A VANISHING EXT-BRANCHING THEOREM FOR
(GLn-i-l (F))GLTL(F))

KEI YUEN CHAN AND GORDAN SAVIN

ABsTRACT. We prove a conjecture of Dipendra Prasad on the Ext-branching
from GLy,+1(F) to GL, (F'), where F is a p-adic field, give a projectivity criterion,
and derive some interesting consequences.

1. INTRODUCTION

Decomposing a smooth representation of GL,,11(F), when restricted to GL,,(F),
is a well known and well studied problem that was initiated in a paper of Prasad
[Pr1]. Today, this problem is a part of a large family of Gan-Gross-Prasad restriction
problems [GGP] that are at the center of much research in Representation Theory
and Number Theory. In order to describe what is known, and what is new in this
paper, let G, = GL,,(F') and let Alg(G,,) be the category of smooth representations
of G,. For every m € Alg(G,,), let Wh(m) be the space of Whittaker functionals
on m. If 7 is irreducible then Wh(r) is one or zero dimensional. We say that 7 is
generic or degenerate, respectively. Let m be an irreducible representation of G 1.
One of the most significant results in the subject is that the restriction of 7 to G,
is multiplicity free [AGRS]|, [AG], [SZ], that is, for every irreducible representation
o of G,

dim Homg,, (71, m2) <1

and it is one if both representations are generic. On the other hand, Dipendra
Prasad proved in [Pr2| the following beautiful formula:

EP (71, m9) = Z(—l)i dim Ext{; (m1,m2) = dim Wh(m;) - dim Wh(ms).

In particular, the formula implies that EP(m,m2) = 1 if both representations are
generic. Since dim Homg,, (71, 72) = 1, Prasad had conjectured that Extg (71, m2)
vanish for ¢ > 0 if both representations are generic.

The first main result in this paper is a proof of this conjecture. In [Ch3], we
shall generalize the result to other Bessel and Fourier-Jacobi models (in the sense
of [GGP]). The proof is based on the theory of Bernstein-Zelevinsky derivatives
[BZ1], [BZ2| with the following, additional ingredient. The theory of derivatives
describes how a smooth representation of G, restricts to the mirabolic subgroup
M,y 11. However, instead of M, one can consider the transpose MnT 11 of My41,
and develop a theory of derivatives with respect to M, ;. Thus we have two no-
tions of derivatives: those with respect to M, 41 are called right derivatives and
those with respect to MnT 41 are called left derivatives. These two derivatives are

related by the outer automorphism of G,y defined by 6,41(g9) = (¢')". Since
1
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n
right derivatives taken together is stronger, and is essential to our combinatorial

arguments. Let us illustrate the argument when 7 is the Steinberg representation
of GLa(F'). Let v(g) = |g| be a character of GL;. The theory of derivatives implies
that the restriction of m; to GL1(F') is given by the following Bernstein-Zelevinsky
filtration

M T+1 is not conjugated to My,4+1 in Gp41, the information provided by left and

0= C(F*)—>m —>C—=0

where C.(F*) is the space of locally constant, compactly supported functions on
F*, and GL1(F) acts on C by the character v or v~!, depending whether we use
right or left derivatives, respectively. Thus, for a given character my of GL;1(F),
one can clearly arrange that the character on the quotient C in the above sequence
is different from 7me. Now higher extension spaces vanish since C.(F*) is projec-
tive. Even multiplicity one statement is clear since it holds for C.(F*). The gen-
eral case, restricting from G, 41 to G,, follows this strategy. The bottom piece
of the Bernstein-Zelevinsky filtration of 7 is the Gelfand-Graev representation of
Gy, thus vanishing of higher extensions, and multiplicity one for generic represen-
tations, follow from projectivity [CS|, and multiplicity one for the Gelfand-Graev
representation of G, respectively.

The theory of left and right derivatives is expected to have more applications on
restiction problems. In [Ch2|, we further prove that there are no isomorphic irre-
ducible quotients (and submodules) for the i-th left and i-th right shifted deriva-
tives of an irreducible representation of G, unless the derivatives are the highest one.
Such result has consequences on the indecomposability of a restricted representation
as well as to the submodule restriction problem.

Let K, be the r-th principal congruence subgroup in G,. Let m € Alg(G,,) be
generated by the subspace 7 of K,-fixed vectors (so 7 is contained in finitely
many Bernstein components). Then the left (7 and the right 7(9 derivative are
related by the isomorphism (7(9)¥ 2 @) (7V). We establish this as a consequence
of a “second adjointness isomorphism” for Bernstein-Zelevinsky derivatives, that
naturally involves the left derivative, proved in the appendix. This result is of
independent interest.

The second main result is a projectivity criterion for the representation m; of
Gr+1, when restricted to G, formulated in [Ch2]. In [Ch2|, we shall use the criteria
to classify all irreducible representations which are projective when restricted from
Gpy1 to Gy, Assume that m is projective as Gj,-module. Then higher extension
spaces vanish without assuming that 7o is generic. Now assume that 7 or mo is
degenerate. Then EP (71, m) = 0 by the Prasad’s formula. If w5 is a quotient of
m1 then Extgn (m1,m2) # 0 for some 7 > 0, and this contradicts projectivity of 7.
Thus a necessary condition for m; to be G,,-projective is that it is generic and all its
irreducible quotients are generic. In this paper we show that this is also a sufficient
condition. The proof relies heavily on the Hecke algebra methods from our earlier
paper |CS]. Moreover, if 71 is projective, we identify each Bernstein component of
w1 with an explicit projective Hecke algebra module, independent of ;. We also
show that the necessary condition is satisfied if 7 is an essentially square integrable
representation. Therefore essentially square integrable representations of G,1 are
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projective Gp-modules, and any two such representations are isomorphic as G-
modules. This result generalizes the classical result of Bernstein and Zelevinsky
which says that any two cuspidal representations of G,41 are isomorphic when
restricted to the mirabolic subgroup M, 1 of Gp41.

Finally we would like to point the following consequence of our results to the
submodule restriction problem: Homg, (72, 71) (note that 7; and 79 have switched
the places). The two restriction problems are related by a cohomological duality,
due to Nori and Prasad [NP] (also see [Ch]),

Extly, (mo,m1)" 2 Exte® ™ (my, D(m2)),

where d(m2) is the cohomological dimension of m and D(ms) is the Aubert involute
of mo. This duality gives an additional importance to the cohomological restric-
tion problem studied in this paper. Since d(m2) > 0, due to the presence of one-
dimensional center in G, it follows that Homg, (72, 71) = 0 for all irreducible o
if 1 is projective, in particular, this is true if 7y is an essentially square integrable
representation.

2. BERNSTEIN-ZELEVINSKY DERIVATIVES

In this section we study Bernstein-Zelevinsky derivatives, or simply derivatives, as
functors from Alg(G),) to Alg(G,,—;). We state a “second adjointness isomorphism”
for these functors, as well as an Ext version of the formula. Mirabolic group will
appear in the next section.

2.1. Notation. Let G,, = GL,(F), where F is p-adic field. Let v(g) = |det(g)| be
the character of G,,, where |- | is the absolute value on F. Let B, be the Borel
subgroup of G, consisting of upper triangular matrices and let U,, be the unipotent
radical of B,,. Let

R, ;= {(g i) g€ Gp_j,ue U,z € Matn_m»(F)} .

We have an obvious Levi decomposition R,_; = G,_;F,_;, where F,_; is the
unipotent radical of R,,_;. Moreover, E,,_; = N,_;U; where N,,_; is the unipotent
radical of the maximal parabolic subgroup P,_; consisting of block upper triangular
matrices and Levi factor G,,_; X GG;. Fix a non-zero additive character ¢ of F. Let
1; be the character of E,,_; defined by

i (§2)=(urg+ ... +ui—1,)

where uy 9, ..., u;—1, are the entries of u above the diagonal. Let dg, be the modular
character of R,_;. The modular character is trivial on the unipotent radical E,,_;,
and it is equal to ¢ on the Levi factor G,_;. Let m be a smooth representation of
Gy, on a vector space V. The right i-th Bernstein-Zelevinsky derivative of 7 is a
smooth representation 79 of G,,_; on the vector space V® defined by

VO =V/(x(e)v — vi(e)v:e € Epj,v € V).
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The representation 7() is the natural action of the Levi factor G,—i on V@ twisted
by 5;51 21_, that is, Bernstein-Zelevinsky derivatives in this paper are normalized, as
is parabolic induction and corresponding Jacquet functors.

From the definition of derivatives, the factorization R,,_; = G, _;E,_;, and the
Frobenius reciprocity, one can easily prove the “first adjointness” isomorphism for
right Bernstein-Zelevinsky derivatives: For any smooth representation 7 of G,, and
smooth representation o of G, _;:

Homg, (m,ndg"_ (0 @ 1)) = Homg, _, (x"), 0).

We called the derivative right because there is also a left derivative, which is
taken with respect to the transpose of the groups used to define right derivatives.
More precisely, the underlying vector space for the left derivative ()7 is

OV =v/(r(e)v—y] (ev:ec Bl ,,veV),

A n—iu»

where 1/); is the character of E:L—_i defined by

O (19) = d(uzn+ .o+ uiion).
Let 0,(g) = (g7') " be the outer automorphism of G,, where g is the transpose of
g. Then the left derivative of 7 is related to the right derivative by the identity

O = 0, (0 () D).

Let K, be the r-th principal congruence subgroup in G,,. Let w be a representation
of G,, generated by 757, the space of K,-fixed vectors in 7. By 4.2 Theorem in
[BZ1], any submodule of 7 is also generated by its subspace of K,-fixed vectors.
Thus representations of GG,, generated by K,-fixed vectors form a categorical direct
summand. The following is the “second adjointness” isomorphism for left Bernstein-
Zelevinsky derivatives, proved in the appendix.

Lemma 2.1. Let K, be the r-th principal congruence subgroup in G,. For any
representation © of Gy, generated by w57, and any smooth representation o of Gy_;,
Homg, (ind3" (0 ® ), 7) 2 Homg, _ (0, 7).

This isomorphism is functorial in both o and 7.

We now derive some consequences of the two adjointness isomorphisms. The first
consequence is a relationship between right and left derivatives via the contragredi-
ent:

Lemma 2.2. Let K, be the r-th principal congruence subgroup in Gp. Let w be a
representation of Gy, generated by 5. Then (x())V = () (V).

Proof. If we insert 7V in Lemma 2.1 then, for every smooth representation o of
G’n—i7 B )

Homg, (ind"_ (0 ® ¢),7") = Homg, _, (e, (x")).
On the other hand, by Proposition 4.2 in [Pr2],

Homg,, (indgzi (o0 ®1;),7") =2 Homg, _, (0, (ﬂ'(i))v)

i
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Thus we have an isomorphism
Homg, _, (0, (x")") 2 Homg, _, (0, D ("))
functorial in 0. Now we regard the functors
hy := Homg, .(.,(®®)Y), hy:=Homg, (., (x"))

as objects in the functor category F which contains contravariant functors from the
category of representations of G,,—; to the category of abelain groups. The Yoneda
lemma (see e.g. Lemma 4.3.5 [St]) asserts that there are natural isomorphisms

Hompg (h1, hy) 2 Homg, _,((x)", @ (x"))

and
Homgz(hg, hi) = Homeg, (D (), (x@)V).

12

The naturality is in the sense of loc. cit. and so h; = hy in F implies @) (7)
(W(i))v.
O

Remark: The statement of Lemma 2.1 is optimal in the sense that it cannot be
extended to all smooth representations 7. To that end, observe that Lemma 2.2, the
case i = n, says that we have an isomorphism of vector spaces (V) v, v, = (TU, )"
for every G,-module 7 generated by 75", Let 7 be any smooth G,-module. It can
be written as a direct sum

T2 T,
. Ko
where 7, is generated by 75" and 7, "' = 0. Then

V [ee] Y
= @rzlﬂ-r

~

hence m; , is a direct sum of (7)1, 1, = ((7r)v,,6,)" - But (70,,,4,)" is a product
of ((mr)u, 4, )", hence much larger unless the sum over r is finite.

The following is not needed in this work, however, it is used in the sequel of
this paper [Ch2| to prove that both, socle and co-socle, of derivatives of irreducible
representations are multiplicity free, see Proposition 2.5 in loc. cit..

Lemma 2.3. Let m be an irreducible representation of Gy,. The socle of @7 s
isomorphic to the co-socle of Dr. In particular, if the irreducible subquotients of
O are multiplicity free, then O is a direct sum of its irreducible subquotients.

Proof. The key observation is that, in view of Lemma 2.2, we have two ways to
compute M7

O = 0ri(0a(m) D) = ((x*) D).
Since 7 is irreducible, we have 6, (7) = 7V, and if we denote by o either of two iso-
morphic representations 6,,(7)® and (7V)®, we see that on one hand ()7 is obtained
from o by applying a co-variant functor €, and on the other hand by applying the

contra-variant functor taking the contragradient. Since these two functors coincide
on irreducible representations, the corollary follows. O
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Lemma 2.4. For any representation m of G, generated by 7% and smooth repre-
sentation o of Gp—;,
Extén (indgzii (0 @;), ) = Exténﬂ_(a, @ r).
Proof. In order to compute the right hand side we need to use a projective resolution
of . Using the induction in stages,
ind%" (0 ® ;) =2 IndS" (0 Kindf (7).

The Gelfand-Graev representation indgz () is proiective by Corollary A.6 [CS].
Thus, if o is projective it follows that indgzi (o0 ® 1)) is projective, since the par-

abolic induction takes projective modules into projective modules. So we have
shown that taking a projective resolution of o also gives a projective resolution of
indgzii (0 ® 1);). Hence the lemma follows from Lemma 2.1.

O

2.2. Zelevinsky segments. Here we follow |Ze|. Let p be a cuspidal representation
of Gy. For any a,b € C with b — a € Z>p, we have a Zelevinsky segment let
A = [V, v p, ..., 1Pp]. The absolute length of A is defined to be r(b — a + 1),
and the relative b—a+1. We can truncate A form each side to obtain two segments
of absolute length (b — a):

A= [ya—&-lp, .. .71/bp] and A™ = [l/ap, N .,z/b_lp]'

Moreover, if we perform the truncation k-times, the resulting segments will be
denoted by WA and A® . The induced representation % x v%t1p x ... x vbp
contains a unique irreducible submodule denoted by (A).

Proposition 2.5. Leti > 0 be an integer. The i-th left and right derivatives of (A)
vanish unless i = r when

M(A) = (TA) and (A)M) = (A7).

Corollary 2.6. Let Aq,..., A be segments. Let m be an irreducible subquotient
of (A1) x ... x (Ag). If a right derivative of ™ is generic, then every A; is of the
relative length one or two, and if the relative length is two, then A contributes to
the cuspidal support of the right derivative of w. Similarly, if a left derivative of ™
is generic, then ~A; contributes to the cuspidal support of the left derivative.

Proof. Observe that (A) is generic if and only if the relative length of A is one.
By the Leibniz rule, a right derivative of (A1) x ... x (Ag) has a filtration whose
subquotients are (A}) x ... x (A}) where A% is Aj or A This representation is
generic if and only if the relative length of every A; is one or two, and if it is two
then A} = A~ O

We summarize some other results from [Ze| that we shall need. The induced
representation v%p x v*t1p x ... x v’p also contains a unique irreducible quotient
denoted by St(A). This representation is an essentially square integrable represen-
tation i.e. its matrix coefficients are square integrable when restricted to the derived
subgroup. Every essentially square integrable representation is isomorphic to St(A)
for some segment A.
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Proposition 2.7. Let i > 0 be an integer. The i-th left and right derivatives of
St(A) wvanish unless i = jr, for some integer j, when

St(A) = St(AY)) and St(A)D) = St(DA).

Finally, let m = {Aq,..., A} be a multisegment, that is, a multiset of segments.
Let
St(m) = St(A1) X ... x St(Ag).
We observe that this representation depends on the ordering of the segments, but
its semi-simplification does not. One say that m is generic if no two segments are
linked, see page 184 in [Ze|. Then, by Theorems 4.2 and 9.7 in |Ze|, St(m) is an
irreducible generic representation, and every such representation arises in this way.

3. BERNSTEIN-ZELEVINSKY FILTRATION

In this section we begin our study of the restriction problem from G411 to G,.
Using the second adjointness formula, for both left and right derivatives, we prove
that degenerate representations of G, cannot be quotients of essentially square
integrable representations of Gp41.

3.1. Bernstein-Zelevinsky functors. Let M, 1 C G,41 be the mirabolic sub-
group

My = {(g 11L> g € Gp,u € Matml(F)} .

be the mirabolic subgroup of G;,4+1. We have an obvious Levi decomposition M, 11 =
GnE,. Abusing notation, let ¥ be the character of E, defined by ¥(u) = ¥(uy,)
where u,, is the bottom entry of the column vector u. Note that the stabilizer of
in G, is M,,. We have a pair of functors

O~ : Alg(M,,11) — Alg(M,,) and @7 : Alg(M,,) — Alg(M, 1)

defined by ®~ (1) = 75, 4 and ®1(7) = ind%ZEL (1 X 1). We also have a pair of
functors

U Alg(M41) — Alg(Gy) and ¥ @ Alg(G),) — Alg(My41)

where ¥~ (1) = 7, and ¥ is simply the inflation. All functors are normalized as
in [BZ2|. Any 7 € Alg(Mp+1) has an M,,;-filtration

ThnC...CT0=T
where, 7; = (®1){(®7)i(7), and
7i/Tig1 = (@) TTT(07)/(7).
Observe that W= (®~)!(7) = 70+ is the (i 4 1)-th derivative, and the subquotients
of the filtration, considered as GG,-modules, are
Ti/Tipr & indfr (M2 TV R yy),

where we have used notation from the previous section. In particular, 7, is a multiple
of the Gelfand-Graev representation. We derive some consequences of this filtration
that we shall need later.
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Lemma 3.1. Let 7 € Alg(M,,+1) such that its derivatives are all finitely generated.
When T is considered a Gp-module, its Bernstein components are finitely generated.

Proof. Recall that P,_; O R,_; is the maximal parabolic subgroup of G,, with
the Levi factor G; x G,,—;. Using induction in stages, the i-th subquotient in the
Bernstein-Zelevinsky filtration of 7 can be written as

mdSr (/2 - 70 R ind$ (1),

By the assumption 70t1 is a finitely generated G,_;-module and the Bernstein
components of the Gelfand-Graev representation indg: (1;) are finitely generated
[BH]. Lemma follows since parabolic induction sends finitely generated modules to
finitely generated modules by 3.11 in [BD]. O

Lemma 3.2. Let m; € Alg(Gry1) and mo an admissible representation of Gy,. If mo
s a quotient of m then, for some i,5 > 0.

Homg, ,(v'/?. ngﬂ), Dry) # 0 and Homg,, _; (=12 Uy ﬂéj)) # 0.

Proof. In order to prove the first isomorphism, we restrict m to G,, by way of
My, 11, and use the second adjointness formula. For the second we restrict to Gy,
by way of MnT 11, i.e. we reverse the roles of left and right derivatives. [l

3.2. Essentially square integrable representations.

Theorem 3.3. Let A = V%, ...,1%p] be a segment of absolute length n -+ 1, where
p is a cuspidal representation of G,.. Let m be an irreducible G,-module. If w is a
quotient of St(A) then m is generic.

Proof. Let | = b — a4+ 1, in particular, n + 1 = Ir. Assume that 7 is degenerate.
Let m = {Aj,...,Ar} be a multi-segment, from the Zelevinsky classification, such
that 7 is the unique submodule of (A1) x ... x (Ag). Since 7 is degenerate, by 9.10
in |Ze] one segment in m has the relative length at least two. If 7 is a quotient of
St(A) then, by Lemma 3.2, 7 contains /2 - St(A)+1) as a generic submodule
for some i. Now we can apply Corollary 2.6 : the relative length of each segment
in m is one or two, and one of them is [v¢~/2p, VC‘H/Qp] where v°t1/2p contributes
to the cuspidal support of /2 - St(A)+D . It follows that v'/2 - St(A)(+1) is a
generalized Steinberg representation corresponding to a segment ending in v*+1/2,
and containing 1/C+1/2p. Thus, for every d = ¢,...,b, I/d+1/2p contributes to the
cuspidal support of D7 as well as to the cuspidal support of 7. Similarly, if we use
the second identity in Lemma 3.2, then for every d = a, ..., ¢, v%1/2p contributes
to the cuspidal support of m. We see that m contains segments of total relative
length > [ and absolute length (I41)r = n+14r > n. This is a contradiction. [

4. VANISHING OF EXT’S
The purpose of this section is to prove:

Theorem 4.1. Let m; be an irreducible generic representation of Gn41 and mo an
irreducible generic representation of G,. Then

Extg, (1,m2) = 0 if i > 0 and Homg, (71, m) = C.
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Let us explain the strategy of the proof. Fix m9, and assume that 7o is a sub-
quotient of p; X ... X pi where p; are cuspidal representations. Let m(m) be the
integer that counts the number of cuspidal representations p in the support of m;
such that p is an unramified twist of a p;, for some 1 < ¢ < k. The proof is by
induction on m(m). The base case m(m) = 0 is easy. It is deduced from the
Bernstein-Zelevinsky filtration of 71 where the bottom piece is the Gelfand-Graev
representation of G,. Assume now that m = St(m;) and m2 = St(mg) for a pair
of generic multisegments m; and mg i.e. no two segments in m; are linked. Let
A = [v%,...,v%p] be a segment in m; such that p contributes to m(mz). Assume
that A is also a shortest such segment. Write m; = St(A) x m where 7 = St(m) and
m =my \A. Let r be the integer such that p € Alg(G,). Let p' € Alg(G,) be another
cuspidal representation such that no unramified twist of p’ appears in the cuspidal
supports of 1 and m. Now both p/ x St(TA) x 7 and p/ X St(A™) x 7 € Alg(Gp11)
are irreducible and satisfy the induction assumption. We shall use this information
to prove the theorem for 7.

4.1. Transfer. Let [ = s 4+ r. Recall that P; is the maximal parabolic of G; with
the Levi G5 x G,.. Starting with o € Alg(Gs) and 7 € Alg(M,) one can manufacture
two representations of M;. The first one is obtained by the (normalized) induction
from P, N M; and, abusing notation, denoted by ¢ x 7. The second is obtained by
the normalized induction from P, N M; but only after ¢ is multiplied by v1/2 see
[BZ2| page 457, where the definition uses a different subgroup, but conjugated in
M;. This representation is denoted by 7 X o.

Our interest in these representations comes from the following, 4.13 Proposition
in [BZ2].

Proposition 4.2. Let p € Alg(G,), o € Alg(Gs) and T € Alg(M,). Let p|p and
o|m denote restrictions to M, and My, respectively.

(1) There exists an exact sequence in Alg(M;)
0= (plp) xo—=pxo—px(oly)—0
(2) If Q is any of the four functors ®* and ¥*, then
Qo x 1) =0 xQ(1).
(3) ¥~ (7 x0) =¥~ (1) X 0, and there exists an ezxact sequence in Alg(M;_1)
0> (1) xo—=P (tx0) >V (1) % (clpr) =0
Proposition 4.3. Let A = [1%, ..., v°p] be a segment where p € Alg(G,). Let 7, =

(@) =1(1) € Alg(M,), the Gelfand-Graev module. Then St(A)|y is isomorphic to
T, X St(TA).

Proof. Recall that p|ps = 7, (this is true for every cuspidal representation). Note
that St(A) is a quotient of v%p x St(~A). By Proposition 4.2 (1), we have an exact
sequence of mirabolic subgroup modules

0— 7 X St(TA) = v x St(TA) = v x (St(TA)|[am) = 0

By Proposition 4.2 (2), any derivative of the quotient in the above sequence is equal
to v%p x St((WA) with k > 1. Since v%p and *) A are not linked, the corresponding
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subquotients in the Bernstein-Zelevinsky filtration are irreducible as mirabolic sub-
group modules. Observe that they are non-isomorphic to the subquotients of the
Bernstein-Zelevinsky filtration of St(A). Hence the projection from v%p x St(TA)
onto St(A), restricted to 7 x St(TA) gives the desired isomorphism. O

Now we arrive to a key result:

Corollary 4.4. Let p,p' € Alg(G,) be any two irreducible cuspidal representa-
tions. Let A = [v%,...,vbp], and m € Alg(Gy). Then we have an isomorphism of
marabolic modules

St(A)|ar x 22 p'|ar X (St(TA) x 7).

Proof. By Proposition 4.3, we can substitute St(A)|ar = 7 x St(TA). Furthermore,
we have a natural isomorphism

(10 x St(TA)) x T =7 x (St(TA)) x )
given by the induction in stages in two different orders. We finish by observing that
T =p|m- O

Now we continue with the proof of vanishing for 71 = St(A) X 7, notation as
in the start of the section. By Proposition 4.2 (1) there is an exact sequence in
Alg(MnJrl)

— (St(A)|a) x T — St(A) x 7 — St(A) x (7|pr) — 0.
Likewise, there is an exact sequence in Alg(M,41)
0— plar X (St(TA) x7) = p/ x (St(TA) x ) —= p/ x (St(TA) x 7)|pr — 0.

Note that the submodules in the two sequences are isomorphic by Corollary 4.4.
Furthermore, by the choice of p/,

Extl; (0 x (St(TA) x m)|ar, m2) = 0if i > 0.
Now we can apply the induction assumption to p’ x St(TA) x 7 and conclude that
Exty, ((St(A)|m) x m,m2) =01if i >0 and = Cif i = 0.
Hence, in order to establish the conjecture for the pair (71, ms), it suffices to show
that
Extl; (St(A) x (7|ar), m2) = 0if i > 0,

and to do this it suffices to show vanishing for each subquotient in the Bernstein-
Zelevinsky filtration of St(A) x (m|ar). By Proposition 4.2 part (2), the derivatives

of St(A) x (m|ar) are computed on the second factor. Thus, combining with the
second adjointness formula, it suffices to show that

o Ext}, (11/2St(A) x 7D, (ry) = 0 for 4,5 > 0.

Alternatively, by reversing the roles of left and right derivatives, it suffices to show
that

o Extjc';"(u_l/QSt(A) X (i+1)7r,77§i)) =0 for i,5 > 0.
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Hence it suffices to show that the cuspidal support of v7/2(St(A) x 7(+1) and
of Oy are different for all 4, or, they are different for v=1/2(St(A) x +Dx) and
wél) for all ¢. The strategy is to show that, if both statements fail, then ms contains
linked segments.

4.2. Combinatorics. Let m = {Aq,...,A;} be a multisegment. Then St(m) is
generic but reducible if some segments are linked. However, if A; and A; are linked,
then they can be replaced by A;NA; and A; UA;. This process (called recombina-
tion henceforth) eventually leads to a generic segment such that the corresponding
irreducible generic representation is the unique generic subquotient in St(m). Im-
portant observation is that the recombination does not change the cuspidal support.
The following is a key lemma.

Lemma 4.5. Let m be a generic multisegment and m' a multisegment obtained
by truncating m from the right. Then the generic segment corresponding to wm' by
recombination is also obtained from m by truncating from the right.

Proof. This is proved by induction on the number of steps in the recombination
process. If that number is 0 there is nothing to prove. Otherwise there is a pair of
linked segments A’ and A” in m’ such that the first step in the recombination is
replacing A’ and A” by A’NA” and A’ U A”. Tt is trivial to see that the resulting
multisegment is also obtained by right truncation from m. The proof follows by
induction. [l

4.3. Finishing the proof. Let I = b — a + 1 be the relative length of A. We note
that )7y is glued from St(m}) where m}, runs over all multisegments obtained from
my by truncating from the right i-times (in the sense of absolute length). By the
previous lemma the cuspidal support of D7y is given by such generic multisegments.
Likewise, St(A) x 70+1) is glued from St(A) x St('m) where ‘m runs over all multi-
segments obtained from m by truncating from the left ¢+ 1-times, and to determine
the cuspidal support we need to consider only generic ‘'m. However, {A} U’m needs
not be generic. There could be segments in ‘m linked to A. Since A is not linked
to any segment in m and ‘m is obtained from m by left truncation, it follows that
linking occurs over the right end point of A. Let Ag be the longest segment in ‘m
linked to A. It is easy to see that A U Ag is a segment in the generic multiseg-
ment corresponding to {A} U’m by the recombination process. Note that A U Ay
starts with v%p and is of relative length at least [. Thus the cuspidal supports of
v12(St(A) x 70+ and D7y can have a point in common only if my contains a seg-
ment starting with #%t1/2p and of relative length at least I. Similarly, the cuspidal
supports of v~1/2(St(A) x D7) and 7751) can have a point in common only if mo
contains a segment ending with ©°~1/2p and of length at least I. In other words we
have constructed a pair of linked segments in mo, a contradiction. This completes
the proof of the Ext-vanishing theorem.

5. HECKE ALGEBRA METHODS

The main goal of this section is to prove that an irreducible representation
of G4+1 when restricted to G, is projective if 71 is generic and all its irreducible
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Gr-quotients are generic. The proof uses Hecke algebras and identifies all Bernstein
components of a projective m; with the sign-projective module of the Hecke algebra
corresponding to the Bushnell-Kutzko type [BK1]|, [BK2|, [BK3|. As a consequence,
any two projective representations of GG, 1 are isomorphic when restricted to G,,.

5.1. Hecke algebras. Let A = [1%,...,1%p] be a Zelevinsky segment. Let m =
b—a+1. The Bernstein component of St(A) is equivalent to the category of represen-
tations of a Hecke algebra H,, arising from a simple Bushnell-Kutzko type 7, that
is, if 7 is a smooth representation in the Bernstein component, then Hom(7a, ) is
the corresponding H,,,-module. The algebra H,, is isomorphic to the Iwahori Hecke
algebra of GL,,(FE), for some field E. Thus, as an abstract algebra, H,, is generated
by 01,...,0m, and T,, (w € Sy,) satisfying the following relations (see, e.g. [Ho, (50)
and (57))):

(1) Hkﬁl = ngk for any k,l = 1, e,y

(2) T, 0k — 0k+1Ts, = (¢ — 1)0f, where ¢ is a prime power depending on 7a and

sk 1s the transposition of numbers k and k + 1;

(3) T,,00 =0T, ifl #k, k+ 1,

(4) (Ts, —q)(Ts, +1) = 0, where sy, is as in (2), and T, satisfies a braid relation.
Let A,, = C[Glﬂ,...ﬁfle] and Hg, be the span of T,,, w € S,,. Then H,, =
A @ Hg,,. The finite dimensional algebra Hg, has a one dimensional sign repre-
sentation sgn(Ty,) = (—1)®) | where £ is the length function on S,,. An irreducible
representation 7 in the component is Whittaker generic if and only if Hom(7a, )
contains the sign type as Hg,, -module [CS].

Let Aq,..., A, be segments such that for i # j, the cuspidal representations p;
and p; are not unramified twists of each other. The Bernstein component of St(A1)x

- x St(A,) is equivalent to the category of representations of a Hecke algebra H
arising from a semi-simple Bushnell-Kutzko type 7. We have H = H,,, @ - - - @ Ho,
and H = A® Hg where A= Ay, @ ® Ap, and Hg = Hg,, @ ®Hg,, . The
subalgebra A is isomorphic to the ring of Laurent polynomials in m = mq+...4+m,
variables, while Hg is spanned by T,,, w € S = Sy, X -++ X Sy, An irreducible
representation 7 in the component can be written as m; X --- X 7, where 7; is in
the component of St(4;), thus it clear that = is Whittaker generic if and only if
Hom(7, ) contains the sign type of Hg.

5.2. Some projective modules. Let x be a character of A. The H-module H® 4x
is called a principal series representation of H. A twisted Steinberg representation of
‘H is any one-dimensional H-module such that the restriction to Hg is the sign type.
For example, if 7 = St(A1) x -+ x St(A,), then Hom(7,7) is a twisted Steinberg
representation.

The following is Theorem 2.1 in [CS]. (It is stated there for H arising from the sin-
gleton partition (m) but the proof is applicable to a general partition (mq,...,m,)).

Theorem 5.1. Let II be an H-module. Assume that

(1) II is projective and finitely generated.
(2) dim Homy (I1, 7) < 1 for an irreducible principal series representation .
(3) A twisted Steinberg representation is a quotient of II.
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Then I1 = H ®4,4 sgn. Conversely, H Q@4 sgn satisfies the above properties.
As in [CS]|, we have the following corollary.

Corollary 5.2. Let I' be the summand of the Gelfand-Graev representation corre-
sponding to the Bernstein component of St(A1) x --- x St(A,). Then we have an
isomorphism Hom(7,I') = H ®4,4 sgn of H-modules.

5.3. Projectivity for Hecke algebras. Let Z be the center of H. Recall that
Z = A®, in particular, H is a finitely generated Z-module. Let J be a maximal
ideal in Z. Let H denote the J-adic completion of H [AM]. For every H-module II,
let IT denote the J-adic completion of II. If IT is finitely generated, then I = Hyll.

Theorem 5.3. Let I be a finitely generated H-module and J a maximal ideal in
Z. Let m be the unique irreducible H-module annihilated by J and containing the
sign type. Assume that

(1) dim Homy(IT,7) =1

(2) II has no other irreducible quotients annihilated by J .

(3) II contains a torsion free element for A.

Then 11 = H ®35 SEN.

Proof. In order to simplify notation, write ¥ = H ®y, sgn. Since II is finitely
generated, IT/ 711 2 I/ 711 is a finite dimensional H-module, annihilated by 7. By
(2) it must be generated by the sign type subspace. Let r be the dimension of the
sign type in I/ J1I. By Frobenius reciprocity, we have a surjection f : X" — 11/ 711
which descends to a surjection f : (X/J%)®" — I/ JII. Observe that f is bijective
on the sign type, since the sign type in 3/JX is one-dimensional. Since 7 is the
unique irreducible quotient of ¥/ 7% and f is bijective on the sign type, it follows
that #" is a quotient of II / JII. This forces r =1 by (1) and, by Nakayama lemma,
we have a surjection f : 3 — II. Since & 2 A, as A-modules, (3) implies that the
surjection is in fact an isomorphism.

O

Corollary 5.4. Let1l be a finitely generated H-module and J a maximal ideal in 2.
Assume that the conditions of Theorem 5.8 are satisfied. Then, for all H-modules
o annihilated by J and for all i > 0,

Proof. To compute Ext% (IT, o) we take a sufficiently long free resolution of IT
= H = H = 1T — 0.

Let Z be the J-adic completion of Z. By Proposition 10.13 in [AM], the completion
of finitely generated Z-modules is isomorphic to tensoring by Z. Since Z is a flat
Z-module, by Proposition 10.14 in [AM] , it follows that

s HT S HE ST =0
is also exact. Now, since ¢ is annihilated by 7, it is easy to check that

Extl, (T, 0) = Exté_z (ﬂ, o).
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The latter spaces are trivial for i > 0 by projectivity of H ®7 g SEN. O

Corollary 5.5. Let I1 be a finitely generated H-module. Assume that the conditions
of Theorem 5.3 are satisfied for every maximal ideal in Z. Then II1 = H ®7,4 sgn.

Proof. Corollary 5.4 implies that Ext’, (I, o) = 0, i > 0, for all finite length modules
o. Since 11 is also finitely generated, it is projective by Theorem A.1 in the appendix
of [CS]. Now we can apply Theorem 5.1. O

5.4. Projectivity for groups. Now we can apply the Hecke-module results to
the restriction problem, one Bernstein component at the time. Let m; be an irre-
ducible generic representation of G411 and fix a Bushnell-Kutzko type 7 for G,,.
Let IT = Hom(, 71) be the corresponding H-module. Note that the conditions (1)
and (3) in Theorem 5.3 are satisfied for every maximal ideal 7. Indeed, the condi-
tion (1) because all irreducible generic G -representations are quotients of 71 with
multiplicity one and (3) because 71, restricted to G, contains the Gelfand-Graev
representation whose 7 component is a free A-module. Theorem 5.3 implies the
following local Ext vanishing result for groups.

Theorem 5.6. Let m; be an irreducible generic representation of Gpy1. Let J be a
mazimal ideal of the Bernstein center of G,,. Assume that no degenerate irreducible
representation of Gy, annihilated by J is a quotient of 1. Then ExtiGn (m1,m2) =0,
i >0, for all irreducible representation wo of G, annihilated by J .

Finally, we have [Ch2]:

Theorem 5.7. Let w1 be an irreducible generic representation of Gyp1 whose irre-
ducible G,,-quotients are all generic. Then mwy, considered a G,-module, is projective.
Moreover, any two such representations of Gpy1 are isomorphic as Gy-modules.
This holds for all essentially square integrable representation of Gpy1.

Proof. Indeed, by Corollary 5.5, Hom(7,m) = H ®44 sgn for any Bernstein com-
ponent of 1. Thus every component of 7 is a projective G,-module independent
of 71, as long as 7 has no degenerate quotients. And these conditions are satisfied
for essentially square integrable representations by Theorem 3.3.

]

6. APPENDIX

In this appendix we prove Lemma 2.1, that is, the second adjointness isomorphism
for Bernstein-Zelevisky derivatives. The key ingredient is Rodier’s approximation
[Ro| of the Whittaker character by characters of compact pro-p groups.

6.1. Groups. Let F' be a p-adic field, R its ring of integers and P the maximal
ideal generated by a prime w. Let ¢ be the character of F' of conductor R. Let
G = GL,(F) and let U be the group of unipotent upper triangular matrices in G.
Let ¢y : U — C be a Whittaker character defined by

Yu(u) =Y(urg + -+ Un—1n)

where u; ; denote the entries of the matrix u.



VANISHING EXT-GROUPS FOR (GLy,11(F), GLy (F)) 15

For every natural number r, let L, be the lattice in M, (F') consisting of all
matrices whose entries are in P". Then

K,=1+L,
is a principal congruence subgroup of G. Let t = (¢;) € G be a diagonal matrix such

that t;/t;\1 = w? fori = 1,...,n — 1. Let H, = t"K,t". Let BT be the Borel
subgroup of lower-triangular matrices. Then we have a parhoric decomposition

H, = (H,NnB")(H.NU).

The sequence of groups H, N BT is decreasing with trivial intersection, while the
sequence of groups H, NU is increasing with union U. Let 1, be a character of H,

defined by
Ur(9) = Y(g12+ -+ Gn-1,n)-
Observe that
Urlg.nv = YulH.nv-

6.2. Representations. Let m be a smooth G-module. For every non-negative in-
teger 7 we have a projection map P, : m — 7% defined by

Puv) = vol(H,) ! [ dy(u)m(g)o dg.
H,
For r < s we have maps % : 7flr¥r — 7£Hs¥s defined by restricting Py to wHr¥r,
From the parahoric decomposition of H,., it is easy to see that

iS(v) = vol(Hy N U)~* / s (u)m(u)v du.
HsNU
This formula, in turn, implies that these maps form a direct system i.e. if o4
for r < s < t. We have natural maps i, : 7H%r — U - Observe that iz 014
Hence we have a map from a direct limit

Hrvwr

S
T
S
T

i o i — .

ir : lim TU s

Proposition 6.1. For every smooth G-module w the map i, is an isomorphism of
vector spaces.

Proof. Surjectivity: Let v € 7. Since H, N BT — {1} there exists 7 such that v is
H, N BT -invariant. Let

w = vol(H, NU) ™! / Y (u)m(u)v du € ofirvr,
H.NU
Then v and w have the same projection on 7y y,, . Injectivity: Let v € mHr¥r that
projects to 0 in 7y ,. Then there exists an open compact subgroup U. C U such
that
s (u)T(u)v du = 0.
Uec

Since H;, "N U — U there exists s > r such that H,NU D U.. Then the above
integral, with U, substituted by Hs N U, vanishes. In other words, i}(v) = 0 and
hence v = 0, viewed as an element of the direct limit. O
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For 7 < s we have maps p$ : w/s¥s — 7Hr¥r going in the opposite direction,
defined by restricting P, to #fs%¥s. From the parahoric decomposition of H,, it is
easy to see that

pS(v) =vol(H, N BT)~! / 7(g)v dg
H.NBT

and this implies that these maps form an inverse system ie. pSop, = pi for
r<s<t.

By Proposition 4 in |Ro| (see also VI, page 169), there exists an integer 7o,
independent of 7, such that p o i is a non-zero multiple of the identity on 7r¥r,
if ro <r < s. Thus ) is an injection and p! is a surjection. It follows, from
Proposition 6.1, that the maps i, : 7fr%r — Ty, are injections, for all r > rg.

We shall use surjectivity of the maps p; to construct a natural complement of
aHr¥r in MUy - S0 fix 7 > 19, and for every s > r, let 75 be the kernel of p7. Observe
that 7, is a complement of 7f7¥r in 7Hs¥s  where we have identified 7H%" with
its image in ws%s. We claim that 7,, for s > r form an injective subsystem. To
that end, let t > s. We need to prove if v € 75 then i} (v) € 7, that is, p.(i’(v)) = 0.
Write p!. = p o pl. Then

pL(is(v)) = p} o pi((ik(v)) = pi(pk 0 ik(v)) =0

where for the last equality we used that p’oi’(v) is a multiple of v. Hence the direct
limit
Hrﬂ/’r — 1
o : Slérrl Ts

~

is a complement of 7% in limg>, aHrr o TU s -

We apply the above considerations to m = S(G), the space of locally constant,
compactly supported functions on G, considered a G-module with respect to the
action by left translations. In this case, the vector spaces 7% and MUy are
naturally G-modules, coming from the right translation action of G on S(G) and
the maps ¢, p¢ and i, are G-morphisms. Observe that S(G)Hr¥r = indflr (¢r) and
S(G)pyy = indf (1), the Gelfand-Graev representation. Hence lim, ind%. () =
ind$ (1), as G-modules. Moreover, if 7 > 7g, then indgr (1y) is a direct summand
of ind$(z)). We record this in the following:

Proposition 6.2. For every r > rg, ind%r (1) is a direct G-invariant summand of
indg} (¢):

indff () = ind{, () @ indf, ().
Proposition 6.3. Fix r > rqg. For almost all s > r, (indgs (Vs)e) 5 is trivial.
Proof. The key is the following lemma:

Lemma 6.4. Let r > rg. Let m be an irreducible Whittaker generic G-module

such that 5 # 0. There exists a positive integer m, independent of T, such that
Hpnrmr 7& 0
T .



VANISHING EXT-GROUPS FOR (GLy,11(F), GLy (F)) 17

Proof. The first step in the proof is a reduction to supercuspidal representations.
Let P = M N be a standard parabolic subgroup of block upper-triangular matrices.
Assume that 7 is a Whittaker generic subquotient of IndIGDTJ, where PT is the
transpose of P. Let K = GL,(R). Using G = P' K and normality of K, in K, it is
easy to see that 7" #£ 0 implies that ok # 0 where KM = K, N M. Now assume
that o' %" £ 0 where HM = Hy,N M and 9 is the restriction of v, to HM.
Let v € aHéw’wy, and define f € Indgro, supported on P"(H, N N), such that
f(1) = v and that it is right (¢s)|g,~n-invariant. Then f € (IndIGﬂJ)HS’%. This
type must belong to the Whittaker generic subquotient of the induced representation
by injectivity of the map .

It remains to deal with supercuspidal . Let £ be a Whittaker functional on m,
and for every v € m we have a Whittaker function f,(g) = ¢(mw(g)v). Let T'(r) C T
be the subset of t = (t1,...,t,) such 1/¢g®m=2" < |t;/t; 1] < ¢? 27 for all i. By
Theorem 2.1 in [La], there exists m, independent of 7, such that f, is supported on
UT(r)K for all v € 7%, Since f, is non-zero, for a non-zero v, there exists t € T(r)
and k € K such that ¢(7(tk)v) # 0. Since K normalizes K., w(k)v € 7. It follows
that 7(tk)v is fixed by tK,t~'. Observe that this group contains H,,. N B, by the
definition of T'(r), hence

w = vol(Hy NU) ! / Yy (u)m(u)m(th)y € glmrdme
HonreNU

and it is non-zero since ¢(w) = ¢(w(tk)v) # 0. The lemma is proved. O

Take s > mr, where m is as in the lemma. Recall that, by |[BH]|, Bernstein’s
components of indgz/)U are finitely generated and hence admit irreducible quotients.
Thus, if (indfls (¥5)e) X" # 0 then indgs (1s). has an irreducible quotient 7 such that
75 £ 0. Then 7fs¥s £ 0 by the lemma, and hence dimg(ind§yy, ) > 2, by
Proposition 6.2, a contradiction. (I

Proposition 6.5. For every G-module 7 generated by w7, and every vector space
o
Homg (0 ® indSeyr, 7) = Hom(o, Uy )-

Proof. By Propositions 6.2 and 6.3, for almost all s > r,
Homg (o ® indGepy, 7) = Homg (o @ ind§_(1s), 7).
Let C[G] denote the group algebra of G. Then we can write
o ® indf (¢s) = indf, (0 ® 1) = C[G] @cm,) (0 @ ¥s).
Hence, by the Frobenius reciprocity,
Homg (o ® indGS (¥5), m) = Hom(o, ws¥s).

Now observe that the starting space Homg (o ® indgwy,ﬂ) does not depend on
s. It follows that the spaces ms%s are isomorphic for almost all s. In particular,
Hsbs o Ty for such s. Hence

Homg (o ® indng, m) = Hom(o, (m) v,y )-
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6.3. Second adjointness. Now we are ready to prove Lemma 2.1. We resume
using the notation from the main body of the paper, in particular, G,, = GL, (F),
U, is the group of upper-triangular unipotent matrices, and P,,_; = M,,_;N,,—; the
standard maximal parabolic subgroup of block upper-triangular matrices with the
Levi G,,—; X G;. Let m be a smooth representation of G,, generated by vectors fixed
by the r-th principal congruence subgroup in G,,, and ¢ a smooth representation of
Gp—i, as in the statement of the lemma. Using the induction in stages,
ind§" (0 ® ;) =2 Ind" (o Rindf (1;)).
By the second adjointness isomorphism for parabolic induction, due to Bernstein,
Homg, (Ind%" (o ®indf (¢;)), ) = Homg, _,xc, (0 ®indf (;), Tyt ).
It is easy to see that my1 , as a G;-module, is also generated by vectors fixed by
the r-th principal congruence subgroup in G;. Thus we can apply Proposition 6.5
to G; to derive
Home, _,xc, (0 Rindf (1;), 7y ) = Homg,_, (0, V7).

k3
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