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Abstract. We show a Siegel-Weil formula in the setting of exceptional theta correspon-
dence. Using this, together with a new Rankin-Selberg integral for the Spin L-function of
PGSp

6
discovered by A. Pollack, we prove that a cuspidal representation of PGSp

6
is a

(weak) functorial lift from the exceptional group G2 if its (partial) Spin L-function has a
pole at s = 1.

1. Introduction

Let F be a totally real number field, and A its ring of adèles. Let π ∼= ⊗vπv be an
irreducible cuspidal automorphic representation of the group PGSp6(A), which is unramified
outside a finite set S of places (including all real places). Since the Langlands dual group
of PGSp6 is Spin7(C), there is an associated semi-simple conjugacy class sv in Spin7(C) for
v /∈ S; this is the Satake parameter of the local component πv. If r denotes the 8-dimensional
spin representation of Spin7(C), the partial spin L-function corresponding to π is defined to
be the product

LS(s, π, Spin) =
∏

v/∈S

1

det(1− r(sv)q
−s
v )

where qv is the order of the residual field of the local field Fv.

It is well known that the stabilizer in Spin7(C) of a generic vector in the spin representation
is the exceptional group G2(C), giving a well-defined conjugacy class of embedding

ι : G2(C) −→ Spin7(C).

Therefore, as a special case of the Langlands functoriality principle, if LS(s, π, Spin) has a
simple pole at s = 1, then one expects π to be a functorial lift from an exceptional group of
absolute typeG2 defined over F . We note that every such group is given as the automorphism
group of an octonion algebraO over F , and by the Hasse principle, the number of isomorphism
classes of such groups is 2n where n is the number of real places of F .

As explained in a recent paper of Chenevier [C, §6.12], if π is a tempered cuspidal repre-
sentation of PGSp6 such that for almost all places v, the Satake parameter sv of πv belongs
to ι(G2(C)) (or more accurately, the conjugacy class sv meets ι(G2(C))), then L

S(s, π, Spin)
will have a pole at s = 1 and so one expects such a tempered π to be a functorial lift from
G2. In this paper we also prove a slightly weaker version of this expectation:
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Theorem 1.1. In the above setting, suppose that π is a cuspidal automorphic representation
of PGSp6 such that LS(s, π, Spin) has a pole at s = 1. Then there exists an octonion algebra
O over F and a cuspidal automorphic representation π′ of Aut(O) such that the Satake
parameters of π′ are mapped by ι to those of π (i.e. π is a weak functorial lift of π′).

If the cuspidal representation π of PGSp6 is tempered, then the following are equivalent:

(a) For almost all places v, the Satake parameter sv of πv is contained in ι(G2(C)).
(b) There exists an octonion algebra O over F and a cuspidal automorphic representation

π′ of Aut(O) such that π is a weak functorial lift of π′.

Since the local Langlands classification is not known for G2 or for PGSp6, this is essentially
the best possible result one can expect at the moment. However, if π is unramified everywhere
or if it corresponds to a classical Siegel modular form, then π is a functorial lift. Special cases
of this result were previously obtained by Ginzburg and Jiang [GJ], Gan and Gurevich [GG09]
and Pollack and Shah [PS].

Our proof of Theorem 1.1 is based on the following three ingredients:

(1) An exceptional theta correspondence for the dual pair Aut(O)×PGSp6 arising from
the minimal representation Π of a group of absolute type E7.

(2) A Siegel-Weil formula proved in this paper; see Theorem 1.2 below.

(3) An integral representation of the spin L-function of π recently discovered by A. Pollack
[P].

In greater detail, let J be the exceptional Jordan algebra of 3 × 3 hermitian symmetric
matrices with coefficients in an octonion algebra O. By the Koecher-Tits construction, the
algebra J gives rise to an adjoint group G of absolute type E7, with a maximal parabolic
subgroup P = MN , such that the unipotent radical N is commutative and isomorphic to
J . Since G is adjoint, the conjugation action of M on N is faithful, and M is isomorphic
to the similitude group of the natural cubic norm form on J . Thus the natural action of
Aut(O) on J gives an embedding of Aut(O) into M . The centralizer of Aut(O) is PGSp6.
To see this, observe that the centralizer of Aut(O) in J is the Jordan subalgebra JF of
3 × 3 symmetric matrices with coefficients in F . The group PGSp6 arises from JF by the
Koecher-Tits construction. This gives the dual pair

Aut(O)× PGSp6 ⊂ G

alluded to in (1) above.

We can now describe another dual pair in G. Let D be a quaternion algebra over F , and
assume that we have an embedding i : D → O. The centralizer of D in Aut(O) is isomorphic
to D1, the group of norm one elements in D. Conversely, the centralizer (i.e. the pointwise
stabilizer) of D1 in O is i(D) ⊂ O. Thus the centralizer of D1 in J is the Jordan subalgebra
JD of 3 × 3 hermitian symmetric matrices with coefficients in D, and the centralizer of D1

in G is a group GD of absolute type D6 arising from JD by the Koecher-Tits construction.
Thus we have a dual pair

D1 ×GD −→ G.
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Indeed, the two dual pairs we have described fit into the following see-saw diagram, where
the vertical lines represent inclusions of groups:

Aut(O) GD

D1 PGSp6

The Siegel-Weil formula mentioned in (2) above concerns the global theta lift Θ(1) of the
trivial representation of D1 to GD, obtained by restricting the minimal representation Π of
G to the dual pair D1 ×GD. Roughly speaking, Θ(1) is the space of automorphic functions
on GD obtained by averaging the functions in Π over D1(F )\D1(A). We prove that Θ(1)
is an irreducible automorphic representation of GD and determine its local components (as
abstract representations) by computing the corresponding local theta lifts. We have not
computed the local theta lift for complex groups, and this is the source of the restriction in
the paper to totally real fields F . The Siegel-Weil formula identifies the functions in Θ(1) as
residues of certain Siegel-Eisenstein series.

More precisely, since GD arises from JD by the Koecher-Tits construction, it contains a
maximal parabolic subgroup with abelian unipotent radical isomorphic to JD. Let ED(s, f)
be the degenerate Eisenstein series attached to this maximal parabolic subgroup, where
s ∈ R and f varies over all standard sections of the corresponding degenerate principal series
representation ID(s). In [HS], it was proved that ED(s, f) has at most a simple pole at s = 1,
and the residual representation

ED := {Ress=1ED(s, f) : f ∈ ID(s)}

was completely determined. Our main result is the following Siegel-Weil identity in the space
of automorphic forms of GD:

Theorem 1.2. For fixed quaternion F -algebra D, we have:

ED = ⊕i:D→OΘ(1).

Here the sum is taken over all isomorphism classes of embeddings i : D → O into octonion
algebras over F .

We emphasize that D is fixed here but O vary. If D is split, i.e. a matrix algebra, then
O is also split, and there is only one term on the right. In general the number of summands
on the right is equal to 2m where m is the number of real places v of F such that Dv is a
division algebra.

At this point, we need the result of A. Pollack [P]: there exists a quaternion algebra D such
that the partial spin-L-function LS(π, s) is given as an integral, over PGSp6, of a function
h ∈ π against the Eisenstein series ED(s, f). Thus, if the L-function has a pole at s = 1,
then the integral of h against the elements of ED is non-zero. The Siegel-Weil identity (i.e.
Theorem 1.2) then implies that π appears in the exceptional theta correspondence for the dual
pair Aut(O)×PGSp6, for some O containing D. Since this exceptional theta correspondence
is known to be functorial for spherical representations (see [LS] and [SW15]), this completes
the proof that π is a weak lift from a group of absolute type G2.
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2. Groups

2.1. Octonion algebra. Let F be a field of characteristic 0, and D be a quaternion algebra
over F . It is a 4-dimensional associative and non-commutative algebra over F which comes
equipped with a conjugation map x 7→ x with associated norm N(x) = xx = xx and trace
tr (x) = x+ x. Moreover, N : O → F is a nondegenerate quadratic form.

An octonion algebra O over F is obtained by doubling the quaternion algebra D. More
precisely, fix a non-zero element λ in F . As a vector space over F , O is a set of pairs (a, b)
of elements in D. The multiplication is defined by the formula

(a, b) · (c, d) = (ac+ λdb̄, ād+ cb).

If x = (a, b), then the conjugation map is x̄ = (ā,−b), so that N(x) = x · x̄ = N(a)− λN(b)
is the norm and tr (x) = x + x̄ = tr (a) the trace on O. In particular, O is split if λ is
a norm of an element in D. Every element x of O satisfies its characteristic polynomial
t2 − tr (x)t +N(x). The automorphism group Aut(O) of the F -algebra O is an exceptional
group of the Lie type G2. It is a simple linear algebraic group of rank 2 which is both
simply connected and adjoint. The algebra D is naturally a subalgebra of O, consisting of
all x = (a, 0). Let D1 be the group of norm one elements in D. Then any g ∈ D1 acts as an
automorphism of O by g · (a, b) = (a, bḡ) for all (a, b) ∈ O. The subgroup D1 ⊂ Aut(O) is
precisely the pointwise stabilizer of the subalgebra D ⊂ O.

2.2. Albert algebra. An Albert algebra is an exceptional 27-dimensional Jordan algebra J
over F . It can be realized as the set of matrices

A =





α x z̄
x̄ β y
z ȳ γ





where α, β, γ ∈ F and x, y, z ∈ O. The determinant A 7→ detA defines a natural cubic form
on J . Let M be the similitude group of this cubic form. It is a reductive group of semisimple
type E6. The M -orbits in J are classified by the rank of the matrix A. Without going into a
general definition of the rank, we say that A 6= 0 has rank one, if A2 = tr (A) ·A. Explicitly,
this means that the entries of A satisfy the equalities

N(x) = αβ, N(y) = βγ, N(z) = γα, γx̄ = yz, αȳ = zx, βz̄ = xy.

2.3. Dual pairs. Assume that G is a reductive group over F , adjoint and of absolute type
E7, arising from the Albert algebra J via the Koecher-Tits construction. For our purposes it
will be more convenient to realize G as a quotient, modulo one dimensional center C ∼= F×,
of a reductive group G̃ acting on the 56-dimensional representation W = F + J + J + F .
In particular, G acts on the projective space P(W ). Let P be a maximal parabolic and P̄
its opposite, defined as fixing the points (1, 0, 0, 0) and (0, 0, 0, 1) in P(W ). Then P = MN
where N is the unipotent radical and M = P ∩ P̄ a Levi. Then M is isomorphic to the
similitude group of the cubic form det on J , and N ∼= J , as M -modules.

Recall that we have constructed O by doubling a quaternion subalgebra D. Let JF and
JD be the subalgebras consisting of all elements in J with off-diagonal entries in F and D,
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respectively. Let J0 = F be the scalar subalgebra of J . Consider a sequence of simple, simply
connected groups

D1 ⊂ Aut(O) ⊂ Aut(J)

where an element in Aut(O) acts on the off-diagonal entries of elements in J . The pointwise
stabilizers in J of these three groups are, respectively,

JD ⊃ JF ⊃ J0 = F.

Observe that Aut(J) naturally acts onW , giving an embedding Aut(J) ⊂ G̃. The centralizers

in G̃ of the three groups in the sequence are, respectively,

G̃D ⊃ GSp6(F ) ⊃ GL2(F )

These three groups act on 32, 14 and 4-dimensional subspaces of W obtained by replacing J
by JD, JF and J0, respectively. It is worth mentioning that the 4-dimensional representation
of GL2(F ) is the symmetric cube of the standard 2-dimensional representation, twisted by

det−1. The group G̃D acts on

WD = F + JD + JD + F.

It is worth noting that the action of G̃D on WD is not faithful (it has µ2 ⊂ D1 as its kernel).

A detailed description of G̃D/µ2 and its action on WD can be found in Pollack’s paper [P].

Let GD be the quotient of G̃D by the center C ∼= F× of G̃. Then D1 ×GD is a dual pair in
G, as mentioned in the introduction.

Let PD =MDND = GD ∩P . With the identification N ∼= J fixed, we have ND
∼= JD. The

group PD is a maximal parabolic subgroup of type A5.

3. Minimal representation

Let F be a real or p-adic field. Let I(s) be the degenerate principal series representation
of G attached to P where s ∈ R. We normalize s as in [We] so that the trivial representation
is a quotient and a submodule at s = 9 and s = −9 respectively, whereas the minimal
representation Π is a quotient and a sub-module at s = 5 and s = −5, respectively. Note
however that the group G is simply-connected in [We] whereas our G is adjoint here.

3.1. Unitary model. Fix ψ : F → C×, a non-trivial additive character, unitary if F = R.
After identifying N ∼= J and N̄ ∼= J (note that the resulting actions of M on J are dual to
each other) any A ∈ J ∼= N̄ defines a character of N given by

ψA(B) = ψ(tr (A ◦B)) = ψB(A)

for B ∈ J ∼= N , where A ◦ B denotes the Jordan multiplication. Every unitary character of
N is equal to ψA for some A. Let Ω ⊆ J ∼= N̄ be the set of rank one elements in J . A unitary
model of the minimal representation is H = L2(Ω). Here only the acton of the maximal
parabolic P =MN is obvious: the group M acts geometrically,

π(m)(f)(A) = χ(m)f(m−1A),

for f ∈ Π, where for some character χ :M → R×, while B ∈ J ∼= N acts on f by multiplying
it by ψB.



6 WEE TECK GAN AND GORDAN SAVIN

3.2. Smooth model. We have the following [KS15].

Theorem 3.1. Let Π be the subspace of G-smooth vectors in the unitary minimal represen-
tation H. Then

C∞
c (Ω) ⊂ Π ⊂ C∞(Ω).

If F is p-adic, then
ΠN ∼= Π/C∞

c (Ω) as M -modules.

If A ∈ J is nonzero, then any continuous functional ` on Π such that `(B · f) = ψA(B) · `(f)
for all B ∈ N and f ∈ Π is equal to a multiple of the evaluation map δA(f) = f(A). In
particular, ` = 0 if A is not of rank one.

3.3. Spherical vector. It is not so easy to characterise the subspace Π ⊂ C∞(Ω). However,
we can describe a spherical vector in Π in the split case. The algebra O is obtained by
doubling the matrix algebra D =M2(F ) with λ = 1. Assume firstly that F is a p-adic field.
Let O be the ring of integers in F and $ a uniformizing element. We have an obvious integral
structure on D (the lattice of integral matrices), and hence on O, the integral lattice being
the set of pairs (a, b) where a, b ∈M2(O). This lattice is a maximal order in O. Now we have
an integral structure on J so that J(O) is the set of elements A ∈ J such that the diagonal
entries are integral, and off diagonal contained in the maximal order in O. The greatest
common divisor of entries of A ∈ J(O), is simply the largest power $n dividing A i.e. such
that A/$n is in J(O). We have the following [SW07]:

Theorem 3.2. Assume G is split and F a p-adic field. Assume the conductor of ψ is O.
Then the spherical vector in Π is a function f◦ ∈ C∞(Ω) supported in J(O). Its value at
A ∈ Ω depends on the GCD of entries of A. More precisely, if the GCD of the entries of A
is $n, and q is the order of the residual field, then

f◦(A) = 1 + q3 + . . .+ q3n.

Since Π is generated by f◦ as a P -module, and the action of P on Π is easy to describe,
this theorem gives us a good handle on Π.

Assume now that F = R; in this case, one has a similar result due to Dvorsky-Sahi [DS99].
For every a ∈ M2(R), let ||a||2 is the sum of squares of its entries. For x = (a, b) ∈ O, let
||x||2 = ||a||2 + ||b||2. Extend this to A ∈ J by

||A||2 = α2 + β2 + γ2 + ||x||2 + ||y||2 + ||z||2.

Let K3/2(u) denote the modified Bessel function of the second kind. Recall that K3/2(u) > 0,
for u > 0, and is rapidly decreasing as u→ +∞. Then [DS99, Theorem 0.1]:

Theorem 3.3. Assume G is split and F = R. Then the spherical vector in Π is a function
f◦ ∈ C∞(Ω) given by

f◦(A) = ||A||−3/2K3/2(||A||).

4. Local Theta Lifts: p-adic case

In this section, let F be a p-adic field, so that the octonion algebra O is split. We are
interested in understanding the theta lift of the trivial representation of D1 to the group GD.
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4.1. ND-spectrum. A crucial step is to understand the ND-spectrum of the minimal repre-
sentation Π. In this case we have an exact sequence of P -modules

0 → C∞
c (Ω) → Π → ΠN → 0.

The characters of ND
∼= JD are identified with the elements in JD using the trace paring, as

we did for J . We shall only need three characters, denoted by ψ1, ψ2 and ψ3, corresponding
to the elements





±1 0 0
0 0 0
0 0 0



 ,





±1 0 0
0 ±1 0
0 0 0



 and





±1 0 0
0 ±1 0
0 0 ±1





of rank 1, 2 and 3, respectively. We need to allow signs to capture all possible rank 1, 2
and 3 orbits in the real case. The following lemma is one of the keys in this paper, and we
emphasize that we do not assume that D is split here.

Lemma 4.1. Let Π be the minimal representation of G. Then:

(i) ΠND,ψ3
= 0.

(ii) ΠND,ψ2

∼= C∞
c (D1), as D1-modules.

(iii) If D is a division algebra, then ΠND,ψ1

∼= C, as D1-modules.

Proof. Let ωi ⊆ Ω be the set of all A ∈ Ω such that the restriction of ψA to ND is equal to
ψi. Because ψi is not the trivial character, the set ωi is (Zariski) closed in Ω. Hence,

ΠND,ψi
∼= C∞

c (ωi).

It remains to determine each ωi. Let’s start with i = 3. Then ω3 consists of all A ∈ Ω such
that

A =





±1 x −z
−x ±1 y
z −y ±1





where x = (0, a), y = (0, b) and z = (0, c) for some a, b, c ∈ D. Since A ∈ Ω, we further have
A2 = tr (A)A. Looking at the off-diagonal terms, we get the equations

yx = ±z, zy = ±x and xz = ±y.

But the products yx, zy and xz have the second coordinate equal to 0. Hence z = x = y = 0.
But then A cannot be a rank 1 matrix. Hence ω3 is empty, and this proves (i).

For (ii) we see analogously that y = z = 0. Now A has the rank 1 if and only if the first
2×2 minor is 0. This gives x2 = ±1. Writing this out, with x = (0, a) we see that λaā = ±1.
Hence ω2 is identified with the set of all elements in D with a fixed non-zero norm. This is
a principal homogeneous space for D1. This establishes (ii). In the last case it is easy to see
that x = y = z = 0. �

We now derive a consequence. Let Θ(1) be the maximal quotient of Π on which D1 acts
trivally; it is naturally a GD-module. Lemma 4.1 implies that

Θ(1)ND,ψ3
= 0 and Θ(1)ND,ψ2

= C.

Let ID(s) be the degenerate principal series representation of GD attached to PD normalized
as in [We]. In particular, the trivial representation is a quotient for s = 5 and a submodule for
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s = −5. The inclusion Π → I(−5) composed with the restriction of functions from G to GD
gives a non-zero D1-invariant map Π → ID(−1), which clearly factors through Θ(1). By [We]
and [HS], ID(−1) has a composition series of length 2. The unique irreducible submodule Σ
has ND-rank 2. We have:

Corollary 4.2. The above construction gives a surjective GD-equivariant map

Θ(1) → Σ ⊂ ID(−1)

whose kernel has ND-rank no greater than one. If D is a division algebra, then Θ(1) ∼= Σ.

Proof. It remains to prove the last statement. The spherical, rank 2 representation Σ is the
classical theta lift of the trivial representation of the quaternionic form of Sp(4) [Y]. Using
the theta correspondence, it is easy to check that ΣND,ψ1

∼= C. Thus, from Lemma 4.1 (iii)
it follows that the kernel of the map Θ(1) → Σ has ND-rank 0, i.e. ND acts trivially. Since
D1 is compact, Θ(1) is a summand of the minimal representation. By the classical result of
Howe-Moore the minimal representation cannot contain non-zero vectors fixed by ND. Thus
the kernel is trivial. �

4.2. Local lifts for split D. We shall strengthen here the result of Corollary 4.2 by showing
that Θ(1) ∼= Σ even when D is split, in which case G is also split.

Let T ⊂ G be a maximal split torus, so we have the associated root groups. Furthermore,
D1 ∼= SL2 and it is conjugated to a root SL2. Without loss of generality, we can assume that
SL2 corresponds to the highest root for some choice of positive roots. Let T1 = SL2∩T . Then
the centralizer of T1 in G is a Levi subgroup L of semisimple type D6. The Levi subgroup
L is contained in two maximal parabolic subgroups: Q = LU and its opposite Q̄ = LŪ .
The unipotent radical U is a two-step unipotent group with the center U1 given by the root
group corresponding to the highest root. Similarly, the center of Ū is the root subgroup
Ū1 corresponding to the lowest root. These two root groups U1 and Ū1 generate SL2. We
identify T1 ∼= GL1 so that x ∈ GL1 acts on U/U1 as multiplication by x.

The conjugation action of L on U1 and Ū1 is given by a character and its inverse; this
character is given by x 7→ x2 when restricted to T1 ⊂ L. Hence GD is the kernel of this
character, which is the derived group of L. Since G is of adjoint type, GD acts faithfully on
U/U1 (a 32-dimensional spin representation). Note that the representation U/U1 is not WD,

the 32-dimensional representation of G̃D, from §2.3.

More precisely, recall that the center of Spin12 can be identified with µ2×µ2 in such a way
that the outer automorphism exchanges the two µ2’s, and fixes the diagonal µ∆2 . The quotient
of Spin12 by µ∆2 is the special orthogonal group SO12. On the other hand, the quotient of
Spin12 by µ2 = µ2 × {1} and µ′2 = {1} × µ2 are isomorphic (being isomorphic via the outer
automorphism). Then one has:

GD ∼= Spin12/µ2 and L ∼= T1 ×µ2 GD
∼= GL1 ×µ′

2
(Spin12/µ2) ,

so that L has connected center. On the other hand, the group G̃D from §2.3 is given by

G̃D ∼= GL1 ×µ2 Spin12.

As we mentioned in §2.3, the action of G̃D on WD is not faithful.



AN EXCEPTIONAL SIEGEL-WEIL FORMULA AND POLES OF THE SPIN L-FUNCTION OF PGSp6 9

We now need a result on the restriction of Π to the maximal parabolic subgroup Q = LU .
By [MS97, Theorem 6.1], the space of U1-coinvariants of Π, an L-module, sits in an exact
sequence

0 → C∞
c (ω) → ΠU1

→ ΠU → 0

where ω is the L-orbit of highest weight vectors in Ū/Ū1. The action of L on C∞
c (ω) arises

from the natural action of L on ω twisted by an unramified character.

Let QD = LDUD be a maximal parabolic subgroup in GD stabilizing the line through
a point v ∈ ω. Note that the Levi factor LD of QD is also of type A5 (like that of PD).
The action of QD on the line gives a homomorphism χ : QD → GL1. Thus the stabilizer in
GD ×GL1 of v consists of all pairs (g, x) such that g ∈ QD and χ(g) = x. Since GD ×GL1

acts transitively on ω, it is easy to see that the following holds:

Theorem 4.3. The normalized Jacquet functor ΠU1
, as a GD × GL1-module, has a 2-step

filtration with the following quotient and submodule respectively:

• ΠU = Π(GD) ⊗ | · |2 ⊕ | · |3 where Π(GD) is the minimal representation of GD, and
| · | is the absolute value character of GL1.

• IndGD

QD
C∞
c (GL1) where C

∞
c (GL1) is the regular representation of GL1 (and the induc-

tion is normalized).

Now we can prove the following result which strengthens Corollary 4.2 and which is needed
later.

Proposition 4.4. Assume that we are in the p-adic case with D split. Then Θ(1) is irre-
ducible and isomorphic to Σ, the ND-rank 2 representation of GD that appears as the unique
irreducible quotient of ID(1).

Proof. Let π be an irreducible representation of SL2 and Θ(π) the corresponding big theta
lift. We first note that Θ(π) is always non-trivial, as a simple consequence of Lemma 4.1.
Moreover, Θ(π)ND,ψ2

is isomorphic to π∨, so that it is infinite dimensional if and only if π is.

Let J(s) be the principal series for SL2 normalized so that the trivial representation is a
quotient for s = 1 and a submodule for s = −1. Likewise, let JD(s) denote the degenerate
principal series associated to QD, normalized so that the trivial representation occurs at
JD(±5).

If −s 6= 2, 3, then Theorem 4.3 implies by way of the Frobenius reciprocity that

Hom(Θ(J(−s)),C) ∼= HomSL2
(Π, J(−s)) ∼= Hom(JD(s),C)

as GD-modules. For generic s, both J(−s) and JD(s) are irreducible and the above identity
implies that

Θ(J(−s)) ∼= JD(s)

for such s. It follows from Lemma 4.1 that JD(s)ND,ψ2
is infinite dimensional for such s.

However, since the restriction of JD(s) to ND is independent of s, it follows that JD(s)ND,ψ2

is in fact infinite dimensional for all s.

Now if π is a submodule of J(−s) with −s 6= 2, 3, then it follows that

Hom(Θ(π),C) ∼= HomSL2
(Π, π) ⊂ HomSL2

(Π, J(−s)) ∼= Hom(JD(s),C),
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so that Θ(π) is a quotient of JD(s). In particular, for π = 1 the trivial representation, we may
take s = 1 to deduce that Θ(1) is a quotient of JD(1). Since we know that Θ(1)ND,ψ2

is one-
dimensional whereas JD(1)ND,ψ2

is infinite-dimensional, we conclude that Θ(1) is isomorphic
to the unique irreducible quotient of JD(1) which has ND-rank 2. In particular, Θ(1) is
irreducible and isomorphic to Σ, the unique quotient of ID(1). �

As a side remark, the representations JD(s) have UD-rank 3. However, since Π has ND-
rank 2, it follows that the two parabolic subgroups PD and QD are not conjugate in GD.
But the two principal series ID(s) and JD(s) share all small rank subquotients: the trivial
representation, the minimal representation and the rank 2 representation Σ, as the above
argument shows.

5. Global lifting

Assume now that F is a global field, with its local completions denoted by Fv, and let A
be the ring of adèles over F .

5.1. Global theta lifting. Let Π = ⊗Πv be the restricted tensor product of minimal rep-
resentations over all local places v of F , where Πv ⊂ C∞(Ωv), as in Theorem 3.1. Every
element in Π is a finite linear combination of pure tensors f = ⊗fv, where fv = f◦v for almost
all places v. There is a unique (up to a non-zero scalar) embedding θ : Π → A(G(F )\G(A))
of Π into the space of automorphic functions of uniform moderate growth.

We restrict θ(f) to the dual pair D1 × GD and for every h ∈ A(D1(F )\D1(A)), consider
the function Θ(f, h) on GD defined by

Θ(f, h)(gD) =

∫

D1(F )\D1(A)
θ(f)(gDg) · h̄(g) dg.

If this is to be of any use, we require the function θ(f)(gDg) · h̄(g) to be of rapid decay on
D1(F )\D1(A) and of moderate growth on GD(F )\GD(A). This condition is clearly satisfied
if D1 is anisotropic or if h is a cusp form. It is also satisfied for a regularized theta lift, to be
constructed in the next section. Namely, for any finite place v, we will construct an element
z in the Bernstein center of SL2(Fv), such that for any f ∈ Π, the function θ(z · f)(g1g) is of
rapid decay on D1(F )\D1(A) and of moderate growth on GD(F )\GD(A). (See Proposition
6.1, and the discussion of this particular dual pair thereafter.) In particular, in all these
cases, the following integral is convergent:

∫

ND(F )\ND(A)

∫

D1(F )\D1(A)
|θ(z · f)(ng) · h̄(g)| dgdn.

5.2. Fourier expansion. Let ψ : A/F → C× be a non-trivial character. Then any A ∈ J(F )
defines a character ψA of N(F )\N(A) by ψA(B) = ψ(tr (A ◦ B)) for all B ∈ N(A) ∼= J(A).
For every ϕ ∈ A(G(F )\G(A)), let

ϕA(g) =

∫

N(F )\N(A)
ϕ(ng) · ψA(n) dn
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be the Fourier coefficient corresponding to A. We have a Fourier expansion

θ(f)(g) = θ(f)0(g) +
∑

A∈Ω(F )

θ(f)A(g).

By uniqueness of local functionals, Theorem 3.1, for every A ∈ Ω(F ) there exists a non-zero
scalar cA such that

θ(f)A(g) = cA
∏

v

(gv · fv)(A).

This formula is particularly useful if gv ∈M(Fv), for then (gv · fv)(A) = χv(gv) · fv(g
−1
v · A)

for the character χv of M(Fv).

Let ψ2 and ψ3 be the rank 2 and 3 characters of ND(A), as in the local case. Recall that
x ∈ O is a pair x = (y, z) of elements in D, and N(x) = N(y)−λN(z) for some λ ∈ F×. Let
ϕND,ψi

denote the global Fourier coefficient with respect to these two characters. Let ω2(F )
be the set of all rank one matrices





±1 x 0
−x ±1 0
0 0 0



 ∈ J(F )

such that x = (0, a) and λN(a) = ±1 (for only one choice of sign, depending on ψ2) i.e. the
2× 2 minor is 0. Then we have a global version of Lemma 4.1.

Lemma 5.1. For every f ∈ Π, θ(f)ND,ψ3
= 0 and

θ(f)ND,ψ2
(g) =

∑

B∈ω2(F )

θ(f)B(g).

5.3. Non-vanishing of the theta lift. We shall prove non-vanishing of the (regularized)
theta lift by computing the Fourier coefficient

Θ(f, h)ND,ψ2
(1) =

∫

ND(F )\ND(A)

∫

D1(F )\D1(A)
θ(f)(ng) · h̄(g) · ψ̄2(n) dgdn.

Since this integral is absolutely convergent, we can reverse the order of integration. Then,
using Lemma 5.1, we obtain

Θ(f, h)ND,ψ2
(1) =

∫

D1(F )\D1(A)

∑

B∈ω2(F )

θ(f)B(g) · h̄(g) dg.

Lemma 5.2. Fix

A =





±1 x 0
−x ±1 0
0 0 0



 ∈ ω2(F )

where x = (0, a), a ∈ D satisfies λN(a) = ±1.

For every automorphic form h and every f ∈ Π we have
∫

D1(F )\D1(A)

∑

B∈ω2(F )

θ(f)B(g)h̄(g) dg = cA

∫

D1(A)
f(g−1A)h̄(g) dg

where the second integral is absolutely convergent.
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Proof. Since ω2(F ) is a principal homogeneous D1(F )-space, the identity formally follows
by unfolding the left hand side and using the formula for θ(f)A(g) as a product of local
functionals given above. Hence it remains to discuss the issue of absolute convergence.

We may assume f = ⊗vfv is a pure tensor. For each place v, observe that if g ∈ SL2(Fv),
then g−1A is obtained from A by replacing x by xg. Hence, g 7→ g−1A gives a closed
embedding of SL2(Fv) into J(Fv), with image contained in Ωv. In particular, this image is
bounded away from the vertex 0 of the cone Ωv. Since h is of moderate growth on SL2(Fv),
to show that the integral in question is absolutely convergent, we need to show that g 7→
fv(g

−1A) is a Schwartz function on SL2(Fv). For this, it suffices to show that as a function
on the cone Ωv, fv is rapidly decreasing towards infinity, as we shall explain below.

In greater detail, assume first that v is a finite place. Due to Nv-smoothness, fv ∈ Πv is
supported on a lattice in Jv (and thus vanishes towards infinity). It follows that g 7→ fv(g

−1A)
is a compactly supported function on SL2(Fv). Moreover, let S be a finite set of places
containing all archimedean places such that for v /∈ S, all data is unramified: D(Fv) is split,
λ ∈ O×

v , a ∈ GL2(Ov), ψv has the conductor Ov, fv = f◦v , and h is right SL2(Ov)-invariant.
Here Ov is the maximal order in Fv. It follows from Theorem 3.2 that g 7→ f◦v (g

−1A) is the
characteristic function of SL2(Ov) for all v /∈ S. Thus if we normalize the local measures so
that vol(SL2(Ov)) = 1 for all v /∈ S, then

∫

D1(A)
|f(g−1A)h̄(g)| dg =

∫

D1(AS)
|fS(g

−1A)h̄(g)| dg

where the subscript S denotes the product of the local data over all places v ∈ S.

Consider now the case where v is a real place. We need to show that C 7→ fv(C) is of
rapid decay in ||C||, where C ∈ Ω(R). To that end, let mv ∈ M(R) such that C = m−1

v · A.
Then, up to a non-zero constant c, independent of C,

fv(C) = c · χv(mv)
−1 · θ(f)A(mv)

for the character χv of M(R). Now observe that mv can be taken a product of an element kv
in a maximal compact subgroup ofM(R) and an element zv in Zv, the identity component of
the center of M(R). We fix an isomorphism ν : Zv → R+ such that the conjugation action of
zv ∈ Zv on N(R) is given by multiplication by ν(zv). Now, in order to prove that fv is rapidly
decreasing towards infinity, we shall give a global argument exploiting the automorphic form
θ(f) (though a local proof is also possible). Namely, it suffices to show that zv 7→ θ(f)A(zvkv)
is rapidly decreasing as ν(zv) → ∞, with bounds independent of kv. This can be proved using
the usual method of integration by parts, as in [MW, Pg. 30, Lemma].

More precisely, if X ∈ J ∼= n, then the X-derivative of the character ψA is a multiple of
ψA. Using the definition of the Fourier coefficient and integration by parts, one obtains that

θ(f)A(zv) is a multiple of (RY · θ(f))A(zvkv) · ν(zv)
−1,

where Y = k−1
v Xkv and RY denotes the right Y -derivative of the automorphic form θ(f).

We can repeat this procedure to get any negative power of ν(zv). The rapid decay follows
from the fact that θ(f) is of uniform moderate growth, and the fact that Y = k−1

v Xkv is a
linear combination of vectors in any fixed basis of n, with bounded coeffecients, as kv runs
over the maximal compact subgroup in M(R).
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Finally, suppose that g ∈ SL2(R) belongs to the double coset of the diagonal matrix
(

t 0
0 1/t

)

, t > 0, in the Cartan decomposition of SL2(R). If we assume for simplicity that

λ = 1, so that a in x = (0, a) can be taken the identity matrix, then ||xg||2 = t2 + 1/t2 (on
the nose) and ||g−1A|| = t + 1/t. In particular, t < ||g−1A|| < t + 1 for t > 1. Hence, the
rapid decay towards infinity of fv (as a function on Ωv) implies that g 7→ fv(g

−1A) has rapid
decay on SL2(R), as desired.

�

We are now ready to prove the non-vanishing of the global theta lift. Assume firstly that
h is a cusp form. Then we have shown that

Θ(f, h)ND,ψ2
(1) =

∫

D1(AS)
fS(g

−1A)h̄(g) dg

for some large finite set of places. Since for every v ∈ S the local fv can be an arbitrary
compactly supported smooth function on Ωv the integral will not vanish for some choice of
data. Now consider the regularized theta integral Θ(z · f, h), where h is in an automorphic
form, not necessarily cuspidal, and z is an element of the Bernstein center of SL2(Fv) (see
the next section for the construction of z). The corresponding Fourier coefficient is

Θ(z · f, h)ND,ψ2
(1) =

∫

D1(A)
(z · f)(g−1A)h̄(g) dg.

Let Kv be a sufficiently small open compact subgroup of SL2(Fv) such that fv is Kv-invariant.
Then z · fv = α · fv where α is a Kv bi-invariant, compactly supported function on SL2(Fv).
Let α∨(g) = ᾱ(g−1) and define z∨ · h = α∨ · h. Using the convergence guaranteed by Lemma
5.2,

∫

D1(A)
(z · f)(g−1A)h̄(g) dg =

∫

D1(A)
f(g−1A)(z∨ · h)(g) dg,

and this can again be arranged to be non-zero, provided z∨ · h 6= 0. Hence we have proved
the following:

Theorem 5.3. If h is a non-zero cusp form on D1(A), then Θ(f, h) 6= 0 for some f ∈ Π. If
h is an (not necessarily cuspidal ) automorphic form such that z∨ ·h 6= 0, then Θ(z ·f, h) 6= 0
for some f ∈ Π.

Remark: The main reason for introduction of the regularized theta lift is to be able to
handle the lift of h = 1 in the case when D is split. In this case we can take all data to be
simplest possible, i.e. λ = 1, the matrix A with a = (0, x) with x identity matrix, etc. Then
non-vanishing of the theta lift is achieved with the spherical vector f◦∞ at any real place.

Indeed, if g ∈ SL2(R) belongs to the double coset of the diagonal matrix
(

t 0
0 1/t

)

, with t > 0,

in the Cartan decomposition of SL2(R), then ||xg||2 = t2+1/t2 and ||g−1A|| = t+1/t. Write
u = t+ 1/t so that

du = (t−
1

t
)
dt

t
.
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Using the formula for the spherical vector given by Theorem 3.3 and the formula for the Haar
measure on SL2(R) with respect to the Cartan decomposition, we have

∫

SL2(R)
f◦∞(g−1A) dg =

∫ ∞

2

1

2
· u−1/2K3/2(u) du > 0.

It will be interesting to compute the value of this integral.

6. Regularizing Theta

Following some ideas of Kudla and Rallis [KR], the first author introduced in [G] a reg-
ularized theta integral for a particular exceptional dual pair. We simplify the arguments so
that regularization is now available for a wider class of examples. The notations used in this
largely self-contained section will differ from those of the other sections of this paper. We
first recall some basic facts about the notions of uniform moderate growth and rapid decay.

6.1. Moderate growth and rapid decay. Let k be a number field and let A denote the
corresponding ring of adelés. Let G be a reductive group over k. In order to keep notation
simple, we shall assume that G is split with a finite center. Fix a maximal split torus T and a
minimal parabolic subgroup P containing T . Let N be the unipotent radical of P . We have
a root system Φ, obtained by T acting on the Lie algebra g of G and a set of simple roots in
Φ corresponding to the choice of P .

If we fix a place v of k, then Gv will denote the group of kv-points of G. Similarly, we
shall use the subscript v to denote various other subgroups of Gv. A smooth function f on
G(A) is of uniform moderate growth if there exists an integer m such that for every X in the
enveloping algebra of g there exists a constant cX such that

|RXf(g)| ≤ cX ||g||
m

where RX denotes the action of the enveloping algebra on smooth functions obtained by the
differentiation from the right and ||g|| is a height function on G defined in [MW, page 20].
Since there exists a constant c such that ||gh|| ≤ c||g|| · ||h|| for all g, h ∈ G(A), it is easy
to see that the constants cX for the right-translates Rhf of f are of moderate growth in h,
more precisely, of growth ||h||m+d where d is the degree of X.

Now assume that v is a real or complex place of k. Let Pv = MvAvNv be the Langlands
decomposition of Pv. For ε > 0, let Av,ε be a cone in Av consisting of a ∈ Av such that
α(a) > ε for all simple roots α. Let A be the product of the Av’s and let Aε be the product
of the Av,ε’s over all real and complex places v. Let ωN be a compact set in N(A) containing
the identity element. Let K be a product of maximal compact subgroups Kv of Gv where
we have taken Kv to be hyperspecial for all p-adic places. Then

S = ωNAεK

is a Siegel domain in G(A). If ωN is sufficiently large, and ε is sufficiently small, then
G(A) = G(k)S.

Let Π be an automorphic representation of G. Then any smooth f ∈ Π is of uniform
moderate growth. In terms of the Siegel domain S, this means the following. Let ρP : A→ R+

be the modular character. There exists an integer m such that for every X in the enveloping
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algebra of g, there exists a constant cX such that

|RXf(nak)| ≤ cX · ρP (a)
m

on S, where the constants m and cX are not necessarily the same, but related to those above.

Now let Q ⊇ P be a maximal parabolic with a unipotent radical U ⊆ N , corresponding
to a simple root α. We have a standard Levi factor L of Q defined as the centralizer of a
fundamental co-character χ : Gm → T (or a power of it). In any case, any element in Av is
uniquely written as a product

∏

χ χ(tχ), over all fundamental co-characters χ, where tχ ∈ R+.

The element
∏

χ χ(tχ) is contained in the cone Av,ε if tχ > ε for all χ. Let fU be the constant

term of f along U . Then, if f has a uniform moderate growth, by [MW, page 30, Lemma]
for every positive integer i, there is a constant ci such that

|(f − fU )(nak)| ≤ ci · ρP (a)
m · α−i(a)

on S. In particular, if fU = 0, then f is rapidly decreasing in the variable tχ. If fU = 0
for all maximal parabolic subgroups, then f is rapidly decreasing on S, and that’s how the
rapid decrease of cusp forms is established. The proof of [MW, page 30, Lemma] involves
integration by parts, so it is easy to see that the constants ci for the right-translates Rhf of
f are of moderate growth in h, more precisely, of the growth ||h||m

′

where m′ depends on i:
a larger i will demand a larger m′.

We highlight another important issue here. Assume that f belongs to an automorphic
representation π. Then a Frechét space topology on π is given by the family of semi-norms

||f ||X = sup
nak∈S

|RXf(nak)| · ρP (a)
−m

where m depends on π and works for all X in the enveloping algebra. Then [MW, page 30,
Lemma] says that convergence in these seminorms implies convergence in the seminorm

sup
nak∈S

|(f − fU )(nak)| · ρP (a)
−m · αi(a).

This observation will later imply that the regularized theta integral gives a continuous pairing.

6.2. Restricting to a subgroup. Let G1 ×G2 ⊆ G a dual pair in G. Let T1 be a maximal
split torus in G1 and fix a minimal parabolic subgroup P1 containing T1. Without loss of
generality, we can assume that T1 ⊆ T and P1 ⊆ P . Let Q1 ⊇ P1 be a maximal parabolic
subgroup of G1. Let χ1 : Gm → T1 be the corresponding fundamental cocharacter (or a
multiple of which) so that the centralizer of χ1 in G1 is a Levi factor L1 of Q1. Assume that:

Hypothesis: For every fundamental cocharacter χ1 of G1, there is a fundamental cocharacter
χ of G such that χ1 is a multiple of χ.

This hypothesis holds in the following examples:

• the dual pair G1 ×G2 = D1 ×GD = SL2 ×GD studied in this paper; here G1 = SL2

corresponds to the highest root and the highest weight is also a fundamental weight
for E7 (the ambient group G).

• the split exceptional dual pairs in G of type En where one member of the dual pair is
the type G2, see [LS]. In particular, this includes the case PGL3 ×G2 treated in [G].
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The above hypothesis has the following consequences:

• It implies that the cone A1,ε sits as a subcone of Aε; in fact, it is a direct factor in
the above cases. In particular, we have an inclusion of Siegel domains S1 ⊂ S.

• Given a fundamental cocharacter χ1 of G1, the associated fundamental cocharacter
χ of G given by the hypothesis corresponds to a simple root and so determines a
maximal parabolic subgroup Qχ1

= Lχ1
Uχ1

of G. In the following, we will sometimes
write U = Uχ1

to simplify notation.

Now let v be a p-adic place and z an element of the Bernstein’s center of G1(kv). Then
z · Π is naturally a G1(A) × G2(A)-submodule of Π. For a fixed cocharacter χ1 of G1, with
associated maximal parabolic Q = LU , assume that

z ·Πv ⊂ Ker
(

Πv −→ (Πv)U(kv)

)

.

We claim that this implies that (z ·f)U = 0 on G1(A)×G2(A). Indeed, if g ∈ G1(A)×G2(A),
then

(z · f)U (g) = (Rg(z · f))U (1) = (z ·Rg(f))U (1) = 0

where Rg denotes the right translation by g. Here, the second equality holds since z and Rg
commute, and the third equality holds since the projection of z · Π on ΠU vanishes. Write
g = g1 × g2 ∈ G1(A) × G2(A) and assume that g1 ∈ S1. Using the hypothesis that S1 ⊆ S
and the estimates for |Rg2(z · f)− (Rg2(z · f))U | on S from the last subsection, it follows that

(z · f)(g1 × g2) = Rg2(z · f)(g1)

is of moderate growth in both variables and in the variable g1 ∈ S1, it is rapidly decreasing in
the direction of the fundamental co-character χ1. More precisely, we summarise the discussion
in this subsection in the following proposition.

Proposition 6.1. Assume that:

(i) For every fundamental cocharacter χ1 of G1, there is a fundamental cocharacter χ
of G such that χ1 is a multiple of χ, which in turn determines a maximal parabolic
subgroup Qχ1

= Lχ1
Uχ1

;

(ii) One can find an element z in the Bernstein center of G1(kv) such that for every
fundamental cocharacter χ1 of G1, the natural projection of Πv to (Πv)Uχ1

(kv) vanishes
on z ·Πv for every fundamental co-character χ1 of G1.

Then for every integer n, there exists an integer m and a constant c such that

|(z · f)(g1 × g2)| ≤ c||g1||
−n||g2||

m

for all g1 ∈ S1 and g2 ∈ G2(A).

In the context of the above proposition, a small trade-off here is that increasing n can
be obtained only by increasing m at the same time. But this is still good enough to define
regularized theta lift which produces functions of moderate growth as output. To exploit
the proposition, it remains then to construct an appropriate z. We also need to assure that
z ·Πv 6= 0 and this may not be always possible, as will be discussed in the next subsection.
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6.3. Bernstein’s center. We work here locally over a p-adic field. Thus all our groups are
local and we drop the subscript v. For simplicity, we shall discuss only the Bernstein center
for the Bernstein component containing the trivial representation of G1.

To that end, let T̂1 be the complex torus dual to T1, and let W (G1) be the Weyl group
of G1. The Bernstein’s center Z(G1) of the said component is isomorphic to the algebra

of W (G1)-invariant regular functions on T̂1. Similarly, the Bernstein’s center Z(L1) of the

Levi factor L1 is isomorphic to the algebra of W (L1)-invariant regular functions on T̂1. In
particular, we have a natural map j : Z(G1) → Z(L1). Let π be a smooth representation of
G1, and let p : π → πU1

be the natural projection onto the normalised Jacquet module πU1
.

Then, for every z ∈ Z(G1) and v ∈ π, we have

p(z · v) = j(z) · (p(v)).

Now let Π be a smooth representation of G. Recall that we want to find a non-zero
z ∈ Z(G1) such that z · Π is in the kernel of the projection of Π onto ΠU . Since ΠU is a
quotient of ΠU1

, and j(z) is acting on ΠU , we need to find z such that j(z) = 0 on ΠU . This is
always possible if Π is a finite length G-module, in which case ΠU is a finite length L-module.
In particular, the center of L acts finitely on ΠU . Hence, the center of L1 (= the center of
L) acts finitely on ΠU and the Z(L1)-spectrum of ΠU is contained in a proper subvariety of

T̂1. In particular, any non-zero W (G1)-invariant function z vanishing on the subvariety will
have the desired property that j(z) vanishes on ΠU . Hence, a non-trivial z with the desired
property always exists.

A potential trouble is that such a z may kill the whole Π. However, if G is split, G1 is
the smaller member of the dual pair (also split) and Π the minimal representation, then the
spherical matrix coefficient Φ of Π, when restricted to G1, is typically contained in L2−ε(G1)
for some ε > 0. (This is easy to check in any given situation, see [LS]). Thus, in such
situations, it makes sense to integrate Φ against spherical tempered functions of G1, i.e. to
consider the spherical transform of Φ on G1(kv). This integral will be non-zero for almost all
tempered spherical functions, hence almost all spherical tempered representations of G1(kv)
will appear as a quotient of Π. (This argument for the nonvanishing of the theta lift of
almost all irreducible spherical tempered representations holds over archimedean fields as
well, as we shall exploit in Lemma 7.6 below). Hence, if z kills Π, then z kills all spherical
tempered representations of G1(kv) and hence z must be equal to 0. Therefore the desired
regularization can be carried out in this case.

Let’s look at our dual pair G1×G2 = SL2×GD in G, and Π is the minimal representation.
The Bernstein’s center is

Z(G1) = C[x±1]S2

where S2 acts by permuting x and x−1. Let

z = (x− q2)(x−1 − q2)(x− q3)(x−1 − q3)

where q is the order of the residual field. This element satisfies our requirement, since j(z)
vanishes on ΠU by Theorem 4.3, and the spherical matrix coefficient of Π is integrable when
restricted to SL2.
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6.4. Global Θ(1). Let z be the element in the Bernstein center of G1 = SL2, as in the
previous subsection. We define Θ(1) as the space of automorphic functions, gD ∈ GD(A),

Θ(f)(gD) =

∫

D1(F )\D1(A)
θ(z · f)(gDg) dg.

where we assume that f∞ is K∞-finite. (We assume this finiteness since in the next section
we will determine the local lift at real places in the language of (g,K)-modules.) We want
to show that Θ(1) 6= 0, using Theorem 5.3. The input in the theta kernel is h = 1, so the
first thing is to show that z∨ · 1 6= 0. In the case at hand, z∨ is obtained from z by replacing
x by x−1 in the above expression of z. In particular, z = z∨. Moreover, z acts on the
trivial representation by the scalar obtained by substituting x = q, and this is non-zero. It
remains to argue that we can arrange f∞ to be K∞-finite. This follows by the continuity
of the regularized theta integral, which ensures that the non-vanishing for smooth f implies
the non-vanishing for K∞-finite vectors. Alternatively, by the remark following Theorem 5.3,
non-vanishing can be achieved with f∞ = f◦∞ the spherical vector.

7. Correspondence for real groups

In this section, we work over the field R of real numbers. The goal of this section is to
determine Θ(1) explicitly. For this, we need to consider various cases separately. Indeed, recall
that G is arising from an Albert algebra via the Koecher-Tits construction. There are two
real forms of octonion algebra, the classical Graves algebra and its split form, and these two
algebras can be used to define two Albert algebras of 3×3-hermitian symmetric matrices with
coefficients in the octonion algebra. The group G is split or of the relative rank 3 depending
on whether the octonion algebra is split or not. Moreover, it will be convenient to work with
the simply connected G and (g,K)-modules corresponding to minimal representations. Then
the centralizer of D1 in G is G1, a simply-connected cover of GD in the sense of algebraic
groups. An advantage of working with G1 is that its maximal compact subgroup K1 is a
connected Lie group, so its irreducible representations are parameterized by highest weights.
Observe that the Lie group GD has two topological connected components and G1 is a two-
fold cover of the identity component of GD. The maximal compact subgroup KD has two
connected components meeting the connected components of GD. Hence there is a natural
bijection between irreducible spherical representation of GD and G1, via the pullback by the
natural map G1 → GD. We shall use this observation, in the case when G is split, to prove
that Θ(1) is an irreducible, spherical (gD,KD)-module by computing its K1-types.

7.1. Non-split O. Assume first that O and hence G is not split. Then the minimal rep-
resentation of the adjoint group, when restricted to the simply connected G, breaks up as
Π = Π1,0⊕Π0,1, a sum of a holomorphic and an anti-holomorphic irreducible representation.
This sum is the socle of the degenerate principal series I(−5). The maximal compact sub-
group K is of type E6, and has one dimensional center U(1) that acts on the Lie algebra g

with weights -2, 0 and 2. The weight 2 space is a 27 dimensional representation of K. Let ω
be its highest weight. Then

Π1,0 = ⊕n≥0Vnω(12)

where 12 denotes a twist of the irreducible K-module Vnω such that U(1) acts with the weight
2n+ 12 on it.
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In this case, D is necessarily non split. Let K1
∼= U6 be a maximal compact subgroup of

G1. The socle of ID(−1), considered a representation of G1 is a direct sum of three represen-
tations Σ2,0⊕Σ1,1⊕Σ0,2, a holomorphic, a spherical and an anti-holomorphic representation,
respectively, [Sa93, Theorem C]. The lowest and the highest K1-types of Σ2,0 and Σ0,2 are
one-dimensional with U(1)-weights 12 and −12, respectively. Observe that Σ2,0 ⊕ Σ0,2 has,
up to an isomorphism, unique structure of (gD,KD)-module. One has:

Theorem 7.1. If O is non-split (so G is not split), we have

ΠD
1

1,0
∼= Σ2,0 and ΠD

1

0,1
∼= Σ0,2.

In particular, Θ(1) = Σ2,0 ⊕ Σ0,2, as (gD,KD)-modules.

Proof. Since Π1,0 is unitarizable and U(1)-admissible, the restriction to g1 is a direct sum of
irreducible lowest weight representations. The minimal type of Π1,0 generates an irreducible

lowest weight (g1,K1)-module, with the minimal U6-type det2, i.e. U(1)-weight 12. Thus

Σ2,0 ⊆ ΠD
1

1,0 . The infinitesimal character of Σ2,0 is (3, 2, 1, 0,−1,−2), in terms of the standard

realization of the D6 root system. If the inclusion Σ2,0 ⊆ ΠD
1

1,0 is strict, then ΠD
1

1,0 contains
another lowest weight representation with the same infinitesimal character. There is precisely
one other irreducible lowest weight (g1,K1)-module with this infinitesimal character, with the

minimal U6-type det
3, i.e. U(1)-weight 18. Thus the number of irreducible summands in ΠD

1

1.0

is bounded by the dimension of SU6×D
1-invariants in Π1,0. By the Cartan-Helgason theorem,

a finite dimensional irreducible representation of E6 has a line fixed by A5 × A1 if and only
if it is self-dual. It follows that the space of SU6 ×D1-invariants in Π1,0 is one dimensional,
the only contribution coming from the trivial K-type.

�

7.2. Split O but nonsplit D. Wemove on to the case whenO and henceG is split. LetK be
a maximal compact subgroup of G, and g = k ⊕ p the corresponding Cartan decomposition
of the complexification of the Lie algebra of G. Then k is isomorphic to sl8. Fixing this
isomorphism, we see that as a K ∼= SU8/µ2-module, p is isomorphic to Vω4

, where ω4 is the
4-th fundamental weight. The minimal representation Π is a direct sum of K-types Vnω4

,
where n = 0, 1, 2, . . ..

We have two cases depending on D. Assume in this subsection that D is a division algebra.
In this case D1 ∼= SU2 is compact, and embeds into SU8 as a 2× 2 block. The centralizer of
SU2 in K = SU8/µ2 is K1

∼= U6. The minimal representation Π decomposes discretely when
restricted to this dual pair. A simple application of the Gelfand-Zetlin rule shows that the
K1-types of Θ(1) are multiplicity free and the highest weights of the K1-types which occur
are

(x, x, 0, 0, y, y)

where x ≥ 0 ≥ y are any two integers. Here we are using the standard description of highest
weights for U6 by 6-tuples of non-increasing integers. But these are precisely the K1-types
of the spherical submodule of ID(−1), i.e. the G1-constituent Σ1,1 in [Sa93, Theorem C]. In
view of the map Θ(1) → ID(−1) of (gD,KD)-modules, this proves
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Theorem 7.2. When O is split but D is non-split, one has an isomorphism of spherical
(gD,KD)-modules

Θ(1) = ΠD
1 ∼= Σ1,1.

7.3. Split O and split D. This is the most involved case. Let (e, h, f) be an sl2-triple
spanning the complexified Lie algebra of D1 = SL2. After conjugating by G, if necessary, we
can assume that the triple is stable under the Cartan involution. Then e ∈ p is a highest
weight vector for the action of K, and h ∈ k. Let Θ(1) be the maximal quotient of the
(g,K)-module of the minimal representation such that the sl2 triple acts trivially.

Theorem 7.3. Θ(1) is irreducible and isomorphic to the unique submodule Σ of ID(−1),
which is a spherical representation.

The proof of this result will take the rest of this section. After conjugating by K, if
necessary, we can assume that

h =
1

2

























1
1

1
1

−1
−1

−1
−1

























∈ sl8.

Let G1 be the centralizer of the sl2-triple in G. It is a group isomorphic to Spin(6, 6) (recall
that we are assuming G is simply-connected in this section, unlike the discussion in Section
4.2). Let g1 = k1⊕p1 be the corresponding Cartan decomposition. Then k1 ∼= sl4⊕sl4 sitting
block diagonally in sl8. The centralizer of h in SU8/µ2 is

K1 = SU4 × SU4/∆µ2

and this confirms that G1 is simply connected (as an algebraic group in a given (non-
hermitian) isogeny class is determined by its maximal compact subgroup).

Let Π be the (g,K)-module corresponding to the minimal representation of G. Then, as
a K-module,

Π = ⊕n≥0Vnω4
.

We shall also need the following facts about the action of e on Π. From the formula for the
tensor product Vω4

⊗ Vnω4
it follows that

e · Vnω4
⊆ V(n−1)ω4

⊕ V(n+1)ω4
.

Since Π is not a highest weight module, by [V, Lemma 3.4], e is injective on Π. The same
results hold for f .

Let π be an irreducible sl2-module such that h acts semi-simply and integrally. Let Θ(π)
be the big theta lift of π; it is a (g1,K1)-module. We shall now partially determine the
structure of K1-types of Θ(π). In order to state the result, we need some additional notation.
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A highest weight µ for SU4 is represented by a quadruple (x, y, z, u) of integers, such that
x ≥ y ≥ z ≥ u, and it is determined by the triple

α = x− y, β = y − z, γ = z − u

of non-negative integers.

Proposition 7.4. Let V ⊗ U be a K1
∼= SU4 × SU4/∆µ2-type of Θ(π). Then U ∼= V ∗, the

dual representation of V , and the multiplicity of V ⊗ V ∗ in Θ(π) is at most one. If π = 1,
the trivial representation, and µ is the highest weight of V , then α = γ.

Proof. We need the following lemma which can be easily deduced from the Gelfand-Zetlin
branching rule.

Lemma 7.5. The restriction of Vnω4
to sl4 ⊕ sl4 ⊕ Ch is multiplicity free and given by

Vnω4
= ⊕n≥x≥y≥z≥u≥0Vµ ⊗ V ∗

µ ⊗ C(m)

where µ is represented by the quadruple (x, y, z, u) and h acts on C(m) by the integer m =
x+ y + z + u− 2n.

It follows from the lemma that the only K1-types appearing in the restriction of Π are
isomorphic to V ⊗ V ∗, as claimed. In order to prove multiplicity one in Θ(π), we proceed as
follows.

Let m be an integer appearing as an h-type in π. Let Ω be the Casimir element for sl2 and
let χ : C[Ω] → C be the central character of π. Let Π(µ,m) be the maximal subspace of Π
such that h acts as the integer m and sl4⊕ sl4 as a multiple of Vµ⊗V

∗
µ . Note that Π(µ,m) is

naturally a C[Ω]-module, and it suffices to show that the maximal quotient of Π(µ,m) such
that C[Ω] acts on it by χ is isomorphic to Vµ⊗V

∗
µ as an sl4⊕sl4-module. We have a canonical

isomorphism

Π(µ,m) ∼= (Vµ ⊗ V ∗
µ )⊗Homsl4⊕sl4(Vµ ⊗ V ∗

µ ,Π(m))

and C[Ω] acts on

Homsl4⊕sl4(Vµ ⊗ V ∗
µ ,Π(m)) = ⊕n≥0Homsl4⊕sl4(Vµ ⊗ V ∗

µ , Vnω4
(m))

Now notice that, given µ and m, Homsl4⊕sl4(Vµ ⊗ V ∗
µ , Vnω4

(m)) 6= 0 for only one parity of n.
Furthermore, if this space is non-zero for some n, then it is non-zero for n + 2, as µ is also
represented by (x+ 1, y + 1, z + 1, u+ 1) and

m = x+ y + z + u− 2n = x+ 1 + y + 1 + z + 1 + u+ 1− 2(n+ 2).

Let n0 be the first integer such that Homsl4⊕sl4(Vµ ⊗ V ∗
µ , Vn0ω4

(m)) 6= 0 and let T0 be a
generator of this one-dimensional space. We then have a natural map

A : C[Ω] · T0 → Homsl4⊕sl4(Vµ ⊗ V ∗
µ ,Π(m)).

Lemma 7.6. The map A is an isomorphism.
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Proof. Let i be a non-negative integer. Let C[Ω]i be the space of polynomials of degree ≤ i,
and let

Homsl4⊕sl4(Vµ ⊗ V ∗
µ ,Π(m))i = ⊕i

j=0Homsl4⊕sl4(Vµ ⊗ V ∗
µ , V(n0+2j)ω4

(m)).

These two spaces have dimension i + 1 and define filtrations of C[Ω] and Homsl4⊕sl4(Vµ ⊗
V ∗
µ ,Π(m)) as i increases. Since Ω has degree 2, as an element of the enveloping algebra of g,

the map A preserves the two filtrations. Thus, in oder to prove the claim, it suffices to show
that A is injective.

But if it is not, then there would be a polynomial p(Ω) acting trivially on Vµ ⊗ V ∗
µ ⊆

Vn0ω4
(m). Under the action of sl2, this subspace would generate a finite length representation

F0 ⊂ Π of sl2. Let U(g) be the enveloping algebra of g, and let Un(g) ⊂ U(g) be the PBW
filtration. We have Π = U(g) · F0, since Π is irreducible g-module. Hence Π is a union
of Fn = Un(g) · F0. Now observe that each Fn is a finite length sl2-module. Hence there
could be only countably many irreducible sl2-modules appearing as quotients of Π. But this
contradicts the fact that almost all spherical tempered representations of sl2 are quotients,
as discussed in Section 6.3. The lemma is proved. �

Lemma 7.6 implies that

Π(µ,m) ∼= (Vµ ⊗ V ∗
µ )⊗ C[Ω]

as C[Ω]-modules. Hence, if we fix a character χ of C[Ω], the maximal quotient of Π(µ,m)
such that C[Ω] acts by χ is isomorphic to Vµ ⊗ V ∗

µ . This proves that Θ(π) has multiplicity
free K1-types.

We proceed to narrow down the K1-types appearing in Θ(1). For every µ, the action of e
on Π gives an injective map

e : Π(µ,−2) → Π(µ, 0).

Lemma 7.7. If e : Π(µ,−2) → Π(µ, 0) is bijective, then Vµ ⊗ V ∗
µ is not a K1-type of Θ(1).

Proof. The image of e is necessarily contained in the kernel of the natural surjective map
Π(µ, 0) → Θ(1)(µ). Hence the lemma follows. �

Consider the filtration Π(µ,m)i = ⊕n≤iVnω4
(µ,m) of Π(µ,m). Then we have an injective

map

e : Π(µ,−2)i → Π(µ, 0)i+1

for all i. Hence, if the dimensions of the two spaces are equal for all i, then e is bijective.
This will happen precisely when Vµ ⊗ V ∗

µ occurs in Vnω4
(−2) but not in V(n−1)ω4

(0), for
some n. The occurrence in Vnω4

(−2) implies that there exists a unique quadruple (x, y, z, u)
representing µ such that

n ≥ x ≥ y ≥ z ≥ u ≥ 0 and x+ y + z + u− 2n = −2

Then Vµ ⊗ V ∗
µ occurs in V(n−1)ω4

(0) if and only if

n− 1 ≥ x ≥ y ≥ z ≥ u ≥ 0

i.e. n > x. Thus, if n = x, then Vµ ⊗ V ∗
µ does not appear in Θ(1).
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Let’s see what this means in terms of α, β and γ. We have to find n such that µ is
represented by

(x, y, z, u) = (n, n− α, n− α− β, n− α− β − γ).

Since the last entry must be non-negative, we have n ≥ α+ β + γ. On the other hand, h has
to act as −2, hence x+ y + z + u− 2n = −2 and this is equivalent to 2n = 3α+ 2β + γ − 2.
Combining with the previous inequality, we obtain α ≥ γ + 2. Hence the types with µ such
that α ≥ γ + 2 do not appear in Θ(1). Replacing the role of e with f , a similar argument
shows that the types such that γ ≥ α + 2 do not appear either. Hence |α − γ| ≤ 1 for all
types that appear in Θ(1). Since α ≡ γ (mod 2) for any type in Π(0), α = γ for all types
that appear in Θ(1). This completes the proof of Proposition 7.4. �

The types of Θ(1), as described in Proposition 7.4, are the same as the types of the spherical
rank-2 submodule in ID(−1) by [Sa95, Theorem 4B]. This proves Theorem 7.3.

8. Siegel-Weil formula

We are now ready to prove the desired Siegel-Weil formula (Theorem 1.2 in the introduc-
tion). Assume that F is a totally real global field and D a quaternion algebra over F .

8.1. The representation Θ(1). We have shown that the global (regularized) theta lift Θ(1)
is a non-zero automorphic representation of GD(A). We have also studied the abstract local
theta lift of the trivial representation of D1 to GD. The following summarizes what we have
shown:

Proposition 8.1. (i) The automorphic representation Θ(1) is irreducible and occurs with
multiplicity one in the space of automorphic forms of GD;

(ii) For every p-adic place v of F , the local component Θ(1)v is isomorphic to the unique
irreducible quotient of the local degenerate principal series ID(1).

(iii) For every real place v of F , the local component Θ(1)v is an irreducible quotient of ID(1)
as described in Theorems 7.1, 7.2 and 7.3.

Proof. Indeed, we have shown that the abstract local theta lift Θ(1v) is irreducible. Hence the
global Θ(1) is an irreducible automorphic representation. The fact that Θ(1) has multiplicity
one in the space of automorphic forms follows by [KS15, Theorem 1.1]. Note that the required
conditions, as spelled out in the introduction of [KS15], are satisfied by the recent work of
Möllers and Schwarz [MS17]. �

8.2. A Siegel-Weil formula. For a flat section Φ ∈ ID(s), let ED(s,Φ) be the associated
Eisenstein series. Then ED(s,Φ) has at most simple poles at s = 1, 3 or 5 and the corre-
sponding residual representations are completely described in [HS, Theorem 6.4]. Set

E = {Ress=1ED(s,Φ) : Φ ∈ ID(s)},

We can now prove Theorem 1.2 in the introduction (which we restate here):



24 WEE TECK GAN AND GORDAN SAVIN

Theorem 8.2. Let F be a totally real global field and D a quaternion algebra over F . Then
we have the following identity in the space of automorphic representations GD(A),

E = ⊕i:D→OΘ(1),

where the sum is taken over all isomorphism classes of embeddings i : D → O into octonion
algebras over F .

Proof. Comparing Proposition 8.1 with [HS, Theorem 6.4], one sees that Θ(1) is isomorphic,
as an abstract representation, to a summand of E . In view of the multiplicity one result in
Proposition 8.1(i), it follows that Θ(1) is equal to that irreducible summand, as a subspace
of the space of automorphic forms.

Now recall that the dual pair D1 × GD arises from an embedding of D into an octonion
algebra O. Every such embedding is unique up to conjugacy by Aut(O). However, given D
there are multiple octonion algebras over F containing D. An isomorphism class of octonion
algebras O over F is specified by the isomorphism class of its local completions Ov for real
places v. At each real place, we have two choices: the classical octonion algebra and its split
form. But Dv embeds into both if and only if it is a quaternion division algebra. Hence
the number of octonion algebras over F containing D is is 2m where m is the number of
real places v such that Dv is the quaternion algebra. Now, by an easy check left to the
reader, non-isomorphic O give non-isomorphic Θ(1). Moreover, using our description of Θ(1)
in Proposition 8.1 and [HS, Theorem 6.4], one sees that all those possible Θ(1) sum up to E .
This proves the theorem. �

9. Spin L-function

To complete the proof of the main result of this paper, i.e. Theorem 1.1 in the introduction,
the remaining ingredient we need is a Rankin-Selberg integral for the degree 8 Spin L-function
for cuspidal representations of PGSp6 which was discovered by A. Pollack [P]. However, since
the paper [P] works over Q whereas we are working over a general number field F , we recall
some details here for the sake of completeness.

9.1. Global zeta integrals. Suppose π is a cuspidal automorphic representation of PGSp6(A).
Let U be the unipotent radical of the Siegel maximal parabolic subgroup of PGSp6(F ). Let
JF be the Jordan algebra of 3× 3 symmetric matrices with coefficients in F . Then U ∼= JF
and any T ∈ JF ∼= ŪF defines an additive character φT : U(A)/U(F ) → C×. Since π is cusp-
idal, there exists a non-degenerate T (i.e. det(T ) 6= 0) such that the global Fourier coefficient
φT is a non-zero function on PGSp6(A) for any φ ∈ π. We fix such a T (which depends on
π) in the following.

The non-degenerate orbits on U(F ) ∼= JF , under the action of the Siegel Levi factor
in PGSp6(F ), are parameterized by quaternion algebras over F . So let D be the algebra

corresponding to T . Let G̃D be the reductive group of typeD6 acting onWD, as in Subsection
2.3. We shall assume that G̃D acts from the right on WD. Let ω ⊂ WD be the G̃D-orbit of
(1, 0, 0, 0), i.e. the orbit consisting of highest weight vectors. Following Pollack [P], for every
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Schwartz function Φ = ⊗vΦv on WD(A) define an Eisenstein series on G̃D(A) by

EΦ(g) =
∑

x∈ω(F )

Φ(xg).

Recall that GSp6 ⊆ G̃D and let ν be the isogeny homomorphism of GSp6. Define a global
zeta integral

Z(φ,Φ, s) =

∫

GSp6(F )\GSp6(A)
φ(g) · EΦ(g) · |ν(g)|

s dg

for φ ∈ π and Φ as above. This integral is absolutely convergent for s ∈ C with sufficiently
large real part. After integrating over the center of GSp6(A), we see that

Z(φ, ϕ, s) =

∫

PGSp6(F )\PGSp6(A)
φ(g) · E(Φs, g) dg

where Φs ∈ ID(2s − 5), and s 7→ Φs is a holomorphic section for s > 0. Observe that the
meromorphic continuation of E(Φs, g) gives a meromorphic continuation of Z(φ,Φ, s).

9.2. Unfolding. Let V ⊂ U be the codimension one subgroup such that the character ψT
is trivial on V (A). There is a wT ∈ ω(F ), contained in the third summand of WD, such that
the stabilizer of wT in Sp6 is V ⊂ U (see [P, Proposition 5.5]). The integral unfolds into

Z(φ,Φ, s) =

∫

V (A)\GSp6(A)
φT (g)Φ(wT g)|ν(g)|

s dg.

Furthermore, by Therem 9.4 in the first arXiv version of the paper [P] (more precisely in
arXiv:1506.03406v1), for a sufficiently large set of places S, including the set S∞ of all real
places,

Z(φ, ϕ, s) = LS(s− 2, π, Spin) · c(s) ·

∫

V (AS)\GSp6(AS)
φT (g)ΦS(wT g)|ν(g)|

s dg.

Here c(s) denotes a product of partial Dedekind zeta functions that we have omitted writing
down since they do not affect analytic properties of Z(φ, ϕ, s) at our point of interest s = 3.
We note that Pollack works over F = Q. However, he has kindly informed us that

• The unfolding of the integral representation works over any number field.
• The unramified computation is valid for any non-archimedean place v away from 2
such that Dv is split. The proof goes through line by line, if one makes the following
changes of notation: every time p is used as a uniformizer, replace p with $; every
time p is used as a magnitude, replace p with q.

In other words, the above identity holds for S containing all real places, places of even residual
characteristic and places where D is ramified.

9.3. Nonvanishing. The following technical result was contained in an earlier version of
Pollack’s paper. However, as this particular version is no longer publicly available (even on
the arXiv), we reproduce the proof for the sake of completeness.



26 WEE TECK GAN AND GORDAN SAVIN

Lemma 9.1. Let s0 ∈ C. For some data φ and ΦS,

Z(φ,ΦS , s) =

∫

V (AS)\GSp6(AS)
φT (g)ΦS(wT g)|ν(g)|

s dg

extends to a meromorphic function on C which is non-vanishing at s0.

Proof. Observe that the meromorphic continuation is clear, since the global zeta integral
has a meromorphic continuation, and so does the partial L-function, since it appears in the
constant term of an Eisenstein series on the exceptional group F4 (á la Langlands-Shahidi
theory). It remains to deal with non-vanishing.

Let v ∈ S. Consider the local version of the zeta integral:

Z(φ,Φv, s) =

∫

Vv\GSp6(Fv)
φT (g) · Φv(wT g) · |ν(g)|

s dg.

The stabilizer of wT in GSp6 is V oA, where A is a one-dimensional torus that we can identify
with GL1 using the isogeny character ν. Thus GSp6 is a semi-direct product of A and Sp6,
and we can write

Z(φ,Φv, s) =

∫

Vv\Sp6(Fv)
Φv(wT g)

∫

Av

φT (ag) · |ν(a)|
s−5 da dg

for an invariant measure da on Av. Let us set

H(φ, s) =

∫

Av

φT (a) · |ν(a)|
s−5 da.

If h is a Schwartz function on Uv, let

ĥ(a) =

∫

Uv

h(u)ψT (aua
−1) du

where a ∈ Av. Since φT (aug) = ψT (aua
−1) · φT (ag) for u ∈ Uv, it follows that

H(h ∗ φ, s) =

∫

Av

ĥ(a) · φT (a) · |ν(a)|
s−5 da.

Since ĥ can be any compactly supported function on Av, the integral can be arranged to be
non-zero for any s0. In fact, if v is a finite place, then ĥ can be picked so that the integral
is 1 for all s. Thus, if v is a finite place, we can assume that φ has been chosen so that
H(φ, s) = 1, for all s.

Next, there exists a compactly supported function ϕ on Sp6(Fv) such that ϕ ∗ φ = φ.
Observe that

H(ϕ ∗ φ, s) =

∫

Vv\Sp6(Fv)
ϕ′(g)

∫

Av

φT (ag) · |ν(a)|
s−5 da dg

where ϕ′ is a smooth compactly supported function on V (Fv)\Sp6(Fv) defined by

ϕ′(g) =

∫

V (Fv)
ϕ(ug) du.
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Using the Iwasawa decompostion of Sp6(Fv), it is not difficult to see that the map g 7→ wT g
gives a locally closed embedding (i.e. an immersion) of Vv\Sp6(Fv) intoWD(Fv), with the clo-
sure of the image containing the extra point 0. Hence, any smooth compactly supported func-
tion on Vv\Sp6(Fv) is the restriction of a smooth compactly supported function on WD(Fv).
In particular, we can pick Φv such that Φv(wT g) = ϕ′(g), for all g ∈ Sp6(Fv). Then, with
this choice of Φv, one has

Z(φ,Φv, s) = H(φ, s) = 1.

It follows that
Z(φ,ΦS , ϕ, s) = Z(φ,Φ∞, s)

for some choice of data.

Let F∞ = F ⊗Q R. Assume as above that φ has been chosen so that H(φ, s0) 6= 0. While
we perhaps cannot write φ = ϕ ∗ φ, for a compactly supported function on Sp6(F∞), by
the well known theorem of Dixmier-Malliavin, there exist finitely many compactly supported
functions ϕi on Sp6(F∞) such that φ =

∑

i ϕi ∗ φi for some φi. Then, as in the finite place
case, there exists compactly supported Φi∞ such that

∑

i

Z(φ,Φi∞, s) = H(φ, s).

Since H(φ, s0) 6= 0, we see that Z(φ,Φi∞, s0) 6= 0 for some i. This completes the proof of the
lemma. �

10. Applications to Functoriality

Finally, we are ready to assemble the various ingredients and complete the proof of Theorem
1.1 (which we reproduce here):

Theorem 10.1. Suppose that π is a cuspidal automorphic representation of PGSp6 such that
LS(s, π, Spin) has a pole at s = 1. Then there exists an octonion algebra O over F and a
cuspidal automorphic representation π′ of Aut(O) such that the Satake parameters of π′ are
mapped by ι to those of π (i.e. π is a weak functorial lift of π′).

If the cuspidal representation π of PGSp6 is tempered, then the following are equivalent:

(a) For almost all places v, the Satake parameter sv of πv is contained in ι(G2(C)).
(b) There exists an octonion algebra O over F and a cuspidal automorphic representation

π′ of Aut(O) such that π is a weak functorial lift of π′.

Proof. As explained in the introduction, we shall make use of the following see-saw dual pair
in G:

Aut(O) GD

D1 PGSp6

Let π be an irreducible cuspidal automorphic representation of PGSp6 and consider its
global theta lift π′ on G2. It can be shown (by a standard computation of the constant
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term of the global theta lift) that π′ is contained in the space of cusp forms on G2. This
was explained in [GJ, Theorem 3.1], noting that the genericity assumption on π was not
needed there. See also [GG09, Proposition 5.2] (note though that there is a typo in the first
paragraph of the proof of [GG09, Proposition 5.2]: the word “nonzero” should be “zero”).

Now suppose that the partial (degree 8) spin L-function LS(s, π, Spin) of π has a pole at
s = 1. Then, by Lemma 9.1, it follows that Ress=3Z(φ,Φ, s) is non-zero, for some φ ∈ π.
At this point we note that Pollack has a slightly different choice of the parameter of the
Eisenstein series: his parameter s′ and our s are related by s = 2s′ − 5. Hence the integral
of φ against some residue Ress=1ED(s,Φ) is non-zero. Since the space of residues at s = 1 is
invariant under the complex conjugation, it follows that the integral of φ̄ against some residue
Ress=1ED(s,Φ) is non-zero. By the Siegel-Weil formula (Theorem 8.2), it follows that

∫

PGSp6(F )\PGSp6(A)
φ̄(g) ·

(

∫

D1(F )\D1(A)
θ(f)(gh) dh

)

dg 6= 0

for some O ⊃ D, f ∈ ΠO and φ ∈ π, where θ(f) is rapidly decreasing on D1(F )\D1(A) and
of moderate growth on PGSp6(A). Exchanging the order of integration, we deduce that the
global theta lift of π to Aut(O) is nonzero, i.e.

φ′(h) =

∫

PGSp6(F )\PGSp6(A)
θ(f)(gh)φ̄(g) dg

is a non-zero function of uniform moderate growth on Aut(O)\Aut(O⊗F A).

It is given that φ is an eigenfunction for the center of the enveloping algebra of PGSp6(Fv)
for every real place v of F . By [HPS] and [Li99], for every element z in the center of the
enveloping algebra of PGSp6(Fv), there exists an element z′ in the center of the enveloping
algebra of Aut(Ov) such that z = z′ when acting on the minimal representation. In particular,
z′ · f = z · f . Thus φ′ is an eigenfunction for the center of the enveloping algebra of Aut(Ov)
for every real place v of F . (At this point we use that φ has rapid decrease to justify that
differentiation of f can be moved over to differentiation of φ.)

Similarly, it is given that φ is an eigenfunction for the Hecke algebra for almost all finite
places. But so is φ′ by matching of Hecke operators under the exceptional theta correspon-
dences [SW15]. Moreover, by [SW15, Theorem 1.1], if s′v are the Satake conjugacy classes in
G2(C) corresponding to φ′ and sv are the Satake conjugacy classes in Spin7(C) correspond-
ing to φ, then sv = ι(s′v) where ι : G2(C) → Spin7(C) is the natural inclusion. Hence, the
submodule generated by all such global theta lifts φ′ gives an automorphic representation π′

which weakly lifts to π. This proves the first assertion of the theorem.

For the second part of the theorem, it is clear that (b) implies (a). Conversely, as observed
by Chenevier [C, Thm. 6.18, equation (6.6)], the hypothesis (a) in the theorem implies that

LS(s, π, Spin) = ζS(s) · LS(s, π, Std)

where the last L-function on the right is the degree 7 (partial) standard L-function of π.
Since we are assuming that π is tempered, it follows that LS(1, π, Std) is finite and nonzero.
Hence LS(s, π, Spin) has a pole at s = 1 and the results we have shown above imply that (b)
holds, with π′ the global theta lift of π to Aut(O).
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This completes the proof of the theorem. �

Remark: Let us comment on the relation of Theorem 10.1 with [C, Thm. 6.18]:

• In [C, Thm. 6.18], Chenevier showed the second part of Theorem 10.1 for globally
generic cuspidal representations, by reducing it to the first part of Theorem 10.1,
which is a result of Ginzburg-Jiang for globally generic cuspidal representations. As
Chenevier remarked in [C, Remark 6.19], if one has an analog of the endoscopic
classification of Arthur for PGSp6, one would know that any tempered cuspidal rep-
resentation of PGSp6 is nearly equivalent to a globally generic cuspidal representa-
tion, in which case the second part of the theorem will follow for tempered cuspidal
representations by reduction to the globally generic case.

• In our proof of Theorem 10.1, our argument reducing the second part of the theorem
to the first follows Chenevier’s. Thus, the main innovation of Theorem 10.1 is a direct
proof of the first part of the theorem for all cuspidal representations, regardless of
whether they are globally generic or tempered. In particular, this gives the second
part of the theorem without resort to an Arthur type classification for PGSp6.

We can strengthen our results in the case when F = Q and π is a cuspidal representation of
PGSp6(A) that corresponds to a classical Siegel holomorphic form of positive weight. Recall
that there are two isomorphism classes of octonion algebras over Q: the classical octonion
algebra Oc and its split form Os. Then Aut(Oc

∞) is an anisotropic group, while Aut(Os
∞) is

split.

Theorem 10.2. Let F = Q, and π a cuspidal representation of PGSp6(A) that corresponds
to a classical Siegel holomorphic form φ2r of weight 2r > 0. If LS(s, π, Spin) has a pole at
s = 1, then π is a lift from Aut(Oc). Moreover, if the level of φ2r is one, then π is a strong
functorial lift from Aut(Oc).

Proof. Let U3(R) be the maximal compact subgroup of Sp6(R). By our assumption, π∞ is a
lowest weight module, with the minimal U3(R)-type det2r, r > 0. We need the following:

Lemma 10.3. Let σ is a lowest weight module of Sp6(R), with the minimal U3(R)-type det
2r,

r > 0. Then σ does not occur in the exceptional theta correspondence with split G2(R).

Proof. Adopting the notation from [LS], let G′ = G2(R), g′ the Lie algebra of G′, K ′ a
maximal compact subgroup of G′, and g′ = k′ ⊕ p′ the corresponding Cartan decomposition.
Let

Π = ⊕∞
n=0Vn

be the decomposition of the minimal representation of the split real E7 into its K-types.

Let V det2r
n be the maximal subspace of Vn on which U3(R) acts by the character det2r. If

r = 0, by [LS, Proposition 5.2], the dimension of this space is equal to the dimension of
Sn(p

′), the space of the n-th symmetric tensor power of p′. But this result can be easily

generalized to any r: V det2r
n is non-trivial only for n ≥ 3r, and the dimension of V det2r

n+3r is is

equal to the dimension of Sn(p
′). In particular, V det2r

3r is one-dimensional. Let vr be a vector
spanning this line. The group K ′ acts on this line and the vector vr is fixed by K ′, since
K ′ is semisimple. By [LS, Lemma 3.1], the matrix coefficient of vr, when restricted to G′, is
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contained in L3/2+ε(G′). This fact, combined with the dimension of det2r-invariants in the
types of Π, implies that

Πdet2r = U(g′) · vr ∼= U(g′)⊗U(k′) C

as explained in the introduction of [LS], where the case r = 0 is discussed. After taking det2r-
invariants in Π → Θ(σ) � σ, it follows that Θ(σ) is a quotient of U(g′) ⊗U(k′) C. Thus any
irreducible quotient σ′ of Θ(σ) is spherical. It was also shown in [LS] that Θ(σ′) has unique
irreducible quotient, and it is spherical. This is a contradiction, since σ is not spherical, and
hence it cannot appear in this correspondence. �

The correspondence for the dual pair Aut(Oc
∞) × Sp6(R) was completely determined in

[GrS] and is functorial. Thus, if φ2r is of level one, i.e. spherical at all primes, then π is
indeed a (strong) functorial lift from Aut(Oc).

�
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