
Dagger: Efficient and Fast RPCs in Cloud Microservices with
Near-Memory Reconfigurable NICs

Nikita Lazarev
Cornell University

Ithaca, New York, USA
nl524@cornell.edu

Shaojie Xiang
Cornell University

Ithaca, New York, USA
sx233@cornell.edu

Neil Adit
Cornell University

Ithaca, New York, USA
na469@cornell.edu

Zhiru Zhang
Cornell University

Ithaca, New York, USA
zhiruz@cornell.edu

Christina Delimitrou
Cornell University

Ithaca, New York, USA
delimitrou@cornell.edu

ABSTRACT

The ongoing shift of cloud services from monolithic designs to mi-

croservices creates high demand for efficient and high performance

datacenter networking stacks, optimized for fine-grained work-

loads. Commodity networking systems based on software stacks

and peripheral NICs introduce high overheads when it comes to

delivering small messages.

We present Dagger, a hardware acceleration fabric for cloud

RPCs based on FPGAs, where the accelerator is closely-coupled

with the host processor over a configurable memory interconnect.

The three key design principle of Dagger are: (1) offloading the

entire RPC stack to an FPGA-based NIC, (2) leveraging memory

interconnects instead of PCIe buses as the interface with the host

CPU, and (3) making the acceleration fabric reconfigurable, so it

can accommodate the diverse needs of microservices. We show

that the combination of these principles significantly improves the

efficiency and performance of cloud RPC systems while preserving

their generality. Dagger achieves 1.3 − 3.8× higher per-core RPC

throughput compared to both highly-optimized software stacks,

and systems using specialized RDMA adapters. It also scales up to

84 Mrps with 8 threads on 4 CPU cores, while maintaining state-of-

the-art `s-scale tail latency. We also demonstrate that large third-

party applications, like memcached and MICA KVS, can be easily

ported on Dagger with minimal changes to their codebase, bringing

their median and tail KVS access latency down to 2.8 − 3.5 us and

5.4 − 7.8 us, respectively. Finally, we show that Dagger is beneficial

for multi-tier end-to-end microservices with different threading

models by evaluating it using an 8-tier application implementing a

flight check-in service.

CCS CONCEPTS

• Hardware → Networking hardware; • Networks → Cloud

computing; Programmable networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19–23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446696

KEYWORDS

End-host networking, cloud computing, datacenters, RPC frame-

works, microservices, smartNICs, FPGAs, cache-coherent FPGAs

ACM Reference Format:

Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delim-

itrou. 2021. Dagger: Efficient and Fast RPCs in Cloud Microservices with

Near-Memory Reconfigurable NICs. In Proceedings of the 26th ACM Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’21), April 19–23, 2021, Virtual, USA. ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3445814.3446696

1 INTRODUCTION

Modern cloud applications are increasingly turning to the microser-

vices programming model to improve their agility, elasticity, and

modularity [2, 3, 16, 31–34, 55, 56, 60]. Microservices break complex

monolithic applications, which implement the entire functionality

as a single service, into many fine-grained and loosely-coupled

tiers. This improves design modularity, error isolation, and facili-

tates development and deployment. However, since microservices

communicate with each other over the network, they also intro-

duce significant communication overheads [33, 54]. Given that

individual microservices typically involve a small amount of com-

putation, networking ends up being a large fraction of their overall

latency [33, 55]. Furthermore, since microservices depend on each

other, performance unpredictability due to network congestion

can propagate across dependent tiers and degrade the end-to-end

performance [17, 25, 34, 37, 43].

Microservices typically communicate with each other over Re-

mote Procedure Calls (RPC) [5, 13, 15]. Unfortunately, existing

RPC frameworks were not designed specifically for microservices,

whose network requirements and traffic characteristics differ from

traditional cloud applications, and therefore introduce significant

overheads to their performance. The strict latency requirements,

fine-grained requests, wide diversity, and frequent design cadence

of microservices put a lot of pressure on the network system, and

makes rethinking networking with microservices in mind a press-

ing need. Most of the existing commercial RPC frameworks are

implemented on top of commodity OS networking, such as Linux

TCP/IP. While this ensures generality, such systems suffer from

considerable overheads across all levels of the system stack [23, 54].

These overheads accumulate over deep microservice call paths,

36

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

and result in end-to-end QoS violations. While this affects all mi-

croservices, it is especially challenging for interactive tiers, which

optimize for low tail latency, instead of average throughput.

The past decade has seen increased interest both from academia

and industry for lower latency and higher throughput networking

systems. One line of work focuses on optimizing transport pro-

tocols [19, 20, 36, 46], while another moves networking to user

space [4, 23, 36, 38], or offloads it to specialized adapters [27, 35, 40,

45, 47]. Network programmability has also gained traction through

the use of SmartNICs [24, 29, 44] to tune the network configuration

to the performance requirements of target applications. Despite the

performance and efficiency benefits of these approaches, they are

limited in the type of interfaces they use between the host CPU

and the NIC. Almost all commercially available NICs are viewed by

the processor as PCIe-connected peripheral devices. Unfortunately,

PCIe interconnects require multiple bus transactions, memory syn-

chronizations, and expensive MMIO requests for every request to

the NIC [18, 30, 39, 49]. As a result, the per-packet overhead in

these optimized systems is still high; this is especially noticeable

for fine-grained workloads with deep call paths, like microservices.

This paper presents Dagger, an FPGA-based reconfigurable RPC

stack integrated into the processor’s memory subsystem over a

NUMA interconnect. Integrated and near-memory NICs have al-

ready shown promise in reducing the overheads of PCIe, and im-

proving networking efficiency [18, 50, 59]. However, prior inte-

grated NICs are based on ASICs that lack reconfigurability, and

require taping out custom chips, which is expensive and time con-

suming for frequently-changing networking configurations at dat-

acenter scale. Widely-used RPC stacks for microservices, such as

Thrift RPC [15], gRPC [13], offer a rich variety of transport options,

(de)serialization methods, and threading models. Hardware-based

RPC stacks can only be practical in the context of microservices if

they allow the same flexibility. To this end, we propose an integrated

and reconfigurable FPGA-accelerated networking fabric, capable of

supporting realistic and end-to-end RPC frameworks.

Dagger is based on three key design principles: (1) The NIC im-

plements the entire RPC stack in hardware, while the software is

only responsible for providing the RPC API. This way, we remove

CPU-related overheads from the critical path of RPC flows, and free

more CPU resources for the high concurrency of microservices. (2)

Dagger leverages memory interconnects to communicate with the

processor. We show that in contrast to PCIe protocols that were

initially designed for the Producer-Consumer dataflow pattern,

memory interconnects offer a better communication model that is

especially beneficial for transferring ready-to-use RPC objects. We

also argue that integrating NICs via memory interconnects is more

practical than previously-proposed methods of closely-coupling

NICs with CPUs, since processors today come with exposed mem-

ory busses, with the next generation of server-class CPUs already

offering dedicated peripheral memory interconnects [12]. (3) Finally,

Dagger is based on an FPGA, so its design is fully programmable.

This allows it to adjust to the performance and resource require-

ments of a given microservice.

We build Dagger on an Intel Broadwell CPU/FPGA hybrid ar-

chitecture, similar to those available in public clouds, such as Intel

HARP. We show that offloading the entire RPC stack to hardware

enables better CPU efficiency, which results in higher per-core

RPC throughput and lower request latency. In addition, we demon-

strate the benefits of closely-coupling hardware RPC stacks with

applications through memory interconnects. Dagger improves the

per-core RPC throughput up to 1.3-3.8× compared to prior work,

based on both optimized software RPC frameworks [38] and spe-

cialized hardware adapters [40]. Dagger reaches 12.4 - 16.5 Mrps

of per core throughput, and it scales up to 42 Mrps with only 4

physical threads on two CPU cores, while achieving state-of-the-art

`s-scale end-to-end latency.

In addition, we show that Dagger can be easily integrated into ex-

isting datacenter applications with minor changes to the codebase.

Our experiments with memcached and MICA KVS using Dagger

as the communication layer show that it achieves median and 99Cℎ

percentile tail latency of 3.2 and 7.8 us respectively for memcached

and 3.5 us and 5.7 us for MICA, while also achieving a throughput

of 5.2 Mrps [6] on a single core. This result is 11.4× lower than

the latency of memcached over a native transport based on the

Linux kernel networking, and 4.4 − 5.2× lower than of MICA over

a highly-optimized, DPDK-based user space networking stack. Fi-

nally, we demonstrate that Dagger can accommodate multi-tier

microservice applications with diverse requirements and threading

models by porting an 8-tier Flight Registration service on top of

Dagger, and showing significant performance benefits compared to

native execution.

2 RELATED WORK

Designing low-latency networking systems including optimizations

for small requests is not a new problem. Both industry and academia

have contributed various proposals to this end. In this section, we

briefly review prior work on networking acceleration, and discuss

how it resembles and differs from our proposal. We classify related

work into three categories: (1) software solutions, (2) systems lever-

aging specialized commercial hardware adapters, and (3) proposals

of new hardware architectures for efficient networking.

Software-based solutions: At the software level, most research

has focused on transport protocol optimizations for low latency

and/or high throughput [19, 20, 36, 46, 48]. This includes optimizing

the congestion control mechanisms, flow scheduling, connection

management, etc. In addition to transport optimizations, some pro-

posals also suggest moving networking from the kernel to user

space by leveraging, for example, DPDK [11, 23, 36, 41, 46] or raw

NIC driver APIs [38]. Although these proposals demonstrate their

efficiency in improving the performance of datacenter networks,

they are still subject to system overheads due to their software-only

and CPU-based implementation.

Specialized commercial adapters: As an alternative to software/

algorithmic-only optimizations, another line of work proposed to

leverage RDMA hardware to offload network processing to special-

ized adapters, and use the remote memory abstraction to implement

higher-level communication primitives, such as RPCs [27, 40, 57].

This approach improves CPU efficiency, and as a consequence also

incurs lower latency and higher throughput. Despite this, there

are two main issues with existing RDMA-related work. First, prior

work does not implement a fully-offloaded RPC protocol; commod-

ity RDMA adapters only offload the networking part, i.e., up to

the transport layer and RDMA protocols, keeping the execution of

37

Dagger: Efficient and Fast RPCs in Cloud Microservices with Near-Memory Reconfigurable NICs ASPLOS ’21, April 19–23, 2021, Virtual, USA

hardware, and is programmable via hard configuration. Note that

the number of flows need not necessarily be equal to the number

of CPU cores. However, in the basic scheme, shown in Figure 7, the

number of NIC flows is decided based on the number of logical CPU

cores, such that each core gets a dedicated parallel flow on the NIC.

Similarly to FaRM, Dagger runs RPC handlers in dispatch threads

to avoid inter-thread communication overheads. Also, with a small

change in software, it can be configured to run RPC handlers in

separate worker threads if required for long-running RPCs; this

does not require any hardware changes.

Our threading model allows opening an arbitrary number of

connections on each RpcClient. In this case, the connections on

a certain RpcClient share the same RX/TX ring, so following the

RDMA terminology, Dagger implements the Shared Receive Queue

(SRQ) model [58]. Note that with the programmable threading

model, Dagger can be configured to run in a single flowmode with a

single RX/TX ring shared between multiple CPU cores. This enables

models similar to [26] which target addressing load imbalance. At

the other extreme, provisioning flows and rings on a per-connection

basis is also possible, although such a scheme scales poorly and

suffers from high load imbalance.

Dagger manages connections entirely in hardware which further

reduces CPU load and improves the look-up of connection infor-

mation for active flows. The NIC includes the Connection Manager

(CM) module, as shown in Figure 6. The connection table inter-

face maps connection IDs (c_id) onto tuples <src_flow, dest_addr,

load_balancer>. The src_flow field specifies the ID of the flow re-

ceiving requests from the client. The NIC reads this information

to ensure that the responses are steered to the same flows where

requests came from. The dest_addr and load_balancer fields define

the address of the destination host and preferred load balancing

scheme for requests withing this connection.

The CM is designed as a simple direct-mapped cachewith specific

memory organization. In order to make the cache access concurrent

and avoid stalls in the RPC flows, the cache breaks the above inter-

face tuple into three tables indexed by the
⌈

;>6(#)
⌉

LSBs (where N

is the table size) of the connection ID providing 1W3R functionality.

This is required because at the same time (cycle), three independent

hardware agents might read from the cache: the RPC outgoing flow

(to get the destination credentials), the incoming flow (to get the

flow or load balancer), and the CM itself (to open and close connec-

tions). The size N of the cache is adjustable with hard configuration

and can be chosen based on the expected number of connections

the application might open. If some application requires many con-

nections, N can be set to a high value giving more connection

cache space to this application in favor of other NIC memory struc-

tures. Given the available size of FPGA on-chip memory (53Mb

total minus 8.8Mb in the green region) and the size of the current

connection tuple (8-12B)x3, the FPGA can be configured to cache

at most 153K connections; sufficient for most application scenarios.

In addition, the connection cache can be easily backed by DRAM

(either externally attached to the FPGA or by the host DRAM) to al-

low more connections with certain performance penalty due to NIC

cache misses. Although this functionality is not yet implemented

in our current design, we plan to integrate it as part of future work

(see the red lines in Figure 6).

4.3 NUMA Interconnects as NIC Interfaces

PCIe links have acted as the default NIC I/O interfaces for the

past several decades. Despite the bus being a standard peripheral

interconnect in any modern processor, a lot of prior work has

shown that PCIe is not efficient as a NIC I/O interface [30, 49]. The

inefficiency is mainly introduced in the transmission path, when

the NIC is fetching network packets from the host memory. In

the simplest case, commercial NICs use DMA transfers initiated

by MMIO doorbell transactions to read packet descriptors and

payloads from the software buffers; an approach known as the

doorbell method [39].

However, the naïve doorbell scheme experiences inefficiencies

when targeting small requests. The MMIO transactions are slow,

mainly because they are implemented as non-cacheable writes,

and expensive: every MMIO request should be explicitly issued by

the processor. To reduce the overhead of MMIOs, modern high-

performance NICs, such as Mellanox RDMA NICs, implement door-

bell batching [39], an optimizations that allows grouping multi-

ple requests into a single DMA transaction initiated with a single

MMIO. While this solution noticeably increases the performance of

doorbells, it still relies on MMIO messages and is only applicable

when requests can be aggressively batched, which is not always

possible for latency-sensitive flows. Another proposal [30] suggests

eliminating DMAs, and transferring data only using MMIOs when

requests fit in the MMIO’s MTU, usually 1 cache line. This improves

latency since data are transferred within a single transaction, how-

ever, performance is still limited by the low throughput of MMIOs,

and during high load, this can overload the processor.

The fundamental limitation of PCIe protocols is that their design

is primarily geared towards Producer-Consumer dataflow mod-

els [12]. The standard doorbell model works well under streaming

flows and large data transfers. However, RPC requests do not always

conform to such patterns. As we showed in Section 3, RPC sizes in

microservices, and in other datacenter applications [46], are small,

ranging from a few bytes and up to few kilo-bytes. In addition, the

strict latency requirements of interactive services often disqualify

batching, forcing NICs to handle fine-grained data chunks rather

than streaming flows. This issue is further exacerbated when RPC

frameworks do not just send requests, but also involve some amount

of data processing. For example, Thrift RPC was designed to work

with complex data objects that are not uniform in memory; for ex-

ample, they might contain nested structures and references to other

objects. In this case, RPCs must be (de)serialized [54], with existing

PCIe models being very inefficient in fetching such non-uniformly

placed objects. The standard doorbells used in all PCIe-attached

NICs require expensive and CPU-inefficient data transformations

before sending data to the NIC [54].

The main insight in leveraging memory interconnects as the

NIC I/O is that they allow data transfers to be handled entirely in

hardware. The memory consistency state machines (NUMA cache

coherence protocols) implemented as a part of the processor’s mem-

ory subsystem are designed to provide efficient and fast data flows

between coherent agents; processors, or more generally, NUMA

nodes. Making the NIC act as another NUMA node would allow it

to closely integrate its I/O into the processor’s memory subsystem,

therefore providing a pure hardware CPU-NIC interface without

42

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

Table 1: Implementation specifications of Dagger NIC.

Parameter Value

CPU-NIC interface clock frequency, MHz 200 - 300

RPC unit clock frequency, MHz 200

Transport clock frequency, MHz 200

Max number of NIC flows 1 512

FPGA resource usage, LUT (K) 2 87.1 (20%)

FPGA resource usage, BRAM blocks (M20K)2 555 (20%)

FPGA resource usage, registers (K) 2 120.8
1 Assuming 65K entries in the connection cache and ensuring the FPGA
BRAM and logic utilization do not exceed 50%

2 Including the blue region; UPI-based NIC I/O with 64 NIC flows and 65K
entries in the connection cache

CPU integrated with an Arria 10 GX1150 FPGA. The hardware part

(Dagger NIC) is written in SystemVerilog using the Intel OPAEHDK

library. The software part is designed in C++11 and is compiled by

GCC under under the O3 optimization level. The Dagger IDL code

generator is written in Python 3.7. The software modules of our

RPC stack run in user space, and the NIC buffers are allocated by

the FPGA driver in the application virtual address space. The most

important implementation parameters of the Dagger NIC design

are summarized in Table 1.

4.7 Limitations

An important limitation of the current design is the lack of support

for efficient RPC reassembling to enable transfer of requests larger

than the cache line size. In contrast to PCIe DMA, memory inter-

connects implement relaxed memory consistency models, which is

one of the key reasons behind their efficiency. Therefore, the MTU

of a typical memory interconnect is only a single cache line [59].

A naïve solution to address the issue of sending larger RPCs is to

reassemble requests in software. However, this will introduce CPU

overheads and violate our first design principle. Another solution,

as proposed in NeBuLa, leverages Content Addressable Memory

(CAM) for on-chip reassembling in hardware. Unfortunately, CAMs

are expensive in terms of area and energy, and it is challenging to

implement them with low overheads on an FPGA. Efficient RPC

reassembling in hardware is a challenging issue, and we plan to

address it as part of future work. As of now, Dagger only features

software-based RPC reassembling.

5 EVALUATION

5.1 Methodology

We evaluate Dagger along five dimensions. First, we compare Dag-

ger with prior work on efficient RPC processing based on user-space

networking and RDMA. Second, we evaluate different CPU-NIC

interfaces and show the performance benefits of memory inter-

connects over PCIe. Third, we show how Dagger scales with the

number of CPU threads. In addition, we demonstrate that Dagger

can be easily integrated with existing datacenter applications, such

as memcached and MICA, offering dramatic latency improvement

under realistic workloads. Finally, we run a simple microservice

application on top of Dagger showing that our RPC stack is indeed

suitable for multi-tier systems. Table 2 shows the specification of

the hardware platform used.

Table 2: Hardware specifications of experimental platform.

CPU: Intel Xeon E5-2600v4

Cores
12 cores (OOO), 2 threads per core,

2.4 GHz, 14 nm

LLC 30720 kB, 64 B

Additional features AVX-2, DDIO, VT-x

OS
CentOS Linux,

Kernel Linux 3.10.0

Interconnect: CCI-P: 2x PCIe and 1x UPI

PCIe
Gen3x8, 7.87 GB/s, 2 links,

total bandwidth 15.74 GB/s

UPI
9.6 GT/s (19.2 GB/s), 1 link,

total bandwidth 19.2 GB/s

FPGA: Arria 10 GX1150

Max frequency 400 MHz

Due to the limitation on the number of FPGA-enabled machines

on the Intel vLab cluster, we instantiate two identical Dagger NICs

on the same FPGA and connect them to each other via a loop-back

network. We then give the NICs fair round-robin access to the CCI-

P bus by multiplexing it. Note that since the main contribution of

Dagger is in CPU-NIC interface and the RPC pipeline, the absence

of physical networking does not affect our findings.

5.2 Performance Comparison across RPC
Platforms

We compare the performance of Dagger’s RPC acceleration fabric

with four related proposals, based on DPDK user-space networking

IX [23], raw user-space networking eRPC [38], RDMA FaSST [40],

and the in-memory integrated NIC NetDIMM [18]. Table 3 shows

the median round trip latency and the throughput achieved by each

system. We also show the TOR (Top of Rack) delay assumed in each

work, the size of the being transferred objects, and their type. Note

that if the object type is “msg”, this means that the system does

not implement the RPC layers of the networking stack, and the

reported results do not include the overhead of RPC processing.

Table 3: Median round trip time (RTT) and through-

put of single-core RPCs compared to related work 1.

IX FaSST eRPC
Net-

DIMM
Dagger

Objects
64B

msg

48B

RPC

32B

RPC

64B

msg

64B

RPC

TOR

delay
N/A 0.3 us 0.3 us 0.1 us 0.3 us

RTT, us 11.4 2.8 2.3 2.2 2.1

Thr.,

Mrps
1.5 4.8 2 4.96 2 N/A 12.4

1 Performance numbers are provided from corresponding papers
2 Recorded in symmetric experimental settings

As seen from Table 3, Dagger shows 1.3 − 2.5× (depending on

experimental settings) higher per-core RPC throughput than the

RDMA-based solution, FaSST, and the DPDK-based eRPC. The gain

partially comes from offloading the entire RPC stack on hardware

and leaving only a single memory write in the critical RPC path

45

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

tiers by applying the hash function to each request’s key on the

FPGA before steering them to the flow FIFOs, and instantiate it

inside the Dagger NICs serving the corresponding tiers. This shows

how NICs running hardware-offloaded RPCs on FPGAs can be

flexibly programmable to satisfy the needs of different applications.

More hardware parameters of the NICs can be further fine-tuned

for each individual microservice as we briefly discuss in Section 6.

6 DISCUSSION

As shown in Dagger’s evaluation, relying on memory intercon-

nects for high performance datacenter networking is beneficial,

however one might argue that integrating FPGAs/NICs over con-

ventional PCIe busses imposes fewer constraints over the type of

CPU a system can use. Additionally, while PCIe is more widely

adopted as a peripheral interconnect in today’s processors, this

trend is increasingly changing. First, the UPI/QPI interconnect is

natively supported by all modern datacenter processors (e.g., Xeon

family), and any FPGA which implements the UPI/QPI specifica-

tion can be integrated in it. As of today, we are aware of two such

FPGA families: Intel Broadwell Arria 10 (used in this work) and the

new Stratix 10 DX device. A similar technology is also being de-

veloped by IBM. Their OpenCAPI [10] cache-coherent CPU-FPGA

interface is already used in recent research work on disaggregated

memory [53]. Second, there is an ongoing collaborative effort from

multiple hardware vendors to derive a specification for a new pe-

ripheral interface with cache coherency support (CXL) for future

devices. Similar efforts in academia have yielded systems like ETH’s

Enzian [8], which closely couples an FPGA with an ARM-based

datacenter CPU over the Cavium coherent interconnect CCPI [7].

We believe, Enzian can also be a good physical medium for Dagger.

Virtualization of network interfaces is another topic around Dag-

ger’s design. NIC virtualization enables efficient sharing of a single

physical interface between multiple tenants, such as different guest

operating systems. Given that Dagger is based on an FPGA and it

can be tuned for different applications based on their network char-

acteristics and requirements, it provides an excellent framework to

enable virtualization. As seen from Table 1, the Dagger NIC occu-

pies less than 20% of the available FPGA space when synthesized

with a relatively large number of flows and connection cache space.

This demonstrates that the same FPGA device can accommodate

multiple instances of the NIC at the same time as we show in Sec-

tion 5.7. Each instance can be used as a “virtual but physical” NIC

for the corresponding tenant, and it can be configured based on the

network provisioning requirements of each tenant.

Additionally, we note that the BRAM memory of FPGAs is one

of the key resources enabling reconfigurability and efficiency in

Dagger. By leveraging the FPGA to manage on-chip memory one

can flexibly split the available memory capacity (53Mb for the FPGA

used in Dagger) at very fine granularity, therefore improving the

efficiency of NIC caches which is crucial, since NIC cache misses are

one of the main performance bottlenecks in commercial NICs [39].

This is especially important in the aforementioned virtualized envi-

ronment. For example, with FPGAs, it is possible to allocate more

connection cache memory for NIC instances serving tenants with

a large number of connections, or more packet buffer space for ten-

ants experiencing large network footprints. Such on-chip NIC cache

management can be easily done at the NIC instance granularity.

Finally, Dagger-like designs enable efficiently co-designing RPC

stacks with transactions in hardware. For instance, in our example

of the Flight Registration application in Section 5.7, the Airport ser-

vice concurrently processes requests from both the Check-in service

and Staff Frontend. As of now, we implement a lock-based concur-

rency control mechanism in software which comes with certain

overheads in the OS. Alternatively, given the fully programmable

nature of FPGAs, one can run synchronization protocols at the RPC

level, on the Dagger NIC, such that all requests being received by

the service are already serialized. Applications with more compli-

cated transactional semantics (e.g., Paxos, 2PC, etc.) can specifically

benefit from this support.

7 CONCLUSION

Dagger is an efficient and reconfigurable hardware acceleration

platform for RPCs, specifically targeting interactive cloud microser-

vices. In addition to showing the benefits of hardware offload for

RPCs to reconfigurable FPGAs, we also demonstrate that using

memory interconnects instead of PCIe as the NIC I/O interface

offers significant benefits. Most importantly, our work shows that

such close coupling of programmable networking devices with

processors is already feasible today. Dagger achieves 1.3 − 3.8×

better per-core RPC throughput compared to previous DPDK- and

RDMA-based solutions, it provides `-scale latency, and it can be

easily ported to third-party applications, such as memcached and

MICA, significantly improving their median and tail latencies. We

also show the reconfigurability feature of our proposal by running

an example of a multi-tier application and tuning both the software

and hardware parts of the stack for each individual microservice to

get high end-to-end performance.

ACKNOWLEDGMENTS

We sincerely thank Lizy John for her valuable feedback while shep-

herding our paper. We also thank Yu Gan, Yanqi Zhang, Shuang

Chen, Neeraj Kulkarni, Mingyu Liang, Zhuangzhuang Zhou, Mark

Sutherland, and the anonymous reviewers for their feedback on

earlier versions of this manuscript. This work was in part sup-

ported by CRISP, one of six centers in JUMP, a Semiconductor

Research Corporation (SRC) program sponsored by DARPA, an

NSF CAREER Award CCF-1846046, NSF grant NeTS CSR-1704742,

NSF/Intel CAPA grant CCF-1723715, a Sloan Research Fellowship, a

Microsoft Research Fellowship, an Intel Faculty Rising Star Award,

and a John and Norma Balen Sesquisentennial Faculty Fellowship.

REFERENCES
[1] [n.d.]. DeathStarBench Github Repository. https://github.com/delimitrou/

DeathStarBench.
[2] [n.d.]. Decomposing Twitter: Adventures in Service-Oriented Architecture.

https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-

architecture.
[3] 2016. The Evolution of Microservices. https://www.slideshare.net/

adriancockcroft/evolution-of-microservices-craft-conference.
[4] accessed August, 2020. Cloudius Systems. Seastar. (accessed August, 2020).

http://www.seastarproject.org/.
[5] accessed August, 2020. Finagle RPC. (accessed August, 2020). https://twitter.

github.io/finagle/.

49

Dagger: Efficient and Fast RPCs in Cloud Microservices with Near-Memory Reconfigurable NICs ASPLOS ’21, April 19–23, 2021, Virtual, USA

[6] accessed August, 2020. Memcached source. (accessed August, 2020). https:
//github.com/memcached/memcached.

[7] accessed December, 2020. Cavium CCPI interface. (accessed December, 2020).
https://en.wikichip.org/wiki/cavium/ccpi.

[8] accessed December, 2020. ETH Enzian research computer. (accessed December,
2020). http://www.enzian.systems/.

[9] accessed December, 2020. MICA source code. (accessed December, 2020). https:
//github.com/efficient/mica.

[10] accessed December, 2020. The OpenCAPI consortium. (accessed December, 2020).
https://opencapi.org/.

[11] accessed July, 2020. DPDK. (accessed July, 2020). https://www.dpdk.org/.
[12] accessed May, 2020. Compute Express Link (CXL) specification. (accessed May,

2020). https://www.computeexpresslink.org/.
[13] accessed May, 2020. gRPC. (accessed May, 2020). https://grpc.io/.
[14] accessed May, 2020. Intel Acceleration Stack for Intel Xeon CPU

with FPGAs Core Cache Interface (CCI-P) Reference Manual. (accessed
May, 2020). https://www.intel.com/content/www/us/en/programmable/
documentation/buf1506187769663.html.

[15] accessed May, 2020. Thrift RPC. (accessed May, 2020). https://thrift.apache.org/.
[16] Adrian Cockroft [n.d.]. Microservices Workshop: Why, what, and how to get

there. http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-
conference.

[17] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. 2003. Performance Debugging for Distributed Systems
of Black Boxes. In Proceedings of the Nineteenth ACM Symposium on Operating Sys-
tems Principles (Bolton Landing, NY, USA) (SOSP ’03). Association for Computing
Machinery, New York, NY, USA, 74–89. https://doi.org/10.1145/945445.945454

[18] Mohammad Alian and Nam Sung Kim. 2019. NetDIMM: Low-Latency Near-
Memory Network Interface Architecture. Int’l Symp. on Microarchitecture (MI-
CRO) (2019).

[19] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. 2011. Analysis of
DCTCP: Stability, Convergence, and Fairness. Int’l Conf. on Measurement and
Modeling of Computer Systems (SIGMETRICS) (2011).

[20] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. PFabric: Minimal near-Optimal Dat-
acenter Transport. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM (Hong Kong, China) (SIGCOMM ’13). Association for Computing Ma-
chinery, New York, NY, USA, 435–446. https://doi.org/10.1145/2486001.2486031

[21] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. USENIX Symp. on Networked Systems Design and
Implementation (NSDI) (2020).

[22] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload Analysis of a Large-Scale Key-Value Store. In Proceedings of
the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems (London, England, UK) (SIG-
METRICS ’12). Association for Computing Machinery, New York, NY, USA, 53–64.
https://doi.org/10.1145/2254756.2254766

[23] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. [n.d.]. IX: A Protected Dataplane Operating System for
High Throughput and Low Latency. USENIX Symp. on Operating Systems Design
and Implementation (OSDI) ([n. d.]).

[24] Adrian Caulfield, Paolo Costa, and Monia Ghobadi. 2018. Beyond SmartNICs:
Towards a Fully Programmable Cloud: Invited Paper. (2018).

[25] P. Chen, Y. Qi, P. Zheng, and D. Hou. 2014. CauseInfer: Automatic and distributed
performance diagnosis with hierarchical causality graph in large distributed
systems. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.
1887–1895.

[26] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. 2019. RPCValet: NI-
Driven Tail-Aware Balancing of Ms-Scale RPCs. Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (2019).

[27] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. USENIX Symp. on Networked Systems Design
and Implementation (NSDI) (2014).

[28] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019.
NICA: An Infrastructure for Inline Acceleration of Network Applications. USENIX
Annual Technical Conf. (ATC) (July 2019).

[29] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementation (Renton,
WA, USA) (NSDI’18). USENIX Association, USA, 51–64.

[30] Mario Flajslik and Mendel Rosenblum. 2013. Network Interface Design for Low
Latency Request-Response Protocols. USENIX Annual Technical Conf. (ATC)
(2013).

[31] Yu Gan and Christina Delimitrou. 2018. The Architectural Implications of Cloud
Microservices. In Computer Architecture Letters (CAL), vol.17, iss. 2.

[32] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. 2021.
Sage: Leveraging ML To Diagnose Unpredictable Performance in Cloud Microser-
vices. In Proceedings of the Twenty Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[33] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud and Edge
Systems. International Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2019).

[34] Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna Pancholi, Dailun Cheng,
and Christina Delimitrou. 2019. Seer: Leveraging Big Data to Navigate the Com-
plexity of Performance Debugging in Cloud Microservices. In Proceedings of the
Twenty Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Providence, RI).

[35] Stephen Ibanez, Muhammad Shahbaz, and Nick McKeown. 2019. The Case for a
Network Fast Path to the CPU. ACM Workshop on Hot Topics in Networks (2019).

[36] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable User-
level TCP Stack for Multicore Systems. USENIX Symp. on Networked Systems
Design and Implementation (NSDI) (2014).

[37] Vimalkumar Jeyakumar, Omid Madani, Ali Parandeh, Ashutosh Kulshreshtha,
Weifei Zeng, and Navindra Yadav. 2019. ExplainIt! – A Declarative Root-Cause
Analysis Engine for Time Series Data. In Proceedings of the 2019 International
Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19).
Association for Computing Machinery, New York, NY, USA, 333–348. https:
//doi.org/10.1145/3299869.3314048

[38] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs
can be General and Fast. USENIX Symp. on Networked Systems Design and
Implementation (NSDI) (2019).

[39] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guidelines
for High Performance RDMA Systems. USENIX Annual Technical Conf. (ATC)
(2016).

[40] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs.
USENIX Symp. on Operating Systems Design and Implementation (OSDI) (2016).

[41] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind Krish-
namurthy, and Thomas Anderson. 2019. TAS: TCP Acceleration as an OS Service.
In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany)
(EuroSys ’19). Association for Computing Machinery, New York, NY, USA, Article
24, 16 pages. https://doi.org/10.1145/3302424.3303985

[42] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast In-Memory Key-Value Storage. Symposium
on Networked Systems Design and Implementation (NSDI) (2014).

[43] JinJin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint perfor-
mance issues with causal graphs in micro-service environments. In International
Conference on Service-Oriented Computing. Springer, 3–20.

[44] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-
Accelerated Servers. USENIX Annual Technical Conf. (ATC) (2019).

[45] L. Ming, Qiulei Fu, Y. Wan, and T. Zhu. 2012. User-space RPC over RDMA on
InfiniBand.

[46] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Pri-
orities. ACM Special Interest Group on Data Communication (SIGCOMM) (2018).

[47] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and Kyoung-
Soo Park. 2020. AccelTCP: Accelerating Network Applications with State-
ful TCP Offloading. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 77–92.
https://www.usenix.org/conference/nsdi20/presentation/moon

[48] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srinivas
Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan. 2018.
Restructuring Endpoint Congestion Control. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication (Budapest, Hungary)
(SIGCOMM ’18). Association for Computing Machinery, New York, NY, USA,
30–43. https://doi.org/10.1145/3230543.3230553

[49] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. 2018. Understanding PCIe Performance
for End Host Networking. ACM Special Interest Group on Data Communication
(SIGCOMM) (2018).

50

ASPLOS ’21, April 19–23, 2021, Virtual, USA Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou

[50] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris
Grot. 2014. Scale-out NUMA. Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2014).

[51] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,
Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang. 2015. The RAMCloud
Storage System. ACM Trans. Comput. Syst. 33, 3, Article 7 (Aug. 2015), 55 pages.
https://doi.org/10.1145/2806887

[52] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,
Rastislav Bodik, and Thomas Anderson. 2018. Floem: A Programming System
for NIC-Accelerated Network Applications. Symposium on Operating Systems
Design and Implementation (OSDI) (2018).

[53] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis, A. Reale, K. Katrinis, and
H. P. Hofstee. 2020. ThymesisFlow: A Software-Defined, HW/SW co-Designed
Interconnect Stack for Rack-Scale Memory Disaggregation. In 2020 53rd Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO). 868–880. https:
//doi.org/10.1109/MICRO50266.2020.00075

[54] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. 2020. Optimus Prime:
Accelerating Data Transformation in Servers. Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) (2020).

[55] Akshitha Sriraman and Thomas F. Wenisch. 2018. µSuite: A Benchmark Suite for
Microservices. Int’l Symp. on Workload Characterization (IISWC) (2018).

[56] Akshitha Sriraman and Thomas F. Wenisch. 2018. µTune: Auto-Tuned Thread-
ing for OLDI Microservices. USENIX Symp. on Operating Systems Design and
Implementation (OSDI) (2018).

[57] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfefferle. 2014.
DaRPC: Data Center RPC. In Proceedings of the ACM Symposium on Cloud Com-
puting (Seattle, WA, USA) (SOCC ’14). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/2670979.2670994

[58] S. Sur, Lei Chai, Hyun-Wook Jin, and D. K. Panda. 2006. Shared receive
queue based scalable MPI design for InfiniBand clusters. In Proceedings 20th
IEEE International Parallel Distributed Processing Symposium. 10 pp.–. https:
//doi.org/10.1109/IPDPS.2006.1639336

[59] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe, Dionisios
Pnevmatikatos, and Alexandros Daglis. 2020. The NeBuLa RPC-Optimized Ar-
chitecture. Int’l Symp. on Computer Architecture (ISCA) (2020).

[60] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, Ed Suh, and Christina Delim-
itrou. 2021. Sinan: Data-Driven Resource Management for Interactive Microser-
vices. In Proceedings of the Twenty Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

51

