
Sage: Practical & Scalable ML-Driven Performance Debugging in
Microservices

Yu Gan∗

yg397@cornell.edu
Cornell University

Ithaca, New York, USA

Mingyu Liang
ml2585@cornell.edu
Cornell University

Ithaca, New York, USA

Sundar Dev
sundarjdev@google.com

Google
Sunnyvale, California, USA

David Lo
davidlo@google.com

Google
Sunnyvale, California, USA

Christina Delimitrou
delimitrou@cornell.edu

Cornell University
Ithaca, New York, USA

ABSTRACT

Cloud applications are increasingly shifting from large monolithic

services to complex graphs of loosely-coupled microservices. De-

spite the advantages of modularity and elasticity microservices

offer, they also complicate cluster management and performance

debugging, as dependencies between tiers introduce backpressure

and cascading QoS violations. Prior work on performance debug-

ging for cloud services either relies on empirical techniques, or uses

supervised learning to diagnose the root causes of performance

issues, which requires significant application instrumentation, and

is difficult to deploy in practice.

We present Sage, a machine learning-driven root cause analysis

system for interactive cloud microservices that focuses on practi-

cality and scalability. Sage leverages unsupervised ML models to

circumvent the overhead of trace labeling, captures the impact of

dependencies between microservices to determine the root cause

of unpredictable performance online, and applies corrective actions

to recover a cloud service’s QoS. In experiments on both dedicated

local clusters and large clusters on Google Compute Engine we

show that Sage consistently achieves over 93% accuracy in cor-

rectly identifying the root cause of QoS violations, and improves

performance predictability.

CCS CONCEPTS

• Computer systems organization → Cloud computing; n-

tier architectures; • Software and its engineering→ Software

performance; • Computing methodologies→ Causal reasoning

and diagnostics; Neural networks.

∗This work was not done at Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19–23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446700

KEYWORDS

cloud computing,microservices, performance debugging, QoS, coun-

terfactual, Bayesian network, variational autoencoder

ACM Reference Format:

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou.

2021. Sage: Practical & Scalable ML-Driven Performance Debugging in

Microservices. In Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS ’21), April 19–23, 2021, Virtual, USA. ACM, New York, NY, USA,

17 pages. https://doi.org/10.1145/3445814.3446700

1 INTRODUCTION

Cloud computing has reached proliferation by offering resource

flexibility, cost efficiency, and fast deployment [20, 25, 37–43, 52, 77].

As the scale and complexity of cloud services increased, their design

started undergoing a major shift.

In place of large monolithic services that encompassed the entire

functionality in a single binary, cloud applications have progres-

sively adopted fine-grained modularity, consisting of hundreds or

thousands of single-purpose and loosely-coupled microservices [2,

17, 18, 47–49, 104, 108]. This shift is increasingly pervasive, with

cloud-based services, such as Amazon, Twitter, Netflix, and eBay,

having already adopted this application model [2, 17, 18]. There

are several reasons that make microservices appealing, including

the fact that they accelerate and facilitate development, they pro-

mote elasticity, and enable software heterogeneity, only requiring

a common API for inter-microservice communication.

Despite their advantages, microservices also introduce new sys-

tem challenges. They especially complicate resource management,

as dependencies between tiers introduce backpressure effects, caus-

ing unpredictable performance to propagate through the system [48,

49]. Diagnosing such performance issues empirically is both cum-

bersome and prone to errors, especially as typical microservices

deployments include hundreds or thousands of unique tiers. Simi-

larly, current cluster managers [29, 38, 41, 44, 70, 72, 73, 75, 77, 82,

83, 86, 95, 99, 112, 115] are not expressive enough to account for the

impact of microservice dependencies, thus putting more pressure

on the need for automated root cause analysis systems.

Machine learning-based approaches have been effective in clus-

ter management for batch applications [36], and for batch and inter-

active, single-tier services [38, 41]. On the performance debugging

front, there has been increased attention on trace-based methods to

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou

analyze [30, 46, 85], diagnose [19, 23, 32, 35, 54, 60, 63, 81, 91, 110,

113, 114], and in some cases anticipate [47, 49, 109] performance

issues in cloud services. While most such systems target cloud ap-

plications, the only one focusing on microservices is Seer [49]. Seer

leverages a deep learning model to anticipate upcoming QoS vio-

lations, and adjusts the resources per microservice to avoid them.

Despite its high accuracy, Seer uses supervised learning, which

requires offline and online trace labeling, as well as considerable

kernel-level instrumentation and fine-grained tracing to track the

number of outstanding requests across the system stack. In a pro-

duction system this is non-trivial, as it involves injecting resource

contention in live applications, which can impact performance and

user experience.

We present Sage, a root cause analysis system that leverages

unsupervised learning to identify the culprit of unpredictable per-

formance in complex graphs of microservices in a scalable and

practical manner. Specifically, Sage uses Causal Bayesian Networks

to capture the dependencies between the microservices in an end-

to-end application topology, and counterfactuals (events that hap-

pen given certain alternative conditions in a hypothetical world)

through a Graphical Variational Autoencoder to examine the impact

of microservices on end-to-end performance. Sage does not rely

on data labeling, hence it can be entirely transparent to both cloud

users and application developers, making it practical for large-scale

deployments, scales well with the number of microservices and

machines, and only relies on lightweight tracing that does not re-

quire application changes or kernel instrumentation, which would

be difficult to obtain in practice. Sage targets performance issues

caused by deployment, configuration, and resource provisioning

reasons, as opposed to design bugs.

We have evaluated Sage both on dedicated local clusters and

large cluster settings on Google Compute Engine (GCE) with sev-

eral end-to-end microservices [48], and showed that it correctly

identifies the microservice(s) and system resources that initiated

a QoS violation in over 93% of cases, and improves performance

predictability without sacrificing resource efficiency.

2 RELATED WORK

Below we review work on the system implications of microservices,

cluster managers designed for multi-tier services and microservices,

and systems for cloud performance debugging.

2.1 System Implications of Microservices

The increasing popularity of fine-grained modular application de-

sign, microservices being an extreme materialization of it, has

yielded a large amount of prior work on representative benchmark

suites and studies on their characteristics [48, 55, 104]. µSuite [104]

is an open-sourcemulti-tier application benchmark suite containing

several online data-intensive (OLDI) services, such as image similar-

ity search, key-value stores, set intersections, and recommendation

systems. DeathStarBench [48] presents five end-to-end interactive

applications built with microservices, leveraging Apache Thrift [1],

Spring Framework [12], and gRPC [5]. The services implement

popular cloud applications, like social networks, e-commerce sites,

and movie reviewing services. DeathStarBench also explores the

hardware/software implications of microservices, including their

resource bottlenecks, OS/networking overheads, cluster manage-

ment challenges, and sensitivity to performance unpredictability.

Accelerometer [105] characterizes the system overheads of several

Facebook microservices, including I/O processing, logging, and

compression. They also build an analytical model to predict the

potential speedup of a microservice from hardware acceleration.

2.2 Microservices Cluster Management

Microservices have complicated dependency graphs, strict QoS tar-

gets, and are sensitive to performance unpredictability. Recent work

has started exploring the resource management challenges of mi-

croservices. Suresh et al. [108] design Wisp, a dynamic rate limiting

system for microservices, which prioritizes requests in the order

of their deadline expiration. uTune [107] auto-tunes the threading

model of multi-tier applications to improve their end-to-end per-

formance. GrandSLAm [66] improves the resources utilization of

ML microservices by estimating the execution time of each tier,

and dynamically batching and reordering requests to meet QoS.

Finally, SoftSKU [106] characterizes the performance of the same

Facebook microservices as [105] across hardware and software con-

figurations, and searches for their optimal resource configurations

using A/B testing in production.

2.3 Cloud Performance Debugging

There is extensive prior work on monitoring and debugging perfor-

mance and efficiency issues in cloud systems. Aguilera et al. [19]

built a tool to construct the causal path of a service from RPC mes-

sages without access to source code. X-Trace [46] is a tracing frame-

work portable across protocols and software systems that detects

runtime performance issues in distributed systems. It can identify

faults in several scenarios, including DNS resolution and overlay

networks. Mystery Machine [33] leverages a large amount of cloud

traces to infer the causal relationships between requests at runtime.

There are also several production-level distributed tracing systems,

including Dapper [100], Zipkin [16], Jaeger[7], and Google-Wide

Profiling (GWP) [90]. Dapper, Zipkin and Jaeger record RPC-level

traces for sampled requests across the calling stack, while GWP

monitors low-level hardware metrics. These systems aim to facili-

tate locating performance issues, but are not geared towards taking

action to resolve them.

Autopilot [94] is an online cluster management system that

adjusts the number of tasks and CPU/memory limits automatically

to reduce resource slack while guaranteeing performance. Sage

differs from prior work on cloud scheduling, such as [41, 50, 76, 115],

in that it locates the root cause of poor performance only using

the end-to-end QoS target, without explicitly requiring to define

per-tier performance service level agreements (SLAs).

Root cause analysis systems for cloud applications are gaining

increased attention, as the number of interactive applications con-

tinues to increase. Several of these proposals leverage statistical

models to diagnose performance issues [54, 109, 113]. Cohen et

al. [35] build tree-augmented Bayesian networks (TANs) to predict

whether QoS will be violated, based on the correlation between

performance and low-level metrics. Unfortunately, in multi-tier

applications, correlation does not always imply causation, given

Sage: Practical & Scalable ML-Driven Performance Debugging in Microservices ASPLOS ’21, April 19–23, 2021, Virtual, USA

the existence of backpressure effects between dependent tiers. Ex-

plainIt! [62] leverages a linear regression model to find root causes

of poor performance in multi-stage data processing pipelines which

optimize for throughput. While the regression model works well

for batch jobs, latency is more sensitive to noise, and propagates

across dependent tiers.

CauseInfer [28] as well asMicroscope [71] build a causality graph

using the PC-algorithm, and use it to identify root causes with dif-

ferent anomaly detection algorithms. As with ExplainIt!, they work

well for data analytics, but would be impractical for latency-critical

applications with tens of tiers, due to the high computation com-

plexity of the PC-algorithm [65]. Finally, Seer [49] is a supervised

CNN+LSTM model that anticipates QoS violations shortly before

they happen. Because it is proactive, Seer can avoid poor perfor-

mance altogether, however, it requires considerable kernel-level

instrumentation to track the number of outstanding requests across

the system stack at fine-granularity, which is not practical in large

production systems. It also requires data labeling to train its model,

which requires injecting QoS violations in active services. This

sensitivity to tracing frequency also exists in Sieve [111], which

uses the Granger causality test to determine causal relationships

between tiers [21, 101].

3 ML FOR PERFORMANCE DEBUGGING

3.1 Overview

Sage is a performance debugging and root cause analysis system

for large-scale cloud applications. While the design centers around

interactive microservices, where dependencies between tiers fur-

ther complicate debugging, Sage is also applicable to monolithic

architectures. Sage diagnoses the root cause [57] of end-to-end QoS

violations, and applies appropriate corrective action to restore per-

formance. Fig. 1 shows an overview of Sage’s ML pipeline. Sage

relies on two techniques, each of which is described in detail below;

first, it automatically captures the dependencies between microser-

vices using a Causal Bayesian Network (CBN) trained on RPC-level

distributed traces [16, 100]. The CBN also captures the latency

propagation from the backend to the frontend. Second, Sage uses a

graphical variational auto-encoder (GVAE) to generate hypothetical

scenarios (counterfactuals [51, 79]), which tweak the performance

and/or usage of individual microservices to values known to meet

QoS, and infers whether the change restores QoS. Using these two

techniques, Sage determines which set of microservices initiated a

QoS violation, and adjusts their deployment or resource allocation.

While prior work has highlighted the potential of ML for cloud

performance debugging [49], such techniques rely exclusively on

supervised models, which require injecting resource contention

on active services to correctly label the training dataset with root

causes of QoS violations [49]. This is problematic in practice, as

it disrupts the performance of live services. Additionally, prior

work requires high tracing frequency and heavy instrumentation

to collect metrics like the number of outstanding requests across

the system stack, which is not practical in a production system and

can degrade performance.

Sage instead adheres to the following design principles:

• Unsupervised learning: Sage does not require labeling training

data, and it diagnoses QoS violations using low-frequency traces

CBN and GVAE

C

DBDB DB DB

Client

Frontend

Logic
Tiers

Backend

11

VAE

VAE

VAE VAE VAE VAE

VAE VAE VAE VAE

VAE VAE VAE VAE

Counterfactual
Latency

Root cause
services &
resources

33 44

22

Input latency &
metrics

Figure 1: Sage’s ML pipeline. 1 : Build Causal Bayesian

Network (CBN) and Graphical Variational Auto-Encoder

(GVAE). 2 : Process per-tier latency and usage. 3 : Generate

counterfactuals with GVAE. 4 : Identify root cause services

& resources.

collected during live traffic using tracing systems readily available

in most major cloud providers.

• Robustness to sampling frequency: Sage does not require

tracking individual requests to detect temporal patterns, making

it robust to tracing frequency. This is important, as production

tracing systems like Dapper [100] employ aggressive sampling to

reduce overheads [34, 96]. In comparison, previous studies [49, 98,

111] collect traces at millisecond granularity, which can introduce

significant overheads.

• User-level metrics: Sage only uses user-level metrics, easily

obtained through cloud monitoring APIs and service-level traces

from distributed tracing frameworks, such as Jaeger [7]. It does

not require any kernel-level information, which is expensive, or

even inaccessible in cloud platforms.

• Partial retraining: Amajor premise ofmicroservices is enabling

frequent updates. Retraining the entire system every time the

code or deployment of a microservice changes is prohibitively

expensive. Instead Sage implements partial and incremental re-

training, whereby only the microservice that changed and its

immediate neighbors are retrained.

• Fast resolution: Empirically examining sources of poor perfor-

mance is costly in time and resources, especially given the ingest

delay cloud systems have in consuming monitoring data, causing

a change to take time before propagating on recorded traces.

Sage models the impact of the different probable root causes

concurrently, restoring QoS faster.

3.2 Microservice Latency Propagation

3.2.1 Single RPC Latency Decomposition.

Fig. 2 shows the latency decomposition of an RPC across client

(sender) and server (receiver). The client initiates an RPC request

via the rpc0_requestAPI at 1 . The request then waits in the RPC

channel’s send queue and gets written to the Linux network stack

via the sendmsg syscall at 2 . The packets pass through the TCP/IP

protocol and are sent out from the client’s NIC. They are then

transmitted over the wire and switches and arrive at the server’s

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou

P (X | Z) as

P (Z | X) =

m∏

j=1

P (Z sj | X
s
j) ·

n∏

i=1

P (Zneti | Xneti) (3)

wherem is the total number of microservices, and Q (Z | X ,Y) as

Q (Z | X ,Y) =

m∏

j=1

P
(

Z sj | enDeps(Z
s
j)
)

·

n∏

i=1

P
(

Zneti | enDeps(Zneti)
)

,

(4)

where enDeps(Z j) are the dependent nodes of Z j , which are used

as inputs of the encoders in Sec 3.5. They can be written as

enDeps(Z sj) =
{

X sj ,Y
s
served(j)

,Y c
invoked(j)

,Yv_structure(j)
}

,

enDeps(Zneti) =
{

Xneti ,Y
r eq
i ,Y

r esp
i

}

,

(5)

where served(j) are the set of server-side RPCs served on service j ,

invoked(j) are the set of client-side RPCs invoked from service j to

its downstream services, and Yv_structure(j) includes all Y nodes

forming a V-structurewithZ sj and having both edges directed to any

node in Y s
served(j)

and Y c
invoked(j)

(

a pattern of Yv_structure(j) →

{Y | Y ∈ Y s
served(j)

∨Y c
invoked(j)

} ← Z sj in the CBN
)

. Both deDeps

and enDeps are derived from the information flow according to the

structure of the CBN.

3.4 Counterfactual Queries

Sage uses counterfactual queries [80, 88] to diagnose the root cause

of unpredictable performance. In a typical cloud environment, site

reliability engineers (SREs) can verify if a suspected root cause is

correct by reverting a microservice’s version or resource configu-

ration to a state known to be safe, while keeping all other factors

unchanged, and verifying whether QoS is restored. Sage uses a

similar process, where “suspected root causes” are generated us-

ing counterfactual queries, which determine causality by asking

what the outcome would be if the state of a microservice had been

different [58, 78, 80]. Such counterfactuals can be generated by ad-

justing problematic microservices in the system in a similar way to

how SREs take action to resolve a QoS violation. The disadvantage

of this is that interventions take time, and incorrect root cause

assumptions hurt performance and resource efficiency. This is es-

pecially cumbersome when scaling microservices out, spawning

new instances, or migrating existing ones.

Instead, Sage leverages historical tracing data to generate real-

istic counterfactuals. There are two challenges in this. First, the

exact situation that is causing the QoS violation now may not have

occurred in the past. Second, the model needs to account for the

latent variables Z which also contribute to the distribution of Y .

Therefore, we use a generative model to learn the latent distribu-

tion P (Z | X) and the latency distribution P (Y | X ,Z), and use

them to generate counterfactual latencies Y , given input metrics X .

We then use the counterfactuals to conduct “but-for” tests for each

service and resource, and discover their causal relationship with the

QoS violation. If, after intervening, the probability of meeting QoS

exceeds a threshold, the intervened metrics caused the violation.

Y0Y0

Y1Y1

Y2Y2

X1X1

X0X0

X2X2

Y0Y0

Y1Y1

Y2Y2

X1X1

X0X0

X2X2

Y0Y0

Y1Y1

Y2Y2

X1X1

X0X0

X2X2

QoS Violation Counterfactual 1 Counterfactual 2

Normal Abnormal Intervened Root cause

Figure 6: Detecting root causes using counterfactuals. Ini-

tially the system tries to diagnose the root cause of poor

performance by reverting the CPU utilization of tier 1, X1,

to values known to meet QoS. Since this does not resolve

the end-to-end QoS violation, the system then generates a

counterfactual that sets the utilization of tier 2, X2, to val-

ues known to meet QoS, which ends up resolving the QoS

violation.

3.5 Generating Counterfactuals

Conditional deep generative models, such as the conditional vari-

ational autoencoders (CVAE) [103] is a common tool to generate

new data from an original distribution. Generally, it infers the

distribution of low-dimensional latent space variables (Z) from

high-dimensional data (Y) and tags (X), and samples from that dis-

tribution to generate new data with specific tag. Recent studies

have showed that these techniques can also be used to generate

counterfactuals for causal inference [74].

Fig. 6 shows an example of detecting the root cause of a QoS

violation in the 3-tier chain of Fig. 5. Assume that the CPU uti-

lization of Services 1 and 2 is abnormal (different from values that

meet QoS). We evaluate the hypothetical end-to-end latency of two

counterfactuals; one where Service 1’s utilization is normal, with

all other metrics unchanged, and one where Service 2’s utilization

is normal. If fixing Service 1 does not restore QoS, as in Counter-

factual 1, then Service 1 alone is not the root cause. If fixing the

utilization of Service 2 restores QoS, as in Counterfactual 2, then it

is the root cause. Not being enough to restore QoS does not mean

that a service is not part of the problem; if single microservices do

not restore QoS, Sage considers mixes of tiers.

To generate counterfactuals, we build a network of CVAEs ac-

cording to the structure of the CBN. We adapt the CVAE in [103], a

widely-used hybrid model with a CVAE and a Gaussian stochastic

neural network (GSNN). The CVAE network can be further de-

composed into an encoder, decoder, and prior network. During the

training phase, the CVAE receives a mini-batch of X and Y from

the training set. The encoder learns the posterior distribution of Z ,

given the observed X and Y (Qϕ (Z | X ,Y)), and the prior network

learns the prior distribution of Z , observing only X (Pψ (Z | X)).

The decoder then reconstructs the input target Y , based on Z sam-

pled from the posterior distribution and X , i.e., Pθ (Y | X ,Z), where

Z ∼ Qϕ (Z | X ,Y). The encoder, decoder, and prior networks are

Sage: Practical & Scalable ML-Driven Performance Debugging in Microservices ASPLOS ’21, April 19–23, 2021, Virtual, USA

constructed with multi-layer perceptrons (MLPs) parameterized

with θ , ϕ, andψ , respectively. During the generation phase, we use

the prior network to modulate the distribution of Z , given X , and

use Z sampled from that distribution together with X to generate

Y . During training, we minimize the latency reconstruction loss

plus a regularization term of Kullback-Leibler (KL) divergence, i.e.,

the negative variational lower bound [67]:

LCVAE (X ,Y ,Z ;θ ,ϕ,ψ) = −EZ∼Qϕ (Z |X ,Y) [log Pθ (Y | X ,Z)]
︸ ︷︷ ︸

reconstruction loss

+ β · DKL
(

Qϕ (Z | X ,Y) ‖ Pψ (Z | X)
)

︸ ︷︷ ︸

KL divergence regularization

(6)

where β > 0 is a hyperparameter that encourages to identify dis-

entangled latent factors in Z [56]. The reconstruction loss term

allows the encoder to extract useful input features, and the decoder

to accurately reconstruct the original data from the latent variables.

The KL divergence regularization minimizes the difference between

the posterior distribution Qϕ (Z | X ,Y) and the prior distribution

Pψ (Z | X). We further add a GSNN to reconstruct Y by sampling

Z from the prior distribution. It tackle concerns that the CVAE

alone may not be enough to train a conditional generative model,

because it uses the posterior distribution from the encoder dur-

ing training and the prior distribution to draw Z samples during

generation [61, 103].

LGSNN (X ,Y ,Z ;θ ,ψ) = −EZ∼Pψ (Z |X) [log Pθ (Y | X ,Z)]. (7)

Therefore, a hybrid model that adds a GSNN can be written as

LCVAE_hybrid (X ,Y ,Z ;θ ,ϕ,ψ) = α · LCVAE + (1 − α) · LGSNN, (8)

where α ∈ [0,1] is a hyperparameter to balance the loss between

two networks.

Although using a single CVAE for the entire microservice graph

would be simple, it has several drawbacks. First, it lacks the CBN’s

structural information which is necessary to avoid ineffectual coun-

terfactuals based on spurious correlations. Second, it prohibits par-

tial retraining, which is essential for frequently-updated microser-

vices. Finally, it is less explainable since it does not reveal how

the latency of a problematic service propagates to the frontend.

Therefore, we construct one small CVAE per microservice with

few fully connected and dropout layers, and connect the different

CVAEs according to the structure of the CBN to form the graphical

variational autoencoder (GVAE). Because P (Y | X ,Z), P (Z | X),

and Q (Z | X ,Y) can be factorized via Eq 1, Eq 3, and Eq 4, the final

loss function is:

LGVAE_hybrid (X ,Y ,Z ;θ ,ϕ,ψ) =
m∑

i=1

[

αLCVAEi + (1 − α)LGSNNi

]

(9)

where CVAEi and GSNNi is the CVAE and the Gaussian stochas-

tic network for service i . The encoders and prior networks are

trained entirely in parallel. The decoders require the outputs of

the parent decoders in the CBN as inputs, and are trained serially.

The maximum depth of the CBN determines the max number of

serially-cascaded decoders.

Sage
Master

Actuation
Controller

Data
Streamer

GVAE

TraceDB

Jaeger Querier

Cassandra

Jaeger Collector

MetricsDB

Prometheus

µServiceµServiceµServiceµServiceµServiceµService

Jaeger Agent

Node Exporter

Blackbox Exporter

cAdvisor

Actuation Agent

µServiceµServiceµServiceµServiceµServiceµService

Jaeger Agent

Node Exporter

Blackbox Exporter

cAdvisor

Actuation Agent

Worker Nodes

µServiceµServiceµServiceµServiceµServiceµService

Jaeger Agent

Node Exporter

Blackbox Exporter

cAdvisor

Actuation Agent

TSDB

Data processing and inferenceMonitoring Actuation

Figure 7: Overview of Sage’s system design. Sage includes a

data streamer, a Graphical Variational Auto-Encoder (GVAE)

ML model, and an actuation controller. The data streamer

collects and pre-processes collected traces and performance

metrics from TraceDB and MetricsDB. The GVAEMLmodel

predicts culprit microservices and resources, and then trig-

gers the actuation controller to dynamically adjust the ap-

propriate hardware resources, if one or more resources are

identified are the source of unpredictable performance.

4 SAGE DESIGN

Sage is a root cause analysis system for interactive microservices.

Sage relies on RPC-level tracing to compose a CBN with the mi-

croservice topology, and per-node tracing for per-tier latency dis-

tributions. Below we discuss Sage’s monitoring system (Sec. 4.1),

training and inference pipeline (Sec. 4.2), its actuator once a root

cause has been identified (Sec. 4.3), and how Sage handles applica-

tion changes (Sec. 4.4).

Fig. 7 shows an overview of Sage. The system uses Jaeger [7],

a distributed RPC tracing system for end-to-end execution traces,

and the Prometheus Node Exporter [11], Blackbox Exporter [10],

and cAdvisor [4] to collect hardware/OS metrics, container-level

performance metrics, and network latencies. Each metric’s time-

series is stored in the Prometheus TSDB [9, 89]. At runtime, Sage

queries Jaeger and Prometheus to obtain real-time data. The GVAE

then infers the root cause of any QoS violation(s), at which point

Sage’s actuator adjusts the offending microservice’s resources.

Sage uses a centralized master for trace processing, root cause

analysis, and actuation, implemented in approximately 6KLOC

of Python, and per-node agents for trace collection and container

deployment. It also maintains two hot stand-by copies of the master

for fault tolerance. The GVAE model is built in PyTorch, with each

VAE’s encoder, decoder, and prior network using a DNN with 3-5

fully connected layers, depending on the input node number. We

also use batch normalization between every two hidden layers for

faster convergence, and a dropout layer after the last hidden layer

to mitigate overfitting.

4.1 Tracing Systems

Sage includes RPC-level latency tracing and container/node-level

usage monitoring. The RPC tracing system is based on Jaeger [7],

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou

an open-source framework, similar to Dapper [100] and Zipkin [16],

and augmented with the Opentracing client library [8], to add mi-

croservice spans and inject span context to each RPC. It measures

each RPC’s client- and server-side latency, and the network latency

of each request and response. Sage records two spans per RPC; one

starts when the client sends the RPC request and ends when it re-

ceives the response, while the other starts when the server receives

the RPC request and ends when it sends the response to the client,

both at application level. To avoid instrumenting the kernel to mea-

sure network latency (Sec. 3.2.1), we use a set of probing requests

to measure the heartbeat latency, and infer the request/response

network delay. We deploy one Jaeger agent per node to retrieve

spans for resident microservices. The Jaeger agents flush the spans

to a replicated Jaeger collector for aggregation, which stores them

in a Cassandra database. We additionally enable sampling to reduce

tracing overheads, and verify that with 1% sampling frequency, the

tracing overhead is approximately 2.6% on the 99th percentile la-

tency and 0.66% on the max throughput under QoS. We also ensure

that sampling does not lower Sage’s accuracy. To account for fluctu-

ations in load, Sage adjusts the sampling and inference frequency to

keep its detection accuracy above a configurable threshold, without

incurring high overheads.

The per-node performance and usage metrics are collected using

Prometheus, a widely-used open-source monitoring platform [9].

More specifically, we deploy node, blackbox, and cAdvisor exporters

per node to measure the hardware/system metrics, network la-

tency, and container resource usage respectively. Each metric’s

timeseries is stored in a centralized Prometheus TSDB. The over-

head of Prometheus is negligible for all studied applications when

collecting metrics every 10 seconds.

4.2 Root Cause Analysis

To diagnose a root cause, Sage first relies on the Data Streamer to

fetch and pre-process the tracing data. The Streamer queries Jaeger

and Prometheus for an interval’s log data over HTTP, and pre-

processes them using feature encoding, aggregation, dimensionality

reduction, and normalization. It outputs RPC latency percentiles

across the sampled requests, and performance/usage percentiles

across the replicas of each tier.

Sage initializes and trains theGVAEmodel offlinewith all initially-

available latency and usage data. It then periodically retrains the

model as new requests come in [31, 59, 87, 116]. Retraining hap-

pens even when there are no application changes, to account for

changes in user behavior. Sage handles design changes with partial

and incremental retraining to minimize overheads and accelerate

convergence (Sec. 4.4). Every time training is triggered, the GVAE

streams in batches of tracing tensors to update its network param-

eters. Online learning models are prone to catastrophic forgetting,

where the model forgets previous knowledge upon learning new

information [68, 87]. To avoid this, we interleave the current and

previous data in the training batches. Sage could also be prone to

class imbalance, where the number of traces that meet QoS is signif-

icantly higher than those which violate QoS. In that event, the Data

Streamer oversamples the minority class to create a more balanced

training dataset, preventing the model from being penalized for

generating counterfactuals that violate QoS.

At runtime, Sage uses the latest version of the GVAE to diagnose

QoS violations. Based on training data, Sage first labels the medians

of per-tier performance and usage when QoS is met as normal

values. If during execution QoS is violated, the GVAE generates

counterfactuals by replacing a microservice’s performance/usage

with their respective normal values.

Sage implements a two-level approach to locate a root cause, to

remain lightweight and practical at scale. It first uses service-level

counterfactuals to locate the culprit microservice that initiated the

performance degradation, and then uses resource-level counterfac-

tuals in the culprit, to identify the underlying reason for the QoS

violation and correct it. More precisely, for each microservice, Sage

restores all its metrics to their normal values and uses the GVAE to

generate the counterfactual end-to-end latency based on the CBN

structure. Since the CBN indicates the causal relationship between

a given RPC and the examined microservice, for all non-causally

related RPCs, the GVAE reuses their current per-tier latencies in

the counterfactual. The microservice that reduces the end-to-end

latency to just below QoS is signaled as the culprit. After locating

the offending microservice, Sage generates resource-specific coun-

terfactuals to examine the impact of each hardware resource on

end-to-end performance. The instantaneous CPU frequency and

utilization act as CPU indicators, memory utilization as a memory

indicator, network bandwidth, TCP latency, and ICMP latency as

network indicators, etc. Compared to a one-level approach which

tries to jointly locate the service and resource, the two-level scheme

is simpler and faster.

Finally, there are cases where multiple microservices are jointly

responsible for a QoS violation. In such cases, the GVAE iteratively

explores microservice combinations when generating counterfac-

tuals, by adding each time the tier which would have reduced the

end-to-end latency the most.

4.3 Actuation

Once Sage determines the root cause of a QoS violation, it takes

action. Sage has an actuation controller in the master and one actu-

ation agent per node. The GVAE notifies the actuation controller,

which locates the nodes with the problematic microservices using

service discovery in the container manager, and notifies their re-

spective actuation agents to intervene. Sage focuses on deployment,

configuration, and resource provisioning related performance is-

sues, as opposed to design bugs. Therefore, once it identifies the

problematic microservice or microservices, it also tries to identify

the system resource that caused the QoS violation. Depending on

which resource is identified as instigating the QoS violation, the

actuation agent will dynamically adjust the CPU frequency, scale

up/out the microservice, limit the number of co-scheduled tasks,

partition the last level cache (LLC) with Intel Cache Allocation

Technology (CAT), or partition the network bandwidth with the

Linux traffic control’s queueing discipline. The actuation agent first

tries to resolve the issue by only adjusting resources on the offend-

ing node, and only when that is insufficient it moves to scale out the

problematic microservice on new nodes, or migrate it, especially

for stateful backends, which are almost never migrated.

Sage: Practical & Scalable ML-Driven Performance Debugging in Microservices ASPLOS ’21, April 19–23, 2021, Virtual, USA

Root causes include both resource-related issues (by injecting con-

tentious kernels in a randomly-selected subset of microservices) and

software bugs. Since none of the methods do code-level bug inspec-

tion, a software bug-related issue is counted as correctly-identified

if the system identifies the problematic microservice correctly.

Sage significantly outperforms the two autoscalers and even the

offline oracle, by learning the impact of microservice dependencies,

instead of memorizing per-tier/metric thresholds for a particular

cluster state. Similarly, Sage’s false negatives and false positives

are marginal. False negatives hurt performance, by missing the

true source of unpredictable performance, while false positives

hurt resource efficiency, by giving more resources to the wrong mi-

croservice. The 3-4% of false negatives in Sage always correspond to

cases where the performance of multiple microservices was concur-

rently impacted by independent events, e.g., a network-intensive

co-scheduled job impacted one microservice, while a CPU-intensive

task impacted another. While Sage can locate multiple root causes,

that takes longer, and is prone to higher errors than when a single

tier is the culprit. The 3-5% of false positives are caused by spurious

correlations between tiers that were not critical enough to violate

QoS. Out of the three services, Fanout has slightly lower accuracy,

due to the fact that a single misbehaving leaf can significantly im-

pact the end-to-end performance. In general, accuracy varies little

between the three services, showing the generality of Sage across

service architectures.

In comparison, the two autoscaling systems misidentify the ma-

jority of root causes; this is primarily because high utilization does

not necessarily imply that a tier is the culprit of unpredictable per-

formance. Especially when using blocking connections, e.g., with

HTTP1.1, bottlenecks in one tier can backpressure its upstream

services, increasing their utilization. Autoscaling misidentifies such

highly-used tiers as the culprit, even though the bottleneck is else-

where. Additionally, using a global CPU utilization threshold for

autoscaling does not work well for microservices, as their resource

needs vary considerably, and even lightly-utilized services can cause

performance issues. Similarly, the offline Oracle has lower accuracy

than Sage, since it only memorizes per-tier thresholds for a given

cluster state, and cannot adapt to changing circumstances, e.g.,

load fluctuation, tier changes, or contentious co-scheduled tasks.

It can also not account for tier dependencies, or diversify between

backpressure and true resource saturation.

CauseInfer and Microscope have similar accuracy since they

both rely on the PC-algorithm [65] to construct a completed par-

tially directed acyclic graph (CPDAG) for causal inference. Due to

statistical errors and data discretization in computing the condi-

tional cross entropy needed for the conditional independence test

from distributed traces, the CPDAG’s structure has inaccuracies,

resulting in incorrect paths when traversing the graph to identify

root causes. In contrast, Sage’s CBN is directly built from the RPC

graph, and considers the usage metrics of different tiers jointly,

instead of in isolation, leading to much higher accuracy.

Finally, Sage and Seer have comparable accuracy and false nega-

tives/positives; the difference lies in Sage’s practicality. Unlike Seer,

which requires expensive and invasive instrumentation to track the

queue lengths across the system stack in each microservice, and

additionally relies on supervised trace labeling to learn the QoS

violation root causes, Sage only relies on sparse and non-invasive

Non- Social Network Media Service Hotel Reservation

instrumented
Sage Seer Sage Seer Sage Seer

tiers

5% 94% 90% 89% 91% 90% 89%

10% 94% 74% 89% 88% 90% 83%

20% 94% 66% 89% 74% 90% 58%

50% 94% 34% 89% 47% 90% 42%

Figure 13: Accuracy with incomplete instrumentation with

Sage and Seer, for each of the three end-to-end applications.

Incomplete instrumentation refers to the number of out-

standing requests, which Seer uses to infer the root cause

of unpredictable performance, missing from a subset of

randomly-selected microservices in the end-to-end service.

When the non-instrumented tiers are off the critical path,

the missing instrumentation does not significantly impact

detection accuracy.When, however, a larger fraction of over-

all microservices cannot be instrumented, Seer’s accuracy

drops. Both for Seer and Sage we still collect per-tier laten-

cies, and end-to-end throughput and latency.

tracing, already available in most cloud providers. Sage does not

require any changes in the existing application or system stack,

and only relies on live data to learn the root causes of QoS viola-

tions, instead of offline training. This makes Sage more practical

and portable at datacenter-scale deployments, especially when the

application includes libraries or tiers that cannot be instrumented.

We have verified that Sage is not sensitive to the tracing frequency.

To highlight this, in Table 13 we show how Seer and Sage’s

accuracy is impacted from incomplete instrumentation. For So-

cial Network, we assume that a progressively larger fraction of

randomly-selected microservices cannot be instrumented. Both

Sage and Seer can still track the latency, resource usage, - and for

Seer, the number of outstanding requests - at the “borders” (entry

and exit points) of such microservices, but cannot inject any addi-

tional instrumentation points, e.g., to track the queue lengths in

the OS, libraries, or application layer. Even for a small number of

non-instrumented microservices, Seer’s accuracy drops rapidly, as

queues are misrepresented, and root causes cannot be accurately

detected. In contract, Sage’s accuracy is not impacted, since the

system does not require any instrumentation of a tier’s internal

implementation.

6.2 Actuation

Fig. 14 shows the tail latency for Social Network managed by Sage,

the offline Oracle, Autoscale Strict (the best of the two autoscaling

schemes), CauseInfer, and Microscope. We run the Social Network

for 100 minutes and inject different contentious kernels to multiple

randomly-selected microservices.

Sage identifies all root causes and resources correctly. Upon

detection, it notifies the actuation manager to scale up/out the cor-

responding resources of problematic microservices. Inference takes

a few tens of milliseconds, and actuation takes tens of milliseconds

to several seconds to apply corrective action, depending on whether

the adjustment is local, or requires spinning up new containers.

In both cases, the process is much faster than the 30-second data

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou

7 DISCUSSION

7.1 Cycles in RPC dependencies

Generally, microservice graphs are DAGs, since cycles between

tiers create positive feedback loops, which introduce failures and

undermine the design principles of the microservices model. How-

ever, bidirectional streaming RPCs exist between two microservices,

where the client and server both send a message sequence indepen-

dently within a single request [5]. This cycle cannot be modeled

by the CBN. To eliminate such cyclic dependencies, we merge both

sides of the bidirectional streaming RPC into a metanode with both

the client- and server-side latency, which shares the incoming and

outgoing edges of both directions. The GVAE treats the metanode

as a normal microservice.

7.2 Collecting training data

Sage leverages an unsupervised GVAE model that does not require

data labeling. Therefore, it directly uses the tracing data collected

in-situ by a cloud’s monitoring infrastructure for training. As with

any ML model, the quality of training data impacts accuracy. A

primary challenge of cloud performance analysis is handling load

variation [22]. Here variation is welcome, as it exposes a more

diverse range of behaviors Sage can learn from. Nevertheless, it

is still possible that a well-maintained system with few to no QoS

violations has insufficient failure modes to train the model. In this

case, Sage can leverage data obtained through fault injection tests

with chaos engineering tools, such as Chaos Monkey [26], which

are already in place in many cloud providers, including Netflix,

Google, and Microsoft [6, 15, 26, 92].

7.3 Comparison with Seer, CauseInfer, and
Microscope

Seer [49] is hybrid CNN+LSTM model used to predict performance

issues in the near future and proactively prevent them. Compared to

Seer, Sage leverages unsupervised learning which does not require

labeling traces in the training set with the sources of QoS violations.

This makes Sage easier to deploy in large-scale cloud environments,

where injecting contentious benchmarks to initiate QoS violations

is challenging. Additionally, Sage depends on lightweight tracing,

and it does not require application- or kernel-level tracing to collect

the number of outstanding requests across the system stack. Unlike

Seer, Sage is a reactive tool, so even though it cannot avoid QoS

violations altogether, it detects performance issues quickly, and

applies corrective action before the QoS violation amplifies across

dependent tiers.

CauseInfer [28] and Microscope [71] are two similar systems for

performance diagnosis in distributed environments. They both use

conditional cross entropy for conditional independence tests and

the PC algorithm to build causal relationship DAGs between ser-

vices. However, conditional independence is a difficult hypothesis

to test for because conditional independence tests can suffer from

type I error due to finite sample sizes, as shown in [97]. In addi-

tion, the worst-case complexity of the PC algorithm is exponential

with the number of nodes in the graph, which limits the scalability

of CauseInfer and Microscope. Sage outperforms CauseInfer and

Microscope in terms of accuracy and scalability since it builds a

non-strict causal DAG directly from the RPC dependency graph,

and uses counterfactual queries to validate the causality for every

event.

7.4 Limitations

Sage, as well as other data-driven methods, cannot detect the source

of a performance issue if it has never observed a similar situation

in the past. Through the latent variables in the model, Sage locates

the problematic job associated with the root cause and flags it as

the issue. Sage primarily focuses on deployment, configuration, and

resource-related performance issues, since they directly correlate

with the corresponding performance metrics. A similar methodol-

ogy, with some additional application instrumentation, could be

applied to also diagnose design bugs that initiate performance is-

sues. We leave the root cause analysis of such non resource-related

QoS violations to future work. In the current system, if the source

of the QoS violation is not resource-related, i.e., all resource-related

sources have been eliminated via counterfactuals, developers would

need to be involved to examine if there is a software bug causing

the QoS violation.

8 CONCLUSIONS

We have presented Sage, an ML-driven root cause analysis system

for interactive cloud microservices. Unlike prior work, Sage lever-

ages entirely unsupervised MLmodels to detect the source of unpre-

dictable performance, removing the need for empirical diagnosis or

data labeling. Sage works online to detect and correct performance

issues, while also adapting to changes in application design. In both

small- and large-scale experiments, Sage achieves high accuracy in

pinpointing the root cause of QoS violations. Given the increasing

complexity of cloud services, automated, data-driven systems like

Sage improve performance without sacrificing resource efficiency.

ACKNOWLEDGMENTS

We sincerely thank Landon Cox for his valuable feedback while

shepherding our paper.We also sincerely thank Partha Ranganathan,

Yi Ding, Yanqi Zhang, Neeraj Kulkarni, Shuang Chen, Yi Jiang,

Nikita Lazarev, Zhuangzhuang Zhou, Liqun Cheng, Rama Govin-

daraju, and the anonymous reviewers for their feedback on earlier

versions of this manuscript. This work was in part supported by an

NSF CAREER Award CCF-1846046, NSF grant NeTS CSR-1704742, a

Sloan Research Fellowship, a Microsoft Research Fellowship, an In-

tel Faculty Rising Star Award, a Facebook Research Faculty Award,

and a John and Norma Balen Sesquisentennial Faculty Fellowship.

Sage: Practical & Scalable ML-Driven Performance Debugging in Microservices ASPLOS ’21, April 19–23, 2021, Virtual, USA

REFERENCES
[1] “Apache thrift,” https://thrift.apache.org.
[2] “Decomposing twitter: Adventures in service-oriented architecture,”

https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-
serviceoriented-architecture.

[3] “giltene/wrk2,” https://github.com/giltene/wrk2.
[4] “google/cadvisor,” https://github.com/google/cadvisor.
[5] “grpc: A high performance open-source universal rpc framework,” https://grpc.

io/.
[6] “Inside azure search: Chaos engineering,” https://azure.microsoft.com/en-us/

blog/inside-azure-search-chaos-engineering/.
[7] “Jaeger: open source, end-to-end distributed tracing,” https://www.jaegertracing.

io/.
[8] “Opentracing,” https://opentracing.io/.
[9] “Prometheus,” https://prometheus.io/.
[10] “prometheus/blackbox_exporter,” https://github.com/prometheus/blackbox_

exporter.
[11] “prometheus/node_exporter,” https://github.com/prometheus/node_exporter.
[12] “Spring framework,” https://spring.io/projects/spring-framework.
[13] “stress-ng,” https://wiki.ubuntu.com/Kernel/Reference/stress-ng.
[14] “tc-netem(8) - linux manual page,” http://man7.org/linux/man-pages/man8/tc-

netem.8.html.
[15] “What facebook has learned from regularly shutting down entire data cen-

ters,” https://www.datacenterknowledge.com/archives/2016/08/31/facebook-
learned-regularly-shutting-entire-data-centers.

[16] “Zipkin,” http://zipkin.io.
[17] “The evolution of microservices,” https://www.slideshare.net/adriancockcroft/

evolution-of-microservices-craft-conference, 2016.
[18] “Microservices workshop: Why, what, and how to get there,” http://www.

slideshare.net/adriancockcroft/microservices-workshop-craft-conference.
[19] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen,

“Performance debugging for distributed systems of black boxes,” in Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles, ser. SOSP
’03. New York, NY, USA: Association for Computing Machinery, 2003, p.
74–89. [Online]. Available: https://doi.org/10.1145/945445.945454

[20] “Amazon ec2,” http://aws.amazon.com/ec2/.
[21] B. D. Anderson, M. Deistler, and J.-M. Dufour, “On the sensitivity of granger

causality to errors-in-variables, linear transformations and subsampling,” Jour-
nal of Time Series Analysis, vol. 40, no. 1, pp. 102–123, 2019.

[22] D. Ardelean, A. Diwan, and C. Erdman, “Performance analysis of cloud
applications,” in 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). Renton, WA: USENIX Association, Apr. 2018,
pp. 405–417. [Online]. Available: https://www.usenix.org/conference/nsdi18/
presentation/ardelean

[23] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause diagnosis of
performance anomalies in production software,” in Presented as part of the 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 12).
Hollywood, CA: USENIX, 2012, pp. 307–320.

[24] M. Azure, Azure Monitor documentation, 2020. [Online]. Available: https:
//docs.microsoft.com/en-us/azure/azure-monitor/

[25] L. Barroso and U. Hoelzle, The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. MC Publishers, 2009.

[26] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski, J. Reynolds, and
C. Rosenthal, “Chaos engineering,” IEEE Software, vol. 33, no. 3, pp. 35–41, 2016.

[27] L. M. d. Campos, “A scoring function for learning bayesian networks based on
mutual information and conditional independence tests,” Journal of Machine
Learning Research, vol. 7, no. Oct, pp. 2149–2187, 2006.

[28] P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causeinfer: Automatic and distributed
performance diagnosis with hierarchical causality graph in large distributed
systems,” in IEEE INFOCOM 2014 - IEEE Conference on Computer Communications,
2014, pp. 1887–1895.

[29] S. Chen, C. Delimitrou, and J. F. Martinez, “PARTIES: QoS-Aware Resource
Partitioning forMultiple Interactive Services,” in Proceedings of the Twenty Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), April 2019.

[30] X. Chen, M. Zhang, M. Mao, and P. Bahl, “Automating network application
dependency discovery: Experiences, limitations, and new solutions,” in Proc. of
OSDI. 2008.

[31] Z. Chen and B. Liu, “Lifelong machine learning,” Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 12, no. 3, pp. 1–207, 2018.

[32] L. Cherkasova, K. Ozonat, Ningfang Mi, J. Symons, and E. Smirni, “Anomaly?
application change? or workload change? towards automated detection of appli-
cation performance anomaly and change,” in 2008 IEEE International Conference
on Dependable Systems and Networks With FTCS and DCC (DSN), 2008, pp. 452–
461.

[33] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mystery machine:
End-to-end performance analysis of large-scale internet services,” in Proceedings
of the 11th USENIX Conference on Operating Systems Design and Implementation,

ser. OSDI’14. Berkeley, CA, USA: USENIX Association, 2014, pp. 217–231.
[34] G. Cloud, Cloud Monitoring documentation, 2020. [Online]. Available:

https://cloud.google.com/monitoring/docs/apis
[35] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase, “Correlating

instrumentation data to system states:a building block for automated diagnosis
and control,” in HP Laboratories Palo Alto, HPL-2004-183, October 19, 2004.

[36] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R. Bianchini,
“Resource central: Understanding and predicting workloads for improved re-
source management in large cloud platforms,” in Proceedings of the 26th Sym-
posium on Operating Systems Principles, ser. SOSP ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 153–167.

[37] J. Dean and L. A. Barroso, “The tail at scale,” in CACM, Vol. 56 No. 2.
[38] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-Aware Scheduling for Hetero-

geneous Datacenters,” in Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). Houston, TX, USA, 2013.

[39] C. Delimitrou and C. Kozyrakis, “QoS-Aware Scheduling in Heterogeneous
Datacenters with Paragon,” in ACM Transactions on Computer Systems (TOCS),
Vol. 31 Issue 4. December 2013.

[40] C. Delimitrou and C. Kozyrakis, “Quality-of-Service-Aware Scheduling in Het-
erogeneous Datacenters with Paragon,” in IEEE Micro Special Issue on Top Picks
from the Computer Architecture Conferences. May/June 2014.

[41] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient and QoS-Aware
Cluster Management,” in Proc. of ASPLOS. Salt Lake City, 2014.

[42] C. Delimitrou and C. Kozyrakis, “HCloud: Resource-Efficient Provisioning in
Shared Cloud Systems,” in Proceedings of the Twenty First International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), April 2016.

[43] C. Delimitrou and C. Kozyrakis, “Bolt: I Know What You Did Last Summer... In
The Cloud,” in Proc. of the Twenty Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2017.

[44] C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: Reconciling Scheduling
Speed and Quality in Large Shared Clusters,” in Proceedings of the Sixth ACM
Symposium on Cloud Computing (SOCC), August 2015.

[45] F. C. Eigler, V. Prasad, W. Cohen, H. Nguyen, M. Hunt, J. Keniston, and B. Chen,
“Architecture of systemtap: a linux trace/probe tool,” 2005.

[46] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace: A pervasive
network tracing framework,” in Proceedings of the 4th USENIX Conference on
Networked Systems Design & Implementation, ser. NSDI’07. Berkeley, CA, USA:
USENIX Association, 2007, pp. 20–20.

[47] Y. Gan, M. Pancholi, D. Cheng, S. Hu, Y. He, and C. Delimitrou, “Seer: Leveraging
Big Data to Navigate the Complexity of Cloud Debugging,” in Proceedings of
the Tenth USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), July
2018.

[48] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,
B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen,
C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and
C. Delimitrou, “An Open-Source Benchmark Suite for Microservices and Their
Hardware-Software Implications for Cloud and Edge Systems,” in Proceedings of
the Twenty Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), April 2019.

[49] Y. Gan, Y. Zhang, K. Hu, Y. He, M. Pancholi, D. Cheng, and C. Delimitrou, “Seer:
Leveraging Big Data to Navigate the Complexity of Performance Debugging in
Cloud Microservices,” in Proceedings of the Twenty Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), April 2019.

[50] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, “Adaptive, model-driven
autoscaling for cloud applications,” in 11th International Conference on Autonomic
Computing (ICAC 14). Philadelphia, PA: USENIX Association, Jun. 2014, pp. 57–
64. [Online]. Available: https://www.usenix.org/conference/icac14/technical-
sessions/presentation/gandhi

[51] M. L. Ginsberg, “Counterfactuals,” Artificial intelligence, vol. 30, no. 1, pp. 35–79,
1986.

[52] “Google container engine,” https://cloud.google.com/container-engine.
[53] R. M. Gray, Entropy and information theory. Springer Science & Business

Media, 2011.
[54] M. Grechanik, C. Fu, and Q. Xie, “Automatically finding performance problems

with feedback-directed learning software testing,” in 2012 34th International
Conference on Software Engineering (ICSE), 2012, pp. 156–166.

[55] J. Hauswald, M. A. Laurenzano, Y. Zhang, and et al., “Sirius: An open end-to-end
voice and vision personal assistant and its implications for future warehouse
scale computers,” in Proc. of ASPLOS, 2015.

[56] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual concepts
with a constrained variational framework,” in 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. [Online]. Available:
https://openreview.net/forum?id=Sy2fzU9gl

ASPLOS ’21, April 19–23, 2021, Virtual, USA Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou

[57] C. Hitchcock, “Probabilistic causation,” in The Stanford Encyclopedia of Phi-
losophy, fall 2018 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford
University, 2018.

[58] M. Höfler, “Causal inference based on counterfactuals,” BMC medical research
methodology, vol. 5, no. 1, p. 28, 2005.

[59] S. C. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online learning: A comprehensive
survey,” arXiv preprint arXiv:1802.02871, 2018.

[60] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, “Performance anomaly
detection and bottleneck identification,” ACM Comput. Surv., vol. 48, no. 1, Jul.
2015.

[61] O. Ivanov, M. Figurnov, and D. Vetrov, “Variational autoencoder with arbitrary
conditioning,” 2018.

[62] V. Jeyakumar, O. Madani, A. Parandeh, A. Kulshreshtha, W. Zeng, and N. Yadav,
“Explainit! – a declarative root-cause analysis engine for time series data,” in
Proceedings of the 2019 International Conference on Management of Data, ser.
SIGMOD ’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 333–348. [Online]. Available: https://doi.org/10.1145/3299869.3314048

[63] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and detecting real-
world performance bugs,” in Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’12. New
York, NY, USA: Association for Computing Machinery, 2012, p. 77–88.

[64] G. B. Jr. and R. Koenker, “An empirical quantile function for linear models with
iid errors,” Journal of the American Statistical Association, vol. 77, no. 378, pp. 407–
415, 1982. [Online]. Available: https://doi.org/10.1080/01621459.1982.10477826

[65] M. Kalisch and P. Bühlmann, “Estimating high-dimensional directed acyclic
graphs with the pc-algorithm,” Journal of Machine Learning Research, vol. 8, no.
Mar, pp. 613–636, 2007.

[66] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,
“Grandslam: Guaranteeing slas for jobs in microservices execution frameworks,”
in Proceedings of the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19.
New York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3302424.3303958

[67] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[68] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Overcoming cata-
strophic forgetting in neural networks,” Proceedings of the national academy of
sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[69] D. Koller and N. Friedman, Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

[70] C.-C. Lin, P. Liu, and J.-J. Wu, “Energy-aware virtual machine dynamic
provision and scheduling for cloud computing,” in Proceedings of the 2011 IEEE
4th International Conference on Cloud Computing (CLOUD). Washington, DC,
USA, 2011. [Online]. Available: http://dx.doi.org/10.1109/CLOUD.2011.94

[71] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues with
causal graphs in micro-service environments,” in International Conference on
Service-Oriented Computing. Springer, 2018, pp. 3–20.

[72] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “Towards
energy proportionality for large-scale latency-critical workloads,” in Proceedings
of the 41st Annual International Symposium on Computer Architecuture (ISCA).
Minneapolis, MN, 2014.

[73] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis, “Heracles:
Improving resource efficiency at scale,” in Proc. of the 42Nd Annual International
Symposium on Computer Architecture (ISCA). Portland, OR, 2015.

[74] C. Louizos, U. Shalit, J. M. Mooij, D. Sontag, R. Zemel, and M. Welling, “Causal
effect inference with deep latent-variable models,” in Advances in Neural Infor-
mation Processing Systems, 2017, pp. 6446–6456.

[75] J. Mars and L. Tang, “Whare-map: heterogeneity in "homogeneous" warehouse-
scale computers,” in Proceedings of ISCA. Tel-Aviv, Israel, 2013.

[76] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up: increasing
utilization in modern warehouse scale computers via sensible co-locations,” in
Proceedings of MICRO. Porto Alegre, Brazil, 2011.

[77] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch, “Power
management of online data-intensive services,” in Proceedings of the 38th annual
international symposium on Computer architecture, 2011, pp. 319–330.

[78] P. Menzies, “Counterfactual theories of causation,” Stanford Encyclopedia of
Philosophy, 2008.

[79] M. Moore, “Causation in the law,” in The Stanford Encyclopedia of Philosophy,
winter 2019 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford University,
2019.

[80] S. L. Morgan and C. Winship, Counterfactuals and causal inference. Cambridge
University Press, 2015.

[81] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis of systems
logs to diagnose performance problems,” in Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12). San
Jose, CA: USENIX, 2012, pp. 353–366.

[82] R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting platform heterogeneity for
power efficient data centers,” in Proceedings of ICAC. Jacksonville, FL, 2007.

[83] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing performance in-
terference effects for qos-aware clouds,” in Proceedings of EuroSys. Paris,France,
2010.

[84] R. E. Neapolitan et al., Learning bayesian networks. Pearson Prentice Hall
Upper Saddle River, NJ, 2004, vol. 38.

[85] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun, “Making
sense of performance in data analytics frameworks,” in 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15). Oakland, CA:
USENIX Association, May 2015, pp. 293–307.

[86] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Distributed, low
latency scheduling,” in Proceedings of SOSP. Farminton, PA, 2013.

[87] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong
learning with neural networks: A review,” Neural Networks, 2019.

[88] J. Pearl et al., “Causal inference in statistics: An overview,” Statistics surveys,
vol. 3, pp. 96–146, 2009.

[89] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and
K. Veeraraghavan, “Gorilla: A fast, scalable, in-memory time series database,”
Proc. VLDB Endow., vol. 8, no. 12, p. 1816–1827, Aug. 2015. [Online]. Available:
https://doi.org/10.14778/2824032.2824078

[90] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-wide
profiling: A continuous profiling infrastructure for data centers,” IEEE Micro, pp.
65–79, 2010. [Online]. Available: http://www.computer.org/portal/web/csdl/doi/
10.1109/MM.2010.68

[91] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vahdat, “Wap5:
Black-box performance debugging for wide-area systems,” in Proceedings of the
15th International Conference on World Wide Web, ser. WWW ’06. New York,
NY, USA: Association for Computing Machinery, 2006, p. 347–356.

[92] J. Robbins, K. Krishnan, J. Allspaw, and T. A. Limoncelli, “Resilience engineering:
learning to embrace failure,” Queue, vol. 10, no. 9, pp. 20–28, 2012.

[93] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in AAAI, 2015. [Online]. Available:
http://networkrepository.com

[94] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes, “Autopilot:
Workload autoscaling at google,” in Proceedings of the Fifteenth European
Conference on Computer Systems, ser. EuroSys ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387524

[95] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega: flexi-
ble, scalable schedulers for large compute clusters,” in Proceedings of EuroSys.
Prague, 2013.

[96] A.W. Services,Amazon CloudWatch User Guide Document History, 2020. [Online].
Available: https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring

[97] R. D. Shah and J. Peters, “The hardness of conditional independence testing and
the generalised covariance measure,” Ann. Statist., vol. 48, no. 3, pp. 1514–1538,
06 2020. [Online]. Available: https://doi.org/10.1214/19-AOS1857

[98] H. Shan, Y. Chen, H. Liu, Y. Zhang, X. Xiao, X. He, M. Li, and W. Ding,
“??-diagnosis: Unsupervised and real-time diagnosis of small- window long-tail
latency in large-scalemicroservice platforms,” in TheWorldWideWeb Conference,
ser. WWW ’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 3215–3222. [Online]. Available: https://doi.org/10.1145/3308558.3313653

[99] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic resource scaling
for multi-tenant cloud systems,” in Proceedings of SOCC. Cascais, Portugal,
2011.

[100] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed systems
tracing infrastructure,” Google, Inc., Tech. Rep., 2010. [Online]. Available:
https://research.google.com/archive/papers/dapper-2010-1.pdf

[101] A. Silvestrini and D. Veredas, “Temporal aggregation of univariate and multi-
variate time series models: a survey,” Journal of Economic Surveys, vol. 22, no. 3,
pp. 458–497, 2008.

[102] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable cross-language
services implementation,” Facebook White Paper, vol. 5, no. 8, 2007.

[103] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation us-
ing deep conditional generative models,” in Advances in Neural Information
Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 3483–3491.

[104] A. Sriraman and T. F. Wenisch, “µ suite: A benchmark suite for microservices,”
in 2018 IEEE International Symposium on Workload Characterization (IISWC),
2018, pp. 1–12.

[105] A. Sriraman and A. Dhanotia, “Accelerometer: Understanding acceleration
opportunities for data center overheads at hyperscale,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 733–750. [Online]. Available:
https://doi.org/10.1145/3373376.3378450

[106] A. Sriraman, A. Dhanotia, and T. F. Wenisch, “Softsku: Optimizing server
architectures for microservice diversity @scale,” in Proceedings of the 46th

Sage: Practical & Scalable ML-Driven Performance Debugging in Microservices ASPLOS ’21, April 19–23, 2021, Virtual, USA

International Symposium on Computer Architecture, ser. ISCA ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 513–526. [Online].
Available: https://doi.org/10.1145/3307650.3322227

[107] A. Sriraman and T. F. Wenisch, “µtune: Auto-tuned threading for OLDI
microservices,” in 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). Carlsbad, CA: USENIX Association, Oct. 2018,
pp. 177–194. [Online]. Available: https://www.usenix.org/conference/osdi18/
presentation/sriraman

[108] L. Suresh, P. Bodik, I. Menache, M. Canini, and F. Ciucu, “Distributed resource
management across process boundaries,” in Proceedings of the ACM Symposium
on Cloud Computing (SOCC). Santa Clara, CA, 2017.

[109] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan, “Prepare:
Predictive performance anomaly prevention for virtualized cloud systems,” in
Proc. of the 32nd IEEE International Conference on Distributed Computing Systems.
2012.

[110] J. Teoh, M. A. Gulzar, G. H. Xu, and M. Kim, “Perfdebug: Performance debugging
of computation skew in dataflow systems,” in Proceedings of the ACM Symposium
on Cloud Computing, ser. SoCC ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 465–476.

[111] J. Thalheim, A. Rodrigues, I. E. Akkus, P. Bhatotia, R. Chen, B. Viswanath, L. Jiao,
and C. Fetzer, “Sieve: Actionable insights from monitored metrics in distributed

systems,” in Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference, ser.
Middleware ’17. New York, NY, USA: Association for Computing Machinery,
2017, p. 14–27. [Online]. Available: https://doi.org/10.1145/3135974.3135977

[112] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,
“Large-scale cluster management at Google with Borg,” in Proceedings of the
European Conference on Computer Systems (EuroSys), Bordeaux, France, 2015.

[113] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and K. Schwan,
“Statistical techniques for online anomaly detection in data centers,” in 12th
IFIP/IEEE International Symposium on Integrated Network Management (IM 2011)
and Workshops, 2011, pp. 385–392.

[114] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic misconfig-
uration troubleshooting with peerpressure,” in Proceedings of the 6th Conference
on Symposium on Operating Systems Design & Implementation - Volume 6, ser.
OSDI’04. USA: USENIX Association, 2004, p. 17.

[115] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: precise online qos man-
agement for increased utilization in warehouse scale computers,” in Proceedings
of ISCA. 2013.

[116] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with dynamically
expandable networks,” in International Conference on Learning Representations,
2018. [Online]. Available: https://openreview.net/forum?id=Sk7KsfW0-

