let v ∈ π. Since Hr ∩ B
> → {1} there exists r such that v is

Hr ∩B
>-invariant. Let

w = vol(Hr ∩ U)−1

∫

Hr∩U
ψ̄r(u)π(u)v du ∈ πHr,ψr .

Then v and w have the same projection on πU,ψU
. Injectivity: Let v ∈ πHr,ψr that

projects to 0 in πU,ψU
. Then there exists an open compact subgroup Uc ⊂ U such

that
∫

Uc

ψ̄s(u)π(u)v du = 0.

Since Hs ∩ U → U there exists s ≥ r such that Hs ∩ U ⊃ Uc. Then the above
integral, with Uc substituted by Hs ∩ U , vanishes. In other words, isr(v) = 0 and
hence v = 0, viewed as an element of the direct limit. �
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For r ≤ s we have maps psr : πHs,ψs → πHr,ψr , going in the opposite direction,
defined by restricting Pr to πHsψs . From the parahoric decomposition of Hr, it is
easy to see that

psr(v) = vol(Hr ∩B
>)−1

∫

Hr∩B>

π(g)v dg

and this implies that these maps form an inverse system i.e. psr ◦ p
t
s = ptr, for

r ≤ s ≤ t.

By Proposition 4 in [Ro] (see also VI, page 169), there exists an integer r0,
independent of π, such that psr ◦ i

s
r is a non-zero multiple of the identity on πHr,ψr ,

if r0 ≤ r ≤ s. Thus isr is an injection and prs is a surjection. It follows, from
Proposition 6.1, that the maps ir : π

Hr,ψr → πU,ψU
are injections, for all r ≥ r0.

We shall use surjectivity of the maps psr to construct a natural complement of
πHr,ψr in πU,ψU

. So fix r ≥ r0, and for every s ≥ r, let τs be the kernel of psr. Observe

that τs is a complement of πHr,ψr in πHs,ψs , where we have identified πHr,ψr with
its image in πHs,ψs . We claim that τs, for s ≥ r form an injective subsystem. To
that end, let t ≥ s. We need to prove if v ∈ τs then its(v) ∈ τt, that is, ptr(i

t
s(v)) = 0.

Write ptr = psr ◦ p
t
s. Then

ptr(i
t
s(v)) = psr ◦ p

t
s((i

t
s(v)) = psr(p

t
s ◦ i

t
s(v)) = 0

where for the last equality we used that pts◦i
t
s(v) is a multiple of v. Hence the direct

limit

πHr,ψr
c := lim

s≥r
τs

is a complement of πHr,ψr in lims≥r π
Hr,ψr ∼= πU,ψU

.

We apply the above considerations to π = S(G), the space of locally constant,
compactly supported functions on G, considered a G-module with respect to the
action by left translations. In this case, the vector spaces πHr,ψr and πU,ψU

are
naturally G-modules, coming from the right translation action of G on S(G) and
the maps isr, p

s
r and ir are G-morphisms. Observe that S(G)Hr,ψr = indGHr

(ψr) and

S(G)U,ψU
∼= indGU (ψ), the Gelfand-Graev representation. Hence limr ind

G
Hr

(ψr) ∼=

indGU (ψ), as G-modules. Moreover, if r ≥ r0, then indGHr
(ψr) is a direct summand

of indGU (ψ). We record this in the following:

Proposition 6.2. For every r ≥ r0, ind
G
Hr

(ψr) is a direct G-invariant summand of

indGU (ψ):

indGU (ψ)
∼= indGHr

(ψr)⊕ indGHr
(ψr)c.

Proposition 6.3. Fix r ≥ r0. For almost all s ≥ r, (indGHs
(ψs)c)

Kr is trivial.

Proof. The key is the following lemma:

Lemma 6.4. Let r ≥ r0. Let π be an irreducible Whittaker generic G-module

such that πKr 6= 0. There exists a positive integer m, independent of π, such that

πHmrψmr 6= 0.
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Proof. The first step in the proof is a reduction to supercuspidal representations.
Let P =MN be a standard parabolic subgroup of block upper-triangular matrices.
Assume that π is a Whittaker generic subquotient of IndGP>σ, where P> is the

transpose of P . Let K = GLn(R). Using G = P>K and normality of Kr in K, it is

easy to see that πKr 6= 0 implies that σK
M
r 6= 0 where KM

r = Kr ∩M . Now assume

that σH
M
s ,ψM

s 6= 0 where HM
s = Hs ∩M and ψMs is the restriction of ψs to HM

s .

Let v ∈ σH
M
s ,ψM

s , and define f ∈ IndGP>σ, supported on P>(Hs ∩ N), such that

f(1) = v and that it is right (ψs)|Hs∩N -invariant. Then f ∈ (IndGP>σ)Hs,ψs . This
type must belong to the Whittaker generic subquotient of the induced representation
by injectivity of the map is.

It remains to deal with supercuspidal π. Let ` be a Whittaker functional on π,
and for every v ∈ π we have a Whittaker function fv(g) = `(π(g)v). Let T (r) ⊂ T

be the subset of t = (t1, . . . , tn) such 1/q(2m−2)r ≤ |ti/ti+1| ≤ q(2m−2)r, for all i. By
Theorem 2.1 in [La], there exists m, independent of π, such that fv is supported on
UT (r)K for all v ∈ πKr . Since fv is non-zero, for a non-zero v, there exists t ∈ T (r)
and k ∈ K such that `(π(tk)v) 6= 0. Since K normalizes Kr, π(k)v ∈ πKr . It follows
that π(tk)v is fixed by tKrt

−1. Observe that this group contains Hmr ∩B
>, by the

definition of T (r), hence

w = vol(Hmr ∩ U)−1

∫

Hmr∩U
ψ̄U (u)π(u)π(tk)v ∈ πHmr,ψmr

and it is non-zero since `(w) = `(π(tk)v) 6= 0. The lemma is proved. �

Take s ≥ mr, where m is as in the lemma. Recall that, by [BH], Bernstein’s
components of indGUψU are finitely generated and hence admit irreducible quotients.
Thus, if (indGHs

(ψs)c)
Kr 6= 0 then indGHs

(ψs)c has an irreducible quotient π such that

πKr 6= 0. Then πHs,ψs 6= 0 by the lemma, and hence dimG(ind
G
UψU , π) ≥ 2, by

Proposition 6.2, a contradiction. �

Proposition 6.5. For every G-module π generated by πKr , and every vector space

σ
HomG(σ ⊗ indGUψU , π)

∼= Hom(σ, πU,ψU
).

Proof. By Propositions 6.2 and 6.3, for almost all s ≥ r,

HomG(σ ⊗ indGUψU , π)
∼= HomG(σ ⊗ indGHs

(ψs), π).

Let C[G] denote the group algebra of G. Then we can write

σ ⊗ indGHs
(ψs) ∼= indGHs

(σ ⊗ ψs) ∼= C[G]⊗C[Hs] (σ ⊗ ψs).

Hence, by the Frobenius reciprocity,

HomG(σ ⊗ indGHs
(ψs), π) ∼= Hom(σ, πHs,ψs).

Now observe that the starting space HomG(σ ⊗ indGUψU , π) does not depend on
s. It follows that the spaces πHs,ψs are isomorphic for almost all s. In particular,
πHs,ψs ∼= πU,ψU

for such s. Hence

HomG(σ ⊗ indGUψU , π)
∼= Hom(σ, (π)U,ψU

).

�
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6.3. Second adjointness. Now we are ready to prove Lemma 2.1. We resume
using the notation from the main body of the paper, in particular, Gn = GLn(F ),
Un is the group of upper-triangular unipotent matrices, and Pn−i =Mn−iNn−i the
standard maximal parabolic subgroup of block upper-triangular matrices with the
Levi Gn−i×Gi. Let π be a smooth representation of Gn generated by vectors fixed
by the r-th principal congruence subgroup in Gn, and σ a smooth representation of
Gn−i, as in the statement of the lemma. Using the induction in stages,

indGn

Rn−i
(σ ⊗ ψ̄i) ∼= IndGn

Pn−i
(σ � indGi

Ui
(ψ̄i)).

By the second adjointness isomorphism for parabolic induction, due to Bernstein,

HomGn(Ind
Gn

Pn−i
(σ � indGi

Ui
(ψ̄i)), π) ∼= HomGn−i×Gi

(σ � indGi

Ui
(ψ̄i), πN>

n−i
).

It is easy to see that πN>

n−i
, as a Gi-module, is also generated by vectors fixed by

the r-th principal congruence subgroup in Gi. Thus we can apply Proposition 6.5
to Gi to derive

HomGn−i×Gi
(σ � indGi

Ui
(ψ̄i), πN>

n−i
) ∼= HomGn−i

(σ, (i)π).

7. Acknowledgment

A part of this collaboration was carried out at the Weizmann Institute of Science
during a program on the representation theory of reductive groups in 2017. Both
authors would like to thank the organizers, Avraham Aizenbud, Joseph Bernstein,
Dmitry Gourevitch and Erez Lapid, for their kind invitation to participate in the
program. We would like to thank a pair of referees for careful reading of the paper
and suggestions. The second author is partially supported by an NSF grant DMS-
1901745.

References

[AGRS] A. Aizenbud, D. Gourevitch, S. Rallis and G. Schiffmann, Multiplicity one theorems, Ann.
of Math. (2) 172 (2010), no. 2, 1407-1434.

[AG] A. Aizenbud, D. Gourevitch, Multiplicity one theorem for (GLn+1(R),GLn(R)), Selecta
Math. New Ser. 15 (2009), 271-294. https://doi.org/10.1007/s00029-009-0544-7

[AM] M. Atiyah and I. MacDonald, Introduction to commutative algebra, Addison-Wesley Pub-
lishing Company, Massachusets, 1969.

[BD] J. N. Bernstein, Le centre de Bernstein, edited by P. Deligne. Travaux en Cours, Repre-
sentations of reductive groups over a local field, 1-32, Hermann, Paris, 1984.

[BZ1] I. N. Bernstein and A. V. Zelevinsky, Representations of the group GL(n, F ) where F is
a non-archimedean local field , Russian Math. Surveys 31:3 (1976), 1-68.

[BZ2] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups,
I, Ann. Sci. Ecole Norm. Sup. 10 (1977), 441-472.

[BH] C. Bushnell and G. Henniart, Generalized Whittaker models and the Bernstein center,
Amer. J. Math. 125 (2003), no. 3.

[BK1] C.J. Bushnell and P.C. Kutzko, The admissible dual of GL(N) via compact open subgroups,
Annals Math. Studies, Princeton Univ. Press (1993)

[BK2] C.J. Bushnell and P.C. Kutzko, Smooth representations of reductive p-adic groups: struc-
ture theory via types, Proc. London Math. Soc. 77 no. 3 (1998), 582-634.

[BK3] C.J. Bushnell and P.C. Kutzko, Semisimple types in GLn, Compositio Math. 119 (1999),
no. 1, 53-97.



VANISHING EXT-GROUPS FOR (GLn+1(F ),GLn(F )) 19

[CS] K.Y. Chan and G. Savin, Bernstein-Zelevinsky derivatives: a Hecke algebra approach,
IMRN, Volume 2019, Issue 3, (2019) 731-760, https://doi.org/10.1093/imrn/rnx138

[Ch] K.Y. Chan, Duality for Ext-groups and extensions of discrete series for graded
Hecke algebras, Advances in Mathematics, Volume 294, 2016, Pages 410-453,
https://doi.org/10.1016/j.aim.2016.03.002.

[Ch2] K.Y. Chan, Homological branching law for (GLn+1(F ),GLn(F )): projectivity and inde-
composability, arXiv:1905.01668v1

[Ch3] K.Y. Chan, Restriction for general linear groups: the local non-tempered Gan-Gross-
Prasad conjecture, arXiv:2006.02623

[GGP] B. H. Gross, W. T. Gan and D. Prasad, Symplectic local root numbers, central criti-
cal L values, and restriction problems in the representation theory of classical groups,
Astérisque, No. 346 (2012), 1-109.

[Ho] Howe, Roger, Hecke algebras and p-adic GL(n). Representation theory and analysis on
homogeneous spaces (New Brunswick, NJ, 1993), 65–100, Contemp. Math., 177, Amer.
Math. Soc., Providence, RI, 1994.

[La] E. Lapid, On the support of matrix coefficients of supercuspidal representations of the gen-
eral linear group over a local non-archimedean field, Representations of reductive groups,
211–218, Proc. Sympos. Pure Math., 101, Amer. Math. Soc., Providence, RI, 2019.

[NP] M. Nori and D. Prasad, On a duality theorem of Schneider-Stuhler, J. Reine Angew. Math.
762 (2020), 261–280, DOI 10.1515/crelle-2018-002.

[Pr1] D. Prasad, On the decomposition of a representation of GL(3) restricted to GL(2) over a
p-adic field, Duke Math. J. 69 (1993), 167-177.

[Pr2] D. Prasad, Ext-analogues of branching laws, Proceedings of the International Congress of
Mathematicians - Rio de Janeiro 2018. Vol. II. Invited lectures, 1367–1392, World Sci.
Publ., Hackensack, NJ, 2018.

[Ro] F. Rodier, Modéle de Whittaker et caractéres de représentations, Non-commutative har-
monic analysis (Actes Colloq., Marseille-Luminy, 1974), pp. 151-171. Lecture Notes in
Math., Vol. 466, Springer, Berlin, 1975.

[St] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu, 2020
[SZ] B. Sun and C. B. Zhu, Multiplicity one theorems: the Archimedean case, Ann. of Math.

(2) 175 (2012), no. 1, 23-44.
[Ze] A. Zelevinsky, Induced representations of reductive p-adic groups II, Ann. Sci. Ecole Norm.

Sup. 13 (1980), 154-210.

Shanghai Center for Mathematical Sciences, Fudan University

E-mail address: kychan@fudan.edu.cn

Department of Mathematics, University of Utah

E-mail address: savin@math.utah.edu


