AN EXCEPTIONAL SIEGEL-WEIL FORMULA AND
POLES OF THE SPIN L-FUNCTION OF PGSpg

WEE TECK GAN AND GORDAN SAVIN

ABSTRACT. We show a Siegel-Weil formula in the setting of exceptional theta correspon-
dence. Using this, together with a new Rankin-Selberg integral for the Spin L-function of
PGSpg discovered by A. Pollack, we prove that a cuspidal representation of PGSpg is a
(weak) functorial lift from the exceptional group G if its (partial) Spin L-function has a
pole at s = 1.

1. INTRODUCTION

Let F' be a totally real number field, and A its ring of adeéles. Let @ &£ ®,m, be an
irreducible cuspidal automorphic representation of the group PGSpg(A), which is unramified
outside a finite set S of places (including all real places). Since the Langlands dual group
of PGSpg is Spin;(C), there is an associated semi-simple conjugacy class s, in Spin,(C) for
v ¢ S; this is the Satake parameter of the local component m,. If r denotes the 8-dimensional
spin representation of Spin;(C), the partial spin L-function corresponding to 7 is defined to
be the product

1
LS(S,T(', Spin) = H —
vis det(1 —7(sy)q0 )

where ¢, is the order of the residual field of the local field F,.

It is well known that the stabilizer in Spin,(C) of a generic vector in the spin representation
is the exceptional group G3(C), giving a well-defined conjugacy class of embedding

¢ : G2(C) — Spin,(C).

Therefore, as a special case of the Langlands functoriality principle, if L%(s,m, Spin) has a
simple pole at s = 1, then one expects 7 to be a functorial lift from an exceptional group of
absolute type Go defined over F'. We note that every such group is given as the automorphism
group of an octonion algebra O over F', and by the Hasse principle, the number of isomorphism
classes of such groups is 2" where n is the number of real places of F'.

As explained in a recent paper of Chenevier [C, §6.12], if 7 is a tempered cuspidal repre-
sentation of PGSpg such that for almost all places v, the Satake parameter s, of m, belongs
to t(G2(C)) (or more accurately, the conjugacy class s, meets +(G2(C))), then L (s, 7, Spin)
will have a pole at s = 1 and so one expects such a tempered 7 to be a functorial lift from
G2. In this paper we also prove a slightly weaker version of this expectation:
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Theorem 1.1. In the above setting, suppose that w is a cuspidal automorphic representation
of PGSpg such that L3(s,m,Spin) has a pole at s = 1. Then there exists an octonion algebra
O over F and a cuspidal automorphic representation 7 of Aut(Q) such that the Satake
parameters of ™ are mapped by v to those of © (i.e. ™ is a weak functorial lift of 7).

If the cuspidal representation m of PGSpg is tempered, then the following are equivalent:

(a) For almost all places v, the Satake parameter s, of m, is contained in t(G2(C)).
(b) There exists an octonion algebra O over F' and a cuspidal automorphic representation
7' of Aut(Q) such that 7 is a weak functorial lift of .

Since the local Langlands classification is not known for Gg or for PGSpy, this is essentially
the best possible result one can expect at the moment. However, if 7 is unramified everywhere
or if it corresponds to a classical Siegel modular form, then 7 is a functorial lift. Special cases
of this result were previously obtained by Ginzburg and Jiang [GJ], Gan and Gurevich [GG09]
and Pollack and Shah [PS].

Our proof of Theorem 1.1 is based on the following three ingredients:

(1) An exceptional theta correspondence for the dual pair Aut(Q) x PGSpg arising from
the minimal representation II of a group of absolute type E~.

(2) A Siegel-Weil formula proved in this paper; see Theorem 1.2 below.

(3) An integral representation of the spin L-function of 7 recently discovered by A. Pollack
[P].

In greater detail, let J be the exceptional Jordan algebra of 3 x 3 hermitian symmetric
matrices with coefficients in an octonion algebra @. By the Koecher-Tits construction, the
algebra J gives rise to an adjoint group G of absolute type E7, with a maximal parabolic
subgroup P = M N, such that the unipotent radical N is commutative and isomorphic to
J. Since G is adjoint, the conjugation action of M on N is faithful, and M is isomorphic
to the similitude group of the natural cubic norm form on J. Thus the natural action of
Aut(0) on J gives an embedding of Aut(Q) into M. The centralizer of Aut(Q) is PGSpg.
To see this, observe that the centralizer of Aut(Q) in J is the Jordan subalgebra Jg of
3 x 3 symmetric matrices with coefficients in F'. The group PGSpg arises from Jr by the
Koecher-Tits construction. This gives the dual pair

Aut(0) x PGSpg C G

alluded to in (1) above.

We can now describe another dual pair in G. Let D be a quaternion algebra over F', and
assume that we have an embedding i : D — Q. The centralizer of D in Aut(Q) is isomorphic
to D!, the group of norm one elements in D. Conversely, the centralizer (i.e. the pointwise
stabilizer) of D! in @ is (D) C @. Thus the centralizer of D! in J is the Jordan subalgebra
Jp of 3 x 3 hermitian symmetric matrices with coefficients in D, and the centralizer of D!
in G is a group Gp of absolute type Dg arising from Jp by the Koecher-Tits construction.
Thus we have a dual pair

D'x Gp — G.
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Indeed, the two dual pairs we have described fit into the following see-saw diagram, where
the vertical lines represent inclusions of groups:

Aut(0) Gp

>

D1 PGSp6

The Siegel-Weil formula mentioned in (2) above concerns the global theta lift ©(1) of the
trivial representation of D' to Gp, obtained by restricting the minimal representation IT of
G to the dual pair D! x Gp. Roughly speaking, ©(1) is the space of automorphic functions
on Gp obtained by averaging the functions in II over D'(F)\D!(A). We prove that ©(1)
is an irreducible automorphic representation of Gp and determine its local components (as
abstract representations) by computing the corresponding local theta lifts. We have not
computed the local theta lift for complex groups, and this is the source of the restriction in
the paper to totally real fields F'. The Siegel-Weil formula identifies the functions in ©(1) as
residues of certain Siegel-Eisenstein series.

More precisely, since Gp arises from Jp by the Koecher-Tits construction, it contains a
maximal parabolic subgroup with abelian unipotent radical isomorphic to Jp. Let Ep(s, f)
be the degenerate Eisenstein series attached to this maximal parabolic subgroup, where
s € R and f varies over all standard sections of the corresponding degenerate principal series
representation Ip(s). In [HS], it was proved that Ep(s, f) has at most a simple pole at s = 1,
and the residual representation

ED = {ResszlED(s,f) : f € ID(S)}

was completely determined. Our main result is the following Siegel-Weil identity in the space
of automorphic forms of Gp:

Theorem 1.2. For fized quaternion F-algebra D, we have:
Ep = ®i:p-00(1).

Here the sum is taken over all isomorphism classes of embeddings i : D — O into octonion
algebras over F'.

We emphasize that D is fixed here but O vary. If D is split, i.e. a matrix algebra, then
O is also split, and there is only one term on the right. In general the number of summands
on the right is equal to 2™ where m is the number of real places v of F' such that D, is a
division algebra.

At this point, we need the result of A. Pollack [P]: there exists a quaternion algebra D such
that the partial spin-L-function L°(r,s) is given as an integral, over PGSpg, of a function
h € m against the Eisenstein series Ep(s, f). Thus, if the L-function has a pole at s = 1,
then the integral of h against the elements of £p is non-zero. The Siegel-Weil identity (i.e.
Theorem 1.2) then implies that 7 appears in the exceptional theta correspondence for the dual
pair Aut(Q) x PGSpg, for some O containing D. Since this exceptional theta correspondence
is known to be functorial for spherical representations (see [LS] and [SW15]), this completes
the proof that 7 is a weak lift from a group of absolute type Go.
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2. GROUPS

2.1. Octonion algebra. Let F' be a field of characteristic 0, and D be a quaternion algebra
over F. It is a 4-dimensional associative and non-commutative algebra over F' which comes
equipped with a conjugation map x +— T with associated norm N(x) = ¥ = Tz and trace
tr (z) = z +=. Moreover, N : O — F' is a nondegenerate quadratic form.

An octonion algebra @ over F' is obtained by doubling the quaternion algebra D. More
precisely, fix a non-zero element A in F. As a vector space over F', O is a set of pairs (a,b)
of elements in D. The multiplication is defined by the formula

(a,b) - (c,d) = (ac + \db,ad + cb).

If x = (a,b), then the conjugation map is = = (a, —b), so that N(z) =z -z = N(a) — AN(b)
is the norm and tr(z) = z + & = tr(a) the trace on @. In particular, O is split if A is
a norm of an element in D. Every element x of O satisfies its characteristic polynomial
t? — tr (x)t + N(x). The automorphism group Aut(Q) of the F-algebra O is an exceptional
group of the Lie type Ggo. It is a simple linear algebraic group of rank 2 which is both
simply connected and adjoint. The algebra D is naturally a subalgebra of O, consisting of
all x = (a,0). Let D! be the group of norm one elements in D. Then any g € D! acts as an
automorphism of O by g - (a,b) = (a,bg) for all (a,b) € Q. The subgroup D' C Aut(Q) is
precisely the pointwise stabilizer of the subalgebra D C Q.

2.2. Albert algebra. An Albert algebra is an exceptional 27-dimensional Jordan algebra J
over F. It can be realized as the set of matrices

Q

A:

SIS
Q™R
=2 W

where «, 8,7 € F and x,y,z € Q0. The determinant A — det A defines a natural cubic form
on J. Let M be the similitude group of this cubic form. It is a reductive group of semisimple
type Eg. The M-orbits in J are classified by the rank of the matrix A. Without going into a
general definition of the rank, we say that A # 0 has rank one, if A% = tr (A4) - A. Explicitly,
this means that the entries of A satisfy the equalities

N(z) = aB, N(y) = Bv, N(z) = yo, 7T = yz, ay = zx, Bz = zy.

2.3. Dual pairs. Assume that G is a reductive group over F', adjoint and of absolute type
E;, arising from the Albert algebra J via the Koecher-Tits construction. For our purposes it
will be more convenient to realize G as a quotient, modulo one dimensional center C' = F*,
of a reductive group G acting on the 56-dimensional representation W = F + J + J + F.
In particular, G acts on the projective space P(W). Let P be a maximal parabolic and P
its opposite, defined as fixing the points (1,0,0,0) and (0,0,0,1) in P(W). Then P = MN
where N is the unipotent radical and M = PN P a Levi. Then M is isomorphic to the
similitude group of the cubic form det on J, and N = J, as M-modules.

Recall that we have constructed @ by doubling a quaternion subalgebra D. Let Jp and
Jp be the subalgebras consisting of all elements in J with off-diagonal entries in F' and D,
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respectively. Let Jy = F' be the scalar subalgebra of J. Consider a sequence of simple, simply
connected groups

L ¢ Aut(0) c Aut(J)
where an element in Aut(Q) acts on the off-diagonal entries of elements in .J. The pointwise
stabilizers in J of these three groups are, respectively,

Jp DJr D Jy=F

Observe that Aut(.J) naturally acts on W, giving an embedding Aut(.J) C G. The centralizers
in G of the three groups in the sequence are, respectively,

Gp D GSpg(F) D GLy(F)

These three groups act on 32, 14 and 4-dimensional subspaces of W obtained by replacing J
by Jp, Jr and Jy, respectively. It is worth mentioning that the 4-dimensional representation
of GLa(F') is the symmetric cube of the standard 2-dimensional representation, twisted by
det™'. The group Gp acts on

Wp=F+Jp+Jp+ F.

It is worth noting that the action of Gp on W is not faithful (it has pg C D! as its kernel).
A detailed description of G p/H2 and its action on Wp can be found in Pollack’s paper [P].
Let Gp be the quotient of G by the center C' 2 F* of G. Then D' x Gp is a dual pair in
(, as mentioned in the introduction.

Let Pp = MpNp = GpNP. With the identification N = J fixed, we have Np = Jp. The
group Pp is a maximal parabolic subgroup of type As.

3. MINIMAL REPRESENTATION

Let F be a real or p-adic field. Let I(s) be the degenerate principal series representation
of G attached to P where s € R. We normalize s as in [We]| so that the trivial representation
is a quotient and a submodule at s = 9 and s = —9 respectively, whereas the minimal
representation II is a quotient and a sub-module at s = 5 and s = —5, respectively. Note
however that the group G is simply-connected in [We| whereas our G is adjoint here.

3.1. Unitary model. Fix ¢ : F' — C*, a non-trivial additive character, unitary if F' = R.
After identifying N = J and N = J (note that the resulting actions of M on J are dual to
each other) any A € J = N defines a character of N given by

$a(B) = ¢(tr (Ao B)) = 1p(A)

for B € J = N, where A o B denotes the Jordan multiplication. Every unitary character of
N is equal to 14 for some A. Let Q C J =2 N be the set of rank one elements in J. A unitary
model of the minimal representation is % = L?(Q2). Here only the acton of the maximal
parabolic P = M N is obvious: the group M acts geometrically,

w(m)(f)(A) = x(m)f(m~' A),
for f € II, where for some character xy : M — R*, while B € J = N acts on f by multiplying
it by ¥p.
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3.2. Smooth model. We have the following [KS15].

Theorem 3.1. Let 11 be the subspace of G-smooth vectors in the unitary minimal represen-
tation H. Then
C(Q) CII C C(N).

If F is p-adic, then

Iy =II/C°(Q)  as M-modules.
If A € J is nonzero, then any continuous functional £ on II such that {(B - f) =¥a(B)-£(f)
for all B € N and f € Il is equal to a multiple of the evaluation map dA(f) = f(A). In
particular, £ = 0 if A is not of rank one.

3.3. Spherical vector. It is not so easy to characterise the subspace II C C*°(2). However,
we can describe a spherical vector in II in the split case. The algebra O is obtained by
doubling the matrix algebra D = My(F') with A = 1. Assume firstly that F' is a p-adic field.
Let O be the ring of integers in F' and w a uniformizing element. We have an obvious integral
structure on D (the lattice of integral matrices), and hence on O, the integral lattice being
the set of pairs (a,b) where a,b € M>(0O). This lattice is a maximal order in @. Now we have
an integral structure on J so that J(O) is the set of elements A € J such that the diagonal
entries are integral, and off diagonal contained in the maximal order in @. The greatest
common divisor of entries of A € J(O), is simply the largest power w" dividing A i.e. such
that A/w™ is in J(O). We have the following [SWO07]:

Theorem 3.2. Assume G is split and F' a p-adic field. Assume the conductor of ¥ is O.
Then the spherical vector in 11 is a function f° € C*°() supported in J(O). Its value at
A € Q depends on the GCD of entries of A. More precisely, if the GCD of the entries of A
s w', and q is the order of the residual field, then

fPA) =14+¢+.. .+ ¢
Since II is generated by f° as a P-module, and the action of P on II is easy to describe,
this theorem gives us a good handle on II.

Assume now that F' = R; in this case, one has a similar result due to Dvorsky-Sahi [DS99].
For every a € M3(R), let ||a||? is the sum of squares of its entries. For x = (a,b) € O, let
|z||? = ||a||* + ||b]|?. Extend this to A € J by

1AI[? = o2 + 82 + 72 + [[2]|* + |[yll* + |]=]*.
Let K3/5(u) denote the modified Bessel function of the second kind. Recall that K35 (u) > 0,
for u > 0, and is rapidly decreasing as u — +o00. Then [DS99, Theorem 0.1]:
Theorem 3.3. Assume G is split and F = R. Then the spherical vector in 11 is a function
fo e C>®(Q) given by
Fo(A) = [JA[ 722K (|| Al

4. LocAL THETA LIFTS: p-ADIC CASE

In this section, let F' be a p-adic field, so that the octonion algebra O is split. We are
interested in understanding the theta lift of the trivial representation of D! to the group Gp.
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4.1. Np-spectrum. A crucial step is to understand the Np-spectrum of the minimal repre-
sentation II. In this case we have an exact sequence of P-modules

0—CX () =1 =1y —0.

The characters of Np = Jp are identified with the elements in Jp using the trace paring, as
we did for J. We shall only need three characters, denoted by 1, 99 and 3, corresponding
to the elements

1 0 0 +£1 0 O £ 0 0
0 0 0], 0 =£1 0 and 0 1 O
0 00 0 0 O 0 0 =1

of rank 1, 2 and 3, respectively. We need to allow signs to capture all possible rank 1, 2
and 3 orbits in the real case. The following lemma is one of the keys in this paper, and we
emphasize that we do not assume that D is split here.

Lemma 4.1. Let II be the minimal representation of G. Then:

(i) Onpps = 0.
(ii) Mnp o = C2(DY), as D'-modules.
(iii) If D is a division algebra, then Uy, 4, = C, as D'-modules.
Proof. Let w; C Q be the set of all A € Q such that the restriction of ¥4 to Np is equal to
;. Because 1; is not the trivial character, the set w; is (Zariski) closed in 2. Hence,

HND#J% = Cso(wi)'

It remains to determine each w;. Let’s start with 4 = 3. Then w3 consists of all A € € such
that

+1 x -z
A=| —x £1 y
z -y =1

where x = (0,a),y = (0,b) and z = (0, ¢) for some a,b,c € D. Since A € ), we further have
A% = tr (A)A. Looking at the off-diagonal terms, we get the equations

yr = +z, zy = £z and xz = +y.

But the products yx, zy and zz have the second coordinate equal to 0. Hence z =z =y = 0.
But then A cannot be a rank 1 matrix. Hence ws is empty, and this proves (i).

For (ii) we see analogously that y = z = 0. Now A has the rank 1 if and only if the first
2 x 2 minor is 0. This gives #2 = 1. Writing this out, with z = (0, a) we see that Aaa = +1.
Hence ws is identified with the set of all elements in D with a fixed non-zero norm. This is
a principal homogeneous space for D!. This establishes (ii). In the last case it is easy to see
that t =y =2=0. g

We now derive a consequence. Let ©(1) be the maximal quotient of IT on which D! acts
trivally; it is naturally a G p-module. Lemma 4.1 implies that
@(1)ND7'¢13 =0 and @(1)ND,¢2 =C.

Let Ip(s) be the degenerate principal series representation of Gp attached to Pp normalized
as in [We]. In particular, the trivial representation is a quotient for s = 5 and a submodule for
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s = —b. The inclusion IT — I(—5) composed with the restriction of functions from G to Gp
gives a non-zero D'-invariant map II — Ip(—1), which clearly factors through ©(1). By [We]
and [HS], Ip(—1) has a composition series of length 2. The unique irreducible submodule %
has Np-rank 2. We have:

Corollary 4.2. The above construction gives a surjective G p-equivariant map
@(1) — X C ID(—l)
whose kernel has Np-rank no greater than one. If D is a division algebra, then ©(1) = X.

Proof. It remains to prove the last statement. The spherical, rank 2 representation ¥ is the
classical theta lift of the trivial representation of the quaternionic form of Sp(4) [Y]. Using
the theta correspondence, it is easy to check that ¥y, 4, = C. Thus, from Lemma 4.1 (iii)
it follows that the kernel of the map ©(1) — ¥ has Np-rank 0, i.e. Np acts trivially. Since
D' is compact, ©(1) is a summand of the minimal representation. By the classical result of
Howe-Moore the minimal representation cannot contain non-zero vectors fixed by Np. Thus
the kernel is trivial. O

4.2. Local lifts for split D. We shall strengthen here the result of Corollary 4.2 by showing
that ©(1) = 3 even when D is split, in which case G is also split.

Let T' C G be a maximal split torus, so we have the associated root groups. Furthermore,
D' = SL, and it is conjugated to a root SLy. Without loss of generality, we can assume that
SLs corresponds to the highest root for some choice of positive roots. Let 77 = SLoNT'. Then
the centralizer of T7 in G is a Levi subgroup L of semisimple type Dg. The Levi subgroup
L is contained in two maximal parabolic subgroups: @ = LU and its opposite Q = LU.
The unipotent radical U is a two-step unipotent group with the center U; given by the root
group corresponding to the highest root. Similarly, the center of U is the root subgroup
U, corresponding to the lowest root. These two root groups U; and U; generate SLy. We
identify 71 = GL; so that = € GL; acts on U/U; as multiplication by x.

The conjugation action of L on U; and Uj is given by a character and its inverse; this
character is given by z +— 22 when restricted to 77 C L. Hence Gp is the kernel of this
character, which is the derived group of L. Since G is of adjoint type, Gp acts faithfully on
U/U; (a 32-dimensional spin representation). Note that the representation U/U; is not Wp,
the 32-dimensional representation of Gp, from §2.3.

More precisely, recall that the center of Spin,, can be identified with pg X po in such a way
that the outer automorphism exchanges the two us’s, and fixes the diagonal ,uzA. The quotient
of Spinyy by p% is the special orthogonal group SOj2. On the other hand, the quotient of
Spiny by pe = pg x {1} and ph = {1} X pg are isomorphic (being isomorphic via the outer
automorphism). Then one has:

GD = Spinm/ug and L& T1 XM? GD = GL1 X/J‘,Q (Spin12//j,2) s
so that L has connected center. On the other hand, the group Gp from §2.3 is given by

As we mentioned in §2.3, the action of G p on Wp is not faithful.
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We now need a result on the restriction of II to the maximal parabolic subgroup @ = LU.
By [MS97, Theorem 6.1], the space of Uj-coinvariants of II, an L-module, sits in an exact
sequence

0—CFw) =1y, =1y —0
where w is the L-orbit of highest weight vectors in U/U;. The action of L on C°(w) arises
from the natural action of L on w twisted by an unramified character.

Let @p = LpUp be a maximal parabolic subgroup in Gp stabilizing the line through
a point v € w. Note that the Levi factor Lp of Qp is also of type As (like that of Pp).
The action of @p on the line gives a homomorphism x : @p — GL;. Thus the stabilizer in
Gp x GL; of v consists of all pairs (g, x) such that g € @p and x(g) = z. Since Gp x GL;
acts transitively on w, it is easy to see that the following holds:

Theorem 4.3. The normalized Jacquet functor lly,, as a Gp x GLi-module, has a 2-step
filtration with the following quotient and submodule respectively:
o lly =(Gp)® |- 2@ |- |> where II(Gp) is the minimal representation of Gp, and
| - | is the absolute value character of GLj.
. Indggcc‘x’(GLl) where C°(GL1) is the regular representation of GLy (and the induc-
tion is normalized).

Now we can prove the following result which strengthens Corollary 4.2 and which is needed
later.

Proposition 4.4. Assume that we are in the p-adic case with D split. Then ©(1) is irre-
ducible and isomorphic to 33, the Np-rank 2 representation of Gp that appears as the unique
irreducible quotient of Ip(1).

Proof. Let m be an irreducible representation of SLy and O(7) the corresponding big theta
lift. We first note that ©(w) is always non-trivial, as a simple consequence of Lemma 4.1.
Moreover, O() Ny, ¢, is isomorphic to 7V, so that it is infinite dimensional if and only if 7 is.

Let J(s) be the principal series for SLy normalized so that the trivial representation is a
quotient for s = 1 and a submodule for s = —1. Likewise, let Jp(s) denote the degenerate
principal series associated to (p, normalized so that the trivial representation occurs at
Jp(£5).

If —s # 2,3, then Theorem 4.3 implies by way of the Frobenius reciprocity that
Hom(O(J(—s)),C) = Homgr,, (IT, J(—s)) = Hom(Jp(s),C)

as Gp-modules. For generic s, both J(—s) and Jp(s) are irreducible and the above identity
implies that

O(J(=s)) = Jp(s)
for such s. It follows from Lemma 4.1 that Jp(s)np ., is infinite dimensional for such s.

However, since the restriction of Jp(s) to Np is independent of s, it follows that Jp(s)n,, v,
is in fact infinite dimensional for all s.

Now if 7 is a submodule of J(—s) with —s # 2, 3, then it follows that
Hom(O(7),C) = Homg,, (II, 7) € Homgy, (I, J(—s)) = Hom(Jp(s), C),
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so that ©() is a quotient of Jp(s). In particular, for 7 = 1 the trivial representation, we may
take s = 1 to deduce that ©(1) is a quotient of Jp(1). Since we know that ©(1)x, 4, is one-
dimensional whereas Jp (1), y, is infinite-dimensional, we conclude that ©(1) is isomorphic
to the unique irreducible quotient of Jp(1) which has Np-rank 2. In particular, ©(1) is
irreducible and isomorphic to ¥, the unique quotient of Ip(1). O

As a side remark, the representations Jp(s) have Up-rank 3. However, since II has Np-
rank 2, it follows that the two parabolic subgroups Pp and (Jp are not conjugate in Gp.
But the two principal series Ip(s) and Jp(s) share all small rank subquotients: the trivial
representation, the minimal representation and the rank 2 representation X, as the above
argument shows.

5. GLOBAL LIFTING

Assume now that F is a global field, with its local completions denoted by F,,, and let A
be the ring of adeles over F'.

5.1. Global theta lifting. Let II = ®II, be the restricted tensor product of minimal rep-
resentations over all local places v of F, where II, C C*°(,), as in Theorem 3.1. Every
element in II is a finite linear combination of pure tensors f = ®f,, where f, = f; for almost
all places v. There is a unique (up to a non-zero scalar) embedding 6 : IT — A(G(F)\G(A))
of IT into the space of automorphic functions of uniform moderate growth.

We restrict 6(f) to the dual pair D! x Gp and for every h € A(D(F)\D'(A)), consider
the function O(f, h) on Gp defined by

O(f. 1) (gp) = / 6(f)(gpg) - h(g) dg.

DY (F)\D*(A)

If this is to be of any use, we require the function 6(f)(gpg) - h(g) to be of rapid decay on
DY(F)\D'(A) and of moderate growth on Gp(F)\Gp(A). This condition is clearly satisfied
if D! is anisotropic or if h is a cusp form. It is also satisfied for a regularized theta lift, to be
constructed in the next section. Namely, for any finite place v, we will construct an element
z in the Bernstein center of SLy(F,), such that for any f € II, the function 0(z - f)(g1g) is of
rapid decay on D'(F)\D'(A) and of moderate growth on Gp(F)\Gp(A). (See Proposition
6.1, and the discussion of this particular dual pair thereafter.) In particular, in all these
cases, the following integral is convergent:

/ / 6(= - f)(ng) - h(g)| dgdn.
Np(F)\Np(A) JDI(F)\D1(A)

5.2. Fourier expansion. Let ¢ : A/F — C* be a non-trivial character. Then any A € J(F)
defines a character ¥4 of N(F)\N(A) by ¥a(B) = ¢(tr (Ao B)) for all B € N(A) = J(A).
For every ¢ € A(G(F)\G(A)), let

valg) = / o(ng) - Ya(n) dn
N(F)\N(4)
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be the Fourier coefficient Corresponding to A. We have a Fourier expansion
0(f)(g) = + > o
AEQ(F)

By uniqueness of local functionals, Theorem 3.1, for every A € Q(F') there exists a non-zero

scalar ¢4 such that
g) =ca H(gu - fu)(A)

This formula is particularly useful if g, € M (F, ) for then (g, - fu)(A) = x0(g0) - folg, ! A)
for the character x, of M (Fy).

Let 19 and 13 be the rank 2 and 3 characters of Np(A), as in the local case. Recall that
x € O is a pair z = (y, z) of elements in D, and N(z) = N(y) — AN(z) for some A € F*. Let
YNy, ., denote the global Fourier coefficient with respect to these two characters. Let wo(F)
be the set of all rank one matrices

+1 =z O
-z £1 0 | € J(F)
0 0 O

such that z = (0,a) and AN (a) = £1 (for only one choice of sign, depending on ;) i.e. the
2 x 2 minor is 0. Then we have a global version of Lemma 4.1.

Lemma 5.1. For every f € I1, (f)np s =0 and
O(Nnps(9) = D, O(f

Bews (F)

5.3. Non-vanishing of the theta lift. We shall prove non-vanishing of the (regularized)
theta lift by computing the Fourier coefficient

O Wvpn() = [ /

Np(F)\Np(A) /DI (F)\D'(A)
Since this integral is absolutely convergent, we can reverse the order of integration. Then,
using Lemma 5.1, we obtain

o o= [ X 6000 H) do

(&) Bews (F

0(f)(ng) - h(g) - ¥a(n) dgdn.

Lemma 5.2. Fix

+1 =z O
A= —x +1 0 S CL)Q(F)
0 0 0

where x = (0,a), a € D satisfies AN (a) = £1.
For every automorphic form h and every f € 11 we have

—c R WAYA
/ - ZF)9 (9) dg = A/Dl(A) flg~ A)h(g) dg

where the second integral is absolutely convergent.
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Proof. Since wy(F) is a principal homogeneous D'(F)-space, the identity formally follows
by unfolding the left hand side and using the formula for 6(f)a(g) as a product of local
functionals given above. Hence it remains to discuss the issue of absolute convergence.

We may assume f = ®, f, is a pure tensor. For each place v, observe that if g € SLa(F},),
then g7'A is obtained from A by replacing = by zg. Hence, g — ¢ 'A gives a closed
embedding of SLy(F,) into J(F,), with image contained in 2,. In particular, this image is
bounded away from the vertex 0 of the cone €,. Since h is of moderate growth on SLa(F}),
to show that the integral in question is absolutely convergent, we need to show that g —
fo(g7tA) is a Schwartz function on SLy(F,). For this, it suffices to show that as a function
on the cone €, f, is rapidly decreasing towards infinity, as we shall explain below.

In greater detail, assume first that v is a finite place. Due to N,-smoothness, f, € II, is
supported on a lattice in .J,, (and thus vanishes towards infinity). It follows that g — f,(g7*A)
is a compactly supported function on SLo(F),). Moreover, let S be a finite set of places
containing all archimedean places such that for v ¢ S, all data is unramified: D(F),) is split,
A€ 0f, a € GL2(Oy), 1, has the conductor O, f, = fJ, and h is right SLy(O,)-invariant.
Here O, is the maximal order in F,. It follows from Theorem 3.2 that g — fS(g~1A) is the
characteristic function of SLy(O,) for all v ¢ S. Thus if we normalize the local measures so

that vol(SL2(O,)) =1 for all v ¢ S, then
/ F(g A)h(g)| dg = / Fs(g A)(g)| dg
D1(A) D1(Ag)

where the subscript S denotes the product of the local data over all places v € S.

Consider now the case where v is a real place. We need to show that C' — f,(C) is of
rapid decay in ||C||, where C' € Q(R). To that end, let m, € M(R) such that C = m;! - A.
Then, up to a non-zero constant ¢, independent of C,

fu(C) =c- Xv(mv)_l 0(f)a(my)

for the character y, of M(R). Now observe that m, can be taken a product of an element k,
in a maximal compact subgroup of M (R) and an element z, in Z,, the identity component of
the center of M (R). We fix an isomorphism v : Z, — R* such that the conjugation action of
zy € Z, on N(R) is given by multiplication by v(z,). Now, in order to prove that f, is rapidly
decreasing towards infinity, we shall give a global argument exploiting the automorphic form
0(f) (though a local proof is also possible). Namely, it suffices to show that z, — 0(f) a(zvky)
is rapidly decreasing as v(z,) — oo, with bounds independent of k,. This can be proved using
the usual method of integration by parts, as in [MW, Pg. 30, Lemma].

More precisely, if X € J = n, then the X-derivative of the character ¢4 is a multiple of
1 4. Using the definition of the Fourier coefficient and integration by parts, one obtains that

0(f)a(20) is a multiple of (Ry - 0(f))a(zvko) - v(20) 7",

where Y = k; !Xk, and Ry denotes the right Y-derivative of the automorphic form 6(f).
We can repeat this procedure to get any negative power of v(z,). The rapid decay follows
from the fact that 0(f) is of uniform moderate growth, and the fact that Y = k; !Xk, is a
linear combination of vectors in any fixed basis of n, with bounded coeffecients, as k, runs
over the maximal compact subgroup in M (R).
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Finally, suppose that g € SLs(R) belongs to the double coset of the diagonal matrix
<8 1%), t > 0, in the Cartan decomposition of SLy(R). If we assume for simplicity that

A =1, so that a in x = (0,a) can be taken the identity matrix, then [|zg||* = 2 + 1/t*> (on
the nose) and ||g7tA|| =t + 1/t. In particular, t < ||g7*A|| < t+ 1 for t > 1. Hence, the
rapid decay towards infinity of f, (as a function on ,) implies that g — f,(g~1A) has rapid
decay on SLa(R), as desired.

([l

We are now ready to prove the non-vanishing of the global theta lift. Assume firstly that
h is a cusp form. Then we have shown that

O ()= [ fsto™ A)ilg) dy

for some large finite set of places. Since for every v € S the local f, can be an arbitrary
compactly supported smooth function on €2, the integral will not vanish for some choice of
data. Now consider the regularized theta integral ©(z - f, h), where h is in an automorphic
form, not necessarily cuspidal, and z is an element of the Bernstein center of SLo(F),) (see
the next section for the construction of z). The corresponding Fourier coefficient is

O f.Wpn (D) = [ (2 Dlg™ Ahly) do
D (A)
Let K, be a sufficiently small open compact subgroup of SLg(F},) such that f, is K,-invariant.
Then z - f, = a- f, where « is a K, bi-invariant, compactly supported function on SLa(F}).
Let aV(g) = @(g~ ') and define 2V - h = a" - h. Using the convergence guaranteed by Lemma
5.2,

[ Gnlaap) dg= [ fa HETRG) do

D'(A) D'(A)

and this can again be arranged to be non-zero, provided zV - h # 0. Hence we have proved
the following:

Theorem 5.3. If h is a non-zero cusp form on D'(A), then ©(f,h) # 0 for some f € II. If
h is an (not necessarily cuspidal ) automorphic form such that zV-h # 0, then ©(z- f,h) # 0
for some f €1l.

Remark: The main reason for introduction of the regularized theta lift is to be able to
handle the lift of h = 1 in the case when D is split. In this case we can take all data to be
simplest possible, i.e. A = 1, the matrix A with a = (0, z) with = identity matrix, etc. Then
non-vanishing of the theta lift is achieved with the spherical vector f5, at any real place.

Indeed, if g € SLa(R) belongs to the double coset of the diagonal matrix (6 1%), with ¢ > 0,
in the Cartan decomposition of SLa(R), then ||zg||? = t>+ 1/t and ||g ' A|| = t + 1/t. Write
u=t+ 1/t so that

1. dt
du = (t— )2
u=0=3)3
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Using the formula for the spherical vector given by Theorem 3.3 and the formula for the Haar
measure on SLg(R) with respect to the Cartan decomposition, we have

o0
e 1 —
[ s aydo= [T 3w PRy dus o
SL2(R) 2

It will be interesting to compute the value of this integral.

6. REGULARIZING THETA

Following some ideas of Kudla and Rallis [KR], the first author introduced in [G] a reg-
ularized theta integral for a particular exceptional dual pair. We simplify the arguments so
that regularization is now available for a wider class of examples. The notations used in this
largely self-contained section will differ from those of the other sections of this paper. We
first recall some basic facts about the notions of uniform moderate growth and rapid decay.

6.1. Moderate growth and rapid decay. Let k£ be a number field and let A denote the
corresponding ring of adelés. Let G be a reductive group over k. In order to keep notation
simple, we shall assume that G is split with a finite center. Fix a maximal split torus T’ and a
minimal parabolic subgroup P containing T'. Let N be the unipotent radical of P. We have
a root system @, obtained by T acting on the Lie algebra g of G and a set of simple roots in
® corresponding to the choice of P.

If we fix a place v of k, then GG, will denote the group of k,-points of G. Similarly, we
shall use the subscript v to denote various other subgroups of G,. A smooth function f on
G(A) is of uniform moderate growth if there exists an integer m such that for every X in the
enveloping algebra of g there exists a constant cx such that

[Bx f(g)] < exllgll™

where Rx denotes the action of the enveloping algebra on smooth functions obtained by the
differentiation from the right and ||g|| is a height function on G defined in [MW, page 20].
Since there exists a constant ¢ such that ||gh|| < c||g]| - ||h]| for all g,h € G(A), it is easy
to see that the constants cx for the right-translates Ry f of f are of moderate growth in h,
more precisely, of growth [|h||™"? where d is the degree of X.

Now assume that v is a real or complex place of k. Let P, = M,A,N, be the Langlands
decomposition of P,. For ¢ > 0, let A, be a cone in A, consisting of a € A, such that
a(a) > e for all simple roots . Let A be the product of the A,’s and let A, be the product
of the A, ¢’s over all real and complex places v. Let wy be a compact set in IN(A) containing
the identity element. Let K be a product of maximal compact subgroups K, of G, where
we have taken K, to be hyperspecial for all p-adic places. Then

S =wnyAK
is a Siegel domain in G(A). If wy is sufficiently large, and e is sufficiently small, then
G(A) =G(k)S.

Let IT be an automorphic representation of G. Then any smooth f € II is of uniform
moderate growth. In terms of the Siegel domain S, this means the following. Let pp : A — RT
be the modular character. There exists an integer m such that for every X in the enveloping
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algebra of g, there exists a constant cx such that
|Rx f(nak)| < cx - pp(a)™
on S, where the constants m and cx are not necessarily the same, but related to those above.

Now let Q O P be a maximal parabolic with a unipotent radical U C N, corresponding
to a simple root . We have a standard Levi factor L of () defined as the centralizer of a
fundamental co-character x : G,, — T (or a power of it). In any case, any element in A4, is
uniquely written as a product Hx X(ty), over all fundamental co-characters x, where ¢, € RT.
The element [], x(ty) is contained in the cone A, if t, > € for all x. Let fy be the constant
term of f along U. Then, if f has a uniform moderate growth, by [MW, page 30, Lemmal]
for every positive integer i, there is a constant ¢; such that

|(f = fo)(nak)| < ci - pp(a)™ - a™(a)

on S. In particular, if fy = 0, then f is rapidly decreasing in the variable ¢,. If fy = 0
for all maximal parabolic subgroups, then f is rapidly decreasing on .5, and that’s how the
rapid decrease of cusp forms is established. The proof of [MW, page 30, Lemma] involves
integration by parts, so it is easy to see that the constants c; for the right-translates Ry f of
f are of moderate growth in h, more precisely, of the growth ||h||™ where m’ depends on i:
a larger 7 will demand a larger m/’.

We highlight another important issue here. Assume that f belongs to an automorphic
representation w. Then a Frechét space topology on 7 is given by the family of semi-norms
Ifllx = sup_ |Rx f(nak)|-pp(a)™™

nakes
where m depends on 7 and works for all X in the enveloping algebra. Then [MW, page 30,
Lemma] says that convergence in these seminorms implies convergence in the seminorm

sup |(f — fu)(nak)| - pp(a)™™ - o' (a).

nakesS

This observation will later imply that the regularized theta integral gives a continuous pairing.

6.2. Restricting to a subgroup. Let G; x G2 C G a dual pair in G. Let 71 be a maximal
split torus in G; and fix a minimal parabolic subgroup P; containing 77. Without loss of
generality, we can assume that T3 C T and P; C P. Let Q1 O P; be a maximal parabolic
subgroup of Gy. Let x1 : G, — T1 be the corresponding fundamental cocharacter (or a
multiple of which) so that the centralizer of x1 in Gy is a Levi factor L; of Q1. Assume that:

Hypothesis: For every fundamental cocharacter x1 of G1, there is a fundamental cocharacter
x of G such that x1 is a multiple of x.

This hypothesis holds in the following examples:

e the dual pair G; x Gy = D! x Gp = SLy x Gp studied in this paper; here G; = SL»
corresponds to the highest root and the highest weight is also a fundamental weight
for E7 (the ambient group G).

e the split exceptional dual pairs in G of type E, where one member of the dual pair is
the type Ga, see [LS]. In particular, this includes the case PGL3 x Gy treated in [G].
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The above hypothesis has the following consequences:

e It implies that the cone A; . sits as a subcone of A; in fact, it is a direct factor in
the above cases. In particular, we have an inclusion of Siegel domains S; C S.

e Given a fundamental cocharacter y; of GG1, the associated fundamental cocharacter
x of G given by the hypothesis corresponds to a simple root and so determines a
maximal parabolic subgroup @, = L,,U,, of G. In the following, we will sometimes
write U = Uy, to simplify notation.

Now let v be a p-adic place and z an element of the Bernstein’s center of Gi(k,). Then
z - II is naturally a G1(A) x G2(A)-submodule of II. For a fixed cocharacter y; of G, with
associated maximal parabolic ) = LU, assume that

z - 11, C Ker (HU — (Hv)U( v)) .

k
We claim that this implies that (z- f)y = 0 on G1(A) x G2(A). Indeed, if g € G1(A) x G2(A),
then
(z- Nlulg) = (Ry(z- f))u(1) = (z- Ry(f))v(1) =0

where R, denotes the right translation by g. Here, the second equality holds since z and R,
commute, and the third equality holds since the projection of z - I on Il vanishes. Write
g = g1 X g2 € G1(A) x G2(A) and assume that g; € S;. Using the hypothesis that S; C S
and the estimates for |Rg, (2 f) — (Rg,(2 - f))v| on S from the last subsection, it follows that

(z- f)(g1 X g2) = Ry, (2 - f)(g1)

is of moderate growth in both variables and in the variable g; € 51, it is rapidly decreasing in
the direction of the fundamental co-character x1. More precisely, we summarise the discussion
in this subsection in the following proposition.

Proposition 6.1. Assume that:

(i) For every fundamental cocharacter x1 of Gi, there is a fundamental cocharacter x
of G such that x1 is a multiple of x, which in turn determines a maximal parabolic
subgroup Qy, = L\, Uy, ;

(ii) One can find an element z in the Bernstein center of Gi(ky) such that for every
fundamental cocharacter x1 of G1, the natural projection of I1,, to (I'LJ)UX1 (ky) vanishes
on z -1, for every fundamental co-character x1 of G1.

Then for every integer n, there exists an integer m and a constant ¢ such that

[(z - )91 x g2)| < cllgal|™"|lg2lI™
for all g1 € S1 and g2 € Ga(A).

In the context of the above proposition, a small trade-off here is that increasing n can
be obtained only by increasing m at the same time. But this is still good enough to define
regularized theta lift which produces functions of moderate growth as output. To exploit
the proposition, it remains then to construct an appropriate z. We also need to assure that
z - I, # 0 and this may not be always possible, as will be discussed in the next subsection.
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6.3. Bernstein’s center. We work here locally over a p-adic field. Thus all our groups are
local and we drop the subscript v. For simplicity, we shall discuss only the Bernstein center
for the Bernstein component containing the trivial representation of Gj.

To that end, let 7} be the complex torus dual to T}, and let W(G1) be the Weyl group
of G;. The Bernstein’s center Z(G1) of the said component is isomorphic to the algebra
of W(G1)-invariant regular functions on T). Similarly, the Bernstein’s center Z(L;) of the
Levi factor L is isomorphic to the algebra of W (L;)-invariant regular functions on 7. In
particular, we have a natural map j : Z(G1) — Z(L1). Let m be a smooth representation of
(G1, and let p : m — 7wy, be the natural projection onto the normalised Jacquet module 7y, .
Then, for every z € Z(G;) and v € 7, we have

p(z-v) = j(2) - (p(v)).

Now let II be a smooth representation of G. Recall that we want to find a non-zero
z € Z(Gy) such that z - II is in the kernel of the projection of II onto II;. Since Iy is a
quotient of Iy, , and j(z) is acting on I, we need to find z such that j(z) = 0 on II;;. This is
always possible if II is a finite length G-module, in which case Il is a finite length L-module.
In particular, the center of L acts finitely on IIy;. Hence, the center of L; (= the center of
L) acts finitely on ITy and the Z(Lj)-spectrum of IIj; is contained in a proper subvariety of
7. In particular, any non-zero W (G1)-invariant function z vanishing on the subvariety will
have the desired property that j(z) vanishes on Ilyy. Hence, a non-trivial z with the desired

property always exists.

A potential trouble is that such a z may kill the whole II. However, if G is split, G is
the smaller member of the dual pair (also split) and II the minimal representation, then the
spherical matrix coefficient ® of IT, when restricted to Gy, is typically contained in L?~¢(G1)
for some € > 0. (This is easy to check in any given situation, see [LS]). Thus, in such
situations, it makes sense to integrate ® against spherical tempered functions of Gy, i.e. to
consider the spherical transform of ® on G(k,). This integral will be non-zero for almost all
tempered spherical functions, hence almost all spherical tempered representations of G1(ky)
will appear as a quotient of II. (This argument for the nonvanishing of the theta lift of
almost all irreducible spherical tempered representations holds over archimedean fields as
well, as we shall exploit in Lemma 7.6 below). Hence, if z kills II, then z kills all spherical
tempered representations of G1(k,) and hence z must be equal to 0. Therefore the desired
regularization can be carried out in this case.

Let’s look at our dual pair Gy x Go = SLo X Gp in GG, and II is the minimal representation.
The Bernstein’s center is

Z(Gy) = Cla™!)%

where Sy acts by permuting z and 2~ !. Let
z=@-)a " - )@ - @) - )

where ¢ is the order of the residual field. This element satisfies our requirement, since j(z)
vanishes on Iy by Theorem 4.3, and the spherical matrix coefficient of II is integrable when
restricted to SLo.
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6.4. Global O(1). Let z be the element in the Bernstein center of G; = SLg, as in the
previous subsection. We define ©(1) as the space of automorphic functions, gp € Gp(A),

O(f)(gp) = 0(z - f)(gpg) dg.

/131(F N\D'(A)
where we assume that f is Koo-finite. (We assume this finiteness since in the next section
we will determine the local lift at real places in the language of (g, K)-modules.) We want
to show that ©(1) # 0, using Theorem 5.3. The input in the theta kernel is h = 1, so the
first thing is to show that 2V -1 # 0. In the case at hand, z" is obtained from z by replacing
2 by 27! in the above expression of z. In particular, z = zV. Moreover, z acts on the
trivial representation by the scalar obtained by substituting x = ¢, and this is non-zero. It
remains to argue that we can arrange fo, to be K.-finite. This follows by the continuity
of the regularized theta integral, which ensures that the non-vanishing for smooth f implies
the non-vanishing for K-finite vectors. Alternatively, by the remark following Theorem 5.3,
non-vanishing can be achieved with fo, = f3, the spherical vector.

7. CORRESPONDENCE FOR REAL GROUPS

In this section, we work over the field R of real numbers. The goal of this section is to
determine O(1) explicitly. For this, we need to consider various cases separately. Indeed, recall
that G is arising from an Albert algebra via the Koecher-Tits construction. There are two
real forms of octonion algebra, the classical Graves algebra and its split form, and these two
algebras can be used to define two Albert algebras of 3 x 3-hermitian symmetric matrices with
coefficients in the octonion algebra. The group G is split or of the relative rank 3 depending
on whether the octonion algebra is split or not. Moreover, it will be convenient to work with
the simply connected G and (g, K )-modules corresponding to minimal representations. Then
the centralizer of D! in G is G1, a simply-connected cover of Gp in the sense of algebraic
groups. An advantage of working with G is that its maximal compact subgroup K is a
connected Lie group, so its irreducible representations are parameterized by highest weights.
Observe that the Lie group Gp has two topological connected components and G is a two-
fold cover of the identity component of Gp. The maximal compact subgroup Kp has two
connected components meeting the connected components of Gp. Hence there is a natural
bijection between irreducible spherical representation of Gp and Gy, via the pullback by the
natural map G1 — Gp. We shall use this observation, in the case when G is split, to prove
that ©(1) is an irreducible, spherical (gp, Kp)-module by computing its K;-types.

7.1. Non-split 0. Assume first that @ and hence G is not split. Then the minimal rep-
resentation of the adjoint group, when restricted to the simply connected G, breaks up as
IT =1I, o ®1lp,1, a sum of a holomorphic and an anti-holomorphic irreducible representation.
This sum is the socle of the degenerate principal series I(—5). The maximal compact sub-
group K is of type Eg, and has one dimensional center U(1) that acts on the Lie algebra g
with weights -2, 0 and 2. The weight 2 space is a 27 dimensional representation of K. Let w
be its highest weight. Then
1_[1,0 = @nZOVnw(12)

where 12 denotes a twist of the irreducible K-module V,,, such that U(1) acts with the weight
2n + 12 on it.
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In this case, D is necessarily non split. Let K7 = Ug be a maximal compact subgroup of
G1. The socle of Ip(—1), considered a representation of GGy is a direct sum of three represen-
tations Yo o @ 21,1 @ Xo,2, a holomorphic, a spherical and an anti-holomorphic representation,
respectively, [Sa93, Theorem C]. The lowest and the highest Ki-types of Yoo and X2 are
one-dimensional with U(1)-weights 12 and —12, respectively. Observe that X9 @ X2 has,
up to an isomorphism, unique structure of (gp, Kp)-module. One has:

Theorem 7.1. If O is non-split (so G is not split), we have
1 1
Py =% and I = So,.
In particular, ©(1) = X0 & Xo2, as (gp, Kp)-modules.

Proof. Since II, ¢ is unitarizable and U(1)-admissible, the restriction to g; is a direct sum of
irreducible lowest weight representations. The minimal type of 111 ¢ generates an irreducible
lowest weight (g;, K1)-module, with the minimal Ug-type det?, i.e. U(1)-weight 12. Thus
200 C Hﬂ;. The infinitesimal character of 33 is (3,2, 1,0, —1, —2), in terms of the standard

realization of the Dg root system. If the inclusion g0 C H{?é is strict, then Hf(l) contains
another lowest weight representation with the same infinitesimal character. There is precisely
one other irreducible lowest weight (g1, /(1)-module with this infinitesimal character, with the
minimal Ug-type det®, i.e. U(1)-weight 18. Thus the number of irreducible summands in 117,
is bounded by the dimension of SUg x D'-invariants in IIy o. By the Cartan-Helgason theorem,
a finite dimensional irreducible representation of Eg has a line fixed by As x A; if and only
if it is self-dual. It follows that the space of SUg x D!-invariants in II; o is one dimensional,

the only contribution coming from the trivial K-type.
O

7.2. Split O but nonsplit D. We move on to the case when O and hence G is split. Let K be
a maximal compact subgroup of GG, and g = £ & p the corresponding Cartan decomposition
of the complexification of the Lie algebra of G. Then ¢ is isomorphic to sls. Fixing this
isomorphism, we see that as a K = SUg/u9-module, p is isomorphic to V,,,, where wy is the
4-th fundamental weight. The minimal representation II is a direct sum of K-types Vj,,
where n =0,1,2,....

We have two cases depending on D. Assume in this subsection that D is a division algebra.
In this case D' =2 SU, is compact, and embeds into SUg as a 2 x 2 block. The centralizer of
SUy in K = SUg/ g is Ky = Ug. The minimal representation IT decomposes discretely when
restricted to this dual pair. A simple application of the Gelfand-Zetlin rule shows that the
K;-types of ©(1) are multiplicity free and the highest weights of the Ki-types which occur
are

(;U, x? 07 07 y7 y)

where x > 0 > y are any two integers. Here we are using the standard description of highest
weights for Ug by 6-tuples of non-increasing integers. But these are precisely the Ki-types
of the spherical submodule of Ip(—1), i.e. the Gy-constituent ¥; ; in [Sa93, Theorem C]. In
view of the map ©(1) — Ip(—1) of (gp, Kp)-modules, this proves
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Theorem 7.2. When O is split but D is non-split, one has an isomorphism of spherical
(gp, Kp)-modules

o) =1 =¥, .

7.3. Split O and split D. This is the most involved case. Let (e, h, f) be an sly-triple
spanning the complexified Lie algebra of D' = SL,. After conjugating by G, if necessary, we
can assume that the triple is stable under the Cartan involution. Then e € p is a highest
weight vector for the action of K, and h € €. Let ©(1) be the maximal quotient of the
(g, K)-module of the minimal representation such that the sly triple acts trivially.

Theorem 7.3. O(1) is irreducible and isomorphic to the unique submodule ¥ of Ip(—1),
which is a spherical representation.

The proof of this result will take the rest of this section. After conjugating by K, if
necessary, we can assume that

1

€ slg.

DN | =
|
—t

Let G be the centralizer of the sly-triple in G. It is a group isomorphic to Spin(6,6) (recall
that we are assuming G is simply-connected in this section, unlike the discussion in Section
4.2). Let g1 = 1 ®p; be the corresponding Cartan decomposition. Then £ 2 sly @ sly sitting
block diagonally in slg. The centralizer of h in SUg/us9 is

K1 = SU4 X SU4/A,&2
and this confirms that G is simply connected (as an algebraic group in a given (non-
hermitian) isogeny class is determined by its maximal compact subgroup).

Let II be the (g, K)-module corresponding to the minimal representation of G. Then, as
a K-module,
IT= @nzovnm;-
We shall also need the following facts about the action of e on II. From the formula for the
tensor product V,,, ® Vp,, it follows that

€ Vnw4 - ‘/(n—l)w4 D ‘/(n+1)w4'

Since II is not a highest weight module, by [V, Lemma 3.4], e is injective on II. The same
results hold for f.

Let 7 be an irreducible slp-module such that A acts semi-simply and integrally. Let O(n)
be the big theta lift of m; it is a (g1, K1)-module. We shall now partially determine the
structure of K1-types of ©(m). In order to state the result, we need some additional notation.
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A highest weight p for SUy is represented by a quadruple (z,y,z,u) of integers, such that
T >y >z > u, and it is determined by the triple
a=zr—y, f=y—z,v=z—u
of non-negative integers.
Proposition 7.4. Let V@ U be a K; = SUy x SU4/Apg-type of O(w). Then U = V*, the

dual representation of V', and the multiplicity of V@ V* in ©(7) is at most one. If m =1,
the trivial representation, and p is the highest weight of V', then o = .

Proof. We need the following lemma which can be easily deduced from the Gelfand-Zetlin
branching rule.

Lemma 7.5. The restriction of Vi, to sly @ sly & Ch is multiplicity free and given by

where p is represented by the quadruple (z,y,z,u) and h acts on C(m) by the integer m =
T+y+z+u—2n.

It follows from the lemma that the only Kj-types appearing in the restriction of II are
isomorphic to V ® V*, as claimed. In order to prove multiplicity one in ©(7), we proceed as
follows.

Let m be an integer appearing as an h-type in 7. Let € be the Casimir element for sly and
let x : C[©2] — C be the central character of m. Let II(, m) be the maximal subspace of II
such that h acts as the integer m and sl, @ sly as a multiple of V,, ® V7. Note that II(x, m) is
naturally a C[Q]-module, and it suffices to show that the maximal quotient of II(x, m) such
that C[(2] acts on it by x is isomorphic to V,,®V; as an sly @ sly-module. We have a canonical
isomorphism

(g, m) = (V, @ Vi) @ Homgpeer, (Vi @ Vi, T1(m))
and C[Q] acts on
H0m5[4@5[4(vu &® V:, H(m)) = @n20H0m5[4®5[4(Vu ® V:, Vnw4 (m))

Now notice that, given y and m, Homsy,gst, (Vi ® V), Vi, (m)) # 0 for only one parity of n.
Furthermore, if this space is non-zero for some n, then it is non-zero for n + 2, as u is also
represented by (z+ 1,y + 1,2+ 1,u+ 1) and

m=z+y+z+u—2n=x+14+y+1+z+1+u+1-2(n+2).

Let ng be the first integer such that Homg,esi, (V, ® V;,Vnow4(m)) # 0 and let Ty be a
generator of this one-dimensional space. We then have a natural map

A Cl[Q] - Ty — Homgy,gsr, (V, @ Vi, TI(m)).

Lemma 7.6. The map A is an isomorphism.
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Proof. Let i be a non-negative integer. Let C[Q)]; be the space of polynomials of degree < i,
and let

Hom5[4695[4 (VM ® V:, H(m))l = @220H0m5[4®5[4(vu ® V;fv V(n0+2j)t.u4 (m))

These two spaces have dimension i + 1 and define filtrations of C[Q2] and Homg,gs(, (V, ®
Vi, II(m)) as i increases. Since (2 has degree 2, as an element of the enveloping algebra of g,
the map A preserves the two filtrations. Thus, in oder to prove the claim, it suffices to show
that A is injective.

But if it is not, then there would be a polynomial p(f2) acting trivially on V, @ V; C
Viows (m). Under the action of sly, this subspace would generate a finite length representation
Fy C II of sly. Let U(g) be the enveloping algebra of g, and let U, (g) C U(g) be the PBW
filtration. We have II = U(g) - Fo, since II is irreducible g-module. Hence II is a union
of F,, = Up(g) - Fo. Now observe that each F,, is a finite length slp-module. Hence there
could be only countably many irreducible slo-modules appearing as quotients of II. But this
contradicts the fact that almost all spherical tempered representations of sly are quotients,
as discussed in Section 6.3. The lemma is proved. ]

Lemma 7.6 implies that
(p,m) = (V, @ V) ® C[)]

as C[Q]-modules. Hence, if we fix a character y of C[Q], the maximal quotient of II(u,m)
such that C[€] acts by x is isomorphic to V,, @ V,;. This proves that ©(r) has multiplicity
free Ki-types.

We proceed to narrow down the Ki-types appearing in ©(1). For every u, the action of e
on II gives an injective map

e: H(M7 _2) - H(M7O)
Lemma 7.7. If e : II(u, —2) — II(u, 0) is bijective, then V), @ V' is not a Ki-type of O(1).

Proof. The image of e is necessarily contained in the kernel of the natural surjective map
II(p,0) — ©(1)(p). Hence the lemma follows. O

Consider the filtration IT(u, m); = @®pn<;Vaw, (1, m) of II(u, m). Then we have an injective
map
e: H(,UH _2)1' - H(:Uﬂ O)i+1

for all 7. Hence, if the dimensions of the two spaces are equal for all ¢, then e is bijective.
This will happen precisely when V,, ® Vi occurs in Vg, (—2) but not in V{;,_1),,(0), for
some n. The occurrence in V,,,, (—2) implies that there exists a unique quadruple (z,y, z,u)
representing p such that

n>x>y>z>2u>0andx+y+z+u—2n=-2
Then V), ® Vi occurs in Vi, _1),, (0) if and only if
n—1>x>y>z>u>0

i.e. n>x. Thus, if n =z, then V), ® V;; does not appear in O(1).



AN EXCEPTIONAL SIEGEL-WEIL FORMULA AND POLES OF THE SPIN L-FUNCTION OF PGSpg 23

Let’s see what this means in terms of «, 8 and . We have to find n such that p is

represented by
(x,y,z,u) = (nan_a>n_a_ﬁ7n_a_6_7)'

Since the last entry must be non-negative, we have n > a4+ 4+ . On the other hand, h has
to act as —2, hence x + y + z + u — 2n = —2 and this is equivalent to 2n = 3a + 28+ v — 2.
Combining with the previous inequality, we obtain o > «v 4 2. Hence the types with p such
that a > v + 2 do not appear in ©(1). Replacing the role of e with f, a similar argument
shows that the types such that v > « 4+ 2 do not appear either. Hence |a — | < 1 for all
types that appear in ©(1). Since aw = v (mod 2) for any type in I1(0), « = ~ for all types
that appear in ©(1). This completes the proof of Proposition 7.4. O

The types of ©(1), as described in Proposition 7.4, are the same as the types of the spherical
rank-2 submodule in Ip(—1) by [Sa95, Theorem 4B]. This proves Theorem 7.3.

8. SIEGEL-WEIL FORMULA

We are now ready to prove the desired Siegel-Weil formula (Theorem 1.2 in the introduc-
tion). Assume that F' is a totally real global field and D a quaternion algebra over F.

8.1. The representation O(1). We have shown that the global (regularized) theta lift ©(1)
is a non-zero automorphic representation of Gp(A). We have also studied the abstract local
theta lift of the trivial representation of D' to Gp. The following summarizes what we have
shown:

Proposition 8.1. (i) The automorphic representation ©(1) is irreducible and occurs with
multiplicity one in the space of automorphic forms of Gp;

(ii) For every p-adic place v of F, the local component O(1), is isomorphic to the unique
irreducible quotient of the local degenerate principal series Ip(1).

(iii) For every real place v of F, the local component ©(1), is an irreducible quotient of Ip(1)
as described in Theorems 7.1, 7.2 and 7.5.

Proof. Indeed, we have shown that the abstract local theta lift ©(1,) is irreducible. Hence the
global ©(1) is an irreducible automorphic representation. The fact that ©(1) has multiplicity
one in the space of automorphic forms follows by [KS15, Theorem 1.1]. Note that the required
conditions, as spelled out in the introduction of [KS15], are satisfied by the recent work of
Méllers and Schwarz [MS17]. O

8.2. A Siegel-Weil formula. For a flat section ® € Ip(s), let Ep(s, ®) be the associated
Eisenstein series. Then Ep(s,®) has at most simple poles at s = 1,3 or 5 and the corre-
sponding residual representations are completely described in [HS, Theorem 6.4]. Set

& ={Ress=1Ep(s,®) : ® € Ip(s)},

We can now prove Theorem 1.2 in the introduction (which we restate here):
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Theorem 8.2. Let F be a totally real global field and D a quaternion algebra over F. Then
we have the following identity in the space of automorphic representations Gp(A),

&= @i:D%@@(l)v

where the sum is taken over all isomorphism classes of embeddings i : D — Q into octonion
algebras over F'.

Proof. Comparing Proposition 8.1 with [HS, Theorem 6.4], one sees that ©(1) is isomorphic,
as an abstract representation, to a summand of £. In view of the multiplicity one result in
Proposition 8.1(i), it follows that ©(1) is equal to that irreducible summand, as a subspace
of the space of automorphic forms.

Now recall that the dual pair D' x Gp arises from an embedding of D into an octonion
algebra Q. Every such embedding is unique up to conjugacy by Aut(Q). However, given D
there are multiple octonion algebras over F' containing D. An isomorphism class of octonion
algebras O over F' is specified by the isomorphism class of its local completions O, for real
places v. At each real place, we have two choices: the classical octonion algebra and its split
form. But D, embeds into both if and only if it is a quaternion division algebra. Hence
the number of octonion algebras over F' containing D is is 2"* where m is the number of
real places v such that D, is the quaternion algebra. Now, by an easy check left to the
reader, non-isomorphic O give non-isomorphic ©(1). Moreover, using our description of ©(1)
in Proposition 8.1 and [HS, Theorem 6.4], one sees that all those possible ©(1) sum up to £.
This proves the theorem. g

9. SPIN L-FUNCTION

To complete the proof of the main result of this paper, i.e. Theorem 1.1 in the introduction,
the remaining ingredient we need is a Rankin-Selberg integral for the degree 8 Spin L-function
for cuspidal representations of PGSpg which was discovered by A. Pollack [P]. However, since
the paper [P] works over Q whereas we are working over a general number field F', we recall
some details here for the sake of completeness.

9.1. Global zeta integrals. Suppose 7 is a cuspidal automorphic representation of PGSpg(A).
Let U be the unipotent radical of the Siegel maximal parabolic subgroup of PGSpg(F'). Let
Jr be the Jordan algebra of 3 x 3 symmetric matrices with coefficients in F'. Then U & Jp
and any T € Jp = U defines an additive character ¢ : U(A)/U(F) — C*. Since 7 is cusp-
idal, there exists a non-degenerate T (i.e. det(7") # 0) such that the global Fourier coefficient
¢r is a non-zero function on PGSpg(A) for any ¢ € 7. We fix such a T' (which depends on
7) in the following.

The non-degenerate orbits on U(F) = Jp, under the action of the Siegel Levi factor
in PGSpg(F'), are parameterized by quaternion algebras over F. So let D be the algebra
corresponding to T'. Let G p be the reductive group of type Dg acting on Wp, as in Subsection
2.3. We shall assume that G p acts from the right on Wp. Let w C Wp be the G p-orbit of
(1,0,0,0), i.e. the orbit consisting of highest weight vectors. Following Pollack [P], for every
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Schwartz function ® = ®,®, on Wp(A) define an Eisenstein series on Gp(A) by

Es(g) = ), @(xg).

zEwW(F)

Recall that GSpg C Gp and let v be the isogeny homomorphism of GSpg. Define a global
zeta integral

Z(o.0.5) = | 4(9) - Ealg) - 1v(0)|® dg
GSpg (F)\GSpg (A)

for ¢ € m and ® as above. This integral is absolutely convergent for s € C with sufficiently

large real part. After integrating over the center of GSpg(A), we see that

Zop.s) = [ o) - B(®..9) dg
PGSpg(F)\PGSpg(4)

where @ € Ip(2s — 5), and s — P4 is a holomorphic section for s > 0. Observe that the

meromorphic continuation of E(®s, g) gives a meromorphic continuation of Z (¢, @, s).

9.2. Unfolding. Let V C U be the codimension one subgroup such that the character
is trivial on V(A). There is a wr € w(F'), contained in the third summand of Wp, such that
the stabilizer of wr in Spg is V' C U (see [P, Proposition 5.5]). The integral unfolds into

Z(6.0.5) = | 61(0)®(wrg)|w(a)|" dg.
V(A)\GSpg(A)

Furthermore, by Therem 9.4 in the first arXiv version of the paper [P] (more precisely in

arXiv:1506.03406v1), for a sufficiently large set of places S, including the set Sy, of all real

places,

Z(6.p.5) = L3(s ~ 2.7, 8pim) - () | or(0)s(wrg) (o))" d
V(As)\GSpg(As)
Here ¢(s) denotes a product of partial Dedekind zeta functions that we have omitted writing
down since they do not affect analytic properties of Z (¢, ¢, s) at our point of interest s = 3.
We note that Pollack works over F' = Q. However, he has kindly informed us that

e The unfolding of the integral representation works over any number field.

e The unramified computation is valid for any non-archimedean place v away from 2
such that D, is split. The proof goes through line by line, if one makes the following
changes of notation: every time p is used as a uniformizer, replace p with w; every
time p is used as a magnitude, replace p with q.

In other words, the above identity holds for .S containing all real places, places of even residual
characteristic and places where D is ramified.

9.3. Nonvanishing. The following technical result was contained in an earlier version of
Pollack’s paper. However, as this particular version is no longer publicly available (even on
the arXiv), we reproduce the proof for the sake of completeness.
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Lemma 9.1. Let s € C. For some data ¢ and Pg,
2(0.05.9) = | or(9)®s(wrg)lv(9)* dg
V(As)\GSpg(As)

extends to a meromorphic function on C which is non-vanishing at sq.

Proof. Observe that the meromorphic continuation is clear, since the global zeta integral
has a meromorphic continuation, and so does the partial L-function, since it appears in the
constant term of an Eisenstein series on the exceptional group Fj (4 la Langlands-Shahidi
theory). It remains to deal with non-vanishing.

Let v € S. Consider the local version of the zeta integral:
Z(600,5) = | 61(9) - ®u(wrg) - (9)|" dy.
Vo \GSpg (Fy)

The stabilizer of wr in GSpg is V' 1 A, where A is a one-dimensional torus that we can identify
with GL; using the isogeny character v. Thus GSpg is a semi-direct product of A and Spg,
and we can write

Z(p, Py, 5) = / <I>v(ng)/ ¢r(ag) - [v(a)|** dadg
Vo \Spg (Fv) Ay
for an invariant measure da on A,. Let us set
1(09) = [ orla)-o(@)f"~" da.
If A is a Schwartz function on U,, let

h(a) :/ h(u)pr(aua™t) du

v

where a € A,,. Since ¢7(aug) = ¢¥r(aua™t) - ¢pr(ag) for u € U,, it follows that

Hix 6,9 = [ o) 6r(@)- i) da.

v

Since h can be any compactly supported function on A,, the integral can be arranged to be
non-zero for any sg. In fact, if v is a finite place, then h can be picked so that the integral
is 1 for all s. Thus, if v is a finite place, we can assume that ¢ has been chosen so that
H(p,s) =1, for all s.

Next, there exists a compactly supported function ¢ on Spg(F,) such that ¢ x ¢ = ¢.
Observe that

Hipxo5)= |

Vv\spa (Fv

o) [ orlag) e dadg
where ¢ is a smooth compactly supported function on V(F,)\Spg(F,) defined by

¢'(g9) = /V - o(ug) du.
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Using the Iwasawa decompostion of Spg(Fy ), it is not difficult to see that the map g — wrg
gives a locally closed embedding (i.e. an immersion) of V;,\Spg(F}) into Wp(F,), with the clo-
sure of the image containing the extra point 0. Hence, any smooth compactly supported func-
tion on V,\Spg(Fy) is the restriction of a smooth compactly supported function on Wp(F,).
In particular, we can pick ®, such that ®,(wrg) = ¢'(g), for all g € Spg(F,). Then, with
this choice of ®,, one has
Z(p, Py,s) = H(p,s) = 1.
It follows that
Z(p,Pg,0,8) = Z(¢, Poo, 5)

for some choice of data.

Let Fw = F ®g R. Assume as above that ¢ has been chosen so that H (¢, sg) # 0. While
we perhaps cannot write ¢ = ¢ * ¢, for a compactly supported function on Spg(Fix), by
the well known theorem of Dixmier-Malliavin, there exist finitely many compactly supported
functions ¢; on Spg(Fuo) such that ¢ = >, ¢; * ¢; for some ¢;. Then, as in the finite place
case, there exists compactly supported ®%_ such that

Zzw, oL, s) = H(p,s).

Since H(¢, sg) # 0, we see that Z(¢, ®%_, sg) # 0 for some 4. This completes the proof of the
lemma. ]

10. APPLICATIONS TO FUNCTORIALITY

Finally, we are ready to assemble the various ingredients and complete the proof of Theorem
1.1 (which we reproduce here):

Theorem 10.1. Suppose that  is a cuspidal automorphic representation of PGSpg such that
L3(s,m,Spin) has a pole at s = 1. Then there exists an octonion algebra Q over F and a
cuspidal automorphic representation 7 of Aut(Q) such that the Satake parameters of ©' are
mapped by v to those of w (i.e. w is a weak functorial lift of ).

If the cuspidal representation m of PGSpg is tempered, then the following are equivalent:

(a) For almost all places v, the Satake parameter s, of m, is contained in 1(G2(C)).
(b) There exists an octonion algebra Q@ over F' and a cuspidal automorphic representation
7' of Aut(Q) such that m is a weak functorial lift of 7.

Proof. As explained in the introduction, we shall make use of the following see-saw dual pair
in G:

Aut(@) Gp

>

.D1 PGSpG

Let m be an irreducible cuspidal automorphic representation of PGSpg and consider its
global theta lift 7’ on G3. It can be shown (by a standard computation of the constant
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term of the global theta lift) that 7’ is contained in the space of cusp forms on G5. This
was explained in [GJ, Theorem 3.1], noting that the genericity assumption on 7 was not
needed there. See also [GG09, Proposition 5.2] (note though that there is a typo in the first
paragraph of the proof of [GG09, Proposition 5.2]: the word “nonzero” should be “zero”).

Now suppose that the partial (degree 8) spin L-function LS (s,m,Spin) of 7 has a pole at
s = 1. Then, by Lemma 9.1, it follows that Ress—3Z(¢, ®, s) is non-zero, for some ¢ € .
At this point we note that Pollack has a slightly different choice of the parameter of the
Eisenstein series: his parameter s’ and our s are related by s = 2s’ — 5. Hence the integral
of ¢ against some residue Ress;—1 Fp(s, ®) is non-zero. Since the space of residues at s = 1 is
invariant under the complex conjugation, it follows that the integral of ¢ against some residue
Ress—1 Ep(s, ®) is non-zero. By the Siegel-Weil formula (Theorem 8.2), it follows that

/ 9)- ( / 0(f)(gh) dh) dg # 0
PGSpg(F)\PGSpg(A) DI(F)\D1(A)

for some O D D, f € Tlg and ¢ € 7, where 6(f) is rapidly decreasing on D!(F)\D!(A) and
of moderate growth on PGSpg(A). Exchanging the order of integration, we deduce that the
global theta lift of m to Aut(Q) is nonzero, i.e.

&(h) = / 0(f)(gh)lg) dg
PGSpg (F)\PGSpg(A)

is a non-zero function of uniform moderate growth on Aut(Q)\Aut(O ®@F A).

It is given that ¢ is an eigenfunction for the center of the enveloping algebra of PGSpg(F})
for every real place v of F'. By [HPS] and [Li99], for every element z in the center of the
enveloping algebra of PGSpg(Fy,), there exists an element 2z’ in the center of the enveloping
algebra of Aut(Q,) such that z = 2’ when acting on the minimal representation. In particular,
2« f =z f. Thus ¢’ is an eigenfunction for the center of the enveloping algebra of Aut(Q,)
for every real place v of F. (At this point we use that ¢ has rapid decrease to justify that
differentiation of f can be moved over to differentiation of ¢.)

Similarly, it is given that ¢ is an eigenfunction for the Hecke algebra for almost all finite
places. But so is ¢/ by matching of Hecke operators under the exceptional theta correspon-
dences [SW15]. Moreover, by [SW15, Theorem 1.1], if s/ are the Satake conjugacy classes in
G2(C) corresponding to ¢’ and s, are the Satake conjugacy classes in Spin;(C) correspond-
ing to ¢, then s, = «(s)) where ¢ : G2(C) — Spin,(C) is the natural inclusion. Hence, the
submodule generated by all such global theta lifts ¢’ gives an automorphic representation 7’

which weakly lifts to . This proves the first assertion of the theorem.

For the second part of the theorem, it is clear that (b) implies (a). Conversely, as observed
by Chenevier [C, Thm. 6.18, equation (6.6)], the hypothesis (a) in the theorem implies that

L%(s,m,Spin) = ¢¥(s) - L¥(s, 7, Std)

where the last L-function on the right is the degree 7 (partial) standard L-function of .
Since we are assuming that 7 is tempered, it follows that L(1, w, Std) is finite and nonzero.
Hence L(s, 7, Spin) has a pole at s = 1 and the results we have shown above imply that (b)
holds, with 7" the global theta lift of 7 to Aut(Q).
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This completes the proof of the theorem. O

Remark: Let us comment on the relation of Theorem 10.1 with [C, Thm. 6.18]:

e In [C, Thm. 6.18], Chenevier showed the second part of Theorem 10.1 for globally
generic cuspidal representations, by reducing it to the first part of Theorem 10.1,
which is a result of Ginzburg-Jiang for globally generic cuspidal representations. As
Chenevier remarked in [C, Remark 6.19], if one has an analog of the endoscopic
classification of Arthur for PGSpg, one would know that any tempered cuspidal rep-
resentation of PGSpg is nearly equivalent to a globally generic cuspidal representa-
tion, in which case the second part of the theorem will follow for tempered cuspidal
representations by reduction to the globally generic case.

e In our proof of Theorem 10.1, our argument reducing the second part of the theorem
to the first follows Chenevier’s. Thus, the main innovation of Theorem 10.1 is a direct
proof of the first part of the theorem for all cuspidal representations, regardless of
whether they are globally generic or tempered. In particular, this gives the second
part of the theorem without resort to an Arthur type classification for PGSpg.

We can strengthen our results in the case when F' = Q and 7 is a cuspidal representation of
PGSpg(A) that corresponds to a classical Siegel holomorphic form of positive weight. Recall
that there are two isomorphism classes of octonion algebras over QQ: the classical octonion
algebra O° and its split form Q°. Then Aut(0S,) is an anisotropic group, while Aut(Q%,) is
split.

Theorem 10.2. Let F' = Q, and 7 a cuspidal representation of PGSpg(A) that corresponds
to a classical Siegel holomorphic form ¢o. of weight 2r > 0. If L°(s,m,Spin) has a pole at
s =1, then 7 is a lift from Aut(Q°). Moreover, if the level of ¢ is one, then 7 is a strong
functorial lift from Aut(Q°).

Proof. Let Ug(R) be the maximal compact subgroup of Spg(R). By our assumption, 7 is a
lowest weight module, with the minimal Uz(R)-type det®”, 7 > 0. We need the following:

Lemma 10.3. Let o is a lowest weight module of Spg(R), with the minimal Uz(R)-type det®”,
r > 0. Then o does not occur in the exceptional theta correspondence with split Go(R).

Proof. Adopting the notation from [LS], let G’ = G2(R), ¢’ the Lie algebra of G', K’ a
maximal compact subgroup of G/, and g’ = ¢ @ p’ the corresponding Cartan decomposition.
Let

II=e72Va
be the decomposition of the minimal representation of the split real E7 into its K-types.
Let V,?et% be the maximal subspace of V;, on which Uz(R) acts by the character det?". If
r = 0, by [LS, Proposition 5.2], the dimension of this space is equal to the dimension of

Sn(p), the space of the n-th symmetric tensor power of p’. But this result can be easily

. 2 . . . 2,
generalized to any r: Vet " is non-trivial only for n > 3r, and the dimension of ij%: is is

equal to the dimension of S, (p’). In particular, Vﬁet% is one-dimensional. Let v, be a vector

spanning this line. The group K’ acts on this line and the vector v, is fixed by K’, since
K' is semisimple. By [LS, Lemma 3.1], the matrix coefficient of v,, when restricted to G’, is
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contained in L3/2%¢(G’). This fact, combined with the dimension of det?-invariants in the
types of II, implies that

2r
ne™" =U(g') - v, 2 U(d) @uar) C

as explained in the introduction of [LS], where the case r = 0 is discussed. After taking det® -
invariants in IT — (o) Mo, it follows that ©(0) is a quotient of U(g') ®y )y C. Thus any
irreducible quotient o’ of ©(c) is spherical. It was also shown in [LS] that ©(¢’) has unique
irreducible quotient, and it is spherical. This is a contradiction, since ¢ is not spherical, and
hence it cannot appear in this correspondence. ]

The correspondence for the dual pair Aut(Q%) x Spg(R) was completely determined in
[GrS] and is functorial. Thus, if ¢9, is of level one, i.e. spherical at all primes, then 7 is
indeed a (strong) functorial lift from Aut(Q°).

U

Acknowledgments: The authors would like to thank Aaron Pollack for clarifying a few
points about his Rankin-Selberg integral for the Spin L-function, especially with regards
to the extent the unfolding and unramified computations hold over a more general field.
Thanks are also due to the referee for his/her meticulous work, pertinent comments and
useful suggestions. W.T. Gan is partially supported by an MOE Tier 2 grant R146-000-233-
112. G. Savin is partially supported by Simons Foundation grant 579347, and a grant from
the National Science Foundation, DMS-1901745.

REFERENCES

[C] G. Chenevier, Subgroups of Spin(7) or SO(7) with each element conjugate to some element of G2, and
applications to automorphic forms, to appear in Documenta (2019).

[DS99] A. Dvorsky and S. Sahi, Explicit Hilbert spaces for certain unipotent representations II, Invent. Math.
138 (1999) 203-224.

[G] W. T. Gan, A regularized Siegel-Weil formula for exceptional groups, Arithmetic geometry and auto-
morphic forms, 155-182, Adv. Lect. Math. (ALM), 19, Int. Press, Somerville, MA, 2011.

[GG06] W.T. Gan and N. Gurevich, Non-tempered Arthur packets of G2: liftings from SLo (with N. Gurevich),
Amer. J. Math 128, No. 5 (2006), 1105-1185.

[GG09] W.T. Gan and N. Gurevich, CAP representations of G2 and the Spin L-function of PGSpy, Israel J.
Math. 170 (2009), 1-52.

[GS] W. T. Gan and G. Savin, On minimal representations definitions and properties. Represent. Theory
9 (2005), 46-93.

[GJ] D. Ginzburg and D. Jiang, Periods and lifting from G2 to Cs, Israel J. Math. 123 (2001), 29-59.

[GrS] B. H. Gross and G. Savin, Motives with Galois group of type G2: an exceptional theta-correspondence.
Compositio Math. 114 (1998), no. 2, 153217

[HS] M. Hanzer and G. Savin, FEisenstein Series Arising from Jordan Algebras, Canadian J. of Math.
https://dx.doi.org/10.4153/CIM-2018-033-2

[HKM] J Hilgert, T. Kobayashi and J. Mollers. Minimal representations via Bessel operators. J. Math. Soc.
Jpn. 66 (2014), 349-414.

[HPS] Jing-Song Huang, Pavle Pandzi¢, and Gordan Savin, New dual pair correspondences, Duke Math. J.
82 (1996), no. 2, 447-471.



AN EXCEPTIONAL SIEGEL-WEIL FORMULA AND POLES OF THE SPIN L-FUNCTION OF PGSpg 31

[KS15]
[KR]
[La]
[Li99]

[LS]

T. Kobayashi and G. Savin, Global uniqueness of small representations, Math. Z. 281 (2015), no. 1-2,
215239.

S. Kudla and S. Rallis, A regularized Siegel-Weil formula: the first term identity, Ann. of Math. (2)
140 (1994), 1-80. http://dx.doi.org/10.2307/2118540

Lapid, Erez M., A remark on Eisenstein series. Fisenstein series and applications, 239-249, Progr.
Math., 258, Birkhduser Boston, Boston, MA, 2008.

J.-S. Li, The correspondences of infinitesimal characters for reductive dual pairs in simple Lie groups,
Duke Math. J. 97 (1999), no. 2, 347-377,

H. Y. Loke and G. Savin, Duality for spherical representations in exceptional theta correspondences,
Trans. Amer. Math. Soc. 371 (2019), no. 9, 6359-6375. https://doi.org/10.1090/tran/7471

K. Magaard and G. Savin, Ezceptional ©-correspondences. I, Compositio Math. 107 (1997), no. 1,
89-123.

C. Moeglin and J.-L. Waldspurger, Spectral Decompostion and Fisenstein Series, Cambridge Univer-
sity Press, 1995.

J. Méllers and B. Schwarz, Bessel operators on Jordan pairs and small representations of semisimple
Lie groups, J. Funct. Anal. 272 (2017), no. 5, 1892-1955.

A. Pollack, The spin L-function on GSpg for Siegel modular forms, Compositio Math. 153 (2017), no.
7, 1391-1432.

A. Pollack, S. Shah, The spin L-function on GSpg via a non-unique model, Amer. J. Math. 153 (2018),
no. 3, 753-788.

S. Sahi, Ezxplicit Hilbert spaces for certain unipotent representations, Invent. Math. 110 (2) (1992)
409-418.

S. Sahi, Unitary Representations on the Shilov Boundary of a Symmetric Tube Domain, Represen-
tations of groups and algebras, 275-286, Contemp. Math. 145, Amer. Math. Soc., Providence, RI,
1993.

S. Sahi, Jordan algebras and degenerete principal series, J. reine und angew. Math. 462 (1995), 1-18.
G. Savin and M. Woodbury, Structure of internal modules and a formula for the spherical vector of
minimal representations, J. Algebra 312 (2007), no. 2, 755-772.

G. Savin and M. Woodbury, Matching of Hecke operators for exceptional dual pair correspondences,
J. Number Theory 146 (2015), 534-556.

D. Vogan, Singular Unitary Representations, Lecture Notes in Mathematics 880 (1981), 508-535.

M. Weissman, The Fourier-Jacobi map and small representations, Represent. Theory 7 (2003), 275-
299. http://dx.doi.org/10.1090/S1088-4165-03-00197-3

S. Yamana, Degenerate principal series representations for quaternionic unitary groups, Israel J. Math.
185 (2011), 77-124.

W.T.G.: DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE, 10 LOWER KENT
RIDGE ROAD SINGAPORE 119076
E-mail address: matgwt@nus.edu.sg

G. S.: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CiTy, UT 84112, USA
E-mail address: savin@math.utah.edu



