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Abstract—This paper describes a data-driven symbolic regres-
sion identification method tailored to power systems and demon-
strated on different synchronous generator (SG) models. In this
work, we extend the sparse identification of nonlinear dynamics
(SINDy) modeling procedure to include the effects of exogenous sig-
nals (measurements), nonlinear trigonometric terms in the library
of elements, equality, and boundary constraints of expected solu-
tion. We show that the resulting framework requires fairly little in
terms of data, and is computationally efficient and robust to noise,
making it a viable candidate for online identification in response
to rapid system changes. The SINDy-based model identification
is integrated with the manifold boundary approximation method
(MBAM) for the reduction of the differential-algebraic equations
(DAE)-based SG dynamic models (decrease in the number of states
and parameters). The proposed procedure is illustrated on an SG
example in a real-world 441-bus and 67-machine benchmark.

Index Terms—Power system, dynamic model, system
identification, nonlinear dynamics, symbolic regression.

I. INTRODUCTION

IDENTIFICATION of a dynamical system from data
(recorded measurements) has been an important problem

in mathematical physics, with a long history in power systems
[1]–[5]. Many techniques in system identification, including dy-
namic mode decomposition (DMD) (for example, [6]), equation-
free modeling (for example, [7]), cluster reduced-order models
based on the probabilistic transition between various system
behaviors (for example, [8]) and many other algorithms are
designed to handle high-dimensional data. DMD in particular
has strong connections to nonlinear dynamics through Koopman
operator theory (for example, [9]).
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Once parameters of a dynamic model have been optimized
to match recorded responses (or data generated from a more
detailed model), there typically exists a difference (or error) be-
tween the model prediction and the target waveform. A question
of great interest then is if there exists a structure in the error that
can be utilized to possibly improve the model while maintaining
the practical identifiability that is critical for model utility. If the
original model has established physical plausibility, it makes
sense to try to append it, possibly with portions that capture
additional features. These new facets are preferably also based
on physics to maintain the model’s overall interpretability and
portability [10].

One promising idea for deriving and appending possibly
nonlinear models is symbolic regression, and the sparse identi-
fication of nonlinear dynamics (SINDy) based solution method
[11]–[13]. It operates in the space of mathematical expressions
and attempts to find the best fit for data while balancing re-
quirements for accuracy and simplicity (e.g., a small number of
terms in an expression). The candidate mathematical expressions
belong to families that are typically pre-selected and include
standard types often found in physics-derived engineering mod-
els like constants, polynomials, trigonometric terms, etc. It is, of
course, evident that the space of candidate models is very large
regardless of the parametrization selected, and that any solutions
found will likely be non-unique and possibly locally optimal.

Our starting point is the equation-based modeling framework
[13]. The authors leverage the fact that most dynamical systems
of engineering interest have relatively few nonlinear terms, each
belonging to a known family (e.g., polynomials), to devise a
data-driven algorithm for the SINDy. One key idea is to rely
on sparsity-promoting techniques throughout the model devel-
opment so that the result balances accuracy with the number
of terms included. Control inputs were added to the algorithm
in [14].

One problem that is well suited to this framework is the
transient stability of large power systems, because it focuses
on system-wide behavior, and de-emphasizes component-level
accuracy. In transient stability, the dynamic behavior stems
mostly from component dynamics, which is typically described
by models that have a limited number of entries on the right-hand
side. The size of the network matters, of course, but since
dynamic components are connected in nodes, their behavior is
altered by (algebraic) variables at the point of connection (such
as voltages, angles, and active/reactive powers). Hence the over-
all model preserves sparsity. We intend to use past the physical
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understanding of key phenomena to restrict and customize the
set of building blocks that need to be included in the regression.
This paper advances a Galerkin-type regression method [11] for
identification of non-linear dynamics in SINDy with actuation
(measurements) and physical equality and boundary constraints
to identify system-wide aspects of dynamic components (in
our case on an SG example). Motivated by the structure of
the typical power system equations, the library of dynamical
elements in SINDy is extended with mixed products of linear
and trigonometric functions of states, algebraic variables, and
external signals (measurements).

A large body of references on power system dynamics [1]–[4],
including our preliminary work [5], [15], has concluded that
many common models of power system transients have good
physical justifications, but tend to be practically unidentifiable
from commonly available measurements. We use MBAM to pre-
screen and modify dynamic models, making them practically
identifiable before we attempt sparse identification via SINDy.

Main contributions (compared with our initial work reported
in [15]) may be summarized as:
� Respecting the structure of the typical power system equa-

tions (on the analyzed SG’s test example), the library of dy-
namical elements in SINDy is extended with typical mixed
nonlinear (trigonometric) multiplications of measurement
and state/algebraic variable functions (Section III-B).

� The SINDy algorithm with measurements, equality, and
boundary constraints of the expected solution is proposed
in Section III-C.

� Based on the conclusions of [15] that the SG’s model iden-
tification is not a straightforward task, several optimization
tools are investigated for the solution of the specified
bound-constrained least-squares optimization model.

� Optimization of differences between measurements and
calculated time responses for a single SG with a reduced
vector of states, subjected to the differential and algebraic
equations based constraints.

� Integrated DAE- and MBAM-based dynamic model reduc-
tion with SINDy-based model identification (Section V).

� Gray-box integration of physics-driven model (DAE-
based for reduced dynamic model) and data-driven
model (for differences between available measurements
and calculated transient responses for reduced dynamic
model).

� Application on a realistic example (441-bus real-world
power system, compared with the IEEE 14-bus example
in [15]).

The outline of the paper is as follows: Section II provides the
problem formulation; Section III describes the SINDy algorithm
with extended the library of dynamical elements, as well as
with external measurements, equality, and boundary constraints;
in Section IV the MBAM-based algorithm for dynamic model
reduction is described; Section V integrates the SINDy and
MBAM (parameter identification and dynamic model reduc-
tion, respectively); the proposed algorithm is applied to an SG
example in Section VI; Section VII presents conclusions. The
Appendix contains basic SG’s equations and parameters adapted
for SINDy-based model identification.

II. PROBLEM FORMULATION

The DAEs-based form of power system dynamic model used
in transient stability is

ẋ = f (x,z,p, t) (1)

0 = g (x,z,p, t) (2)

where x is the vector of (differential) state variables, z are the
algebraic variables, p is the vector of parameters, and t is the
(scalar) time variable.

System measurement vector is assumed to be of the form

y = h (x, z,p, t) (3)

System identification is the standard approach to find the best
parameters to minimize discrepancies between measured (y)
and corresponding calculated (yc) time responses

p = argmin
p

‖y − yc‖22 (4)

subject to (1)–(3).
For analyzed SG test examples, details of differential (f ),

algebraic (g), and measurement equations (h) in (1)–(3), re-
spectively, are given in Appendix A and in [5].

III. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS

(SINDY) ALGORITHM

The SINDy algorithm identifies possibly fully nonlinear dy-
namical systems [in our case, functionsf in (1) andg in (2)] from
the available data set [in our case, functions h in (3)]. It is the
counterpart of ideas on dictionary learning and dictionary-based
regression that are widely used in compressed sensing literature
[16], [17] and relies on the fact that in this application, we expect
the right-hand side of (1) and (2) to be (very) sparse.

A. Basic SINDy Algorithm [11]–[14]

Formally, the dynamic model may be written in the following
form

Ẋ = Θ (X)Ξ (5)

whereΘ(X) is a library of dynamical elements (see Section III-
B for more details), Ξ is (K ×Nx)-dimensional matrix, K is
the total number of constant, linear, and non-linear functions,
and Nx is the total number of state variables in X .

We collect a time history of the total Nx state variables x(t)
in (5), sampled at time series t1, . . ., tt, . . ., tNt

, as (Nt ×Nx)-
dimensional matrix

X =
[
x1 · · · xn · · · xNx

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 (t1) · · · xn (t1) · · · xNx
(t1)

...
. . .

...
. . .

...
x1 (tt) · · · xn (tt) · · · xNx

(tt)
...

. . .
...

. . .
...

x1 (tNt
) · · · xn (tNt

) · · · xNx
(tNt

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

where Nt is the total number of time points.
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Matrix Ξ in (5) is sparse for most dynamical systems (includ-
ing power system dynamics). For identification of Ξ, the sparse
symbolic regression may be applied.

Each of the Nx column equations in (5) is determined by the
sparse K-dimensional vector of coefficients ξn, corresponding
to the n-th column of Ẋ (Ẋn) and Ξ(ξn) which can be found
using a sparse separate regression algorithm [13], as

ξn = argmin
ξn

‖Θ(X)ξn − Ẋn‖22 + λ2‖ξn‖1

n = 1, 2, . . . , Nx (7)

where Xn ≡ xn = xn (t) represents n-th column (time re-
sponse of n-th state variable) of X in (6).

Calculation of derivatives ẋn(t) in (7) numerically fromxn(t)
by the 4-th order central difference [18, p. 272]) is

ẋn (tt−2) =
−xn (tt+2)+8xn (tt+1)−8xn (tt−1)+xn (tt−2)

12Δt
;

t �= 1, 2, Nt − 1, Nt (8)

where Δt = tt − tt−1 is the sampling interval.
The penalty term ‖ · ‖1 in (7) promotes sparsity in the vector

ξn. Note that the convex norm ‖ξn‖1 in (7) replaces the non-
convex (pseudo)norm ‖ξn‖0 (the number of non-zero entries
of the vector ξn). The parameter λ in (7) is selected to identify
the optimal model that best balances low model complexity with
accuracy. A coarse sweep of λ is performed to identify the rough
order of magnitude, where terms are eliminated and where the
error begins to increase [19].

B. The Library of Candidate Dynamics for Power System
Based Equations

The selection of the library of candidate dynamics is a crucial
choice in the SINDy-based algorithm(s).

Note that in a power system case several characteristic exam-
ples may appear (we are limited here only to the analyzed SG
parameter identification example):
� mixed nonlinear (trigonometric) multiplications of mea-

surements and state/algebraic variables, yi sin(xj − zk)

[for example,
(xq−x′

q)

x′
q

V sin(δ − θ)—see Appendix A];
� mixed nonlinear (trigonometric) multiplications of states

and state/algebraic variables, xi sin(xj − zk) [for exam-

ple,
V e′q
x′
d
sin(δ − θ)—see Appendix A].

To simplify the presentation, in this section we assume
that only state variables-based dynamics (1), Θ(X) in (7),
will be identified. This assumption will be relaxed later in
Section III-C with additional identification of algebraic variables
and measurements, or Θ(X,Z,Y ).

A library of K candidate constant, linear and non-linear
functions Θ(X) of the columns of X in (6) may consist of
polynomial and trigonometric terms, as well as their products,
and symbolically may be written as

Θ(X) = [ Const X X2 sin (X) X sin (X) · · · ] (9)

where Θ(X) is (Nt ×K)-dimensional matrix and any term in
(9) introduces the appropriate number of column-vectors.

For example, two typical terms in (9) are as follows:

X2

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x2
1 (t1)

...
x2
1 (tt)

...
x2
1 (tNt

)

x1 (t1)x2 (t1)
...

x1 (tt)xt (tt)
...

x1 (tNt
)x2 (tNt

)

· · ·
. . .
· · ·
. . .
· · ·

x2
2 (t1)

...
x2
2 (tt)

...
x2
2 (tNt

)

· · ·
. . .
· · ·
. . .
· · ·

x2
Nx

(t1)
...

x2
Nx

(tt)
...

x2
Nx

(tNt
)

⎤
⎥⎥⎥⎥⎥⎥⎦

X sin (X)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 (t1) sin (x1 (t1))
...

x1 (tt) sin (x1 (tt))
...

x1 (tNt
) sin[x1 (tNt

)]

x1 (t1) sin[(x2 (t1)]
...

x1 (tt) sin [x2 (tt)]
...

x1 (tNt
) sin [x2 (tNt

)]

· · ·
. . .
· · ·
. . .
· · ·

x2 (t1) sin (x2 (t1))
...

x2 (tt) sin (x2 (tt))
...

x2 (tNt
) sin (x2 (tNt

))

· · ·
. . .
· · ·
. . .
· · ·

xN (t1) sin [xNx
(t1)]

...
xN (tt) sin [xNx

(tt)]
...

xN (tNt
) sin [xNx

(tNt
)]

⎤
⎥⎥⎥⎥⎥⎥⎦

The library of dynamical functions [Θ(X) in (7)] may be
simply extended to support other nonlinearities (for example,
saturation, exponential terms in dynamic load models, etc.).

A detailed mathematical proof of convergence of the SINDy
algorithm may be found in [20].

For more details about the SINDy algorithm application and
its convergence on the simplified SG’s test example, please
see [15, Section V]. These results show a clear discrepancy in
some cases. We see several reasons for the inconsistency when
using the basic SINDy formulation (from Section III-A), as used
in [15]:

1) we determine the right-hand side through numerical differ-
entiation (8), which, despite our effort to use numerically
sound procedures, inevitably introduces errors;

2) the “true” system used in identification is a system of
DAEs (1)–(3), while the basic SINDy algorithm assumes
pure differential system; while many power systems are
believed to be described by index-1 DAE (we do not check
this condition);

3) ref. [20] uses the 0-(pseudo)norm do characterize the
support of the solution, while we use the 1-norm (this
is standard in practice);

4) the model we are considering is inherently stiff numeri-
cally, as the coefficientΩb in differential equation for δ̇ (the
derivative of the rotor angle transient response) is several
times larger than the other coefficients, and there exists a
weak functional coupling of the differential equation for δ̇
with other differential equations [see (A1) in Appendix A].

Based on the above conclusions, in the next section we
propose a modified formulation (11)–(13), which works much
better on power system problems, but most likely has different
convergence conditions.
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C. The SINDy Algorithm With Constraints and Measurements

The SINDY algorithm from Section III. A may be generalized
to include fully nonlinear dynamics in additional functions [g
in (2) and h in (3)], algebraic variables (z), and actuation
(measurements) (y), respectively, since this merely requires
building a larger library Θ(X,Z,Y ) of candidate functions,
that additionally includes the (Nt ×Nz)-dimensional matrix of
time-dependent Nz algebraic variables (Z) and the (Nt ×Ny)-
dimensional matrix of time-dependent Ny measurements (Y ),
as in (5) and all mixed cases among X , Z, and Y (notice
that a total number of columns in Θ(X,Z,Y ) is typically
K > Nx +Nz +Ny due to include the mixed product of vari-
ables and measurements of state and algebraic variables)[

Ẋ Z Y
]
= Θ (X,Z,Y )Ξx,z,y (10)

where Ξx,z,y = [Ξx Ξz Ξy ] .
In this case, the optimization problem (7) with additional

equality and boundary constraints may be rewritten as

ξn = argmin
ξn

‖Θ(X,Z,Y )nξn − [ Ẋ Z Y
]
n
‖22 + λ2‖ξn‖1

n = 1, 2, · · · , (Nx +Nz +Ny) (11)

subject to:

g(X,Z,Y ) = 0 (12)

ξmin
n ≤ ξn ≤ ξmax

n (13)

where in (12) we include the equality constraints from (2) and
(3). Please note that formulation (11)–(13) differs from the
original SINDy formulation (7), so its convergence conditions
[20] are explored via numerical experiments later.

Lower and upper bounds in (13) are used to enforce that
some entries of ξn in the predefined intervals around physically
reasonable values [see (A3) and (A4) in Appendix B for details].

The optimization problem (11) and (12) may be transformed
to the unconstrained problem using an augmented formulation,
where the constraints are imposed via Lagrange multipliers (to
simplify the formulation, the λ term is omitted), as

ξ =

Nx+Nz+Ny∑
n=1

(
argmin

ξn,ς
‖Θ (X,Z,Y ) ξn − [ Ẋ Z Y

]
n
‖22
)

+ ςTg (X,Z,Y ) (14)

The optimal solution (ξ) is a solution to the Karush-Kuhn-
Tucker (KKT) equations [11, eq. (2.10)].

Note that the measurement vector (y) may contain state
variables (x), algebraic variables (z), and their nonlinear com-
binations (for example, measurement Pg(t) in function h; for
practical aspects, see Section VI-A).

IV. THE MANIFOLD BOUNDARY APPROXIMATION METHOD

(MBAM) FOR DYNAMIC MODEL REDUCTION

The MBAM is a parameter reduction algorithm that uses
information geometry methods, i.e., application of differen-
tial geometry to statistics [21]–[23]. The basic idea is that a
parameterized model is interpreted as a manifold of potential

predictions. Distances on the manifold are induced by distin-
guishability of model parameters from data using information
theory. If different parameter values lead to nearly identical
predictions, they correspond to nearby points on the manifold
and, conversely, parameter values that lead to very different
predictions are distant on the manifold.

Many models have bounded manifold. Boundaries corre-
spond to limiting cases of parameter values such as relevant
time scales going to zero as in singular perturbation. Parameters
are practically unidentifiable if their predications are statisti-
cally indistinguishable from their limiting cases. When many
parameters are unidentifiable, the manifold has a low effective
dimensionality because it is narrow in several directions. MBAM
aims to approximate a thin manifold by a portion of its boundary
by identifying the statistically optimal limiting cases. These
approximations reduce the number of parameters in the model
while also reducing the computational complexity [24]. For
example, approximating a differential variable by an algebraic
constraint as is commonly done in singular perturbation. Be-
cause MBAM identifies those approximations that are optimal
for a particular measurement process, it is a data driven-driven
approach that allows us to complement SINDy inferred models
with simplified, physics-guided equations.

V. INTEGRATION OF SINDY AND MBAM ALGORITHMS

A flow-chart of the proposed algorithm for the integration of
MBAM-based model reduction and SINDy-based model identi-
fication is shown in Fig. 1, where particular steps are described
in more detail in the sequel.

In the initial step (Step 1, Fig. 1) data-driven input measure-
ments [y(t)] and initial parameter vector (p) are provided.

Please note that SINDy and MBAM algorithms require that
state derivatives [ẋ(t)] and algebraic variables [z(t)] be cal-
culated. If the state or algebraic variables are not measured
directly [part of y(t)], then we require at least a local inverse

[
x(t)
z(t)

] = h−1[y(t)] be available for initial state and algebraic

variables (Step 2, Fig. 1) [for example e′q(t) and e′d (t) in (A1)],
where the time responses fromx(t) are later used for calculation
ẋ(t), by (8). These variables are recalculated in Step 4.

In Step 3, we apply the MBAM method to the physics-based
dynamics in (1)–(3).

Let there be the fixed, physics-based part of the model [states
xF —for example, three- or four-order SG’s dynamic model in
Appendices A, B]

ẋF = f0 (xF , z
′,p, t) (15)

0 = g′ (xF , z
′,p, t) (16)

y = h (xF , z
′,p, t) (17)

where in some cases the set of algebraic constraints (g) (2) may
be extended to g′ (16) with an augmented vector of algebraic
variables (z′)—for typical example see (A4). However, the
solution of (15)–(17) may turn out to be unfeasible, meaning that
the reduced model is unable to satisfy the equality constraints
(2) and the available measurements (3) for the full DAEs-based
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Fig. 1. Integration of MBAM-based model reduction (Section IV) and SINDy-
based model identification (Section III-C).

model. This may be improved in Step 4, when SINDy will
reconsider the MBAM identified fixed part of the model, and
in the optional Step 6 when the MBAM-reduced part of the
DAEs-based model is reconsidered.

For single SG we may additionally minimize the dis-
crepancies between measurements (y) and their functions
[h(xF , z

′,p, t) in (17)] in the point of connection to the power
system [for example, for active,Pg(t) and reactive,Qg(t) power
generations]. Therefore the transient analysis (15)–(17) is rede-
fined as in Step 4d later.

Step 4 (Fig. 1) is performed by the following sub-steps:
Step 4a: Calculation of initial conditions of state (x0) and

algebraic variables (z0) from available measurements (y) by
the extended power flow equations [25, Section 15.1.2].

Step 4b: Numerical calculation of ẋF (t) by (8). Calculation
of non-measured algebraic variables from z′(t) [in analyzed
MBAM-based reduced SG test example, the calculation of the
algebraic equation for e′q in (A4)].

Step 4c: SINDy-based model identification (Ξx,z′,y) of NxF

fixed differential equations, Nz′ algebraic equations, and Ny

measurements by the optimization model

ξn = argmin
ξn

‖Θ(XF ,Z
′,Y )nξn − [ ẊF Z′ Y

]
n
‖22

+ λ2‖ξn‖1; n = 1, 2, · · · , (NxF +Nz′ +Ny)
(18)

subject to

g′ (XF ,Z
′,p, t) = 0 (19)

ξmin
n ≤ ξn ≤ ξmax

n (20)

Step 4d: Minimization of weighted square differences (Dif)
between measured time series [y(t)] and ones calculated by
fixed part of the identified reduced model (superscript ‘c’) in
Step 4c, (ΞyΘy), for t > t0 (the initial condition excluded), is
proposed as (to simplify notation, the time dependence of all
variables is suppressed)

Dif = argmin
xc

F ,z′c
‖w (y −ΞyΘy) ‖22 (21)

subject to

ẋc
F = ΞxF ΘxF (22)

z′c = Ξz′ Θz′ (23)

where
w vector of weighting factors for an-

alyzed measurements;
Ξx,z′,y = [ΞxF Ξz′ Ξy] matrix of calculated parameters

for the regression model identifi-
cation in Step 4c, and

ΘxF , Θz′ , Θy vector of functions in a library of
K candidate constant, linear, and
non-linear functions (with time
response values) Θ(XF ,Z

′,Y )
(Step 4c).

For a practical example of the proposed optimization (21)–
(23), please see (21a), (22a-c), and (23a) in Section VI-B.

Notice that in the equality constraints (23) are excluded ones
from the measurement set {in analyzed SG test example, the
measurements of active, Pg(t) and reactive, Qg(t) powers are
part of equality constraints [g in (2)] and measurement set [h in
(3)]}.

Step 4e: Based on the optimized fixed part of the state (22)
and algebraic variable time responses (23), calculation of the
differences between initial (for full model) state and algebraic
variable time responses (from Step 2) and ones calculated by the
reduced model, respectively as

xdif
F (t) = xF (t)− xc

F (t) (24a)

z′dif (t) = z′ (t)− z′c (t) (24b)

Step 4f: Parameters of the regression model are functions of
the parameter vector (p) as a set of non-linear equations

ξn = f (p) , (25)
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n = 1, 2, . . . , (NxF +Nz′ +Ny) where the number of non-
zero elements in the above equations is larger than the number
of elements in vector p.

The optimal parameters are calculated by

p = argmin
p

‖ξ − f (p) ‖22 (26)

where the elements of vector ξ are only non-zero elements from
ξn’s (matrix Ξ composed with column-vectors ξn).

These parameters are used for checking the convergence
criterion in Step 7, Fig. 1.

Next, we consider the case when the initial DAEs-reduced
model f0 in (15) is not satisfactory and want to use data (via
extended SINDy) to improve it (Step 5, Fig. 1). Let there be the
suited model (states xF ) and the additional data-driven part

ẋF = f0 (xF , z
′,p, t) + f1

(
xFa,x

dif
F , t

)
(27)

where for nonlinearities of various type one function from f1 is

f1i(xFa,x
dif
F , t)

= αi0 +

nF∑
m=1

βiFmxdif
Fm +

nF∑
m=1

na∑
n=1

βiFa,mnxFanx
dir
Fm

+

nF∑
m=1

γiFm(xdif
Fm)2 +

nFa∑
n=1

γianx
2
Fan + · · ·

+

nFa∑
n=1

δian sin(xFan) +

nFa∑
n=1

εian cos(xFan) + · · · ;

i = 1, 2, . . . , nFa (28)

and nFa is the number of additional state variables (in xFa) to
the fixed part (in xF ).

We find α’s, β’s, γ’s, δ’s, ε’s, …,by SINDy-based optimiza-
tion, and x are a new model[

ẋF

ẋFa

]
= f

(
xF ,xFa,x

dif
F , z′,p, t

)
(29)

or

ẋF = f0 (xF , z
′,p, t) + f1

(
xFa,x

dif
F , t

)
(27)

ẋFa = f2

(
xFa,x

dif
F , t

)
+ f3 (xFa, t) (30)

which can be MBAM-ed again, possibly repeatedly.
Optionally, Step 6 may be applied to optimize the reduced

part

ẋr = f0 (xr, z
′,p, t) + f1

(
xra,x

dif
r , t

)
(31)

ẋra = f2

(
xra,x

dif
r , t

)
+ f3 (xra, t) (32)

The convergence criterion in Step 7 is that the difference of
parameters (calculated in Step 4g) in two subsequent iterations
becomes less than the pre-specified threshold.

VI. APPLICATION

We consider transient stability-related DAE-based dynamic
model (1)–(3) in a Matlab-derived simulation environment. The
proposed algorithm was tested on a real-world test system

(Electric Power Industry of Serbia; a part of the ENTSO-E
interconnection) with 441 buses, 655 branches (lines and trans-
formers), 67 SGs (37 of four-order dynamic models and 30 of
six-order dynamic models), with automatic voltage regulators
and turbine-governor dynamic models. The dynamic model has
797/1284 differential/algebraic variables.

Our Matlab-based environment allows for a variety of state
variables (x), algebraic variables (z), and measurements (y) for
all SGs to be calculated (by transient analysis tool) and used for
simulations and verification of the proposed algorithm:
� state variables [vector x(t) in (1)–(3)]:
� rotor angle, δ(t) and speed, ω(t);
� transient voltage in q-, e′q(t) and d-axis, e′d (t);
� sub-transient voltage in q-, e′′q(t) and d-axis, e′′d(t),
� algebraic variables [vector z(t) in (1)–(3)]:
� bus voltage magnitude, V (t) and angle, θ(t);
� exciter’s output voltage, vf (t) and turbine-governor’s me-

chanical power, Pm(t);
� recorded measurements [vector y(t) in (3)]:
� state variables for rotor angle, δ(t) and speed, ω(t);
� algebraic variables for bus voltage magnitude, V (t) and

angle, θ(t);
� algebraic variables for exciter’s output voltage, vf (t) and

turbine-governor’s mechanical power, Pm(t);
� mixed variables for active,Pg(t) and reactive,Qg(t) power

generations.
Notice that the above described full DAE-based dynamic

model is used to prepare the measurement sets in buses with
connected SGs. The proposed algorithm for SG’s model iden-
tification is based on measurements in SG’s point of connec-
tion {Pg(t);Qg(t);V (t); θ(t)}, measurements of exciter’s out-
put voltage and turbine-governor’s mechanical power, {vf (t);
Pm(t)}, and DAE-based dynamic model of single SG, described
in Appendices A and B. Influence of the full power system
dynamic is represented by measurements in point of connection.

The proposed methodology is verified on the SG example in
bus 35001 (JHDJERG1—SG 1 in hydropower plant “Djerdap
I”), with detailed input data given in Appendix C. Transients are
prepared by the three-phase short circuit on the SG’s connection
point, cleared after 250 ms, for full DAE-based dynamic model.

A. Nonlinear (Trigonometric) Terms in Right-Side of DAEs

This group of tests is performed with the four-order dynamic
model of the SG example (see Appendix A). Measurements
Pg(t), V (t), and θ(t) are recorded in the SG’s point of con-
nection (obtained by simulations with PSAT-based full dynamic
model of the power system [25]). For these tests, the reactive
power measurement Qg(t) is not included directly to (A1),
where this assumption will be relaxed later in Section VI-B
for the bound-constrained least-squares optimization (11)–(13).
Note that measurement Pg(t) may be calculated and included
directly into differential equations [as a function of measure-
ments V (t), θ(t), and state variables e′q(t), e

′
d(t)—see (A2) in

Appendix A]. However, in this case, quadratic sine and cosine
terms need to be included in the SINDy’s model library, with
additional terms to be identified—see Appendix B. This means
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TABLE I
EXPECTED MODEL IDENTIFICATION (MATRIX Ξx,z,y) FOR LINEAR AND NONLINEAR (TRIGONOMETRIC) TERMS IN RIGHT-SIDE OF DAES

that first set of tests for verification of software for basic SINDy
formulation (Section III-A) is performed with measurement
Pg(t) and neglected the equality constraints (A2) and (12). This
assumption will be relaxed in Section VI-B. Exciter’s output
voltage in (A1), is set to be constant, vf = 1.4998 pu. For
turbine-governor’s mechanical power in (A1), we also use a
constant value,Pm = 1.6pu. Relaxation of these assumptions is
straightforward [measurements vf (t) and Pm(t) simply extend
the measurement vector (y)–see Section VI-B].

In this case, there are four derivatives of state variables (vector
ẋ) and three measurements (vector y) (δ̇, ω̇, ė′q , ė′d, Pg , V ,
and θ, respectively) and K = 10 elements in a library of
candidate nonlinear functions in Θ(X,Y ,Z) (10) {Const.; δ;
ω; e′q; e′d;Pg;V ; θ;V cos(δ − θ), andV sin(δ − θ)}—for details,
see Appendix B. Expected model identification [matrix Ξx,z,y

in (10)] for linear and nonlinear (trigonometric) terms in the
right-side of the DAEs is shown in Table I.

Based on the analysis in Section III-B, we investigate the fol-
lowing software tools for the specified equality un-constrained
(12) and non-bounded (13) identification problem (10):

1) SINDy solvers from [13] and [20].
2) Lasso software with/without a warm start [26].
3) Constrained Lasso, with [27]:

a) qp_solver.
b) qp_solver with lsqsparse MEX for FORTRAN code

from GUROBI.
c) using the alternating direction method of multipliers.

4) Constrained linear least-squares optimization (Matlab’s
lsqlin function).

5) Regularized Ridge regression [28].
Note that in the analyzed case, [ Ẋ Z Y ] is (208× 7)-

dimensional matrix and Θ(X,Z,Y ) is (208× 10)-
dimensional matrix, where k = 1, 2, · · · K = 10 is the total
number of constant, linear, and non-linear (mixed trigonometric)
terms in right-side of DAEs, Nx +Nz + Ny = 7, and
Nt = 208.

Results in the form of (10× 7)-dimensional matrix Ξx,z,y ,
where K = 10 is the total number of constant, linear and
non-linear (mixed trigonometric) terms used in right-side of
DAEs and Nx +Nz + Ny = 7 is the total number of analyzed
state variables (Nx), algebraic variables (Nz) and measurements
(Ny), obtained by the previously mentioned software tools, are
shown in Table II.

We may conclude that used solvers are inefficient for specified
SG’s equality un-constrained and non-bounded model identifi-
cation. This condition may be improved by fixing, for example,
the parameterΩb in the equation for δ̇ (A1), but similar problems
remain (see clarification in Section III-B).

Based on the previously derived conclusions, the optimiza-
tion problem with additional constraints (11)–(13) is specified.
The optimization criterion (11) and equality constraints (12)
may be transformed into an augmented formulation (14), with
lower/upper bounds (13). This problem is adopted for the bound-
constrained least-squares optimization [29]

minimize
x

‖Ax− b‖22 (33)

subject to

l � x � u (34)

where l and u are vectors of lower and upper bounds with the
same dimension as vector x, respectively.

Note that this solver is not sparse oriented. However, sparsity
[term λ2‖ξk‖1 in (11)] is controlled by the boundary constraints
(13).

Results of the SG’s equality un-constrained and non-bounded
model identification in the form of (10× 7)-dimensional matrix
Ξx,z,y are shown in Table III, where all parameters (including
Ωb) are optimized. Comparing with expected values in Table I,
these results are much better than those in Table II. The average
mean square error (MSE) between measurements and calcu-
lated time responses by the identified model isMSE = 0.0132.

The computation time for the SG’s model identification is
approximately 2.1 s (independent on the operational condition),
recorded on the machine with performances: Intel(R) Core(TM)
i7-6860HQ CPU @ 2.70 GHz, 64-bit Operating System, 32 GB
RAM. This computation time suggests near-real-time feasibility
of the proposed model identification.

Influence of noise input data to SG’s model identification is
shown in Table IV for several characteristic intervals of random
errors in input transient series [ Ẋ Z Y ]n (11), in a library
of dynamical elements Θ(X,Z,Y )n (11), and in parameter’s
lower/upper limits ξmin

n /ξmax
n (13). Also, in the last column of

Table IV are shown the results for missed damping term (D) in
the library of candidate dynamics (influenced terms are shown
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TABLE II
SG’S EQUALITY UN-CONSTRAINED AND NON-BOUNDED MODEL

IDENTIFICATION (MATRIX Ξx,z,y) BY DIFFERENT SOFTWARE TOOLS

in shadowed cells). These results verify the robustness of the
proposed approach.

B. Integration of SINDy and MBAM Algorithms

Measurement set [y(t)] is obtained by the six-order state
{added sub-transient dynamics by e′′q and e′′d to (A1)—see [24,
eq. (15.19)]} and two-order algebraic (A2) SG’s dynamic model,

TABLE III
SG’S EQUALITY UN-CONSTRAINED AND BOUNDED MODEL IDENTIFICATION

(MATRIX Ξx,z,y), OBTAINED BY THE CVX SOFTWARE [29]

TABLE IV
SG’S UN-CONSTRAINED AND BOUNDED MODEL IDENTIFICATION (NON-ZERO

ELEMENTS IN MATRIX Ξx,z,y) UNDER NOISE INPUT DATA AND WITH MISSED

DAMPING TERM (D) IN THE LIBRARY OF CANDIDATE DYNAMICS, OBTAINED

BY THE CVX SOFTWARE [29]

TABLE V
SINDY-BASED SG’S EQUALITY CONSTRAINED AND BOUNDED MODEL

IDENTIFICATION FOR MBAM-BASED REDUCED THREE-ORDER SG MODEL

FROM (A3), (A4) (MATRIX Ξx,z′,y) AFTER STEP 4C (FIG. 1), OBTAINED BY

THE CVX SOFTWARE [29]

∗ Notice that in trigonometric terms the measurements of voltage magnitude, V (t) and
phase angle, θ(t) are included

Authorized licensed use limited to: TUFTS UNIV. Downloaded on May 31,2021 at 17:44:50 UTC from IEEE Xplore.  Restrictions apply. 



2398 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 3, MAY 2021

Fig. 2. Measured and identified SG’s transient responses of state variables (δ, ω, and e′d), state variable reduced to the algebraic variable (e′q), and measurements
in function both state and algebraic variables [active (Pg) and reactive (Qg) powers] after fault clearing (top panels) and their differences (bottom panels).
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with added a random measurement noise. This DAEs-based
SG’s dynamic model is reduced in Step 3 (Fig. 1) by the MBAM
algorithm to [for clarification, see (A3) and (A4)]:
� three differential equations (δ, ω, and e′d),
� one differential equation transformed to the algebraic equa-

tion (e′q; T ′
d0 → ∞) [5],

� measurements of exciter output voltage (vf ) and mechan-
ical power from turbine-governor (Pm), and

� two retained algebraic equations (Pg and Qg),
or

ẋF =
{
δ̇; ω̇; ė′d

}
;

g′ =
{
e′q;Pg;Qg

}
z′ =

[
e′q V θ

]T
y = {Pg;Qg;V ; θ; vf ;Pm}

with seven parameters: Ωb, 2H , x′
d, x′

q, xd, xq, and T ′
d0.

The proposed integration requires less data (transient re-
sponses of reduced three-order SG dynamic model) and in-
put parameters [23], which has conceptual and computational
advantages. Differences in transient responses between mea-
surements and calculated values for the reduced-order dynamic
model are estimated by a fully data-driven SYNDy model (the
results presented later in Table V).

The expected SG’s equality constrained and bounded model
identification (11)–(13) (Step 4c, Fig. 1) with many more nonlin-
ear (trigonometric) terms in the right-side of DAEs for MBAM-
reduced model may be simply identified from (A3) and (A4),
similarly as in Table I.

SINDy-based SG’s model identification after MBAM-based
dynamic model reduction (Step 4c, Fig. 1) is represented by a
matrix Ξx,z,y , with K = 18 constant, linear, and non-linear
(mixed trigonometric) terms in the right-side of DAEs. Input data
for SG’s model identification is described by the measurement
set (with additional noise) Y = {Pg(t);Qg(t);V (t); θ(t);
vf (t);Pm(t)} [note that the algebraic variables (z) are part of
the measurement vector (y)]. The optimal solution, obtained
by the CVX software [29], is shown in Table V. Please note
that our procedure identifies the “right-hand” side of DAEs,
and not individual original parameters (as with standard system
identification procedures—for example, in [4]).

Measurements {described by the measurement set [Y (t)] in
(21)} and MBAM- and SINDy-based identified SG transient
responses of state variables (δ,ω, and e′d), algebraic variable (e′q),
and mixed variables [active (Pg) and reactive (Qg) powers], after
fault clearing, and their differences are shown in Fig. 2. These
transients are obtained by minimizing the weighted differences
between measured and values calculated by a fixed part of the
reduced model (21), subjected to differential (22) and algebraic
constraints (23) (Step 4d). In our case, this optimization is
described as in (21a), (22a-c), and (23a) (to simplify notation,
the time dependence of all variables is suppressed).

Please note a large discrepancy for e′q in Fig. 2, because the
exciter’s output voltage [vf (t)] is very different for two dynamic
models [for example, vf0 = vf (t = 0) = 3.168 pu for the
sixth-order dynamic model, compared with vf0 = 1.4998 pu
for the fourth-order dynamic model (Section VI-A)]. However,

Fig. 3. Optimization criterion [Dif(t), t > t0] after minimization of weighted
differences between measured values [Pg(t) and Qg(t)] and those calculated
by fixed part of the reduced model, subject to differential and algebraic equations
based constraints.

e′q(t) identifies the variable as largely unaffected by tunable
model parameters (sloppy) and validates MBAM suggestion to
relegate it to algebraic variables. The voltage angle at the point
of connection varies considerably during this transient (more
than half a radian), meaning that a traditional single-machine
infinite-bus-type identification is unlikely to succeed.

min
δ,ω,e′d

Dif

= w1

(
Pg − ξ12,5V e′qsin (δ − θ)− ξ15,5V e′dcos (δ − θ)

− ξ16,5V
2sin (δ − θ) cos (δ − θ)

)2
+ w2

(
Qg − ξ13,6V e′qcos (δ − θ)− ξ14,6V e′dsin (δ − θ)

− ξ17,6V
2sin2 (δ − θ)− ξ18,6V

2cos2 (δ − θ)
)2

(21a)

subject to differential equation-based constraints (22)

δ̇ = ξ1,1 + ξ3,1ω; (22a)

ω̇ = ξ1,2 + ξ3,2ω + ξ9,2Pm + ξ12,2V e′qsin (δ − θ)

+ ξ15,2V e′dcos (δ − θ) + ξ16,2V
2sin (δ − θ) cos (δ − θ)

(22b)

ė′d = ξ5,4 e
′
d + ξ10,4V sin (δ − θ) , (22c)

and algebraic equation-based constraint (23)

e′q = ξ83 vf + ξ11,3V cos (δ − θ) , (23a)

where w1 = w2 = 1.0.
This optimization problem (21)–(23) is solved by Matlab-

based ‘fmincon’ solver (to determine the fitting values for alge-
braic equations) and ‘ode45’ integrator (for transient responses
of differential equations). The calculated optimization criterion
(Dif) is shown in Fig. 3.

Results of MBAM- and SINDy-based identification by only
one additional state variable [ xa = xa1 in (27), (29), and
(30)] for differences of retained state variables (fixed part) and
measurements in the function of both state and algebraic vari-
ables from Fig. 2 (bottom panels) are shown in Table VI. These
differences are completely data-driven (without exact mathe-
matical description) and formal polynomial and trigonometric
identification terms are assumed.
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TABLE VI
MBAM- AND SINDY BASED IDENTIFICATION (MATRIX Ξx,z′,y) OF STATE

VARIABLE DIFFERENCES (δ, ω, AND e′d), ALGEBRAIC VARIABLE DIFFERENCES

(e′q) AND MEASUREMENT DIFFERENCES (Pg AND Qg), AS A FUNCTION OF

STATE AND ALGEBRAIC VARIABLES, OBTAINED BY THE

SINDY ALGORITHM [13]

TABLE VII
SG’S MODEL IDENTIFICATION (NON-ZERO ELEMENTS IN MATRIX Ξx,z,y)

FOR REDUCED PART, OBTAINED BY THE CVX SOFTWARE [29]

In the reduced part of the dynamic model (31), there are the
following sub-transient state variables in q- and d-axis

fr ⇒
{

ė′′q = 1
T ′′
d0

(−e′′q + e′q − (x′
d − x′′

d) id
)

ė′′d = 1
T ′′
q0

(−e′′d + e′d +
(
x′
q − x′′

q

)
iq
)

where id =
e′′q−V cos(δ−θ)

x′′
d

; iq =
V sin(δ−θ)−e′′d

x′′
q

Results of the model identification for reduced state variables
(Step 6 in Fig. 1) after fault clearing are shown in Table VII.
Time responses of state variables (δ, e′q , and e′d) and algebraic
variables (V and θ) are ones from the optimized fixed part (Step
4, Fig. 1). Measurements and identified SG’s transient responses
of state variables in reduced part (e′′q and e′′d) after fault clearing
are shown in Fig. 4.

VII. CONCLUSION

This paper aims to demonstrate the relevance of the sparse
identification of nonlinear dynamics (SINDy) algorithms for
data-driven identification of dynamic models used in transient
stability of large power systems. We extended the SINDy fam-
ily of candidate expressions to include products of state and
algebraic variables and trigonometric functions of state and
algebraic variables, including couplings with exogenous signals

Fig. 4. Measured and identified SG transient responses of state variables in
reduced part (e′′q and e′′d) after fault clearing.

(measurements). The proposed methodology generates models
that are sparse by design and aims to identify only a few addi-
tional “active” terms in the dynamic response. For that reason,
the methodology tends to require fewer data to achieve a good
performance than other leading machine learning techniques and
seems to be largely immune to overfitting. The proposed model
identifies strongly nonlinear systems from local measurement
data only, and the model identification is fast enough to dis-
cover models in real-time (where the transient responses may
be generated continuously by the load/generation increments
due to the daily load/generation profiles). The ability to identify
effective models from small amounts of data is a very valuable
feature in time-critical scenarios, such as in the case of model
variations that could render the power system unstable.

APPENDIX

SG’s Models and Input Data

A. The Four-Order Model

The four-order differential (motion and electrical) and two-
order algebraic dynamic model (armature resistance ra is ne-
glected) of SG respectively are [25]:

f ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ̇ = Ωb (ω − ω0)
ω̇ = 1

2H (Pm − Pg −D (ω − ω0))
ė′q = 1

T ′
d0

(−e′q − (xd − x′
d) id + vf

)
ė′d = 1

T ′
q0

(−e′d +
(
xq − x′

q

)
iq
) (A1)

g ⇒
{

Pg = V sin (δ − θ) id + V cos (δ − θ) iq
Qg = V cos (δ − θ) id − V sin (δ − θ) iq

(A2)
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f0 ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ̇ = Ωb (ω − ω0)

ω̇ = 1
2H

(
Pm − V e′q

x′
d
sin (δ − θ) +

V e′d
x′
q
cos (δ − θ) + V 2

(
1
x′
d
− 1

x′
q

)
sin (δ − θ) cos (δ − θ)−D (ω − ω0)

)
ė′d = 1

T ′
q0

(
−xq

x′
q
e′d +

(xq−x′
q)

x′
q

V sin (δ − θ)

) (A3)

g′ ⇒

⎧⎪⎪⎨
⎪⎪⎩

e′q =
x′
d

xd
vf +

(xd−x′
d)

xd
V cos (δ − θ)

Pg =
V e′q
x′
d

sin (δ − θ)− V e′d
x′
q
cos (δ − θ)− V 2

(
1
x′
d
− 1

x′
q

)
sin (δ − θ) cos (δ − θ)

Qg =
V e′q
x′
d

cos (δ − θ) +
V e′d
x′
q
sin (δ − θ)− V 2

x′
q
sin2 (δ − θ)− V 2

x′
d
cos2 (δ − θ)

(A4)

where

id =
e′q − V cos (δ − θ)

x′
d

iq =
V sin (δ − θ)− e′d

x′
q

x =
[
δ ω e′q e

′
d

]T
z = [V θ]T

B. The MBAM-Reduced Three-Order Model

The MBAM-reduced three-order SG’s differential and three-
order algebraic dynamic model [denoted as the fixed part in (16)
and (17)] is represented by (A3) and (A4), shown at the top of
the page, respectively. where g′ is the extended set of algebraic
constraints.

C. SG’s Input Data

Sn = 190 MVA; Vn = 15.75 kV; f = 50 Hz;
Ωb = 2πf = 100π = 314.159; ω0 = 1 pu; 2H =
12.467 MWs/MV A; D = 1.9 pu; T ′

d0 = 6.5 s; T ′
q0 =

0.2 s; T ′′
d0 = 0.084 s; T ′′

q0 = 0.042 s; xd = 0.655 pu; xq =
0.487 pu; x′

d = 0.196 pu; x′
q = 0.263 pu; x′′

d = 0.159 pu;
x′′
q = 0.159 pu.
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