Sinan: ML-Based and QoS-Aware Resource Management for
Cloud Microservices

Yanqi Zhang
Cornell University
Ithaca, NY, USA
yz2297@cornell.edu

G. Edward Suh
Cornell University
Ithaca, NY, USA
suh@ece.cornell.edu

ABSTRACT

Cloud applications are increasingly shifting from large monolithic
services, to large numbers of loosely-coupled, specialized microser-
vices. Despite their advantages in terms of facilitating development,
deployment, modularity, and isolation, microservices complicate
resource management, as dependencies between them introduce
backpressure effects and cascading QoS violations.

We present Sinan, a data-driven cluster manager for interactive
cloud microservices that is online and QoS-aware. Sinan lever-
ages a set of scalable and validated machine learning models to
determine the performance impact of dependencies between mi-
croservices, and allocate appropriate resources per tier in a way that
preserves the end-to-end tail latency target. We evaluate Sinan both
on dedicated local clusters and large-scale deployments on Google
Compute Engine (GCE) across representative end-to-end applica-
tions built with microservices, such as social networks and hotel
reservation sites. We show that Sinan always meets QoS, while also
maintaining cluster utilization high, in contrast to prior work which
leads to unpredictable performance or sacrifices resource efficiency.
Furthermore, the techniques in Sinan are explainable, meaning that
cloud operators can yield insights from the ML models on how to
better deploy and design their applications to reduce unpredictable
performance.

CCS CONCEPTS

« Computer systems organization — Cloud computing; - Com-
puting methodologies — Planning and scheduling.

KEYWORDS

Cloud computing, datacenter, quality of service, tail latency, mi-
croservices, cluster management, resource management, resource
allocation, resource efficiency, machine learning for systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04...$15.00
https://doi.org/10.1145/3445814.3446693

Weizhe Hua
Cornell University
Ithaca, NY, USA
wh399@cornell.edu

167

Zhuangzhuang Zhou
Cornell University
Ithaca, NY, USA
zz586(@cornell.edu

Christina Delimitrou
Cornell University
Ithaca, NY, USA
delimitrou@cornell.edu

ACM Reference Format:

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina
Delimitrou. 2021. Sinan: ML-Based and QoS-Aware Resource Management
for Cloud Microservices. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS °21), April 19-23, 2021, Virtual, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3445814.3446693

1 INTRODUCTION

In recent years, cloud applications have progressively shifted from
monolithic services to graphs with hundreds of single-purpose and
loosely-coupled microservices [1, 6, 7, 24-26, 46, 47]. This shift is
becoming increasingly pervasive, with large cloud providers, such
as Amazon, Twitter, Netflix, and eBay having already adopted this
application model [1, 6, 7].

Despite several advantages, such as modular and flexible de-
velopment and rapid iteration, microservices also introduce new
system challenges, especially in resource management, since the
complex topologies of microservice dependencies exacerbate queue-
ing effects, and introduce cascading Quality of Service (QoS) vi-
olations that are difficult to identify and correct in a timely man-
ner [26, 53]. Current cluster managers are designed for monolithic
applications or applications consisting of a few pipelined tiers,
and are not expressive enough to capture the complexity of mi-
croservices [17, 19, 20, 22, 26, 31-33, 35, 36, 43, 44, 51]. Given that
an increasing number of production cloud services, such as EBay,
Netflix, Twitter, and Amazon, are now designed as microservices,
addressing their resource management challenges is a pressing
need [6, 7, 26].

We take a data-driven approach to tackle the complexity mi-
croservices introduce to resource management. Similar machine
learning (ML)-driven approaches have been effective at solving
resource management problems for large-scale systems in previous
work [14, 16-18, 18, 19, 21, 42]. Unfortunately, these systems are
not directly applicable to microservices, as they were designed for
monolithic services, and hence do not account for the impact of
dependencies between microservices on end-to-end performance.

We present Sinan, a scalable and QoS-aware resource manager
for interactive cloud microservices. Instead of tasking the user or
cloud operator with inferring the impact of dependencies between
microservices, Sinan leverages a set of validated ML models to
automatically determine the impact of per-tier resource allocations

ASPLOS 21, April 19-23, 2021, Virtual, USA

on end-to-end performance, and assign appropriate resources to
each tier.

Sinan first uses an efficient space exploration algorithm to exam-
ine the space of possible resource allocations, especially focusing
on corner cases that introduce QoS violations. This yields a training
dataset used to train two models: a Convolutional Neural Network
(CNN) model for detailed short-term performance prediction, and
a Boosted Trees model that evaluates the long-term performance
evolution. The combination of the two models allows Sinan to both
examine the near-future outcome of a resource allocation, and to
account for the system’s inertia in building up queues with higher
accuracy than a single model examining both time windows. Sinan
operates online, adjusting per-tier resources dynamically according
to the service’s runtime status and end-to-end QoS target. Finally,
Sinan is implemented as a centralized resource manager with global
visibility into the cluster and application state, and with per-node
resource agents that track per-tier performance and resource uti-
lization.

We evaluate Sinan using two end-to-end applications from Death-
StarBench [26], built with interactive microservices: a social net-
work and a hotel reservation site. We compare Sinan against both
traditionally-employed empirical approaches, such as autoscal-
ing [4], and previous research on multi-tier service scheduling based
on queueing analysis, such as PowerChief [52]. We demonstrate
that Sinan outperforms previous work both in terms of performance
and resource efficiency, successfully meeting QoS for both applica-
tions under diverse load patterns. On the simpler hotel reservation
application, Sinan saves 25.9% on average, and up to 46.0% of the
amount of resources used by other QoS-meeting methods. On the
more complex social network service, where abstracting applica-
tion complexity is more essential, Sinan saves 59.0% of resources
on average, and up to 68.1%, essentially accommodating twice the
amount of requests per second, without the need for more resources.
We also validate Sinan’s scalability through large-scale experiments
on approximately 100 container instances on Google Compute En-
gine (GCE), and demonstrate that the models deployed on the local
cluster can be reused on GCE with only minor adjustments instead
of retraining.

Finally, we demonstrate the explainability benefits of Sinan’s
models, delving into the insights they can provide for the design
of large-scale systems. Specifically, we use an example of Redis’s
log synchronization, which Sinan helped identify as the source of
unpredictable performance out of tens of dependent microservices
to show that the system can offer practical and insightful solu-
tions for clusters whose scale make previous empirical approaches
impractical.

2 OVERVIEW
2.1 Problem Statement

Sinan aims to manage resources for complex, interactive microser-
vices with tail latency QoS constraints in a scalable and resource-
efficient manner. Graphs of dependent microservices typically in-
clude tens to hundreds of tiers, each with different resource require-
ments, scaled out and replicated for performance and reliability.
Section 2.2 describes some motivating examples of such services

168

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou

with diverse functionality used in this work; other similar examples
can be found in [1, 6, 7, 46].

Most cluster managers focus on CPU and memory manage-
ment [14, 42, 51]. Microservices are by design mostly stateless,
hence their performance is defined by their CPU allocation. Given
this, Sinan primarily focuses on allocating CPU resources to each
tier [26], both at sub-core and multi-core granularity, leveraging
Linux cgroups through the Docker API [2]. We also provision each
tier with the maximum profiled memory usage to eliminate out of
IMemory errors.

2.2 Motivating Applications

We use two end-to-end interactive applications from DeathStar-
Bench [26]: a hotel reservation service, and a social network.

2.2.1 Hotel Reservation. The service is an online hotel reservation
site, whose architecture is shown in Figure 1.

Functionality: The service supports searching for hotels using
geolocation, placing reservations, and getting recommendations. It
is implemented in Go, and tiers communicate over gRPC [5]. Data
backends are implemented in memcached for in-memory caching,
and MongoDB, for persistent storage. The database is populated
with 80 hotels and 500 active users.

Caching & DB

Business logic

Frontend

-<

Reserve

Figure 1: Hotel reservation microservice architecture [26].
Client requests first reach a front-end webserver, and, de-
pending on the type of requests, are then directed to logic
tiers implementing functionality for searching hotels, com-
pleting hotel reservations, and getting recommendations
on available hotels. At the right-most of the figure, the
requests reach the back-end databases, implemented both
with in-memory caching tiers (memcached), and persistent
databases (MongoDB).

2.2.2 Social Network. The end-to-end service implements a broad-
cast style social network with uni-directional follow relationships,
shown in Figure 2. Inter-microservice messages use Apache Thrift
RPCs [438].

Functionality: Users can create posts embedded with text, media,
links, and tags to other users, which are then broadcasted to all their
followers. The texts and images uploaded by users, specifically, go
through image-filter (a CNN classifier) and text-filter services (an
SVM classifier), and contents violating the service’s ethics guide-
lines are rejected. Users can also read posts on their timelines. We
use the Reed98 [41] social friendship network to populate the user

Sinan: ML-Based and QoS-Aware Resource Management for Cloud Microservices

database. User activity follows the behavior of Twitter users re-
ported in [30], and the distribution of post text length emulates
Twitter’s text length distribution [28].

Frontend Business logic

| Caching & DB

T
User-tl-
RabbiMQ

Figure 2: Social Network microservice architecture [26].
Client requests first reach Nginx, which works as frontend
http servers. Then, depending on the type of user request,
a number of logic, mid-tiers will be invoked to create a
post, read a user’s timeline and to follow/unfollow users.
At the right-most of the figure, the requests reach the back-
end databases, implemented both with in-memory caching
tiers (memcached and Redis), and persistent databases (Mon-
goDB).

2.3 Management Challenges & the Need for ML

Resource management in microservices faces four challenges.

1. Dependencies among tiers Resource management in microser-
vices is additionally complicated by the fact that dependent mi-
croservices are not perfect pipelines, and hence can introduce back-
pressure effects that are hard to detect and prevent [26, 53]. These
dependencies can be further exacerbated by the specific RPC and
data store API implementation. Therefore, the resource scheduler
should have a global view of the microservice graph and be able to
anticipate the impact of dependencies on end-to-end performance.

2. System complexity Given that application behaviors change
frequently, resource management decisions need to happen online.
This means that the resource manager must traverse a space that
includes all possible resource allocations per microservice in a prac-
tical manner. Prior empirical approaches use resource utilization [4],
or latency measurements [11, 19, 32] to drive allocation decisions.
Queueing approaches similarly characterize the system state using
queue lengths [52]. Unfortunately these approaches cannot be di-
rectly employed in complex microservices with tens of dependent
tiers. First, microservice dependencies mean that resource usage
across tiers is codependent, so examining fluctuations in individual
tiers can attribute poor performance to the wrong tier. Similarly,
although queue lengths are accurate indicators of a microservice’s
system state, obtaining exact queue lengths is hard. First, queues
exist across the system stack from the NIC and OS, to the network
stack and application. Accurately tracking queue lengths requires
application changes and heavy instrumentation, which can nega-
tively impact performance and/or is not possible in public clouds.

169

ASPLOS 21, April 19-23, 2021, Virtual, USA

Second, the application may include third-party software whose
source code cannot be instrumented. Alternatively, expecting the
user to express each tier’s resource sensitivity is problematic, as
users already face difficulties correctly reserving resources for sim-
ple, monolithic workloads, leading to well-documented underuti-
lization [19, 39], and the impact of microservice dependencies is
especially hard to assess, even for expert developers.

3. Delayed queueing effect Consider a queueing system with
processing throughput T, under a latency QoS target, like the one in
Figure 3. T, is a non-decreasing function of the amount of allocated
resources R. For input load T;, T, should equal or slightly surpass T;
for the system to stably meet QoS, while using the minimum amount
of resources R needed. Even when R is reduced, such that T, < T;,
QoS will not be immediately violated, since queue accumulation
takes time.

The converse is also
true; by the time QoS
is violated, the built-
up queue takes a long
time to drain, even if re-

QoS
constraint

sources are upscaled im-
mediately upon detect-
ing the violation (red
line). Multi-tier microser-
vices are complex queue-

latency

ing systems with queues timelydelayed
both across and within core core
alloc alloc

microservices. This de- .
Figure 3: The figure showcases

the delayed queueing effect in
microservices; QoS violations
that are not detected eagerly
(blue line), become unavoidable
(red), even if later action is
taken.

layed queueing effect

highlights the need for

ML to evaluate the long-
term impact of resource

allocations, and to proac-
tively prevent the re-
source manager from re-
ducing resources too aggressively, to avoid latency spikes with long
recovery periods. To mitigate a QoS violation, the manager must
increase resources proactively (blue line), otherwise the violation
becomes unavoidable, even if more resources are allocated a poste-
riori.

4. Boundaries of resource allocation space Data collection or
profiling are essential to the performance of any model. Given the
large resource allocation space in microservices, it is essential for
any resource manager to quickly identify the boundaries of that
space that allow the service to meet its QoS, with the minimum
resource amount [23], so that neither performance nor resource
efficiency are sacrificed. Prior work often uses random exploration
of the resource space [11, 19, 32] or uses prior system state as
the training dataset [25]. Unfortunately, while these approaches
work for simpler applications, in microservices they are prone to
covariant shift. Random collection blindly explores the entire space,
even though many of the explored points may never occur during
the system’s normal operation, and may not contain any points
close to the resource boundary of the service. On the contrary,
data from operation logs are biased towards regions that occur

ASPLOS 21, April 19-23, 2021, Virtual, USA

frequently in practice but similarly may not include points close
to the boundary, as cloud systems often overprovision resources
to ensure that QoS is met. To reduce exploration overheads it is
essential for a cluster manager to efficiently examine the necessary
and sufficient number of points in the resource space that allow it
to just meet QoS with the minimum resources.

2.4 Proposed Approach

These challenges suggest that empirical resource management, such
as autoscaling [4] or queueing analysis-based approaches for multi-
stage applications, such as PowerChief [52], are prone to unpre-
dictable performance and/or resource inefficiencies. To tackle these
challenges, we take a data-driven approach that abstracts away the
complexity of microservices from the user, and leverages ML to
identify the impact of dependencies on end-to-end performance,
and make allocation decisions. We also design an efficient space
exploration algorithm that explores the resource allocation space,
especially boundary regions that may introduce QoS violations, for
different application scenarios. Specifically, Sinan’s ML models pre-
dict the end-to-end latency and the probability of a QoS violation
for a resource configuration, given the system’s state and history.
The system uses these predictions to maximize resource efficiency,
while meeting QoS.

At a high level, the workflow of Sinan is as follows: the data
collection agent collects training data, using a carefully-designed
algorithm which addresses Challenge 4 (efficiently exploring the
resource space). With the collected data, Sinan trains two ML mod-
els: a convolution neural network (CNN) model and a boosted trees
(BT) model. The CNN handles Challenges 1 and 2 (dependencies
between tiers and navigating the system complexity), by predict-
ing the end-to-end tail latency in the near future. The BT model
addresses Challenge 3 (delayed queueing effect), by evaluating the
probability for a QoS violation further into the future, to account for
the system’s inertia in building up queues. At runtime, Sinan infers
the instantaneous tail latency and the probability for an upcoming
QoS violation, and adjusts resources accordingly to satisfy the QoS
constraint. If the application or underlying system change at any
point in time, Sinan retrains the corresponding models to account
for the impact of these changes on end-to-end performance.

3 MACHINE LEARNING MODELS

The objective of Sinan’s ML models is to accurately predict the
performance of the application given a certain resource allocation.
The scheduler can then query the model with possible resource
allocations for each microservice, and select the one that meets QoS
with the least necessary resources.

A straightforward way to achieve this is designing an ML model
that predicts the immediate end-to-end tail latency as a function of
resource allocations and utilization, since QoS is defined in terms
of latency, and comparing the predicted latency to the measured
latency during deployment is straightforward. The caveat of this ap-
proach is the delayed queueing effect described in Sec. 2.3, whereby
the impact of an allocation decision would only show up in per-
formance later. As a resolution, we experimented with training a
neural network (NN) to predict latency distributions over a future
time window: for example, the latency for each second over the

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou

170

next five seconds. However, we found that the prediction accuracy
rapidly decreased the further into the future the NN tried to pre-
dict, as predictions were based only on the collected current and
past metrics (resource utilization and latency), which were accu-
rate enough for immediate-future predictions, but were insufficient
to capture how dependencies between microservices would cause
performance to evolve later on.

Considering the difficulty of predicting latency further into the
future, we set an alternative goal: predict the latency of the immedi-
ate future, such that imminent QoS violations are identified quickly,
but only predict the probability of experiencing a QoS violation
later on, instead of the exact latency of each decision interval. This
binary classification is a much more contained problem than de-
tailed latency prediction, and still conveys enough information to
the resource manager on performance events, e.g., QoS violations,
that may require immediate action in the present.

150
7y [I QoS
S
;125 —— Ground truth
%100 —— Prediction
£ 75
©
C
® 50
kel
2 25
|

% 700 200 300
Time (s)

Figure 4: Multi-task NN overpredicts Social Network la-
tency, due to the semantic gap between the QoS violation
probability, a value between 0 and 1, and the latency, a value
that is not strictly bounded.

An intuitive method for this are multi-task learning NNs that
predict the latency of the next interval, and the QoS violation prob-
ability in the next few intervals. However, the multi-task NN con-
siderably overpredicts tail latency and QoS violation probability,
as shown in Figure 4. Note that the gap between prediction and
ground truth does not indicate a constant difference, which could
be easily learned by NNs with strong overfitting capabilities. We
attribute the overestimation to interference caused by the semantic
gap between the QoS violation probability, a value between 0 and
1, and the latency, a value that is not strictly bounded.

To address this, we designed a two-stage model: first, a CNN
that predicts the end-to-end latency of the next timestep with high
accuracy, and, second, a Boosted Trees (BT) model that estimates
the probability for QoS violations further into the future, using
the latent variable extracted by CNN. BT is generally less prone to
overfitting than CNNs, since it has much fewer tunable hyperpa-
rameters than NNs; mainly the number of trees and tree depth. By
using two separate models, Sinan is able to optimize each model
for the respective objective, and avoid the overprediction issue of
using a joint, expensive model for both tasks. We refer to the CNN
model as the short-term latency predictor, and the BT model as the
long-term violation predictor.

Sinan: ML-Based and QoS-Aware Resource Management for Cloud Microservices

3.1 Latency Predictor

As discussed in Section 2.3, the CNN needs to account for both
the dependencies across microservices, and the timeseries pattern
of resource usage and application performance. Thus, both the
application topology and the timeseries information are encoded in
the input of the CNN. The input of the CNN includes the following
three parts:

(1) an “image” (3D tensor) consisting of per-tier resource utiliza-
tion within a past time window. The y-axis of the “image” cor-
responds to different microservices, with consecutive tiers in
adjacent rows, the x-axis corresponds to the timeseries, with
one timestep per column, and the z-axis (channels) corre-
sponds to resource metrics of different tiers, including CPU
usage, memory usage (resident set size and cache memory
size) and network usage (number of received and sent pack-
ets), which are all retrieved from Docker’s cgroup interface.
Per-request tracing is not required.

(2) a matrix of the end-to-end latency distribution within the
past time window, and

(3) the examined resource configuration for the next timestep,
which is also encoded as a matrix.

In each convolutional (Conv) layer of the CNN, a convolutional
kernel (k X k window) processes information of k adjacent tiers
within a time window containing k timestamps. The first few Conv
layers in the CNN can thus infer the dependencies of their adjacent
tiers over a short time window, and later layers observe the entire
graph, and learn interactions across all tiers within the entire time
window of interest. The latent representations derived by the con-
volution layers are then post-processed together with the latency
and resource configuration information, through concatenation
and fully-connected (FC) layers to derive the latency predictions.
In the remainder of this section, we first discuss the details of the
network architecture, and then introduce a custom loss function
that improves the prediction accuracy by focusing on the most
important latency range.

As shown in Figure 5, the latency predictor takes as input the
resource usage history (Xppy), the latency history (X rr), and the re-
source allocation under consideration for the next timestep (Xgc),
and predicts the end-to-end tail latencies (yr) (95" to 99th per-
centiles) of the next timestep.

Xgp is a 3D tensor whose x-axis is the N tiers in the microser-
vices graph, the y-axis is T timestamps (T > 1 accounts for the
non-Markovian nature of microservice graph), and channels are F
resource usage information related to CPU and memory. The set
of necessary and sufficient resource metrics is narrowed down via
feature selection. Xgc and X gy are 2D matrices. For X, the x-axis
is the N tiers and the y-axis the CPU limit. For Xppj, the x-axis is
T timestamps, and the y-axis are vectors of different latency per-
centiles (95" to 99t"). The three inputs are individually processed
with Conv and FC layers, and then concatenated to form the latent
representation Ly, from which the predicted tail latencies Ly are
derived with another FC layer.

171

ASPLOS 21, April 19-23, 2021, Virtual, USA

Boosted Trees

Figure 5: Sinan’s hybrid model, consisting of a CNN and a
Boosted Trees (BT) model. The CNN extracts the latent vari-
able (L7) and predicts the end-to-end latency (yr). The BT
take the latent variable and proposed resource allocation,
and predicts the probability of a QoS violation (py).

The CNN minimizes the difference between predicted and actual
latency, using the squared loss function below:
n
LOGCHW) = (0 = fir (x:))? 8)
i
where fiy (-) represents the forward function of the CNN, g is the
ground truth, and n is the number of training samples. Given the
spiking behavior of interactive microservices that leads to very high
latency, the squared loss in Eq. 1 tends to overfit for training samples
with large end-to-end latency, leading to latency overestimation
in deployment. Since the latency predictor aims to find the best
resource allocation within a tail latency QoS target, the loss should
be biased towards training samples whose end-to-end latencies
are < QoS. Therefore, we use a scaling function to scale both the
predicted and actual end-to-end latency before applying the squared
loss function. The scaling function (¢(-)) is:

wm=f

x <t

()

x—t

L+ 1+a(x—1)

x>1

where the latency range is (0, 1), and the hyper-parameter a can
be tuned for different decay effects. Figure 7 shows the scaling
function with £ = 100 and a = 0.005, 0.01, 0.02. It is worth mention-
ing that scaling end-to-end latencies only mitigates overfitting of
the predicted latency for the next decision interval, and does not
improve predictions further into the future, as described above. We
implement all CNN models using MxNet [13], and trained them
with Stochastic Gradient Descent (SGD).

3.2 Violation Predictor

The violation predictor addresses the binary classification task of
predicting whether a given allocation will cause a QoS violation
further in the future, to filter out undesirable actions. Ensemble
methods are good candidates as they are less prone to overfitting.
We use Boosted Trees [34], which realizes an accurate non-linear
model by combining a series of simple regression trees. It models
the target as the sum of trees, each of which maps features to a
score. The final prediction is determined by accumulating scores
across all trees.

ASPLOS 21, April 19-23, 2021, Virtual, USA

% 200
Param Definition £
k future timesteps in BT Py
C
. . Q
T past timesteps in CNN&BT 5 100 a=0.005
N application tiers B — a=0.01
© g
M latency percentiles 9 0 a=0.02
F resource statistics 0 100 200 300
Latency (ms)
R allocated resources

Figure 6: ML model parame- Figure 7: Scale function

ters. ¢(-) with different k.

To further reduce the computational cost and memory footprint
of Boosted Trees, we reuse the compact latent variable L ¢ extracted
from the CNN as its input. Moreover, since the latent variable Ly
is significantly smaller than Xrc, Xgy, and Xy in dimensional-
ity, using Ly as the input also makes the model more resistant to
overfitting.

Boosted Trees also takes resource allocations as input. During
inference, we simply use the same resource configuration for the
next k timesteps to predict whether it will cause a QoS violation k
steps in the future. As shown in Figure 5, each tree leaf represents
either a violation or a non-violation with a continuous score. For
a given example, we sum the scores for all chosen violation (sy)
and non-violation leaves (sy) from each tree. The output of BT is
the predicted probability of QoS violation (py), which can be cal-
culated as py = esvejﬁ For the violation predictor we leverage
XGBoost [12], a gradient tree boosting framework that improves
scalability using sparsity-aware approximate split finding.

We first train the CNN and then BT using the extracted latent
variable from the CNN. The CNN parameters (number of layers,
channels per layer, weight decay etc.) and XGBoost (max tree depth)
are selected based on the validation accuracy.

4 SYSTEM DESIGN

We first introduce Sinan’s overall architecture, and then discuss the
data collection process, which is crucial to the effectiveness of the
ML models, and Sinan’s online scheduler.

4.1 System Architecture

Sinan consists of three components: a centralized scheduler, dis-
tributed operators deployed on each server/VM, and a prediction
service that hosts the ML models. Figure 8 shows an overview of
Sinan’s architecture.

Server Clusfir\‘ Prediction
A Lé @Query request . Model Server
~ ~ < inputs
@ Docker info @xnet
— i Predict- | .
% .4 Resource Csir;:;i‘ill:zl:g ions g
~ allocations

Figure 8: Sinan’s system architecture. As user requests are
being received, Sinan collects resource and performance
metrics through Docker and Jaeger, inputs the collected met-
rics to the ML models, and uses the models’ output to accord-
ingly allocate resources for each tier. Allocation decisions
are re-evaluated periodically online.

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou

172

Sinan makes decisions periodically. In each 1s decision interval
(consistent with the granularity at which QoS is defined), the cen-
tralized scheduler queries the distributed operators to obtain the
CPU, memory, and network utilization of each tier in the previ-
ous interval. Resource usage is obtained from Docker’s monitoring
infrastructure, and only involves a few file reads, incurring neg-
ligible overheads. Aside from per-tier information, the scheduler
also queries the API gateway to get user load statistics from the
workload generator. The scheduler sends this data to the hybrid ML
model, which is responsible for evaluating the impact of different
resource allocations. Resource usage across replicas of the same tier
are averaged before being used as inputs to the models. Based on
the model’s output, Sinan chooses an allocation vector that meets
QoS using the least necessary resources, and communicates its
decision to the per-node agents for enforcement.

Sinan focuses on compute resources, which are most impactful
to microservice performance. Sinan explores sub-core allocations
in addition to allocating multiple cores per microservice to avoid
resource inefficiencies for non-resource demanding tiers, and enable
denser colocation.

4.2 Resource Allocation Space Exploration

Representative training data is key to the accuracy of any ML model.
Ideally, test data encountered during online deployment should fol-
low the same distribution as the training dataset, so that covariate
shift is avoided. Specifically for our problem, the training dataset
needs to cover a sufficient spectrum of application behaviors that
are likely to occur during online deployment. Because Sinan tries to
meet QoS without sacrificing resource efficiency, it must efficiently
explore the boundary of the resource allocation space, where points
using the minimum amount of resources under QoS reside. We
design the data collection algorithm as a multi-armed bandit pro-
cess [27], where each tier is an independent arm, with the goal of
maximizing the knowledge of the relationship between resources
and end-to-end QoS.

The data collection algorithm approximates the running state
of the application with a tuple (rps, latcyr, latgig), where rps is
the input requests per second, laty,r is the current tail latency,
and latg is the tail latency difference from the previous interval,
to capture the rate of consuming or accumulating queues. Every
tier is considered as an arm that can be played independently, by
adjusting its allocated resources. For each tier, we approximate
the mapping between its resources and the end-to-end QoS as
a Bernoulli distribution, with probability p of meeting the end-
to-end QoS, and we define our information gain from assigning
certain amount of resources to a tier, as the expected reduction of
confidence interval of p for the corresponding Bernoulli distribution.
At each step for every tier, we select the operation that maximizes
the information gain, as shown in Eq. 3, where op?. is an action
selected for tier T at running state s, n are the samples collected
for the resulting resource assignment after applying op on tier T at
state s, p is the previously-estimated probability of meeting QoS,
and p, and p_ are the newly-estimated probabilities of meeting
QoS, when the new sample meets or violates QoS respectively. Each
operation’s score is multiplied by a predefined coefficient C to
encourage meeting QoS and reducing overprovisioning.

Sinan: ML-Based and QoS-Aware Resource Management for Cloud Microservices

op§. = argmax Cop - (\/p(l —p) _p\/P+(1 —p+)
op n n+1
(a-p) ¥
-(1-p) pnT)

By choosing operations that maximize Equation. 3, the data col-
lection algorithm is incentivized to explore the boundary points
that meet QoS with the minimum resource amount, since exploring
allocations that definitely meet or violate QoS (with p = 1 or p = 0)
has at most 0 information gain. Instead, the algorithm prioritizes
exploring resource allocations whose impact on QoS is nondeter-
ministic, like those with p = 0.5. It is also worth noting that the state
encoding and information gain definition are simplified approxima-
tions of the actual system, with the sole purpose of containing the
exploration process in the region of interest. Eventually, we rely on
ML to extract the state representation that incorporates inter-tier
dependencies in the microservice graph.

To prune the action space, Sinan enforces a few rules on both
data collection and online scheduling. First, the scheduler is only
allowed to select out of a predefined set of operations. Specifically
in our setting, the operations include reducing or increasing the
CPU allocation by 0.2 up to 1.0 CPU, and increasing or reducing
the total CPU allocation of a service by 10% or 30%. These ratios are
selected according to the AWS step scaling tutorial [4]; as long as
the granularity of CPU allocations does not change, other resource
ratios also work without retraining the model. Second, an upper
limit on CPU utilization is enforced on each tier, to avoid overly
aggressive resource downsizing that can lead to long queues and
dropped requests. Third, when end-to-end tail latency exceeds the
expected value, Sinan disables resource reclamations so that the
system can recover as soon as possible. A subtle difference from
online deployment is that the data collection algorithm explores
resource allocations in the [0, QoS +] tail latency region, where
o is a small value compared to QoS. The extra « allows the data
collection process to explore allocations that cause slight QoS vio-
lations without the pressure of reverting to states that meet QoS
immediately, such that the ML models are aware of boundary cases,
and avoid them in deployment. In our setting « is 20% of QoS empir-
ically, to adequately explore the allocation space, without causing
the tail latency distribution to deviate too much from values that
would be seen in deployment. Collecting data exclusively when the
system operates nominally, or randomly exploring the allocation
space does not fulfill these requirements.

Figure 9 shows the latency distribution in the training dataset,
and how the training and validation error of the model changes
with respect to the latency range observed in the training dataset,
for the Social Network application. In the second figure, the x-axis
is the latency of samples in the training dataset, the left y-axis is
the root mean squared error RMSE of the CNN, and the right y-axis
represents the classification error rate of XGBoost. Each point’s y-
axis value is the model’s training and validation error when trained
only with data whose latency is smaller than the corresponding
x-value. If the training dataset does not include any samples that
violate QoS (500ms), both the CNN and XGBoost experience serious
overfitting, greatly mispredicting latencies and QoS violations.

Figure 10 shows data collected using data collection mechanisms
that do not curate the dataset’s distribution. Specifically, we show

173

ASPLOS 21, April 19-23, 2021, Virtual, USA

Training vs Validation Error

— CNN validation RMSE

— CNN training RMSE
- XGB Validation Error Rate
- XGB Trahwing Error Rate

250 0.5

CDF of Training Data

Percentage (%)
RMSE (ms)
Error rate

0 200 300 400 500 600 700 800 90010800
Latency (ms)

N H
100 200 300 400 500 600 700 800 900 1000 10
Latency (ms)

Figure 9: Training dataset latency distribution and ML train-
ing vs. validation error with respect to dataset latency range.
The training dataset includes an approximately balanced set
of samples between those that preserve and those that vio-
late QoS. If the training dataset does not include any samples
that violate QoS (500ms), both the CNN and XGBoost experi-
ence serious overfitting, greatly mispredicting latencies and
QoS violations.

the prediction accuracy when the training dataset is collected when
autoscaling is in place (a common resource management scheme
in most clouds), and when resource allocations are explored ran-
domly. As expected, when using autoscaling, the model does not see
enough cases that violate QoS, and hence seriously underestimates
latency and causes large spikes in tail latency, forcing the scheduler
to use all available resources to prevent further violations. On the
other hand, when the model is trained using random profiling, it
constantly overestimates latency and prohibits any resource re-
duction, highlighting the importance of jointly designing the data
collection algorithms and the ML models.

32500 ,07250 e

é QOS §200 QOS

2000 — Groundtruth | 3 —— Ground truth

émoo —— Prediction 2150 —— Prediction

21000

[0}

o

= 500 |

f =

S b

® 700 200 30 O 700 200 300

Times (s) Times (s)

(a) Autoscaling data collection. (b) Random data collection.
Figure 10: Comparison of predicted and true latency with (a)
autoscaling and (b) random data collection schemes. When
using autoscaling, the model significantly underestimates
latency due to insufficient training samples of QoS viola-
tions, and causes large spikes in tail latency, forcing the
scheduler to use all available resources to prevent further vi-
olations. On the other hand, when the model is trained using
random profiling, it constantly overestimates latency and
prohibits any resource reduction, leading to resource over-
provisioning.

Incremental and Transfer Learning: Incremental retraining can
be applied to accommodate changes to the deployment strategy or
microservice updates. In deployment, retraining can be triggered
periodically in the background or when prediction accuracy drops
below expected thresholds. In cases where the topology of the
microservice graph is not impacted, such as hardware updates and

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 1: Resource allocation actions in Sinan.

Actions

Scale Down Reduce CPU limit of 1 tier

Reduce CPU limit of k least utilized tiers,

Category

Scale Down Batch

e <ksN)
Hold Keep current resource allocation

~ ScaleUp Increase CPU limit of 1 tier

""" ScaleUp All Increase CPU limit of all tiers

h ScaleUp Vlctlm """ Increase CPU limit of recent victim tiers,

that are scaled down in previous ¢ cycles

change of public cloud provider, transfer learning techniques such
as fine tune can be used to train the ML models in the background
with newly collected data. If the topology is changed, the CNN
needs to be modified to account for removed and newly-added
tiers.

Additional resources: Sinan can be extended to other system re-
sources. Several resources, such as network bandwidth and memory
capacity act like thresholds, below which performance degrades
dramatically, e.g., network bandwidth [11], or the application ex-
periences out of memory errors, and can be managed with much
simpler models, like setting fixed thresholds for memory usage,
or scaling proportionally with respect to user load for network

bandwidth.

4.3 Online Scheduler

During deployment, the scheduler evaluates resource allocations
using the ML models, and selects appropriate allocations that meet
the end-to-end QoS without overprovisioning.

Evaluating all potential resource allocations online would be pro-
hibitively expensive, especially for complex microservice topologies.
Instead, the scheduler evaluates a subset of allocations following
the set of heuristics shown in Table 1. For scaling down operations,
the scheduler evaluates reducing CPU allocations of single tiers,
and batches of tiers, e.g., scaling down the k tiers with lowest cpu
utilization, 1 < k < N, N being the number of tiers in the microser-
vice graph. When scaling up is needed, the scheduler examines the
impact of scaling up single tiers, all tiers, or the set of tiers that
were scaled down in the past ¢ decision intervals, 1 < t < T with T
chosen empirically. Finally, the scheduler also evaluates the impact
of maintaining the current resource assignment.

The scheduler first excludes operations whose predicted tail
latency is higher than QoS — RMSE;;;4. Then it uses the predicted
violation probability to filter out risky operations, with two user-
defined thresholds, p; and p, (pg < pu)- These thresholds are
similar to those used in autoscaling, where the lower threshold
triggers scaling down and the higher threshold scaling up; the
region between the two thresholds denotes stable operation, where
the current resource assignment is kept. Specifically, when the
violation probability of holding the current assignment is smaller
than p,,, the operation is considered acceptable. Similarly, if there
exists a scale down operation with violation probability lower than
D, the scale down operation is also considered acceptable. When

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou

174

the violation probability of the hold operation is larger than p,,,
only scaling up operations with violation probabilities smaller than
pu are acceptable; if no such actions exist, all tiers are scaled up to
their max amount. We set p,, such that the validation study’s false
negatives are no greater than 1% to eliminate QoS violations, and
pg to avalue smaller than p,, that favors stable resource allocations,
so that resources do not fluctuate too frequently unless there are
significant fluctuations in utilization and/or user demand. Among
all acceptable operations, the scheduler selects the one requiring
the least resources.

The scheduler also has a safety mechanism for cases where the
ML model’s predicted latency or QoS violation probability deviate
significantly from the ground truth. If a mispredicted QoS viola-
tion occurs, Sinan immediately upscales the resources of all tiers.
Additionally, given a trust threshold for the model, whenever the
number of latency prediction errors or missed QoS violations ex-
ceeds the thresholds, the scheduler reduces its trust in the model,
and becomes more conservative when reclaiming resources. In
practice, Sinan never had to lower its trust to the ML model.

5 EVALUATION

We first evaluate Sinan’s accuracy, and training and inference time,
and compare it to other ML approaches. Second, we deploy Sinan on
our local cluster, and compare it against autoscaling [4], a widely-
deployed empirical technique to manage resources in production
clouds, and PowerChief [52], a resource manager for multi-stage
applications that uses queueing analysis. Third, we show the incre-
mental retraining overheads of Sinan. Fourth, we evaluate Sinan’s
scalability on a large-scale Google Compute Engine (GCE) cluster.
Finally, we discuss how interpretable ML can improve the manage-
ment of cloud systems.

5.1 Methodology

Benchmarks: We use the Hotel Reservation and Social Network
benchmarks described in Section 2.2. QoS targets are set with re-
spect to 99% end-to-end latency, 200ms for Hotel Reservation,
and 500ms for Social Network.

Deployment: Services are deployed with Docker Swarm, with
one microservices per container for deployment ease. Locust [3] is
used as the workload generator for all experiments.

Local cluster: The cluster has four 80-core servers, with 256GB of
RAM each. We collected 31302 and 58499 samples for Hotel Reser-
vation and Social Network respectively, using our data collection
process, and split them into training and validation sets with a 9:1
ratio, after random shuffling. The data collection agent runs for
16 hours and 8.7 hours for Social Network and Hotel Reservation
respectively, and collecting more training samples do not further
improve accuracy.

GCE cluster: We use 93 container instances on Google Compute
Engine (GCE) to run Social Network, with several replicas per
microservice tier. 5900 extra training samples are collected on GCE
for the transfer learning.

5.2 Sinan’s Accuracy and Speed

Table 2 compares the short-term ML model in Sinan (CNN) against
a multilayer perceptron (MLP), and a long short-term memory

Sinan: ML-Based and QoS-Aware Resource Management for Cloud Microservices

Table 2: RMSE, model size, and performance for three NNs —
Batch size is 2048. Initial learning rates for MLP, LSTM, and
CNN are 0.0001, 0.0005, and 0.001, respectively. All models
are trained with a single NVidia Titan Xp.

Apps Models Train &Val. Model Train & Inference

PP RMSE (ms) size (KB) speed (ms/batch)
Hotel MLP 17.8 18.9 1433 1.9 3.7
Reservation LSTM 177 181 384 1.3 3.2
CNN 14.2 14.7 68 4.5 3.5
. MLP 323 344 4300 6.4 5.9

Social

Network LSTM 293 307 404 4.5 5.6
CNN 259 264 144 16.0 5.7

Table 3: The accuracy, number of trees, and total training
time of Boosted Trees using a single NVidia Titan Xp.

Apps Train & Val. Val. false #of Total train
PP accuracy (%) pos. & neg. trees time (s)
Hotel o)\ 041 32 31 220 2.3
Reservation
Social
Network 95.5 94.6 3.4 2.0 239 6.5

(LSTM) network, which is traditionally geared towards timeseries
predictions. We rearrange the system history Xgyy to be a 2D tensor
with shape T X (F * N), and a 1D vector with shape T # F * N
for the LSTM and MLP models, respectively. To configure each
network’s parameters, we increase the number of fully-connected,
LSTM, and convolutional layers, as well as the number of channels
in each layer for the MLP, LSTM, and Sinan (CNN), until accuracy
levels off. Sinan’s CNN achieves the lowest RMSE, with the smallest
model size. Although the CNN is slightly slower than the LSTM, its
inference latency is within 1% of the decision interval (1s), which
does not delay online decisions.

Table 3 shows a similar validation study for the Boosted Trees
model. Specifically, we quantify the accuracy of anticipating a QoS
violation over the next 5 intervals (5s), and the number of trees
needed for each application. For both applications, the validation
accuracy is higher than 94%, demonstrating BT’s effectiveness in
predicting the performance evolution in the near future. Sinan al-
ways runs on a single NVidia Titan XP GPU with average utilization
below 2%.

5.3 Performance and Resource Efficiency

We now evaluate Sinan’s ability to reduce resource consumption
while meeting QoS on the local cluster. We compare Sinan against
autoscaling and PowerChief [52]. We experimented with two au-
toscaling policies: AutoScaleOpt is configured according to [4],
which increases resources by 10% and 30% when utilization is within
[60%,70%) and [70%, 100%] respectively, and reduces resources by
10% and 30% when utilization is within [30%, 40%) and [0%, 30%).
AutoScaleCons is more conservative and optimizes for QoS, us-
ing thresholds tuned for the examined applications. It increases
resources by 10% and 30% when utilization is within [30%, 50%)

175

ASPLOS 21, April 19-23, 2021, Virtual, USA

1k 13k 16k 1.9k 2.2k 2.5k

Users
(a) Hotel reservation.

2.8k

3.1k

° | ESinan EAutoScalOpt O AutoscaleCons B PowerChieft
g 270

S170
Sz
% 70

s

100

150 350

200 250
Users

(b) Social network.

Figure 11: The mean and max CPU allocation, and the prob-
ability of meeting QoS for Sinan, Autoscaling, and Power-
Chief.

and [50%, 100%], and reduces resources by 10% when utilization is
within [0%, 10%). PowerChief is implemented as in [52], and esti-
mates the queue length and queueing time ahead of each tier using
network traces obtained through Docker.

For each service, we run 9 experiments with an increasing num-
ber of emulated users sending requests under a Poisson distribution
with 1 RPS mean arrival rate. Figure 11 shows the mean and max
CPU allocation, and the probability of meeting QoS across all stud-
ied mechanisms, where CPU allocation is the aggregate number
of CPUs assigned to all tiers averaged over time, the max CPU
allocation is the max of the aggregate CPU allocation over time,
and the probability of meeting QoS is the fraction of execution time
when end-to-end QoS is met.

For Hotel Reservation, only Sinan and AutoScaleCons meet QoS
at all times, with Sinan additionally reducing CPU usage by 25.9% on
average, and up to 46.0%. AutoScaleOpt only meets QoS at low loads,
when the number of users is no greater than 1900. At 2200 users,
AutoScaleOpt starts to violate QoS by 0.7%, and the probability of
meeting QoS drops to 90.3% at 2800 users, and less than 80% beyond

ASPLOS 21, April 19-23, 2021, Virtual, USA

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou

compPost-Redis === nginx graph-mongodb textFilter === mediaFilter user writeHomeTimeline
composePost = = postStore-mem$ graph-Redis uniquelD == userMention *'* userTl-mongodb writeHomeTI-Rabbitmq
homeTl-Redis postStore-mongodb graph urlShorten user-mem$ === userTl-Redis writeUserTimeline
== homeTimeline postStore text *1* media user-mongodb == userTimeline == writeUserTI-Rabbitmq
Load (RPS) Prediction Accuracy 0.8 100 CPU Allocation
I Y — Predicted 5
[= 880
E£400 Actual— P(viol) |°®§ &
1) g = 060
o ko 048 °
4 < 200] <40
< 022 D
5 45 “@ @20
S W o) _
0 0.0 ol=>
0 50 100 150 200 250 300 0 50 100 150 200 250 300
e e e e 0.8 100
N - &
400 06c 280
E S B,
-— o
2 oy 048 ©
4 <200 § <40
= e P 025 2
© VWRTTTS i o
B © o %20
0 0.0 0 = reot
0 500 1000 1500 2000 0 500 1000 1500 2000 500 1000 1500 2000

Time (s)

Time (s)

Time (s)

Figure 12: (Top) RPS, latency, and allocated resources per tier with Sinan for Social Network with 250 users. (Bottom) RPC,
latency, and allocated resources per tier with diurnal load. For both scenarios, Sinan’s predicted latency closely follows the
end-to-end measured latency, avoiding QoS violations and excessive overprovisioning, while allocated resources per tier take
into account the impact of microservice dependencies on end-to-end performance.

3000 users. Similarly, PowerChief meets QoS for fewer than 2500
users, however the probability of meeting QoS drops to 50.8% at
2800 users, and never exceeds 40% beyond 3000 users. AutoScaleOpt
uses 53% the amount of resources Sinan requires on average, at the
price of performance unpredictability, and PowerChief uses 2.57x
more resources than Sinan despite violating QoS.

For the more complicated Social Network, Sinan’s performance
benefits are more pronounced. Once again, only Sinan and Au-
toScaleCons meet QoS across loads, while Sinan also reduces CPU
usage on average by 59.0% and up to 68.1%. Both AutoScaleOpt and
PowerChief only meet QoS for fewer than 150 users, despite using
on average 1.26X and up to 3.75X the resources Sinan needs. For
higher loads, PowerChief’s QoS meeting probability is at most 20%
above 150 users, and AutoscaleOpt’s QoS meeting probability starts
at 76.3% for 200 users, and decreases to 8.7% for 350 users.

By reducing both the average and max CPU allocation, Sinan can
yield more resources to colocated tasks, improving the machine’s
effective utilization [11, 19, 32, 33]. There are three reasons why
PowerChief cannot reduce resources similarly and leads to QoS
violations. First, as discussed in Sec. 2.3, the complex topology of
microservices means that the tier with the longest igress queue,
which PowerChief signals as the source of performance issues, is
not necessarily the culprit but a symptom. Second, in interactive ap-
plications, queueing takes place across the system stack, including
the NIC, OS kernel, network processing, and application, making
precise queueing time estimations challenging, especially when
tracing uses sampling. Finally, the stricter latency targets of mi-
croservices, compared to traditional cloud services, indicate that
small fluctuations in queueing time can result in major QoS viola-
tions due to imperfect pipelining across tiers causing backpressure
to amplify across the system.

Figure 12 shows the detailed results for Social Network, for 300
concurrent users under a diurnal load. The three columns each show

176

requests per second (RPS), predicted latency vs. real latency and
predicted QoS violation probability, and the realtime CPU allocation.
As shown, Sinan’s tail latency prediction closely follows the ground
truth, and is able to react rapidly to fluctuations in the input load.

5.4 Incremental Retraining

We show the incremental retraining overheads of Sinan’s ML mod-
els in three different deployment scenarios with the Social Network
applications: switching to new server platforms (from the local
cluster to a GCE cluster), changing the number of replicas (scale
out factor) for all microservices except the backend databases (to
avoid data migration overheads), and modifying the application
design by introducing encryption in post messages uploaded by
users (posts are encrypted with AES [15] before being stored in the
databases). Instead of retraining the ML models from scratch, we
use the previously-trained models on the local cluster, and fine-tune
them using a small amount of newly-collected data, with the initial
learning rate A being 1x 107, ﬁ of the original A value, in order to
preserve the learnt weights in the original model and constrain the
new solution derived by the SGD algorithm to be in a nearby region
of the original one. The results are shown in Figure 13, in which the
y-axis is the RMSE and the x-axis is the number of newly-collected
training samples (unit being 1000). The RMSE values with zero
new training samples correspond to the original model’s accuracy
on the newly collected training and validation set. In all three sce-
narios the training and validation RMSE converge, showing that
incremental retraining in Sinan achieves high accuracy, without
the overhead of retraining the entire model from scratch.

In terms of new server platforms and different replica numbers,
the original model already achieve a RMSE of 33.23ms and 33.1ms
correspondingly, showing the generalizability of selected input
features. The RMSE of original model, when directly applied to the
modified application, is higher compared to the two other cases,

Sinan: ML-Based and QoS-Aware Resource Management for Cloud Microservices

GCE Replica AES
357 357 el 457
i ! a0\ |
g30 1 30 35\
o 25| 251 | 30
(2} . - » 25 | trai
E 20! tra|'n rmse | o) | tra{n rmse | rain rmse
! —— valid rmse I — validrmse | 207! —— valid rmse
15+ 15+ 15+
0 5 1015 20 25 30 0 2 4 6 8 10 O 3 6 9 12 15
kSamples
Figure 13: Training & validation RMSE of Fine-tunned

CNNs with different amounts of samples.

c 120

g g8

CPU Allocatio

20

Figure 14: Comparison of the average CPU allocation of four
request mixes for Social Network on GCE.

reaching 40.56ms. In all of the three cases, the validation RMSE is
siginificantly reduced with 1000 newly collected training samples
(shown by the dotted lines in each figure), which translates to 16.7
minutes of profiling time. The case of GCE, different replica number
and modified application stabilize with 5900 samples (1.6 hours of
profiling), 1800 samples (0.5 hour of profiling) and 5300 samples
(1.5 hours of profiling), and achieve training vs. validation RMSE
of 24.8ms vs. 25.2ms, 27.5ms vs. 28.2ms, and 28.4ms vs. 28.3ms
correspondingly.

5.5 Sinan’s Scalability

We now show Sinan’s scalability on GCE running Social Network.
We use the fine-tuned model described in Section 5.4. Apart from
the CNN, XGBoost achieves training and validation accuracy of
96.1% and 95.0%. The model’s size and speed remain unchanged,
since they share the same architecture with the local cluster models.

To further test Sinan’s robustness to workload changes, we ex-
perimented with four workloads for Social Network, by varying
request types. Some requests, like ComposePost involve the major-
ity of microservices, and hence are more resource intensive, while
others, like ReadUserTimeline involve a much smaller number of
tiers, and are easier to allocate resources for. We vary the ratio of
ComposePost:ReadHomeTimeline:ReadUserTimeline requests; the
ratios of the W0, W1, W2 and W3 workloads are 5:80:15, 10:80:10,
1:90:9, and 5:70:25, where W0 has the same ratio as the training set.
The ratios are representative of different social media engagement
scenarios [41]. The average CPU allocation and tail latency distri-
bution are shown in Figure 14 and Figure 15. Sinan always meets
QoS, adjusting resources accordingly. W1 requires the max com-
pute resources (170 vCPUs for 450 users), because of the highest
number of ComposePost requests, which trigger compute-intensive
ML microservices.

5.6 Explainable ML

For users to trust ML, it is important to interpret its output with
respect to the system it manages, instead of treating ML as a black
box. We are specifically interested in understanding what makes

177

ASPLOS 21, April 19-23, 2021, Virtual, USA

g 400
300
=

5 200
5100

*$<H “<@>$‘ $4l|l <+

0
w0 wl w2 w3 wO wl w2 w3 w0 wl w2 w3 w0 wl w2 w3
100 250 Users 350 450

Figure 15: 99° h percentile latency distribution for four work-

load types of Social Network on GCE, managed by Sinan.

some features in the model more important than others. The bene-
fits are threefold: 1) debugging the models; 2) identifying and fixing
performance issues; 3) filtering out spurious features to reduce
model size and speed up inference.

5.6.1 Interpretability Methods. For the CNN model, we adopt the
widely-used ML interpretability approach LIME [40]. LIME inter-
prets NNs by identifying their key input features which contribute
most to predictions. Given an input X, LIME perturbs X to obtain a
set of artificial samples which are close to X in the feature space.
Then, LIME classifies the perturbed samples with the NN, and uses
the labeled data to fit a linear regression model. Given that linear
regression is easy to interpret, LIME uses it to identify important
features based on the regression parameters. Since we are mainly
interested in understanding the culprit of the QoS violations, we
choose samples X from the timesteps where QoS violations occur.
We perturb the features of a given tier or resource by multiplying
that feature with different constants. For example, to study the
importance of MongoDB, we multiply its utilization history with
two constants 0.5 and 0.7, and generate multiple perturbed samples.
Then, we construct a dataset with all perturbed and original data
to train the linear regression model. Last, we rank the importance
of each feature by summing the value of their associated weights.

5.6.2 Interpreting the CNN. We used LIME to correct performance
issues in Social Network [26], where tail latency experienced pe-
riods of spikes and instability despite the low load, as shown by
the red line in Figure 16. Manual debugging is cumbersome, as it
requires delving into each tier, and potentially combinations of
tiers to identify the root cause. Instead, we leverage explainable
ML to filter the search space. First, we identify the top-5 most im-
portant tiers; the results are shown in the w/ Sync part of Table 4.
We find that the most important tier for the model’s prediction is
social-graph Redis, instead of tiers with heavy CPU utilization, like
nginx.

We then examine the importance of each resource metric for
Redis, and find that the most meaningful resources are cache and res-
ident working set size, which correspond to data from disk cached
in memory, and non-cached memory, including stacks and heaps.
Using these hints, we check the memory configuration and statis-
tics of Redis, and identify that it is set to record logs in persistent
storage every minute. For each operation, Redis forks a new process
and copies all written memory to disk; during this it stops serving
requests.

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 4: Top-5 most critical tiers and resources for QoS
with/without log synchronization in Social Network — SGrf
and WUsr are social graph and write user, respectively.

. SGrf post WUsr SGrf
Tiers Redis storage timeline MongoDB SGrf
w/ Weights 5109.9 1609.8 1503.1 849.7 482.7
Syne Resource cache CPU received
e . RSS # of cores e
utilization memory utilization packets
Weights 15181.9 1576.1 658.5 322.7 20.0
y Ti WUsr WUsr SGrf SGrf SGrf
S‘;: ‘fc rers timeline rabbitmq MongoDB v Redis
Weights 3948.6 3601.6 1794.0 600.9 451.7
—— With Sync
80| — Wwithout Sync
n
E
360
c
9]
=
240,
3
2
220
[im}
100 200 300 400 500 600
Time (s)

Figure 16: Tail latency for the Social Network application
when Redis’s logging is enabled (red) and disabled (blue).
Sinan identified Redis as the source of unpredictable perfor-
mance, and additionally determined the resources that were
being saturated, pointing to the issue being in Redis’s log-
ging functionality. Disabling logging significanly improved
performance, which is also reflected in that tier’s impor-
tance, as far as meeting QoS is concerned, being reduced.

Disabling the log persistence eliminated most of the latency
spikes, as shown by the blue line in Figure 16. We further analyze
feature importance in the model trained with data from the modified
Social Network, and find that the importance of social-graph Redis
is significantly reduced, as shown in the w/o Sync part of Table 4,
in agreement with our observation that the service’s tail latency is
no longer sensitive to that tier.

6 RELATED WORK

We now review related work on microservices, cloud management,
and the use of machine learning in cloud systems.

Microservices: The emergence of microservices has prompted
recent work to study their characteristics and system implica-
tions [24, 26, 38]. DeathstarBench [26] and uSuite [46] are two
representative microservice benchmark suites. DeathStarBench in-
cludes several end-to-end applications built with microservices, and
explores the system implications of microservices in terms of server
design, network and OS overheads, cluster management, program-
ming frameworks, and tail at scale effects. uSuite also introduces
a number of multi-tier applications built with microservices and
studies their performance and resource characteristics. Urgaonkar
et al. [50] introduced analytical modeling to multi-tier applications,

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou

178

which accurately captured the impact of aspects like concurrency
limits and caching policies. The takeaway of all these studies is that,
despite their benefits, microservices change several assumptions
current cloud infrastructures are designed with, introducing new
system challenges both in hardware and software.

In terms of resource management, Wechat [53] manages mi-
croservices with overload control, by matching the throughput of
the upstream and downstream services; PowerChief [52] dynami-
cally power boosts bottleneck services in multi-phase applications,
and Suresh et al. [47] leverage overload control and adopt deadline-
based scheduling to improve tail latency in multi-tier workloads.
Finally, Sriraman et al. [45] present an autotuning framework for
microservice concurrency, and show the impact of threading deci-
sions on application performance and responsiveness.

Cloud resource management: The prevalence of cloud comput-
ing has motivated many cluster management designs. Quasar [18,
19], Mesos [29], Torque [49], and Omega [43] all target resource al-
location in large, multi-tenant clusters. Quasar [19] is a QoS-aware
cluster manager that leverages machine learning to identify the
resource preferences of new, unknown applications, and allocate
resources in a way that meets their performance requirements
without sacrificing resource efficiency. Mesos [29] is a two-level
scheduler that makes resource offers to different tenants, while
Omega [43] uses a shared-state approach to scale to larger clusters.
More recently, PARTIES [11] leveraged the intuition that resources
are fungible to co-locate multiple interactive services on a server,
using resource partitioning. Autoscaling [37] is the industry stan-
dard for elastically scaling allocations based on utilization [8-10].
While all these systems improve the performance and/or resource
efficiency of the cloud infrastructures they manage, they are de-
signed for monolithic applications, or services with a few tiers, and
cannot be directly applied to microservices.

ML in cloud systems: There has been growing interest in leverag-
ing ML to tackle system problems, especially resource management.
Quasar leverages collaborative filtering to identify appropriate re-
source allocations for unknown jobs. Autopilot [42] uses an ensem-
ble of models to infer efficient CPU and memory job configurations.
Resource central [14] characterizes VM instance behavior and trains
a set of ML models offline, which accurately predict CPU utilization,
deployment size, lifetime, etc. using random forests and boosting
trees. Finally, Seer [25] presented a performance debugging system
for microservices, which leverages deep learning to identify pat-
terns of common performance issues and to help locate and resolve
them.

7 CONCLUSION

We have presented Sinan, a scalable and QoS-aware resource man-
ager for interactive microservices. Sinan highlights the challenges
of managing complex microservices, and leverages a set of validated
ML models to infer the impact allocations have on end-to-end tail la-
tency. Sinan operates online and adjusts its decisions to account for
application changes. We have evaluated Sinan both on local clusters
and public clouds GCE) across different microservices, and showed
that it meets QoS without sacrificing resource efficiency. Sinan
highlights the importance of automated, data-driven approaches
that manage the cloud’s complexity in a practical way.

Sinan: ML-Based and QoS-Aware Resource Management for Cloud Microservices

ACKNOWLEDGMENTS

We sincerely thank Ana Klimovic for her valuable feedback while
shepherding our paper. We also sincerely thank Shuang Chen, Yuan
Zhou, Yu Gan, Neeraj Kulkarni, Mingyu Liang, Nikita Lazarev, and
the anonymous reviewers for their feedback on earlier versions
of this manuscript. This work was in part supported by an NSF
CAREER Award CCF-1846046, NSF grant NeTS CSR-1704742, a
Sloan Research Fellowship, a Microsoft Research Fellowship, an
Intel Faculty Rising Star Award, a Facebook Research Faculty Award,
and a John and Norma Balen Sesquisentennial Faculty Fellowship.

A ARTIFACT APPENDIX
A.1 Abstract

This appendix contains the information needed to reproduce the
main experiments in Sinan, which include the results for the on-
line resource management deployment. The results reproduced
during the artifact evaluation process used the large-scale
google compute (GCP) version of the artifact, due to the ex-
perimental setting for the local version being difficult to reproduce
on a different cluster equipment and topology.

A.2 Artifact Checklist (meta-information)

o Algorithm: An algorithm for generating training data that
is used by Sinan to determine per-microservices resource
allocations.

e Program: Modified version of the DeathstarBench suite;
focusing on the Social Network and Hotel Reservation ap-
plications.

e Model: Included in the artifact.

e Data set: Scripts for generating the training dataset are
included with the artifact.

¢ Run-time environment: 1. Google Cloud Platform (GCP)
experiments: Google Cloud SDK is required. 2. Local experi-
ments: Ubuntu 18.04, docker 19.03, docker-ce 20.10, MXnet
and XGBoost are required.

e Hardware: Local experiments: a cluster with at least two
servers, each with 88 cores (Intel E5-2660 v3@2.60GHz) for
service deployment, and a GPU server (a NVidia Titan XP
GPU) for model training and online inference. For the pur-
pose of reproducing the paper’s results, a cluster with at
least an equal amount of resources to those specified above
is recommended to avoid cross-tier interference.

e Execution: 1. Google Cloud Platform (GCP) experiments:
deployment experiments take approximately 4 hours for the
provided applications. 2. Local experiments: data collection
takes 16 hours for Social Network and 9 hours for Hotel
Reservation. Deployment experiments take around 4 hours
for each application.

e Metrics: CPU usage and end-to-end tail latencies, collected
periodically over the execution’s duration.

e Output: Execution logs of the system’s performance and re-
source utilization, including the CPU usage and tail latencies
previously mentioned. Log processing scripts are included
in the artifact.

179

ASPLOS 21, April 19-23, 2021, Virtual, USA

e Experiments: Short cut scripts for reproducing results are
included in the artifact.

e Publicly available: Yes

e Archived: 10.5281/zenodo.4537132

A.3 Description

A.3.1 How to Access. Please visit https://github.com/zyqCSL/sinan-
gep for the software implementation needed for the Google Cloud
Platform (GCP) experiments, and https://github.com/zyqCSL/sinan-
local for the software implementation needed for the local experi-
ments.

A.3.2 Hardware Dependencies. For local experiments, we provide
a configuration using two servers each with 88 cores (Intel E5-2660
v3@2.60GHz) to deploy the applications Sinan is evaluated with.
A GPU server (a NVidia Titan XP GPU) is also required for model
training and online inference. In order to reproduce the results
locally, a cluster with no less CPU resources than the ones described
above is recommended. If fewer resources are availale, you will need
to lower the input load using the provided workload generators,
and scale down each microservice’s container accordingly.

A.3.3 Software Dependencies. For experiments on Google Cloud
Platform (GCP), the Google Cloud SDK is required. For local exper-
iments, Ubuntu 18.04, docker 19.03, docker-ce 20.10, MXnet and
XGBoost are required.

A.3.4 Datasets. The scripts to generate the datasets used for train-
ing Sinan are included in the artifact. Information on how to use
the scripts is included in the artifact’s README file.

A.3.5 Models. The models are included in the subumitted repo.
Please check the README of the artifact for more information.

A.4 Installation

For the Google Cloud Platform (GCP) experiments, Google Cloud
SDK is required. Please follow the guidelines in https://cloud.google.
com/sdk/docs/how-to to install it. Initialization and software de-
pendencies are automatically installed using the VM setup scripts
provided in the artifact. For the local experiments, please use servers
with Ubuntu 18.04, docker 19.03 and docker-ce 20.10 installed.
Sinan’s inference engine also requires MXNet and XGBoost in-
stalled. For interested readers, we refer you to the README of the
local version of the artifact for more details.

A.5 Experiment Workflow

The workflow first generates the training dataset used by Sinan
to infer per-tier resource allocations. It then deploys the target
application on the local or Google Compute Platform (GCP) cluster,
and launches Sinan’s inference engine on the GPU server, which
continuously determines the probabilities for QoS violations, and
the required resource allocations per microservice. Please check
the README of the artifact for more details on the experiment
workflow.

A.6 Evaluation and Expected Results

The expected results are execution logs of the system, which in-
cludes CPU usage and end-to-end tail latencies of the managed

ASPLOS 21, April 19-23, 2021, Virtual, USA

applications, collected periodically over time. The data processing
scripts are included in the artifact, and are responsible for comput-
ing the average CPU usage and tail latency distribution throughout
the duration of an experiment. They also generate the figures show-
ing the CPU usage and end-to-end tail latency over time. Expected
results are shown in the paper. Specifically, for Google Cloud Plat-
form (GCP) experiments, please check Figure 14 and Figure 15 for
the average CPU measurements and the tail latency distributions.
For the local experiments, please check the data labeled with “Sinan”
in Figure 11. Results for the diurnal pattern can be compared against
Figure 12 in the paper.

REFERENCES

(1]

[12]

(13

[17]

(18]

[19

[20

[
=

[22]

[23]

Decomposing twitter: Adventures in service-oriented architecture.
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-
serviceoriented-architecture.

Docker containers. https://www.docker.com/.

Locust. https://locust.io/.

Step and simple scaling policies for amazon ec2 auto scaling. https://docs.aws.
amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html.

Why grpce? https://grpc.io/.

The evolution of microservices. https://www.slideshare.net/adriancockcroft/
evolution- of-microservices-craft-conference, 2016.

Microservices workshop: Why, what, and how to get there. http://www.slideshare.
net/adriancockcroft/microservices-workshop- craft-conference.

Autoscale. https://cwiki.apache.org/cloudstack/autoscaling.html.

Aws autoscaling. http://aws.amazon.com/autoscaling/.

Jeffrey Chase, Darrell Anderson, Prachi Thakar, Amin Vahdat, and Ronald Doyle.
Managing energy and server resources in hosting centers. In Proceedings of SOSP.
Banff, CA, 2001.

Shuang Chen, Christina Delimitrou, and José F Martinez. Parties: Qos-aware
resource partitioning for multiple interactive services. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 107-120. ACM, 2019.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 785-794, New York, NY, USA, 2016.
ACM.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and effi-
cient machine learning library for heterogeneous distributed systems. CoRR,
abs/1512.01274, 2015.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. Resource central: Understanding and predicting workloads
for improved resource management in large cloud platforms. In Proceedings of
the 26th Symposium on Operating Systems Principles, pages 153-167. ACM, 2017.
Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

Christina Delimitrou, Nick Bambos, and Christos Kozyrakis. QoS-Aware Admis-
sion Control in Heterogeneous Datacenters. In Proceedings of the International
Conference of Autonomic Computing (ICAC). San Jose, CA, USA, 2013.

Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-Aware Scheduling
for Heterogeneous Datacenters. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Houston, TX, USA, 2013.

Christina Delimitrou and Christos Kozyrakis. Quality-of-Service-Aware Schedul-
ing in Heterogeneous Datacenters with Paragon. In IEEE Micro Special Issue on
Top Picks from the Computer Architecture Conferences. May/June 2014.

Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-Efficient and
QoS-Aware Cluster Management. In Proceedings of the Nineteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Salt Lake City, UT, USA, 2014.

Christina Delimitrou and Christos Kozyrakis. HCloud: Resource-Efficient Provi-
sioning in Shared Cloud Systems. In Proceedings of the Twenty First International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), April 2016.

Christina Delimitrou and Christos Kozyrakis. Bolt: I Know What You Did Last
Summer... In The Cloud. In Proc. of the Twenty Second International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2017.

Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. Tarcil: Reconciling
Scheduling Speed and Quality in Large Shared Clusters. In Proceedings of the

Sixth ACM Symposium on Cloud Computing (SOCC), August 2015.
Peter] Denning. The working set model for program behavior. Communications

of the ACM, 11(5):323-333, 1968.

180

[24]

[25]

[26]

[27

[28

[29

[30

w
—

(32

[33

[34

[36

[37

(38]

@
20,

[40

[41]

[42

[43

[44

[45

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina Delimitrou

Yu Gan and Christina Delimitrou. The Architectural Implications of Cloud
Microservices. In Computer Architecture Letters (CAL), vol.17, iss. 2, Jul-Dec 2018.
Yu Gan, Meghna Pancholi, Dailun Cheng, Siyuan Hu, Yuan He, and Christina
Delimitrou. Seer: leveraging big data to navigate the complexity of cloud de-
bugging. In Proceedings of the 10th USENIX Conference on Hot Topics in Cloud
Computing, pages 13—-13. USENIX Association, 2018.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan
Wang, Leon Zaruvinsky, Mateo Espinosa, Yuan He, and Christina Delimitrou.
An open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 3-18. ACM, 2019.

John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit allocation
indices. John Wiley & Sons, 2011.

Kristina Gligori¢, Ashton Anderson, and Robert West. How constraints affect
content: The case of twitter’s switch from 140 to 280 characters. In Twelfth
International AAAI Conference on Web and Social Media, 2018.

Ben Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph,
Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained
resource sharing in the data center. In Proceedings of NSDI Boston, MA, 2011.
Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a
social network or a news media? In Proceedings of the 19th international conference
on World wide web, pages 591-600. AcM, 2010.

Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. Energy-aware virtual machine
dynamic provision and scheduling for cloud computing. In Proceedings of the 2011
IEEE 4th International Conference on Cloud Computing (CLOUD). Washington,
DC, USA, 2011.

David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos
Kozyrakis. Towards energy proportionality for large-scale latency-critical work-
loads. In Proceedings of the 41st Annual International Symposium on Computer
Architecuture (ISCA). Minneapolis, MN, 2014.

David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. Heracles: Improving resource efficiency at scale. In Proc.
of the 42Nd Annual International Symposium on Computer Architecture (ISCA).
Portland, OR, 2015.

Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algo-
rithms as gradient descent. In Proceedings of the 12th International Conference on
Neural Information Processing Systems, NIPS’99, pages 512-518, Cambridge, MA,
USA, 1999. MIT Press.

David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber,
and Thomas F. Wenisch. Power management of online data-intensive services. In
Proceedings of the 38th annual international symposium on Computer architecture,
pages 319-330, 2011.

Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: Dis-
tributed, low latency scheduling. In Proceedings of SOSP. Farminton, PA, 2013.
Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. Auto-scaling web
applications in clouds: A taxonomy and survey. ACM Computing Surveys (CSUR),
51(4):73, 2018.

Joy Rahman and Palden Lama. Predicting the end-to-end tail latency of con-
tainerized microservices in the cloud. In IEEE International Conference on Cloud
Engineering, IC2E 2019, Prague, Czech Republic, June 24-27, 2019, pages 200-210.
IEEE, 2019.

Charles Reiss, Alexey Tumanov, Gregory Ganger, Randy Katz, and Michael
Kozych. Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proceedings of SOCC. 2012.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust
you?": Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, pages 1135-1144, 2016.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with inter-
active graph analytics and visualization. In AAAI 2015.

Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemys-
law Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, and John Wilkes. Autopilot: workload autoscaling at google. In
Proceedings of the Fifteenth European Conference on Computer Systems, pages
1-16, 2020.

Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
Omega: flexible, scalable schedulers for large compute clusters. In Proceedings of
EuroSys. Prague, Czech Republic, 2013.

Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale:
elastic resource scaling for multi-tenant cloud systems. In Proceedings of SOCC.
Cascais, Portugal, 2011.

Akshitha Sriraman and Thomas F. Wenisch. ptune: Auto-tuned threading for
OLDI microservices. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 177-194, Carlsbad, CA, October 2018. USENIX

Sinan: ML-Based and QoS-Aware Resource Management for Cloud Microservices

Association.
[46]

(IISWC), pages 1-12. IEEE, 2018.
2017 Symposium on Cloud Computing, pages 611-623. ACM, 2017.
Apache thrift. https://thrift.apache.org.

source/torque/.

SIGMETRICS Perform. Eval. Rev., 33(1):291-302, June 2005.

Akshitha Sriraman and Thomas F Wenisch. usuite: A benchmark suite for mi-
croservices. In 2018 IEEE International Symposium on Workload Characterization

Lalith Suresh, Peter Bodik, Ishai Menache, Marco Canini, and Florin Ciucu. Dis-
tributed resource management across process boundaries. In Proceedings of the
Torque resource manager. http://www.adaptivecomputing.com/products/open-

Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser
Tantawi. An analytical model for multi-tier internet services and its applications.

181

(51]

[52

(53]

ASPLOS 21, April 19-23, 2021, Virtual, USA

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. Large-scale cluster management at Google with Borg. In
Proceedings of the European Conference on Computer Systems (EuroSys), Bordeaux,
France, 2015.

Hailong Yang, Quan Chen, Moeiz Riaz, Zhongzhi Luan, Lingjia Tang, and Jason
Mars. Powerchief: Intelligent power allocation for multi-stage applications
to improve responsiveness on power constrained cmp. In Proceedings of the
44th Annual International Symposium on Computer Architecture, ISCA *17, page
133-146, New York, NY, USA, 2017. Association for Computing Machinery.
Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu, Rui Gu,
Beng Chin Ooi, and Junfeng Yang. Overload control for scaling wechat microser-
vices. In Proceedings of the ACM Symposium on Cloud Computing, pages 149-161.
ACM, 2018.

