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ABSTRACT

Cloud applications are increasingly shifting from large monolithic
services to complex graphs of loosely-coupled microservices. De-
spite the advantages of modularity and elasticity microservices
offer, they also complicate cluster management and performance
debugging, as dependencies between tiers introduce backpressure
and cascading QoS violations. Prior work on performance debug-
ging for cloud services either relies on empirical techniques, or uses
supervised learning to diagnose the root causes of performance
issues, which requires significant application instrumentation, and
is difficult to deploy in practice.

We present Sage, a machine learning-driven root cause analysis
system for interactive cloud microservices that focuses on practi-
cality and scalability. Sage leverages unsupervised ML models to
circumvent the overhead of trace labeling, captures the impact of
dependencies between microservices to determine the root cause
of unpredictable performance online, and applies corrective actions
to recover a cloud service’s QoS. In experiments on both dedicated
local clusters and large clusters on Google Compute Engine we
show that Sage consistently achieves over 93% accuracy in cor-
rectly identifying the root cause of QoS violations, and improves
performance predictability.

CCS CONCEPTS

« Computer systems organization — Cloud computing; n-
tier architectures; « Software and its engineering — Software
performance; « Computing methodologies — Causal reasoning
and diagnostics; Neural networks.
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1 INTRODUCTION

Cloud computing has reached proliferation by offering resource
flexibility, cost efficiency, and fast deployment [20, 25, 37-43, 52, 77].
As the scale and complexity of cloud services increased, their design
started undergoing a major shift.

In place of large monolithic services that encompassed the entire
functionality in a single binary, cloud applications have progres-
sively adopted fine-grained modularity, consisting of hundreds or
thousands of single-purpose and loosely-coupled microservices [2,
17, 18, 47-49, 104, 108]. This shift is increasingly pervasive, with
cloud-based services, such as Amazon, Twitter, Netflix, and eBay,
having already adopted this application model [2, 17, 18]. There
are several reasons that make microservices appealing, including
the fact that they accelerate and facilitate development, they pro-
mote elasticity, and enable software heterogeneity, only requiring
a common API for inter-microservice communication.

Despite their advantages, microservices also introduce new sys-
tem challenges. They especially complicate resource management,
as dependencies between tiers introduce backpressure effects, caus-
ing unpredictable performance to propagate through the system [48,
49]. Diagnosing such performance issues empirically is both cum-
bersome and prone to errors, especially as typical microservices
deployments include hundreds or thousands of unique tiers. Simi-
larly, current cluster managers [29, 38, 41, 44, 70, 72, 73, 75, 77, 82,
83, 86, 95, 99, 112, 115] are not expressive enough to account for the
impact of microservice dependencies, thus putting more pressure
on the need for automated root cause analysis systems.

Machine learning-based approaches have been effective in clus-
ter management for batch applications [36], and for batch and inter-
active, single-tier services [38, 41]. On the performance debugging
front, there has been increased attention on trace-based methods to
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analyze [30, 46, 85], diagnose [19, 23, 32, 35, 54, 60, 63, 81, 91, 110,
113, 114], and in some cases anticipate [47, 49, 109] performance
issues in cloud services. While most such systems target cloud ap-
plications, the only one focusing on microservices is Seer [49]. Seer
leverages a deep learning model to anticipate upcoming QoS vio-
lations, and adjusts the resources per microservice to avoid them.
Despite its high accuracy, Seer uses supervised learning, which
requires offline and online trace labeling, as well as considerable
kernel-level instrumentation and fine-grained tracing to track the
number of outstanding requests across the system stack. In a pro-
duction system this is non-trivial, as it involves injecting resource
contention in live applications, which can impact performance and
user experience.

We present Sage, a root cause analysis system that leverages
unsupervised learning to identify the culprit of unpredictable per-
formance in complex graphs of microservices in a scalable and
practical manner. Specifically, Sage uses Causal Bayesian Networks
to capture the dependencies between the microservices in an end-
to-end application topology, and counterfactuals (events that hap-
pen given certain alternative conditions in a hypothetical world)
through a Graphical Variational Autoencoder to examine the impact
of microservices on end-to-end performance. Sage does not rely
on data labeling, hence it can be entirely transparent to both cloud
users and application developers, making it practical for large-scale
deployments, scales well with the number of microservices and
machines, and only relies on lightweight tracing that does not re-
quire application changes or kernel instrumentation, which would
be difficult to obtain in practice. Sage targets performance issues
caused by deployment, configuration, and resource provisioning
reasons, as opposed to design bugs.

We have evaluated Sage both on dedicated local clusters and
large cluster settings on Google Compute Engine (GCE) with sev-
eral end-to-end microservices [48], and showed that it correctly
identifies the microservice(s) and system resources that initiated
a QoS violation in over 93% of cases, and improves performance
predictability without sacrificing resource efficiency.

2 RELATED WORK

Below we review work on the system implications of microservices,
cluster managers designed for multi-tier services and microservices,
and systems for cloud performance debugging.

2.1 System Implications of Microservices

The increasing popularity of fine-grained modular application de-
sign, microservices being an extreme materialization of it, has
yielded a large amount of prior work on representative benchmark
suites and studies on their characteristics [48, 55, 104]. pSuite [104]
is an open-source multi-tier application benchmark suite containing
several online data-intensive (OLDI) services, such as image similar-
ity search, key-value stores, set intersections, and recommendation
systems. DeathStarBench [48] presents five end-to-end interactive
applications built with microservices, leveraging Apache Thrift [1],
Spring Framework [12], and gRPC [5]. The services implement
popular cloud applications, like social networks, e-commerce sites,
and movie reviewing services. DeathStarBench also explores the
hardware/software implications of microservices, including their
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resource bottlenecks, OS/networking overheads, cluster manage-
ment challenges, and sensitivity to performance unpredictability.
Accelerometer [105] characterizes the system overheads of several
Facebook microservices, including I/O processing, logging, and
compression. They also build an analytical model to predict the
potential speedup of a microservice from hardware acceleration.

2.2 Microservices Cluster Management

Microservices have complicated dependency graphs, strict QoS tar-
gets, and are sensitive to performance unpredictability. Recent work
has started exploring the resource management challenges of mi-
croservices. Suresh et al. [108] design Wisp, a dynamic rate limiting
system for microservices, which prioritizes requests in the order
of their deadline expiration. uTune [107] auto-tunes the threading
model of multi-tier applications to improve their end-to-end per-
formance. GrandSLAm [66] improves the resources utilization of
ML microservices by estimating the execution time of each tier,
and dynamically batching and reordering requests to meet QoS.
Finally, SoftSKU [106] characterizes the performance of the same
Facebook microservices as [105] across hardware and software con-
figurations, and searches for their optimal resource configurations
using A/B testing in production.

2.3 Cloud Performance Debugging

There is extensive prior work on monitoring and debugging perfor-
mance and efficiency issues in cloud systems. Aguilera et al. [19]
built a tool to construct the causal path of a service from RPC mes-
sages without access to source code. X-Trace [46] is a tracing frame-
work portable across protocols and software systems that detects
runtime performance issues in distributed systems. It can identify
faults in several scenarios, including DNS resolution and overlay
networks. Mystery Machine [33] leverages a large amount of cloud
traces to infer the causal relationships between requests at runtime.
There are also several production-level distributed tracing systems,
including Dapper [100], Zipkin [16], Jaeger[7], and Google-Wide
Profiling (GWP) [90]. Dapper, Zipkin and Jaeger record RPC-level
traces for sampled requests across the calling stack, while GWP
monitors low-level hardware metrics. These systems aim to facili-
tate locating performance issues, but are not geared towards taking
action to resolve them.

Autopilot [94] is an online cluster management system that
adjusts the number of tasks and CPU/memory limits automatically
to reduce resource slack while guaranteeing performance. Sage
differs from prior work on cloud scheduling, such as [41, 50, 76, 115],
in that it locates the root cause of poor performance only using
the end-to-end QoS target, without explicitly requiring to define
per-tier performance service level agreements (SLAs).

Root cause analysis systems for cloud applications are gaining
increased attention, as the number of interactive applications con-
tinues to increase. Several of these proposals leverage statistical
models to diagnose performance issues [54, 109, 113]. Cohen et
al. [35] build tree-augmented Bayesian networks (TANSs) to predict
whether QoS will be violated, based on the correlation between
performance and low-level metrics. Unfortunately, in multi-tier
applications, correlation does not always imply causation, given
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the existence of backpressure effects between dependent tiers. Ex-
plainlt! [62] leverages a linear regression model to find root causes
of poor performance in multi-stage data processing pipelines which
optimize for throughput. While the regression model works well
for batch jobs, latency is more sensitive to noise, and propagates
across dependent tiers.

Causelnfer [28] as well as Microscope [71] build a causality graph
using the PC-algorithm, and use it to identify root causes with dif-
ferent anomaly detection algorithms. As with Explainlt!, they work
well for data analytics, but would be impractical for latency-critical
applications with tens of tiers, due to the high computation com-
plexity of the PC-algorithm [65]. Finally, Seer [49] is a supervised
CNN+LSTM model that anticipates QoS violations shortly before
they happen. Because it is proactive, Seer can avoid poor perfor-
mance altogether, however, it requires considerable kernel-level
instrumentation to track the number of outstanding requests across
the system stack at fine-granularity, which is not practical in large
production systems. It also requires data labeling to train its model,
which requires injecting QoS violations in active services. This
sensitivity to tracing frequency also exists in Sieve [111], which
uses the Granger causality test to determine causal relationships
between tiers [21, 101].

3 ML FOR PERFORMANCE DEBUGGING
3.1 Overview

Sage is a performance debugging and root cause analysis system
for large-scale cloud applications. While the design centers around
interactive microservices, where dependencies between tiers fur-
ther complicate debugging, Sage is also applicable to monolithic
architectures. Sage diagnoses the root cause [57] of end-to-end QoS
violations, and applies appropriate corrective action to restore per-
formance. Fig. 1 shows an overview of Sage’s ML pipeline. Sage
relies on two techniques, each of which is described in detail below;
first, it automatically captures the dependencies between microser-
vices using a Causal Bayesian Network (CBN) trained on RPC-level
distributed traces [16, 100]. The CBN also captures the latency
propagation from the backend to the frontend. Second, Sage uses a
graphical variational auto-encoder (GVAE) to generate hypothetical
scenarios (counterfactuals [51, 79]), which tweak the performance
and/or usage of individual microservices to values known to meet
QoS, and infers whether the change restores QoS. Using these two
techniques, Sage determines which set of microservices initiated a
QoS violation, and adjusts their deployment or resource allocation.

While prior work has highlighted the potential of ML for cloud
performance debugging [49], such techniques rely exclusively on
supervised models, which require injecting resource contention
on active services to correctly label the training dataset with root
causes of QoS violations [49]. This is problematic in practice, as
it disrupts the performance of live services. Additionally, prior
work requires high tracing frequency and heavy instrumentation
to collect metrics like the number of outstanding requests across
the system stack, which is not practical in a production system and
can degrade performance.

Sage instead adheres to the following design principles:

o Unsupervised learning: Sage does not require labeling training
data, and it diagnoses QoS violations using low-frequency traces
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Figure 1: Sage’s ML pipeline. (1): Build Causal Bayesian
Network (CBN) and Graphical Variational Auto-Encoder
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collected during live traffic using tracing systems readily available
in most major cloud providers.

e Robustness to sampling frequency: Sage does not require
tracking individual requests to detect temporal patterns, making
it robust to tracing frequency. This is important, as production
tracing systems like Dapper [100] employ aggressive sampling to
reduce overheads [34, 96]. In comparison, previous studies [49, 98,
111] collect traces at millisecond granularity, which can introduce
significant overheads.

o User-level metrics: Sage only uses user-level metrics, easily
obtained through cloud monitoring APIs and service-level traces
from distributed tracing frameworks, such as Jaeger [7]. It does
not require any kernel-level information, which is expensive, or
even inaccessible in cloud platforms.

e Partial retraining: A major premise of microservices is enabling
frequent updates. Retraining the entire system every time the
code or deployment of a microservice changes is prohibitively
expensive. Instead Sage implements partial and incremental re-
training, whereby only the microservice that changed and its
immediate neighbors are retrained.

o Fast resolution: Empirically examining sources of poor perfor-
mance is costly in time and resources, especially given the ingest
delay cloud systems have in consuming monitoring data, causing
a change to take time before propagating on recorded traces.
Sage models the impact of the different probable root causes
concurrently, restoring QoS faster.

3.2 Microservice Latency Propagation

3.2.1 Single RPC Latency Decomposition.

Fig. 2 shows the latency decomposition of an RPC across client
(sender) and server (receiver). The client initiates an RPC request
via the rpc®_request API at D). The request then waits in the RPC
channel’s send queue and gets written to the Linux network stack
via the sendmsg syscall at 2). The packets pass through the TCP/IP
protocol and are sent out from the client’s NIC. They are then
transmitted over the wire and switches and arrive at the server’s
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Figure 2: RPC latency breakdown. Red bars: RPC server-side
latency, blue bars: network latency, green bars: application
queueing.

NIC. After being processed by the server’s network protocol stack
at @), the request is queued in the RPC channel’s receive queue,
waiting to be processed via the rpc®_handler, which starts at
time @ and ends at (3. Finally, the RPC response follows the same
process from server to client, until it is received by the client’s
application layer at time ®. (D - ® and @ - (& are the application-
level client- and server-side latencies, respectively. @) - @ and ® -
( are the latencies in the network protocol, switches, and wiring.
D-0.03-@ ®-® and @ - ® is the queueing time in the
application layer of the client and server, respectively.

Timestamps for the user-level events @, @, ®, and ®) can be
obtained with distributed tracing frameworks, such as Jaeger. Times-
tamping @, ®, ©®, and (D, would require probing the Linux kernel
with high-overhead tools, like SystemTap [45]. Instead, we approxi-
mate the request/response network delay by measuring the latency
of heartbeat signals between client and server, when queueing in
the application is zero.

Figure 3: Dependency graph and traces of nested RPCs.

3.22  Markov Property of RPC Latency Propagation.

Multiple RPCs form a tree of nested traces in a distributed mon-
itoring system. Fig. 3 shows an example RPC dependency graph
with five services, four RPCs, and its corresponding latency traces.
When the user request arrives at A, it sends RPCO to service B. B
further forwards the request to C via RPC1, and C sends it to the
backend services D and E via RPC2 and RPC3 in parallel. After pro-
cessing the responses from D and E, C replies to B, and B replies to
A, as RPC1 and RPCO return.

The server-side latency of any non-leaf RPC is determined by the
processing time of the RPC itself and the waiting time (i.e., client-
side latency) of its child RPCs. This latency propagates through
the RPC graph to the frontend. Since the latency of a child RPC
cannot propagate to its parent without impacting its own latency,
the latency propagation follows a local Markov property, where
each latency is conditionally independent on its non-descendant
RPCs, given its child RPC latencies [69]. For instance, the latency
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Figure 4: Mutual Information (MI) of two distance-of-2
RPCs, and Conditional Mutual Information (CMI) given the
server latency of the middle RPC. CMI of zero means that
the latencies of the two RPCs are conditionally independent,
given the latency of their in-between RPC.

of RPCO is conditionally independent of RPC2 and RPC3, given the
latency of RPC1.

In information theory, mutual information measures the reduc-
tion of uncertainty in one random variable given another random
variable. Two random variables are independent or conditionally
independent if their mutual information (MI) or conditional mu-
tual information (CMI) is zero [53]. Fig. 4 shows the MI of the
server-side latencies of two RPCs with distance of two, and their
CM]I, given the server-side latency of the in-between RPC, in a
10-microservice chain. The MI of each two non-adjacent RPCs is
blocked by the latency of the RPC in the middle, making them
conditionally independent [27].

3.3 Modeling Microservice Dependency Graphs

3.3.1 Causal Bayesian Networks.

A CBN is a directed acyclic graph (DAG), where the nodes are
random variables and the edges indicate their conditional depen-
dencies, from cause to effect [84, 88]. Sage uses three node types:

e Metric nodes (X): They contain resource-related metrics of all
services and network channels collected with tools, like Google
Wide Profiling [24, 34, 96]. They are the exogenous variables that
cause latency variances across RPCs, and fall into two groups:
server- and network-related. Server-related metrics (X*), include
CPU utilization, memory bandwidth, context switches, etc., and
impact the server’s processing time. Network-related metrics
(xnet ). such as the round trip time (RTT), packet loss rate, net-
work bandwidth, etc., affect the delay of RPC channels. The set
of sufficient metrics was derived by selecting those features that
improve the model’s accuracy, without overfitting to a specific
deployment. Features that may be capturing overlapping informa-
tion are discarded by the network by demoting the corresponding
neuron weights. To keep the shape of the vector for each metric
the same regardless of the replicas per tier, we use a vector of
percentiles [64], e.g., [10th%, ..., 90th%, 100th%] computed across
the tier’s replicas.
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o Latency nodes (Y): These include client-side latency (Y€), server-
side latency (Y*), and request/response network delay (Y"¢7 and
Y"€5P) of all RPCs of Sec. 3.2.1. We also use a vector of per-
centiles to represent the RPC latency distribution. Since the RPC
tail latency correlates more closely with QoS, high percentiles
are sampled more finely.

e Latent variables (Z): These nodes contain the unobservable
factors that are responsible for latency stochasticity. They are
critical to generate the counterfactual latencies Sage relies on
to diagnose root causes (Sec. 3.5). We divide latent variables to
server-related variables (Z°) which capture individual microser-
vices, and network-related variables (Z™¢%), which capture links
between them. The latent variables are dependent of the metric
nodes.

We separate network- from server-related variables because the
conditionally-independent network-related metrics we are inter-
ested in do not directly impact the server-related metrics, and vice
versa. For example, high network bandwidth traffic between two
tiers may be correlated with high CPU utilization of one or both
tiers, but not memory bandwidth by itself, without impacting any
other metric. We then construct the CBN among the three node
classes for all RPCs, based on their causal relationships and latency
propagation obtained via the distributed tracing system (Sec. 3.2).
We use four rules to construct the CBN:

(i) Metric nodes have no causes because they are exogenous
variables set outside the model. Since the distribution of a
latent variable is modulated by its corresponding metric node,
there is an edge from X to Z.

(ii) The server-side latency of an RPC call is determined by the
client-side latency of its child RPCs (if any), and server-related
metrics and latent variables of the microservice tier initiating
the call.

(iii) The client-side latency of an RPC is the result of its server-side
latency, request and response network delay, and the server-
related metrics and latent variables of the microservice which
invoked it.

(iv) The request/response network delays are defined by an RPC’s
network-related metrics and latent variables.

Figure 5 shows an example of the CBN of a three-microservice de-
pendency chain. The nodes with solid lines (X and Y) are observed,
while the nodes with dashed lines (Z) are latent variables that need
to be inferred. The arrows in the RPC graph and CBN have opposite
directions because the latency of one RPC is determined by the
latency of its child RPCs.

3.3.2 Latency Distribution Factorization.

We consider the microservice latencies and usage metrics in the
CBN to be random and i.i.d variables from the underlying distri-
bution. Using the CBN, we can factorize the joint distribution into
the product of individual tier distributions, conditional on their
parent variables. Factorization is needed to later build the graphical
model of Sec. 3.5, which will explore possible root causes. We are
interested in the following distributions:

o The conditional distribution of latency given the observed metrics
and latent variables P(Y | X,Z),
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Client
Server

Figure 5: The RPC graph of a 3-service chain, and its cor-
responding Causal Bayesian Network (CBN). Blue-colored
nodes correspond to client-related variables, red-colored
nodes correspond to server-related variables, and green-
colored nodes correspond to network-related nodes. The
background color refers to the CBN nodes that correspond
to a given RPC in the topology. X nodes capture resource-
related metrics, Y nodes capture the server-client latencies
of individual RPCs, and Z nodes correspond to the unob-
served, latent variables that are responsible for the latency
stochasticity.

e The prior distribution of latent variables Z given the observed
metrics, P(Z | X), and

e The posterior distribution of latent variables Z, given the ob-
served metrics and latency values Q(Z | X.Y).

Given the conditional independence relationship represented by
the CBN, we can decompose the conditional distribution P(Y | X, Z)
as follows:

n
P IX2) =[] [P(Yf | deDeps(¥?)) - P(Y{ | deDeps(Y}))
i=1

~P(Yireq | deDeps(Yireq)) ~P(Yir“p | deDeps(YirESp))],

(1)

where deDeps(Y;) are the dependent nodes of Y;, which are used

as the inputs of the decoders in Sec 3.5. The dependent nodes of
each type of Y; can be represented as

cy _ req yresp s ys s
deDeps Yi) - {Yi ’Yi Y ’Xclient(i)’chient(i)}’

deDeps(Y;) = {Yc

S S
children(i)’Xserver(i) ’ Zserver(i) } ’

req net net (2)
Y ) = {xpet.zret),

where client(i) and server(i) denote the client and server of
RPC i, children(i) are the set of child RPCs that RPC i invokes,
and n in the total number of RPCs. Similarly, we can also decompose
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m n
Pz |1X) =[P 1x) [ | Pt ixpeh )
j=1 i=1

where m is the total number of microservices, and Q(Z | X,Y) as

n

m
Z1xy)=||pP Zs | enDeps( Zs P Z."et | enDeps(Z7¢)),
1

j=1 i=1

4)
where enDeps(Z;) are the dependent nodes of Z;, which are used
as inputs of the encoders in Sec 3.5. They can be written as

s\ _ [yS ys
enDeps(Zj) = {XJ’Yserved(])’ invoked(j)’ Yy_structure(j) }

®)
enDeps(Zi"Et) - {Xinet’ Yireq7 Yiresp}’

where served(j) are the set of server-side RPCs served on service j,
invoked(j) are the set of client-side RPCs invoked from service j to
its downstream services, and Yy_structure(j) includes all Y nodes
forming a V-structure with Z ]s and having both edges directed to any

node in Yserved(_/) and YanOked(J) (a pattern of Yy_structure(j) =
(Y 1Y € ¥ vedis ¥ Yinvoked(sy) < Z; in the CBN). Both deDeps
and enDeps are derived from the information flow according to the
structure of the CBN.

3.4 Counterfactual Queries

Sage uses counterfactual queries [80, 88] to diagnose the root cause
of unpredictable performance. In a typical cloud environment, site
reliability engineers (SREs) can verify if a suspected root cause is
correct by reverting a microservice’s version or resource configu-
ration to a state known to be safe, while keeping all other factors
unchanged, and verifying whether QoS is restored. Sage uses a
similar process, where “suspected root causes” are generated us-
ing counterfactual queries, which determine causality by asking
what the outcome would be if the state of a microservice had been
different [58, 78, 80]. Such counterfactuals can be generated by ad-
justing problematic microservices in the system in a similar way to
how SREs take action to resolve a QoS violation. The disadvantage
of this is that interventions take time, and incorrect root cause
assumptions hurt performance and resource efficiency. This is es-
pecially cumbersome when scaling microservices out, spawning
new instances, or migrating existing ones.

Instead, Sage leverages historical tracing data to generate real-
istic counterfactuals. There are two challenges in this. First, the
exact situation that is causing the QoS violation now may not have
occurred in the past. Second, the model needs to account for the
latent variables Z which also contribute to the distribution of Y.
Therefore, we use a generative model to learn the latent distribu-
tion P(Z | X) and the latency distribution P(Y | X,Z), and use
them to generate counterfactual latencies Y, given input metrics X.
We then use the counterfactuals to conduct “but-for” tests for each
service and resource, and discover their causal relationship with the
QoS violation. If, after intervening, the probability of meeting QoS
exceeds a threshold, the intervened metrics caused the violation.
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Figure 6: Detecting root causes using counterfactuals. Ini-
tially the system tries to diagnose the root cause of poor
performance by reverting the CPU utilization of tier 1, X1,
to values known to meet QoS. Since this does not resolve
the end-to-end QoS violation, the system then generates a
counterfactual that sets the utilization of tier 2, X, to val-
ues known to meet QoS, which ends up resolving the QoS
violation.

3.5 Generating Counterfactuals

Conditional deep generative models, such as the conditional vari-
ational autoencoders (CVAE) [103] is a common tool to generate
new data from an original distribution. Generally, it infers the
distribution of low-dimensional latent space variables (Z) from
high-dimensional data (Y) and tags (X), and samples from that dis-
tribution to generate new data with specific tag. Recent studies
have showed that these techniques can also be used to generate
counterfactuals for causal inference [74].

Fig. 6 shows an example of detecting the root cause of a QoS
violation in the 3-tier chain of Fig. 5. Assume that the CPU uti-
lization of Services 1 and 2 is abnormal (different from values that
meet QoS). We evaluate the hypothetical end-to-end latency of two
counterfactuals; one where Service 1’s utilization is normal, with
all other metrics unchanged, and one where Service 2’s utilization
is normal. If fixing Service 1 does not restore QoS, as in Counter-
factual 1, then Service 1 alone is not the root cause. If fixing the
utilization of Service 2 restores QoS, as in Counterfactual 2, then it
is the root cause. Not being enough to restore QoS does not mean
that a service is not part of the problem; if single microservices do
not restore QoS, Sage considers mixes of tiers.

To generate counterfactuals, we build a network of CVAEs ac-
cording to the structure of the CBN. We adapt the CVAE in [103], a
widely-used hybrid model with a CVAE and a Gaussian stochastic
neural network (GSNN). The CVAE network can be further de-
composed into an encoder, decoder, and prior network. During the
training phase, the CVAE receives a mini-batch of X and Y from
the training set. The encoder learns the posterior distribution of Z,
given the observed X and Y (Qy(Z | X,Y)), and the prior network
learns the prior distribution of Z, observing only X (Py (Z | X)).
The decoder then reconstructs the input target Y, based on Z sam-
pled from the posterior distribution and X, i.e., Pg(Y | X,Z), where
Z ~ Qg(Z | X,Y). The encoder, decoder, and prior networks are
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constructed with multi-layer perceptrons (MLPs) parameterized
with 0, ¢, and ¢/, respectively. During the generation phase, we use
the prior network to modulate the distribution of Z, given X, and
use Z sampled from that distribution together with X to generate
Y. During training, we minimize the latency reconstruction loss
plus a regularization term of Kullback-Leibler (KL) divergence, i.e.,
the negative variational lower bound [67]:

Levag(X.Y.Z;0.4.9) = =Ez.0,(zx,v)|log Po(Y | X, Z)]
reconstruction loss
+B-Dkr(Qp(Z | X,Y) | Py(Z | X))

KL divergence regularization

(6)

where f > 0 is a hyperparameter that encourages to identify dis-
entangled latent factors in Z [56]. The reconstruction loss term
allows the encoder to extract useful input features, and the decoder
to accurately reconstruct the original data from the latent variables.
The KL divergence regularization minimizes the difference between
the posterior distribution Qy(Z | X,Y) and the prior distribution
Py (Z | X). We further add a GSNN to reconstruct Y by sampling
Z from the prior distribution. It tackle concerns that the CVAE
alone may not be enough to train a conditional generative model,
because it uses the posterior distribution from the encoder dur-
ing training and the prior distribution to draw Z samples during
generation [61, 103].

Losnn(X, Y, Z;0,9) = =Ez.p, (z)x)[log Pg(Y | X, Z)].  (7)
Therefore, a hybrid model that adds a GSNN can be written as

Levag hybrid(X,Y,Z;0,,9) = a - Levag + (1 — ) - Lgsnns (8)

where a € [0,1] is a hyperparameter to balance the loss between
two networks.

Although using a single CVAE for the entire microservice graph
would be simple, it has several drawbacks. First, it lacks the CBN’s
structural information which is necessary to avoid ineffectual coun-
terfactuals based on spurious correlations. Second, it prohibits par-
tial retraining, which is essential for frequently-updated microser-
vices. Finally, it is less explainable since it does not reveal how
the latency of a problematic service propagates to the frontend.
Therefore, we construct one small CVAE per microservice with
few fully connected and dropout layers, and connect the different
CVAEs according to the structure of the CBN to form the graphical
variational autoencoder (GVAE). Because P(Y | X,Z), P(Z | X),
and Q(Z | X,Y) can be factorized via Eq 1, Eq 3, and Eq 4, the final
loss function is:

m
LGVAE_hybrid(X,Y,Z;0,4,¥) = Z [aLCVAE,» + (1 = a)Lgsnn;
i=1
©)
where CVAE; and GSNN; is the CVAE and the Gaussian stochas-
tic network for service i. The encoders and prior networks are
trained entirely in parallel. The decoders require the outputs of
the parent decoders in the CBN as inputs, and are trained serially.
The maximum depth of the CBN determines the max number of
serially-cascaded decoders.
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Figure 7: Overview of Sage’s system design. Sage includes a
data streamer, a Graphical Variational Auto-Encoder (GVAE)
ML model, and an actuation controller. The data streamer
collects and pre-processes collected traces and performance
metrics from TraceDB and MetricsDB. The GVAE ML model
predicts culprit microservices and resources, and then trig-
gers the actuation controller to dynamically adjust the ap-
propriate hardware resources, if one or more resources are
identified are the source of unpredictable performance.

4 SAGE DESIGN

Sage is a root cause analysis system for interactive microservices.
Sage relies on RPC-level tracing to compose a CBN with the mi-
croservice topology, and per-node tracing for per-tier latency dis-
tributions. Below we discuss Sage’s monitoring system (Sec. 4.1),
training and inference pipeline (Sec. 4.2), its actuator once a root
cause has been identified (Sec. 4.3), and how Sage handles applica-
tion changes (Sec. 4.4).

Fig. 7 shows an overview of Sage. The system uses Jaeger [7],
a distributed RPC tracing system for end-to-end execution traces,
and the Prometheus Node Exporter [11], Blackbox Exporter [10],
and cAdvisor [4] to collect hardware/OS metrics, container-level
performance metrics, and network latencies. Each metric’s time-
series is stored in the Prometheus TSDB [9, 89]. At runtime, Sage
queries Jaeger and Prometheus to obtain real-time data. The GVAE
then infers the root cause of any QoS violation(s), at which point
Sage’s actuator adjusts the offending microservice’s resources.

Sage uses a centralized master for trace processing, root cause
analysis, and actuation, implemented in approximately 6KLOC
of Python, and per-node agents for trace collection and container
deployment. It also maintains two hot stand-by copies of the master
for fault tolerance. The GVAE model is built in PyTorch, with each
VAE’s encoder, decoder, and prior network using a DNN with 3-5
fully connected layers, depending on the input node number. We
also use batch normalization between every two hidden layers for
faster convergence, and a dropout layer after the last hidden layer
to mitigate overfitting.

4.1 Tracing Systems

Sage includes RPC-level latency tracing and container/node-level
usage monitoring. The RPC tracing system is based on Jaeger [7],
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an open-source framework, similar to Dapper [100] and Zipkin [16],
and augmented with the Opentracing client library [8], to add mi-
croservice spans and inject span context to each RPC. It measures
each RPC’s client- and server-side latency, and the network latency
of each request and response. Sage records two spans per RPC; one
starts when the client sends the RPC request and ends when it re-
ceives the response, while the other starts when the server receives
the RPC request and ends when it sends the response to the client,
both at application level. To avoid instrumenting the kernel to mea-
sure network latency (Sec. 3.2.1), we use a set of probing requests
to measure the heartbeat latency, and infer the request/response
network delay. We deploy one Jaeger agent per node to retrieve
spans for resident microservices. The Jaeger agents flush the spans
to a replicated Jaeger collector for aggregation, which stores them
in a Cassandra database. We additionally enable sampling to reduce
tracing overheads, and verify that with 1% sampling frequency, the
tracing overhead is approximately 2.6% on the 99th percentile la-
tency and 0.66% on the max throughput under QoS. We also ensure
that sampling does not lower Sage’s accuracy. To account for fluctu-
ations in load, Sage adjusts the sampling and inference frequency to
keep its detection accuracy above a configurable threshold, without
incurring high overheads.

The per-node performance and usage metrics are collected using
Prometheus, a widely-used open-source monitoring platform [9].
More specifically, we deploy node, blackbox, and cAdvisor exporters
per node to measure the hardware/system metrics, network la-
tency, and container resource usage respectively. Each metric’s
timeseries is stored in a centralized Prometheus TSDB. The over-
head of Prometheus is negligible for all studied applications when
collecting metrics every 10 seconds.

4.2 Root Cause Analysis

To diagnose a root cause, Sage first relies on the Data Streamer to
fetch and pre-process the tracing data. The Streamer queries Jaeger
and Prometheus for an interval’s log data over HTTP, and pre-
processes them using feature encoding, aggregation, dimensionality
reduction, and normalization. It outputs RPC latency percentiles
across the sampled requests, and performance/usage percentiles
across the replicas of each tier.

Sage initializes and trains the GVAE model offline with all initially-
available latency and usage data. It then periodically retrains the
model as new requests come in [31, 59, 87, 116]. Retraining hap-
pens even when there are no application changes, to account for
changes in user behavior. Sage handles design changes with partial
and incremental retraining to minimize overheads and accelerate
convergence (Sec. 4.4). Every time training is triggered, the GVAE
streams in batches of tracing tensors to update its network param-
eters. Online learning models are prone to catastrophic forgetting,
where the model forgets previous knowledge upon learning new
information [68, 87]. To avoid this, we interleave the current and
previous data in the training batches. Sage could also be prone to
class imbalance, where the number of traces that meet QoS is signif-
icantly higher than those which violate QoS. In that event, the Data
Streamer oversamples the minority class to create a more balanced
training dataset, preventing the model from being penalized for
generating counterfactuals that violate QoS.
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At runtime, Sage uses the latest version of the GVAE to diagnose
QoS violations. Based on training data, Sage first labels the medians
of per-tier performance and usage when QoS is met as normal
values. If during execution QoS is violated, the GVAE generates
counterfactuals by replacing a microservice’s performance/usage
with their respective normal values.

Sage implements a two-level approach to locate a root cause, to
remain lightweight and practical at scale. It first uses service-level
counterfactuals to locate the culprit microservice that initiated the
performance degradation, and then uses resource-level counterfac-
tuals in the culprit, to identify the underlying reason for the QoS
violation and correct it. More precisely, for each microservice, Sage
restores all its metrics to their normal values and uses the GVAE to
generate the counterfactual end-to-end latency based on the CBN
structure. Since the CBN indicates the causal relationship between
a given RPC and the examined microservice, for all non-causally
related RPCs, the GVAE reuses their current per-tier latencies in
the counterfactual. The microservice that reduces the end-to-end
latency to just below QoS is signaled as the culprit. After locating
the offending microservice, Sage generates resource-specific coun-
terfactuals to examine the impact of each hardware resource on
end-to-end performance. The instantaneous CPU frequency and
utilization act as CPU indicators, memory utilization as a memory
indicator, network bandwidth, TCP latency, and ICMP latency as
network indicators, etc. Compared to a one-level approach which
tries to jointly locate the service and resource, the two-level scheme
is simpler and faster.

Finally, there are cases where multiple microservices are jointly
responsible for a QoS violation. In such cases, the GVAE iteratively
explores microservice combinations when generating counterfac-
tuals, by adding each time the tier which would have reduced the
end-to-end latency the most.

4.3 Actuation

Once Sage determines the root cause of a QoS violation, it takes
action. Sage has an actuation controller in the master and one actu-
ation agent per node. The GVAE notifies the actuation controller,
which locates the nodes with the problematic microservices using
service discovery in the container manager, and notifies their re-
spective actuation agents to intervene. Sage focuses on deployment,
configuration, and resource provisioning related performance is-
sues, as opposed to design bugs. Therefore, once it identifies the
problematic microservice or microservices, it also tries to identify
the system resource that caused the QoS violation. Depending on
which resource is identified as instigating the QoS violation, the
actuation agent will dynamically adjust the CPU frequency, scale
up/out the microservice, limit the number of co-scheduled tasks,
partition the last level cache (LLC) with Intel Cache Allocation
Technology (CAT), or partition the network bandwidth with the
Linux traffic control’s queueing discipline. The actuation agent first
tries to resolve the issue by only adjusting resources on the offend-
ing node, and only when that is insufficient it moves to scale out the
problematic microservice on new nodes, or migrate it, especially
for stateful backends, which are almost never migrated.
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Figure 8: RPC dependency graph for the two synthetic Chain
and Fanout services.

4.4 Handling Microservice Updates

A major advantage of microservices is that developers can easily
update existing services or add new ones without impacting the
entire service architecture. Sage’s ability to diagnose QoS violations
can be impacted by changes to application design and deployment,
such as new, updated, or removed microservices. Training the com-
plete model from scratch for clusters with hundreds of nodes takes
tens of minutes to hours, and is impractical at runtime. To adapt to
frequent microservice changes, Sage instead implements selective
partial retraining and incremental retraining with a dynamically
reshapable GVAE similar to [116], which piggybacks on the VAE’s
ability to be decomposed per microservice using the CBN.

On the one hand, with selective partial retraining, we only retrain
neurons corresponding to the updated nodes and their descendents
in the CBN, because the causal relationships guarantee that all
other nodes are not affected. On the other hand, with incremental
retraining, we initialize the network parameters to those of the pre-
vious model, while adding/removing/reshaping the corresponding
networks if microservices are added/dropped/updated.

If the update does not change the RPC graph or the performance
and usage metrics, Sage does not retrain the model. If the update
does not change the RPC graph, but the latency and usage change,
Sage retrains the CVAEs of the updated microservice and its up-
stream microservices. The CBN remains unchanged. If the update
changes the RPC graph, Sage uses the low-frequency distributed
traces collected with Jaeger to update the CBN. It then updates
the corresponding neurons in the GVAE. Since the downstream
services are not affected by the update, Sage only incrementally
and partially retrains the updated microservice and its upstream
microservices. For example, if a new microservice B is added be-
tween existing services A (upstream) and C (downstream), neurons
would be introduced for B in the corresponding networks, and only
A’s parameters would be retrained.

The combination of these two transfer learning approaches al-
lows the model to re-converge faster, reducing the retraining time
by more than 10X, especially when there is large fanout in the RPC
graph. To collect sufficient training data quickly after an update,
we temporarily increase the tracing sampling rate until the model
converges.
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Figure 9: Social Network microservice architecture [48].
Client requests first reach a front-end load balancer, which
evenly distributes them across the N webserver instances.
Then, depending on the type of user request, a number
of logic, mid-tiers will be invoked to create a post, read
a user’s timeline, follow/unfollow users, or receive recom-
mendations on new users to follow. At the right-most of
the figure, the requests reach the back-end databases, im-
plemented both with in-memory caching tiers (memcached
and Redis), and persistent databases (MongoDB).

5 METHODOLOGY

5.1 Cloud Services

Generic Thrift microservices: Apache Thrift [1,102] is a scalable,
widely-used RPC framework. We implement a Thrift code generator
to synthesize customizable graphs of resource-intensive microser-
vices. We can configure the number of microservices, the processing
time, the RPC graph, and how RPCs interleave to emulate differ-
ent functional/timing dependencies. We generate two common
microservice topologies; Chain and Fanout, shown in Fig. 8.

In Chain, each microservice receives a request from its upstream
service, sends the request to its downstream tier after processing,
and responds to its parent once it gets the results from its child. In
Fanout, the root service broadcasts requests to the leaf tiers, and
returns the result to the client only after all children tiers have
responded. We choose the Chain and Fanout topologies because
they highlight different behaviors in terms of root cause analysis,
and because most real microservice topologies are combinations of
the two [48, 66, 104].

Social Network: End-to-end service in DeathStarBench [48] im-
plementing a broadcast-style social network. Users can follow/un-
follow other users and create posts embedded with text, media, urls,
and user mentions, which are broadcast to their followers. They can
also read posts, get user recommendations, and see ads. Fig. 9 shows
the Social Network architecture. The backend uses Memcached and
Redis for caching, and MongoDB for persistent storage. We use the
socfb-Reed98 Facebook network dataset [93] as the social graph,
which contains 962 users and 18.8K follow relationships.

Media Service: End-to-end service in DeathStarBench implement-
ing a movie review website. Users can submit reviews and ratings of
movies. They can also browse the information of movies, including
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their plot, photos, videos, cast, and review information. We use a
subset of TMDB database which contains 1000 movies and 1000
users. Fig. 10 shows the architecture of Media Service.

Hotel Reservation: Itis a hotel reservation website which enables
users to search for hotels, place reservations and get recommenda-
tions of nearest hotels based on the users’ locations. The application
is implemented in Go, and the services communicate over gRPC.
The dataset consists of 80 hotels and 500 users. Fig. 11 illustrates
the Hotel Reservation microservice architecture.

5.2 Systems

Local Cluster: We use a dedicated local cluster with five 2-socket
40-core servers with 128GB RAM each, and two 2-socket 88-core
servers with 188GB RAM each. Each server is connected to a 40Gbps
ToR switch over 10Gbe NICs. All services are deployed as Docker
containers.

Google Compute Engine: We also deploy the Social Network on
a GCE cluster with 84 nodes in us-centrall-a to study Sage’s
scalability. Each node has 4-64 cores, 4-64GB RAM and 20-128GB
SSD, depending on the microservice(s) deployed on it. There is no
interference from external jobs.

5.3 Training Dataset for Validation

We use wrk2 3], an open-loop HTTP workload generator, to send
requests to the web server in all three applications. To verify the
ground truth for Sage’s validation in Sec. 6, we use stress-ng [13]
and tc-netem [14] to inject CPU-, memory-, disk-, and network-
intensive microbenchmarks to different, randomly-chosen microser-
vices, to introduce unpredictable performance. Apart from resource
interference, we also introduce software bugs for Sage to detect, in-
cluding concurrency bugs and insufficient threads and connections
in the pool.

6 EVALUATION
6.1 Sage Validation

Counterfactual generation accuracy: We first validate the GVAE’s
accuracy in generating counterfactuals from the recorded laten-
cies in the local cluster. Appropriate counterfactuals should follow
the latency distribution in the training set, but also capture events
that are possible, but have not necessarily happened in the past to
ensure a high coverage of the performance space. There is no over-
lap between training and testing sets. We examine the coeflicient
of determination (R?) and root-mean-square error (RMSE) of the
GVAE in reconstructing latencies in the test dataset. R? and RMSE
measure a model’s goodness-of-fit. The closer to 1 R? is, and the
lower the RMSE, the more accurate the predictions. Across all three
applications, R2 values are above 0.91, and RMSEs are 7.8, 5.1, and
3.2 respectively for the Chain, Fanout and Social Network services,
denoting that the GVAE accurately reproduces the distribution and
magnitude of observed latencies in its counterfactuals. Note that
the standard deviations of latencies in the validation set are high,
highlighting that generating representative counterfactuals is non
trivial.

Root Cause Diagnosis: Fig. 12 shows Sage’s accuracy in detect-
ing root causes, compared to two autoscaling techniques, an Oracle
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Figure 10: Media Service architecture [48]. Client requests
first reach a front-end load balancer, which evenly dis-
tributes them across the N webserver instances. Then, de-
pending on the type of user request, a number of logic,
mid-tiers will be invoked to browse information about a
movie, create a new movie review, or get recommendations
on movies a user may enjoy. At the right-most of the figure,
the requests reach the back-end databases, implemented
both with in-memory caching tiers (memcached and Redis),
and persistent databases (MongoDB).
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Figure 11: Hotel reservation microservice architecture [48].
Client requests first reach a front-end webserver, and, de-
pending on the type of requests, are then directed to
logic tiers implementing functionality for searching ho-
tels, completing hotel reservations, updating a user profile,
and getting recommendations on available hotels. At the
right-most of the figure, the requests reach the back-end
databases, implemented both with in-memory caching tiers
(memcached), and persistent databases (MongoDB).

that sets upper thresholds for each tier and metric offline, Causeln-
fer [28], Microscope [71], and Seer [49]. Autoscale Strict upscales
allocations when a tier’s CPU utilization exceeds 50%, and Autoscale
Relax when it exceeds 70% (on par with AWS’s autoscaling policy).
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Root causes include both resource-related issues (by injecting con-
tentious kernels in a randomly-selected subset of microservices) and
software bugs. Since none of the methods do code-level bug inspec-
tion, a software bug-related issue is counted as correctly-identified
if the system identifies the problematic microservice correctly.

Sage significantly outperforms the two autoscalers and even the
offline oracle, by learning the impact of microservice dependencies,
instead of memorizing per-tier/metric thresholds for a particular
cluster state. Similarly, Sage’s false negatives and false positives
are marginal. False negatives hurt performance, by missing the
true source of unpredictable performance, while false positives
hurt resource efficiency, by giving more resources to the wrong mi-
croservice. The 3-4% of false negatives in Sage always correspond to
cases where the performance of multiple microservices was concur-
rently impacted by independent events, e.g., a network-intensive
co-scheduled job impacted one microservice, while a CPU-intensive
task impacted another. While Sage can locate multiple root causes,
that takes longer, and is prone to higher errors than when a single
tier is the culprit. The 3-5% of false positives are caused by spurious
correlations between tiers that were not critical enough to violate
QoS. Out of the three services, Fanout has slightly lower accuracy,
due to the fact that a single misbehaving leaf can significantly im-
pact the end-to-end performance. In general, accuracy varies little
between the three services, showing the generality of Sage across
service architectures.

In comparison, the two autoscaling systems misidentify the ma-
jority of root causes; this is primarily because high utilization does
not necessarily imply that a tier is the culprit of unpredictable per-
formance. Especially when using blocking connections, e.g., with
HTTP1.1, bottlenecks in one tier can backpressure its upstream
services, increasing their utilization. Autoscaling misidentifies such
highly-used tiers as the culprit, even though the bottleneck is else-
where. Additionally, using a global CPU utilization threshold for
autoscaling does not work well for microservices, as their resource
needs vary considerably, and even lightly-utilized services can cause
performance issues. Similarly, the offline Oracle has lower accuracy
than Sage, since it only memorizes per-tier thresholds for a given
cluster state, and cannot adapt to changing circumstances, e.g.,
load fluctuation, tier changes, or contentious co-scheduled tasks.
It can also not account for tier dependencies, or diversify between
backpressure and true resource saturation.

Causelnfer and Microscope have similar accuracy since they
both rely on the PC-algorithm [65] to construct a completed par-
tially directed acyclic graph (CPDAG,) for causal inference. Due to
statistical errors and data discretization in computing the condi-
tional cross entropy needed for the conditional independence test
from distributed traces, the CPDAG’s structure has inaccuracies,
resulting in incorrect paths when traversing the graph to identify
root causes. In contrast, Sage’s CBN is directly built from the RPC
graph, and considers the usage metrics of different tiers jointly,
instead of in isolation, leading to much higher accuracy.

Finally, Sage and Seer have comparable accuracy and false nega-
tives/positives; the difference lies in Sage’s practicality. Unlike Seer,
which requires expensive and invasive instrumentation to track the
queue lengths across the system stack in each microservice, and
additionally relies on supervised trace labeling to learn the QoS
violation root causes, Sage only relies on sparse and non-invasive
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Figure 13: Accuracy with incomplete instrumentation with
Sage and Seer, for each of the three end-to-end applications.
Incomplete instrumentation refers to the number of out-
standing requests, which Seer uses to infer the root cause
of unpredictable performance, missing from a subset of
randomly-selected microservices in the end-to-end service.
When the non-instrumented tiers are off the critical path,
the missing instrumentation does not significantly impact
detection accuracy. When, however, a larger fraction of over-
all microservices cannot be instrumented, Seer’s accuracy
drops. Both for Seer and Sage we still collect per-tier laten-
cies, and end-to-end throughput and latency.

tracing, already available in most cloud providers. Sage does not
require any changes in the existing application or system stack,
and only relies on live data to learn the root causes of QoS viola-
tions, instead of offline training. This makes Sage more practical
and portable at datacenter-scale deployments, especially when the
application includes libraries or tiers that cannot be instrumented.
We have verified that Sage is not sensitive to the tracing frequency.

To highlight this, in Table 13 we show how Seer and Sage’s
accuracy is impacted from incomplete instrumentation. For So-
cial Network, we assume that a progressively larger fraction of
randomly-selected microservices cannot be instrumented. Both
Sage and Seer can still track the latency, resource usage, - and for
Seer, the number of outstanding requests - at the “borders” (entry
and exit points) of such microservices, but cannot inject any addi-
tional instrumentation points, e.g., to track the queue lengths in
the OS, libraries, or application layer. Even for a small number of
non-instrumented microservices, Seer’s accuracy drops rapidly, as
queues are misrepresented, and root causes cannot be accurately
detected. In contract, Sage’s accuracy is not impacted, since the
system does not require any instrumentation of a tier’s internal
implementation.

6.2 Actuation

Fig. 14 shows the tail latency for Social Network managed by Sage,
the offline Oracle, Autoscale Strict (the best of the two autoscaling
schemes), Causelnfer, and Microscope. We run the Social Network
for 100 minutes and inject different contentious kernels to multiple
randomly-selected microservices.

Sage identifies all root causes and resources correctly. Upon
detection, it notifies the actuation manager to scale up/out the cor-
responding resources of problematic microservices. Inference takes
a few tens of milliseconds, and actuation takes tens of milliseconds
to several seconds to apply corrective action, depending on whether
the adjustment is local, or requires spinning up new containers.
In both cases, the process is much faster than the 30-second data
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Figure 12: Detection accuracy, false negatives, and false positives with Sage, and a number of related performance debugging/-
root cause analysis systems, across the two synthetic workloads, and the three end-to-end applications.
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Figure 14: End-to-end tail latency for Social Network when
we inject several sources of unpredictable performance to
cause QoS violations. We compare Sage to Causelnfer, Mi-
croScope, an Offline Oracle, and a conservative Autoscaling
policy.

sampling interval. After corrective action is applied the built-up
queues start draining; latency always recovers at most after two
sampling intervals from the QoS violation. On the other hand, the
offline oracle fails to discover the problematic microservices, or
takes several intervals to locate the root cause, overprovisioning
resources of non-bottlenecked services in the meantime. Recovery
here takes much longer, with tail latency significantly exceeding
QoS. Furthermore, even when the root cause is correctly identified,
Oracle often overprovisions microservices directly adjacent to the
culprit, as they likely exceed their thresholds due to backpressure,
leading to resource inefficiency. The autoscaler only relies on re-
source utilization, and hence fails to identify the culprits in the
majority of cases, leading to prolonged QoS violations. Causelnfer
and Microscope similarly do not detect several root causes correctly,
due to misidentifying dependencies between tiers, and lead to pro-
longed QoS violations. We omit Seer from the figure as it behaves
similarly to Sage.

6.3 Sensitivity Analysis

Training data size: Figure 15 shows the root cause detection
accuracy and training time for Sage across all three applications,
as we increase the size of the training dataset. The circle sizes are
proportional to the sizes of the training datasets. The training data
are collected on the local cluster with a sampling interval of 30
seconds, consistent with the granularity at which QoS is defined.
The smallest dataset is collected in 50 minutes, and the largest
in over three days. Sage’s detection accuracy increases until the
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Figure 15: Sensitivity to training set size (samples) for the

two synthetic services and the Social Network.
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Figure 16: Sensitivity to the sampling rate for the two syn-
thetic services and the Social Network.

number of samples reaches 1-5k, after which point it levels off.
The fanout service converges faster than the other two because
the depth of the RPC dependency graph and the CBN are much
shallower. Since training time grows linearly with the training size,
there is no benefit from collecting a larger training dataset after the
model’s accuracy converges.

Tracing frequency: We also explored the impact of tracing fre-
quency of detection accuracy. Figure 16 shows the detection ac-
curacy of Sage as the sampling frequency changes for the Chain
service, the Fanout service, and the Social Network; the results are
similar for the other services. The training dataset is collected over
24 hours, and we vary the sampling interval from one second to
one minute. Since we are focused on non-transient faults, whose
underlying causes cannot resolve themselves for an extended pe-
riod of time without external intervention, the sampling frequency
does not affect the observability of the error. QoS for individual
microservices typically ranges from hundreds of microseconds to
a few milliseconds. A mechanism that relies on temporal patterns
requires a microsecond-level sampling interval to discover causal-
ity, which is impractical in large-scale deployments [49]. On the
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contrary, Sage’s detection accuracy does not change much as the
sampling interval increases because it does not leverage temporal
patterns in timeseries to detect root causes. As the sampling in-
terval decreases, the detection accuracy increases slightly because
higher sampling frequency helps mitigate overfitting.

6.4 Sage Retraining

We now examine Sage’s real-time detection accuracy for Social
Network, when microservices are updated. We roll out six updates,
which include adding, updating, and removing microservices from
the end-to-end service.

The six updates are indicated by red dash lines labeled with
A-F in Figure 17. In A, we add a new child service to compose-
post, close to the front-end, which processes and ranks hash-
tags. In B, we increase the computation complexity of hashtag-
service by 5x. In C, we remove the hashtag-service. In D,
we add a new url-preprocessing service closer to the back-
end, between url -shorten and url - shorten-mongodb. The fur-
ther downstream a new service is, the more neurons will have to
be updated. In E, we re-incorporate the hashtag-service, slow
down url-preprocessing, and remove user-timeline to cap-
ture Sage’s behavior under multiple concurrent changes. In F, we
revert url-preprocessing and hashtag-service to their previ-
ous configurations, add user-timeline, remove home-timeline
and home-timeline-redis, and increase the CPU and memory
requirements of compose-post.

We intentionally create significant changes in the microservice
graph, and compare the accuracy of three retraining policies. Re-
training from scratch creates a new model every time there is a
change, with all network parameters re-initialized. Incremental re-
training reuses the network parameters from the previous model,
if possible, and retrains the entire network. Partial+incremental
retraining uses all techniques of Sec. 4.4, which reuse the existing
network parameters and only retrain the neurons that are impacted
by the updates. All approaches are trained in parallel; a new data
batch arrives every 30s.

Retraining time: Retraining for partial+incremental retraining
takes a few seconds and up to a few minutes for the largest data
batches. Moreover, it is 3 — 30X faster than the other two policies,
because it only retrains neurons directly affected by the update, a

ASPLOS 21, April 19-23, 2021, Virtual, USA

100 104
80 Local | M| - 10° B
g mm GCE l © B
@ o 107
£ 60 g B
| [ERG:
o 40 o 100 -
¢ Al
20 F10?
-2

False False Accu-
pos neg racy

Training Inference

Figure 18: Sage’s accuracy and speed on the local cluster and
GCE.

much smaller set compared to the entire network. The more mi-
croservices are updated, and the deeper the updated microservices
are located in the RPC dependency graph (updates D, E, F), the
higher the retraining time.

Root cause detection accuracy: Fig. 17 shows that partial+in-
cremental retraining and incremental retraining have the lowest
accuracy drop immediately after an update. On the contrary, re-
training from scratch almost loses its inference ability right after an
update, since the network parameters are completely re-initialized,
and the model forgets its prior knowledge. Note that the previ-
ous model cannot be used after the update, because introducing
a new microservice changes the GVAE and network dimensions.
Partial+incremental retraining converges much faster than the other
two models, because of its shorter retraining time, which prevents
neurons irrelevant to the service update from overfitting to the
small training set and forgetting the previously-learned informa-
tion.

6.5 Sage Scalability

Finally, we deploy the Social Network on 188 containers on GCE
using Docker Swarm. We replicate all stateless tiers on 2-10 in-
stances, depending on their resource needs, and shard the caches
and databases. We simulate a graph of 1000 users.

We first validate Sage’s accuracy compared to the local cluster.
Fig. 18a shows that the accuracy on GCE is unchanged, indicating
that Sage’s ability to detect root causes is not impacted by system
scale. Fig. 18b compares the training and inference time on the two
clusters.

We use two Intel Xeon 6152 processors with 44 cores for training
and inference. Sage takes 124 min to train from scratch on the local
cluster and 148 min on GCE. Root cause inference takes 49ms on
the local cluster and 62ms on GCE. Although we deploy 6.7x more
containers on GCE, the training and inference times only increase
by 19.4% and 26.5% respectively. In comparison, a similar increase
in cluster size, resulted in an almost 4X increase in inference time
for Seer [49]. Sage’s good scalability is primarily due to the system
collecting a percentile tensor of latency and usage metrics across
all per-tier replicas, and due to avoiding high-frequency, detailed
tracing for root cause detection.
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7 DISCUSSION
7.1 Cycles in RPC dependencies

Generally, microservice graphs are DAGs, since cycles between
tiers create positive feedback loops, which introduce failures and
undermine the design principles of the microservices model. How-
ever, bidirectional streaming RPCs exist between two microservices,
where the client and server both send a message sequence indepen-
dently within a single request [5]. This cycle cannot be modeled
by the CBN. To eliminate such cyclic dependencies, we merge both
sides of the bidirectional streaming RPC into a metanode with both
the client- and server-side latency, which shares the incoming and
outgoing edges of both directions. The GVAE treats the metanode
as a normal microservice.

7.2 Collecting training data

Sage leverages an unsupervised GVAE model that does not require
data labeling. Therefore, it directly uses the tracing data collected
in-situ by a cloud’s monitoring infrastructure for training. As with
any ML model, the quality of training data impacts accuracy. A
primary challenge of cloud performance analysis is handling load
variation [22]. Here variation is welcome, as it exposes a more
diverse range of behaviors Sage can learn from. Nevertheless, it
is still possible that a well-maintained system with few to no QoS
violations has insufficient failure modes to train the model. In this
case, Sage can leverage data obtained through fault injection tests
with chaos engineering tools, such as Chaos Monkey [26], which
are already in place in many cloud providers, including Netflix,
Google, and Microsoft [6, 15, 26, 92].

7.3 Comparison with Seer, CauseInfer, and
Microscope

Seer [49] is hybrid CNN+LSTM model used to predict performance
issues in the near future and proactively prevent them. Compared to
Seer, Sage leverages unsupervised learning which does not require
labeling traces in the training set with the sources of QoS violations.
This makes Sage easier to deploy in large-scale cloud environments,
where injecting contentious benchmarks to initiate QoS violations
is challenging. Additionally, Sage depends on lightweight tracing,
and it does not require application- or kernel-level tracing to collect
the number of outstanding requests across the system stack. Unlike
Seer, Sage is a reactive tool, so even though it cannot avoid QoS
violations altogether, it detects performance issues quickly, and
applies corrective action before the QoS violation amplifies across
dependent tiers.

Causelnfer [28] and Microscope [71] are two similar systems for
performance diagnosis in distributed environments. They both use
conditional cross entropy for conditional independence tests and
the PC algorithm to build causal relationship DAGs between ser-
vices. However, conditional independence is a difficult hypothesis
to test for because conditional independence tests can suffer from
type I error due to finite sample sizes, as shown in [97]. In addi-
tion, the worst-case complexity of the PC algorithm is exponential
with the number of nodes in the graph, which limits the scalability
of Causelnfer and Microscope. Sage outperforms Causelnfer and
Microscope in terms of accuracy and scalability since it builds a

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou

non-strict causal DAG directly from the RPC dependency graph,
and uses counterfactual queries to validate the causality for every
event.

7.4 Limitations

Sage, as well as other data-driven methods, cannot detect the source
of a performance issue if it has never observed a similar situation
in the past. Through the latent variables in the model, Sage locates
the problematic job associated with the root cause and flags it as
the issue. Sage primarily focuses on deployment, configuration, and
resource-related performance issues, since they directly correlate
with the corresponding performance metrics. A similar methodol-
ogy, with some additional application instrumentation, could be
applied to also diagnose design bugs that initiate performance is-
sues. We leave the root cause analysis of such non resource-related
QoS violations to future work. In the current system, if the source
of the QoS violation is not resource-related, i.e., all resource-related
sources have been eliminated via counterfactuals, developers would
need to be involved to examine if there is a software bug causing
the QoS violation.

8 CONCLUSIONS

We have presented Sage, an ML-driven root cause analysis system
for interactive cloud microservices. Unlike prior work, Sage lever-
ages entirely unsupervised ML models to detect the source of unpre-
dictable performance, removing the need for empirical diagnosis or
data labeling. Sage works online to detect and correct performance
issues, while also adapting to changes in application design. In both
small- and large-scale experiments, Sage achieves high accuracy in
pinpointing the root cause of QoS violations. Given the increasing
complexity of cloud services, automated, data-driven systems like
Sage improve performance without sacrificing resource efficiency.
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