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Power Systems
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Abstract—The paper describes a manifold learning-based algo-
rithm for big data classification and reduction, as well as parameter
identification in real-time operation of a power system. Both black-
box and gray-box settings for SCADA- and PMU-based measure-
ments are examined. Data classification is based on diffusion maps,
where an improved data-informed metric construction for partition
trees is used. Data classification and reduction is demonstrated on
the measurement tensor example of calculated transient dynam-
ics between two SCADA refreshing scans. Interpolation/extension
schemes for state extension of restriction (from data to reduced
space) and lifting (from reduced to data space) operators are
proposed. The method is illustrated on the single-phase Motor D
example from a very detailed WECC load model, connected to the
single bus of a real-world 441-bus power system.

Index Terms—Data classification, Dynamic model reduction,
Parameter identification, State extension, Manifold learning,
Diffusion map, WECC model.

I. INTRODUCTION

E FFICIENT processing of massive high-dimensional data
sets and the extraction of actionable information are con-

temporary challenges in modern power systems. Many classical
data processing algorithms have a computational complexity
that grows exponentially with the size of data (the so-called
“curse of dimensionality”) [1]. A growing number of references
have proposed different methods for quick extraction of use-
ful information from large datasets to improve the reliability,
efficiency, and flexibility of the grid [2]–[6]. The one aspect
that is often missing stems from the fact that many variables
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contained in each data point are correlated (locally or globally),
suggesting that a possibly large data set has a much lower
intrinsic dimensionality. It should thus be possible to obtain a
low-dimensional representation of observation (measurement)
samples. When correlations between variables are only local,
classical (and global) dimension reduction methods like princi-
pal component analysis and multidimensional scaling typically
do not achieve an efficient dimension reduction.

Diffusion maps applied in the context of manifold learning
are becoming an increasingly popular means to overcome such
problems [7]. They implement a promising form of nonlinear
dimensionality reduction but may prove sensitive to the way
the data points were sampled. More precisely, if the data are
assumed to approximately lie on a manifold, then eigenmap
representation depends on the density of the points on this
manifold [8]. This is important in cases when it is needed to
merge data produced by the same source but acquired with
different sensors (“data matching”), or where different sampling
rates are present (both instances are typical in power systems).
In these cases, it is necessary to have a canonical representation
of the data that retains the intrinsic constraints of the samples
(for example, provided by a manifold geometry). Data matching
establishes a correspondence between two sets obtained from the
same source. This aim is achieved by the creation of so-called
partition trees along different axes.

Initial results with data classification via diffusion maps ap-
plied to electromagnetic transient analysis in power systems are
presented in [9].

We consider a very general problem formulation here—
multiple measurements at different parameter settings, denoted
as “trials” from an unknown, nonlinear, parametrically depen-
dent dynamical system. The problem setting includes a large
ensemble of short time series indexed by the label of the trial as
well as by the label of the measurement channel, while each time
series is parametrized by time. However, the knowledge of how
many and what parameters the system has and the actual settings
at which the trials are performed is hidden. Furthermore, we do
not know how many and which state variables the system has,
or what functions of the state variables we measure. We only
know what each channel recorded, at each trial, as a function of
time (for a short time). Using the similarity between individual
pairs of this large ensemble of short time series as our only tool,
we identify a set of relevant parameters and a set of relevant
state variables. Later we demonstrate on examples that the
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methodology we explore also can deal with bad data. One of
our larger goals is to integrate the proposed algorithms with
traditional, physics-derived models, as shown in [10].

This paper focuses on both black-box and gray-box settings,
where both supervisory control and data acquisition (SCADA)-
based and phasor measurement unit (PMU)-based measure-
ments are available. Traditional SCADA-based measurements,
obtained from asynchronous remote terminal units (RTUs),
are typically collected in time steps of over 2–10 s. With the
availability of PMUs, the synchronized measurements can be
taken at rates of 30–120 samples/s. Such measurements are
typically accompanied by timestamps, thus giving insight into
actual dynamics of the power system.

The proposed data classification is demonstrated on a very
detailed Western Electricity Coordinating Council (WECC) load
model example, where an extension to simpler representations of
dynamical components (for example, synchronous generators) is
straightforward. In this paper, typical real-time disturbances, like
daily load/generation variations are considered. Such conditions
are very challenging from the classification standpoint. In cases
of major disturbances (like three-phase short circuits, branch
outages, etc.) it is obvious in practice that the responses will be
classified into the different pattern(s).

The paper is organized as follows: Section II describes the
power system dynamic model (including typical cases for mea-
surement types and model availability) and the measurement
tensor; in Section III details are presented about data classi-
fication by the manifold learning algorithm (diffusion maps
and affinity matrix, as well as the informed metric); parameter
identification by nonlinear constrained optimization is proposed
in Section IV, while the transient analysis for gray-box modeling
is given in Section V; interpolation/extension schemes for input
measurements-output eigenvectors (the Nyström extension [11],
the radial basis function and restriction/lifting operators [12],
and a Kriging algorithm [12]) are described in Section VI; the
proposed method is applied to the single-phase Motor D from
detailed WECC dynamic load model in the 441-bus real-world
test system in Section VII; finally Section VIII presents con-
clusions, while the Appendix provides some details about the
WECC load model.

II. MODEL DESCRIPTION

A. Dynamic Model

A data-driven framework for classification of time-dependent
measurements (observations) in dynamical power system is built
upon nonlinear differential and algebraic equations (DAEs),
respectively

dx/dt = f (x, z,p, t) (1)

0 = g (x, z,p, t) (2)

where x is the vector of state variables, z are the algebraic
variables, p are parameters, and t is the (scalar) time variable.

System measurements are assumed to be of the form

y = h (x,z,p, t) (3)

We assume that the power system’s evolution (f and g) and
measurement functions (h), as well as state (x) and algebraic (z)
variables, are unknown (for the black-box settings), or partially
known (for the gray-box settings). We have only measurements
(y) labeled by time (t) and initial values of parameters (p).
We want to characterize the power system dynamics by sys-
tematically organizing the observations (collected over periodic
measurements) of its outputs (y).

B. Black-Box and Gray-Box Models

Depending on the level of power system equipment with
measurement sensors (SCADA and/or PMUs) at the node where
the WECC dynamic model is connected and in the rest of the
power system, as well as the availability of the power system
model (black-box or gray-box models), the following typical
cases may be identified:

Case 1. SCADA Measurements, the Black-Box Model: Ac-
tive/reactive (P/Q) load and voltage magnitude (V) measure-
ments are available. The availability of measurements from the
rest of the power system is irrelevant since there is no available
information about the full power system model (the black-box
model). The time frame for data classification may be, for
example, one hour to detect slow variations of load patterns.
This case is studied extensively in [13].

Case 2. SCADA Measurements, the Gray-Box Model: The P/Q
and V measurements at the point where the WECC dynamic load
is connected and measurements in the rest of the power system
(depending on the measurements redundancy) are available. A
complete power system dynamic model with uncertain param-
eters is also available. In this case, the static state estimation
is performed in observable areas (as a pre-filtering step). As a
result, the P/Q and V/θ (θ is voltage angle) filtered estimates may
be used for parameter identification (by a nonlinear constrained
optimization). The time frame for data classification may be as
in Case 1. Alternatively, the time frame for data classification
may be shortened to several seconds (or the time between two
consecutive SCADA snapshots) to detect fast variations of input
patterns, where the unavailable dynamics can be obtained from
the transient analysis (TA) tool—see Section V for details.

Case 3. PMU Measurements, the Black-Box Model: The P/Q
and V/θmeasurements are available. In this setup, the availability
of measurements from the rest of the power system is again irrel-
evant, since there is no available information about the full power
system dynamic model. Then, the available measurements may
be used directly for the parameter identification (by a nonlinear
constrained optimization from Section IV). The time frame for
data classification may be, for example, several seconds to detect
fast variations of load patterns.

Case 4. PMU Measurements, the Gray-Box Model: The P/Q
and V/θ measurements and complete power system dynamic
model (with uncertain parameters) are available. Then, the
dynamic state estimation (like Kalman filtering) is performed
(as a pre-filtering step). As a result, the P/Q and V/θ filtered
measurements may be used for the parameter identification
(by the nonlinear constrained optimization from Section IV).
Optionally, TA may be performed to provide detailed transients
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for all the state/algebraic variables (for different purposes). The
time frame for data classification may be as in Case 3.

Case 5. Mixed SCADA/PMU Measurements, the Gray-Box
Model: Different arrangements of this case may occur. For exam-
ple, in power systems with mixed SCADA/PMU measurements,
as well as the gray-box model (mixed Case 2 and Case 4), the
time frame for data classification can be the time between two
consecutive SCADA scans (2−10 s).

C. Measurement Tensor

We define the measurement tensor (Y ) as follows.
Formally, let M denote an ensemble of Nm sets of observa-

tions (measurements) and W denote an ensemble of Nw sets of
time windows for observations.

For each m ∈ M and w ∈ W we observe a trajectory
y(m,w, t) of length Nt of the system variables, where t =
1, 2, . . . , Nt denotes the time samples.

Let Y denote the entire 3-D tensor of observations (measure-
ments) y(m,w, t), with dimensions Nm ×Nw ×Nt, where
Nm denotes the number of measurements and Nw denotes the
number of observation time windows.

III. DATA CLASSIFICATION BY MANIFOLD LEARNING

ALGORITHM

We define the trajectory of measurements in the time windows
axis as [14], [15]

yw = {Y (m,w, t)|∀w, ∀t} ,w ∈ W (4)

for each of Nw vectors.
Similarly, let ym and yt be the samples as seen from the

standpoints of the measurement and time axes, respectively,
defined by

ym = {Y (m,w, t) |∀m, ∀t} ,m ∈ M (5)

yt = {Y (m,w, t) ∀m, ∀w} , t = 1, 2, . . . , Nt (6)

All data are processed three consecutive times, each time from
a different viewpoint (measurements axis, time windows axis,
and time axis, respectively).

A. Diffusion Maps and Affinity Matrix

Data-driven parameterization is based on a kernel. From the
trials axis [y in (4)-(6)] point of view, a typical kernel is defined
by

κ
(
yi,yj

)
= e

−
( ‖yi−yj ‖

ε

)2

, ∀yi,yj ∈ Y (7)

where the Gaussian function induces a sense of locality relative
to the kernel scale ε [14, eq. (4)].

To aggregate the pairwise affinities comprising the kernel
into a global parameterization, the eigenvalue decomposition
is applied to the kernel, and the eigenvalues and eigenvectors
are used to construct the desired parameterization by diffusion
maps [14].

One class of data-driven methods for analyzing complex
datasets is manifold learning based on the diffusion maps [8].

The main assumption is that data are constrained to lie on or
around a low-dimensional manifold. A common practice is to
interpret the set of samples and the affinity matrix (W ) as a
graph, where the samples are the graph nodes and the affinity
matrix determines the weights of the edges.

Given set (y) of N samples of observations (Nm, Nw, or Nt

in Section II-C), let W is (N ×N) pairwise affinity matrix, with
(i, j)-th entry (for yi and yj samples) defined by

Wij = e
−
( ‖yi−yj ‖

ε

)2

(8)

A weight of 1 indicates that two samples (yi and yj) are
identical, while weights close to 0 indicates that two samples
are very dissimilar. In our case, a node (folder) yi is connected
to another node (folder) yj by an edge with weight Wij (see
Section III-B).

The next step aggregates the pairwise affinities/graph connec-
tions into a global parameterization. The affinity matrix (W ) is
normalized to a row stochastic matrixA =D−1 W , whereD
is a diagonal matrix with elements equal to the sum of rows of
W . In the graph interpretation, A can be seen as a transition
probability matrix defining a Markov chain on the graph, where
Aij is the probability to “jump” from the node (folder) yi to the
node (folder) yj in one Markov chain step [14].

The diffusion map is used to calculate the informed metric
(10) inside the partition tree algorithm (see Section III-B).

To aggregate the pairwise affinities comprising the kernel
into a global parameterization, the eigenvalue decomposition
is applied to the kernel (row stochastic matrix, A), and the
eigenvalues and eigenvectors are used to construct the desired
parameterization [12], [14], [15]. Let λk denote the eigenval-
ues ordered in decreased order, and let ψk [ψk(t)] denote the
corresponding (right) eigenvector. Matrix A is row stochastic,
and its largest eigenvalue is λ0 = 1, corresponding to the trivial
eigenvector ψ0 with all-ones. Since, λ0 and ψ0 do not carry
relevant information on the data, they are ignored. The diffusion
map embedding of the samples is defined as the following
nonlinear map [14, eq. (9)]

{λ,ψ} → (λ1ψ1, . . . , λkψk, . . . , λKψK) (9)

where K denotes by the user-selected number of largest
eigenvalues.

Note that the Euclidean distance between the embedded sam-
ples approximates the diffusion distance (a distance defined by
the induced transition probabilities) is closely related to the
geodesic distance on the assumed underlying manifold. The
eigenvectorsψk form an orthonormal basis for any real function
defined on the sample set {y}.

From three separate diffusion maps for data sets ym, yw,
and yt we may obtain three mappings as in (9), denoting the
associate eigenvectors by {ψM

k }, {ψW
k }, and {ψt = 1, 2, ...,Nt

k };
k = 1, 2, . . . ,K, respectively. However, such mappings do not
take into account the strong correlation and dependencies among
the different time windows (for example, dynamics of the power
system between two measurement snapshots), or the parameter
variations with the dynamics of state and algebraic variables,
which is typical in dynamical systems (such as a power system).
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To incorporate such dependencies, an informed (distance)
metric between samples in the different axes may be derived
from observations.

B. Informed Metric

The construction of the informed metric is described on the
time window axis (w ∈ W) example; extensions to other axes
are straightforward. The essence is the definition of a meaning-
ful notion of distance between samples. The informed metric
‖ywi − ywj‖W , where the superscript W indicates that it is an
informed norm between the samples—informed from the time
window viewpoint in this case. The construction of the metric is
iterative. In each iteration, the dependencies between the sam-
ples are gradually revealed from observations and, in turn, used
to build a refined informed metric (for details of the construction
procedure see in [14, Appendix 2]). In the first iteration, the
construction of the informed metric ‖ywi − ywj‖W uses as
an initial input two noninformed metrics, defined on the time
windows axis (w ∈ W) and on the time axis (t = 1, 2, . . . , Nt).
Possible choices for such metrics are the Euclidean metric or
a metric derived from the cosine between vectors [14]. The
construction is implemented by decomposing the metric into
the following general form

‖ywi − ywj‖W = ‖ywi − ywj‖1
+ γ‖FW(ywi)−FW(ywj)‖1 (10)

where ‖ · ‖1 is the �1 norm, γ > 0 is a weighting factor, and
FW : RNw×Nt → RD is a feature function (i.e., a measure of
the transformation from data to reduced space—D).

The 2-D (classical) transform is implemented using a set of
basis functions (g�,�′) and the transform is given by a collection
of the linear projections of the data on that set of basis functions

FW(yw) = {g�,�′ ,yw∀�} (11)

where for the time windows axis, the basis functions are defined
on W × {1, 2, . . . , Nt} and the inner product is

〈g�,�′ ,yw〉 =
∑
wW

∑
t=1, 2, ...,Nt

g�,�′ (w, t)yw (m,w, t) (12)

However, the classical transforms above (such as, for exam-
ple, Fourier transform, Wavelet transform etc.) are linear and lo-
cal, and their basis functions g�,�′ are fixed and not data-adaptive.
This paper applies a transform based on data-driven partition
trees [16]–[18]. By using the initial non-informed metrics, a
multi-level clustering approach employing a hierarchical parti-
tion tree of both the measurements and time windows is applied.
Each partition tree is composed ofL+ 1 levels, where a partition
of samples is defined for each level 0 ≤ l ≤ L. The partition at
the l-th level consists ofn(l)mutually disjoint nonempty subsets
of samples—folders. At the bottom level of the tree (l = 0),
each sample belongs to its own tree leaf (finest partition). At
each level, moving up, folders are merged to create larger and
larger folders, until reaching the root of the tree, where all the
samples belong to a single root folder (l = L). These trees are
used to define an over-complete set of basis functions (defined
for each folder I� in the time windows axis tree and for each

folder J�′ in the time axis tree) as the indicator function for the
samples in these folders as

g�,�′ (w, t) =

{
1 w ∈ I�, t ∈ J�′

0 otherwise
(13)

For the basis functions above, a transform based on the earth
mover’s distance is formulated. For details of the construction
procedure see in [14, Appendix 2].

IV. PARAMETER IDENTIFICATION

Parameter identification is described for Case 4: PMU, the
gray-box model (Section II-B).

Parameter fitting to the observations is based on the modified
nonlinear optimization from [19]

p̂ = min

⎧⎨
⎩

1

2

N ′
m∑

m = 1

Wm

N ′
w∑

w = 1

Nt∑
t = 1

r2mwt (p)

⎫⎬
⎭ (14)

subject to the parameter’s lower/upper bounds

pmin ≤ p ≤ pmax (15)

where:
N ′

m − number of analyzed measurements
(N ′

m ≤ Nm);
N ′

w − number of analyzed time windows pat-
terns (N ′

w ≤ Nw);
Nt − number of elements in time axis of

measurement tensor;
Wm − elements of (N ′

m ·N ′
w ·Nt)-

dimensional diagonal weighting matrix
for measurement set (m ∈ M);

rmwt(p) = is the error (residual) for the m-th
hmwt − hmwt(p) measurement function, w-th time win-

dows pattern, and t-th time point;
hmwt, hm,w,t(p) −measurement functions for the basic and

perturbed parameters, respectively.

Introducing cumulative vectors we have:
- for Nt analyzed time points:

rmw (p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

rmw1 (p)
...

rmwt (p)
...

rmwNt
(p)

⎤
⎥⎥⎥⎥⎥⎥⎦

= hmw − hmw (p)

hmw =

⎡
⎢⎢⎢⎢⎢⎢⎣

hmw1

...
hmwt

...
hmwNt

⎤
⎥⎥⎥⎥⎥⎥⎦
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hmw (p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

hmw1 (p)
...

hmwt (p)
...

hmwNt
(p)

⎤
⎥⎥⎥⎥⎥⎥⎦
Jp

mw =

⎡
⎢⎢⎢⎢⎢⎢⎣

Jp
mw1
...

Jp
mwt
...

Jp
mwNt

⎤
⎥⎥⎥⎥⎥⎥⎦

- for N ′
w time windows patterns:

rm (p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

rm1 (p)
...

rmw (p)
...

rmN ′
w
(p)

⎤
⎥⎥⎥⎥⎥⎥⎦
= hm − hm (p)

hm =

⎡
⎢⎢⎢⎢⎢⎢⎣

hm1

...
hmw

...
hmN ′

w

⎤
⎥⎥⎥⎥⎥⎥⎦

hm (p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

hm1 (p)
...

hmw (p)
...

hmN ′
w(p)

⎤
⎥⎥⎥⎥⎥⎥⎦
Jp

m =

⎡
⎢⎢⎢⎢⎢⎢⎣

Jp
m1
...

Jp
mw
...

Jp
mN ′

w

⎤
⎥⎥⎥⎥⎥⎥⎦
,

- and finally for N ′
m measurements:

r (p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

r1 (p)
...

rm (p)
...

rN ′
m
(p)

⎤
⎥⎥⎥⎥⎥⎥⎦
= h− h (p)

h =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1

...
hm

...
hN ′

m

⎤
⎥⎥⎥⎥⎥⎥⎦

hm (p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1 (p)
...

hm (p)
...

hN ′
m(p)

⎤
⎥⎥⎥⎥⎥⎥⎦
Jp =

⎡
⎢⎢⎢⎢⎢⎢⎣

Jp
1
...
Jp

m
...

Jp
N ′

m

⎤
⎥⎥⎥⎥⎥⎥⎦

where Jp
mwt =

∂hmwt(p)
∂p is a vector of sensitivities of mea-

surement function for m-th, w-th, and t-th point to a set of
parameters.

The necessary condition for an optimum in (14) is

0 = − ∂h (p)

∂p
W [h− h (p)]

= − JT
pW [h− h (p)− JpΔp] (16)

whereJp = ∂h(p)
∂p = {Jp

mwt} is the Jacobian matrix (derived
in [19, eqs. (4)–(6)]) for differential (1) and algebraic equations
(2).

Solutions of (16) provide the system of linear equations for
uncertain parameter increments[

JT
pWJp

]
Δp = JT

p W [h− h (p)] (17)

However, the matrix JT
pWJp is often ill-conditioned, with

eigenvalues spanning several orders of magnitude. To remedy
these shortcomings, the approach from [19] was applied.

Additional clarification for the number of analyzed time
windows patterns in the nonlinear optimization (14), (15) is
necessary. The following typical cases may be identified:

1) Optimization of very quickly changing parameters (such
as, for example, parameters of Motor D of WECC load
model—see Appendix), where N ′

w = 1 (optimization on
the single time window between two consecutive mea-
surement scans).

2) Optimization of quickly changing parameters (such as,
for example, parameters of the static part of WECC load
model—see Appendix and [20]–[22]), where the nonlinear
optimization can be performed on an hourly basis (for
example, for 10 s SCADA refreshing time step, N ′

w =
6 · 60 = 360).

3) Optimization of slowly changing parameters (such as, for
example, parameters of Motors A, B, and C—see Appendix
and [20]–[22]), where the nonlinear optimization can be
performed on a daily (or longer) basis (for example, for
10 s SCADA refreshing time step, N ′

w = 6 · 60 · 24 =
8640).

V. TRANSIENT ANALYSIS

Transient analysis (TA) identification is described for Case
2/4: SCADA/PMU, the gray-box model (Section II-B).

In cases where the form of the power system dynamic model
is known (with uncertain parameters—the gray-box model), the
TA is performed for time windows (w ∈ W) as

TAw (P p,w,P g,w−1) , w = 2, 3, . . . , Nw (18)

subject to a set of disturbances (Dist) in the analyzed time
interval—integration time ( Tw = [tmax(w − 1); tmax(w)])∑

d∈[0;Tw]

Distd (19)

where a typical disturbance is the total generation increment
[from generation forecast, or generation daily profiles, as well
as automatic generation control (AGC) settings], determined for
the set of AGC participating generators as

Dist ≡ Δ P g = P g (Tw)− P g (0) (20)

VI. INTERPOLATION/EXTENSION SCHEMES

The diffusion maps-based manifold learning algorithm
provides a mapping from each measurement sample y (y ∈
{Y (m,w, t); m ∈ M, w ∈ W, t = 1, 2, . . . , Nt} ∈ RN )
in the data space to the K-dimensional reduced space,

Authorized licensed use limited to: TUFTS UNIV. Downloaded on May 31,2021 at 17:49:09 UTC from IEEE Xplore.  Restrictions apply. 



SARIĆ et al.: DATA-DRIVEN CLASSIFICATION, REDUCTION, PARAMETER IDENTIFICATION AND STATE EXTENSION IN HYBRID POWER SYSTEMS 2227

represented by elements of eigenvectors (embedding variables)
ψ (y) = [ψ1 · · · ψk · · · ψK ]T—restriction operator, where
ψk = ψk (t). The manifold (Ω) in the data space (Y ) is the
set of points on Ω, that gets mapped to the corresponding
reduced set {ψk} on the manifold in the reduced space (Ωred).
We can use any interpolation technique to compute y for any
other value of ψk, or y = Θ(ψk)—lifting operator. We can
construct a mapping in the other direction, ψk = Θ−1 (y)
(restriction operator). We need to conceptually recast changes
in measurements from (3), dy/dt = dh(x, z,p, t)/dt , into
the reduced space as [12]

dψk

dt
=

(
JTJ

)−1
J
dy

dt
(21)

where J = dΘ/dψk .
Summarizing, for a given value of ψk, we need a computa-

tional method to evaluate dψk/dt, while we have available a
method to compute dy/dt (for the black-box and the gray-box
models this can be calculated numerically, while for the gray-box
models analytical techniques can be brought in, see [19]). To
perform this calculation, we execute the following steps:

1) Compute the y on Ωred corresponding to the current ψk

(using any form of interpolation).
2) Compute the change dy/dt.
3) Compute the change in reduced space dψk/dt by (21).
Several possible extensions (in effect, interpola-

tion/extrapolation) schemes can be adopted for calculating
the lifting operator (Θ) and restriction operator (Θ−1), as well
as J = dΘ/dψk in (21), as shown in the sequel.

A. The Nyström Extension

The Nyström extension is a technique for the numerical
approximation of eigenvectors and for obtaining the k-th ap-
proximation coordinate (ψ̂k) at an arbitrary data pattern (y) as
[11]

ψ̂k (y) =
1

Nλk

N∑
i = 1

W (y,yi) ψ̂k (yi) , (22)

where the weighting factor from (7) is

W (y,yi) = e
−
( ‖y−yi‖

ε

)2

(23)

and

yi ∈ {ym,yw,yt} =
{
Y (m,w, t) ;

m ∈ M, w ∈ W, t = 1, 2, . . . , Nt

} ∈ RN

λk is k-th eigenvalue;
‖y − yi‖denotes the Euclidean distances between data points

y and yi.
This method allows us to extend an eigenvector computed for

a set of sample points [ψ̂k(yi)] to an arbitrary point [(ψ̂k(y)]
using W (y,yi) as the interpolation weights. The Jacobian ma-
trix (J ) in (21), may be obtained by differentiation of (22)—see
[12].

B. Radial Basis Functions

Both the lifting and restriction operators may be obtained by
locally interpolating through the radial basis functions.

The corresponding point in the full (data) space, or the lifting
operator, y = Θ(ψk), can be generally expressed as [12]

y =

NN∑
i=1

αik‖ψk −ψi‖p (24)

over the NN nearest neighbors ofψk, where p is an odd integer,
while ‖ · ‖ denotes the Euclidean distance in the reduced space
(Ωred).

The coefficients αik are computed as⎡
⎢⎢⎢⎣

α1k

α2k

...
αNNk

⎤
⎥⎥⎥⎦ = Λ−1

⎡
⎢⎢⎢⎣

y1k
y2k

...
yNNk

⎤
⎥⎥⎥⎦ ; Λ (i, j) = ‖ψi −ψj‖;

i, j = 1, 2, . . . , NN (25)

Similarly, the restriction operator [ψ = Θ−1 (y)] may be
expressed in the form

ψ̂k (y) =
NN∑
i=1

αik‖y − yi‖p (26)

The Jacobian matrix (J ) in (21) can be obtained by differen-
tiating (26)—see [12].

C. The Kriging Predictor

In Kriging, the extension of an input function to a new point
is performed via a weighted linear combination of the input
function at known points. A noticeable feature of the Kriging
predictor is that weights may depend on both distance (24) and
correlations between the available samples [23].

The random process (z) with mean zero and covariance is

E [z (x) z (y)] = σ2 R (θ, x, y) (27)

between z(x) and z(y), where σ2 is the variance of the response,
and R(θ, x, y) is the correlation model with parameter θ.

Given a set of N inputs y(ψk) =
[y1 · · · yi · · ·yN ] T, with yi ∈ {ym,yw,yt} =
{Y (m,w, t); m ∈ M, w ∈ W, t = 1, 2, . . . , Nt} and re-
sponses ψk ∈ [ψ1 · · · ψk · · · ψK ]T, with yi = yi (t) ∈ RN

andψk = ψk (t) ∈ RK . We adopt an optimal prediction model
ŷ(ψk) that expresses the deterministic response y(ψk) ∈ RN

as a realization of a regression model (F) and random function

ŷ (ψk) = F (βk,ψk) + ek (ψk) (28)

where βk is the vector of regression parameters and ek(ψk) is
an error of k-th component.

We use a regression model (F) which is a linear combination
of P chosen functions (fp[y(ψk)]; p = 1, 2, . . . , P

F (βk,ψk) = β1k f1 [y (ψk)] + β2kf2 [y (ψk)] + · · ·
+ βPkfP [y (ψk)] = fp[y (ψk)]

T βk (29)

Authorized licensed use limited to: TUFTS UNIV. Downloaded on May 31,2021 at 17:49:09 UTC from IEEE Xplore.  Restrictions apply. 



2228 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 3, MAY 2021

We have expanded the (N × P )-dimensional measurement
matrix as

F =
[
fp [y1 (ψk)] fp [y2 (ψk)] · · ·fp [yN (ψk)]

]
T (30)

with fp[y(ψk)] defined in (29).
Further, define the matrix R with stochastic-process correla-

tions between measurements, with elements

Rij = R (
θ,yi,yj

)
, (31)

i, j = 1, 2, . . . , N and the vector of correlations between the
measurement vector (yi) and eigenvector (ψk) as

rk (yi,ψk) =
[R (θ,y1,ψk) · · · R (θ,yN ,ψk)

]T
(32)

Considering the linear predictor c = c[y(ψk)] and
y(ψk) = [y1 · · · yi · · ·yN ] T defined above, we have

ŷ (ψk) = c
T y (ψk) (33)

and the error is

ŷ (ψk)− y (ψk) = c
T ψk − y (ψk)

= cT (Fβk +E)−
(
f [y (ψk)]

Tβk + ek

)
(34)

where E is an error vector of measurements (y(ψk)).
To keep the predictor unbiased we require that

FTc = f (y (ψk)) (35)

Under this condition, the mean-square error (MSE) of the
predictor (34) is [23, eq. (2.11)]

MSE = E
[
(ŷ (ψk)− y (ψk))

2
]

= E
[(
cTE − ek

)2]
= σ2

(
1 + cTRc− 2cTrk

)
(36)

Solving the optimization criterion (34), subject to the con-
straint (33) gives the optimal lifting operator, y = Θ(ψk). For
solution details, please see [23].

VII. APPLICATION

The proposed algorithms for load data classification and
reduction, parameter identification, and state extension were
tested on a real-world test system (Electric Power Industry
of Serbia; a part of the European Network of Transmission
System Operators (ENTSO-E) interconnection) with 441 buses,
280 load buses, 655 branches (transmission lines and two/three
winding transformers), 78 production units [synchronous gener-
ators (SGs), double fed induction generators (DFIGs) and direct
drive induction generators (DDSGs)], with automatic voltage
regulators (AVRs) and turbine models, where SGs, DFIGs,
DDSGs, AVRs, and turbines (steam, hydro, wind, and solar)
are modeled by different numbers of equations. The dynamic
model has a total of 1027 state variables. Part of the generation
units (a total of 14) participates in AGC, depending on their
participation factors, covering an imbalance between total load
and generation, obtained from daily profiles for loads (four load

TABLE I
LARGEST EIGENVALUES IN TIME WINDOWS AXIS AND TIMES AXIS

types are available) and generations (thermal, hydro, wind, and
solar units are available), respectively. The transient analysis (TA
in Section V) is performed by PSS/E software (version 33.5.2)
[24], where the WECC load is modeled by the user-defined
CMLDBLU1 model.

The generation increments (for 14 participating units in AGC)
in time windows as described in Section V are used as a distur-
bance for transient analysis [Dist in (20)].

A. Basic Results

Basic results are shown for Case 2: SCADA measurements,
the gray-box model (see Section II-B).

We generate a three-dimensional set of measurements (M)
at the WECC connection point 110 kV (bus 34390, JBOGAT5):
active power (Plf ), reactive power (Qlf ) and bus voltage mag-
nitude (Vlf )—see Fig. 1 for clarification. From these values
may be calculated values in the load bus: Pload, Qload, and
Vload. Without loss of generality (the proposed methodology
similarly can be applied to other dynamical models in Fig. 10),
the obtained results are shown on the example of the single-phase
Motor D, where active and reactive loads of Motor D are:
PD and QD, respectively—see Appendix and Fig. 10 (Motor
D is highlighted by the red rectangle) for clarification. For
each m ∈ M and w ∈ W , we observe the trajectory of the
WECC dynamic load at the Motor D level sampled every 10 s
(6×60×24−1 = 8639 time windows), with Nt = 172 points
of transient analysis for the time of the transients 10 s. We
collect all of the trajectories into a single 3-D measurement
tensor (Y ), where Y ∈ R3×8639×172, with the trajectories of
the system variables y(m,w, t), t = 1, 2, . . . , Nt, where t
denotes the time samples. Surfaces of the tensor Y components
(active powers, reactive powers, and bus voltages) are shown in
Fig. 1.

Pattern classification by manifold learning, which involves
diffusion geometry (diffusion maps) with data-driven partition
trees is based on the methodology from [14].

The number of largest eigenvalues (λk, sorted in descending
order) calculated for the diffusion map embedding of the samples
in reduced space (9) is decided by the user-selected parameter
(which also strongly affects the total calculation time). In Table I,
we show the K = 9 largest eigenvalues of the row stochastic
matrix (A). From Table I, we conclude that eigenvalues decrease
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Fig. 1. Measurement tensor (Y ).

Fig. 2. Partition trees in different tensor axes.

Fig. 3. Dominant embedding (elements of eigenvectors) in different tensor axes.

approximately exponentially, suggesting that only a small num-
ber of the largest eigenvalues need to be calculated. In [10, [25] it
was demonstrated that the truncation down to∼10% still enables
appropriate reconstruction.

The exponential decay of eigenvalues is reminiscent of a
similar distribution for the eigenvalue spectrum of the Fisher
Information Matrix (FIM) in physics-based models of power
systems (often called “sloppy” in the physics literature) [26].
In both cases, small eigenvalues indicate irrelevance of the
associated degrees of freedom, and the two approaches are
dual to one another. Here we use eigenvalues of the dif-
fusion map embedding to identify low-dimensional embed-
dings of the model in a data-driven way. Elsewhere, we have

used the FIM to perform parameter reduction of physics-based
models [27].

Partition trees and dominant embedding (elements of eigen-
vectors) (9), obtained by the diffusion maps-based manifold
learning algorithm (Section III), in different tensor axes are
shown in Fig. 2 and Fig. 3, respectively.

From Fig. 1 and Fig. 3 the following conclusions may be
derived:

1) The discontinuity in the plot ‘Time windows (w)’ for
reactive power is generated by the stalling effect and
voltage-reactive power dependence—see [13, Fig. 1]
and the plots for reactive powers and bus voltages
in Fig. 1.
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Fig. 4. Dominant embedding (elements of eigenvectors) in different tensor axes (reduced tensor).

Fig. 5. Influence of 20 bad transients data (t = 1, 2, . . . ,Nt) of reduced tensor in time windows to dominant embedding (elements of eigenvectors).

2) Transient analysis reaches the (quasi) steady-state con-
dition for approximately 10 s (see Fig. 1), so it is not
necessary to increase the integration time.

3) In cases where the power system is subject to small daily
load/generation variations (no major disturbances), the
elements of the eigenvector also vary just slightly (see
Fig. 3).

4) With this in mind, a good state prediction based on the
elements of eigenvector prediction is to be expected.

5) Looking at ‘Time windows (w ∈ W)’ the plot in Fig. 3,
it is expected that a very similar plot can be obtained
by reducing the size of the time windows of the input
(measurement) tensor. Elements of the eigenvectors along
different tensor axes for the reduced tensor [Motor D
is sampled in every 2 min in one day (24 hours), or
30×24−1 = 719 time windows— Y ∈ R3×719×172] are
shown in Fig. 4. When comparing plots from Fig. 3 and
Fig. 4, we can conclude that the reduced measurement
tensor provides enough information for state prediction
(see Section VII-C).

The proposed method may be used for the identification and
filtering of bad data. In the reduced tensor (Y ∈ R3×719×172) are
assumed 20 bad transients in the time windows axis (yw), with
three characteristic intervals of random errors:±1 %,±5 %, and
±10 %. Dominant embedding, or elements of the eigenvectors of
the row stochastic matrix (A) in the time windows axis are shown
in Fig. 5 (note that the dominant embedding in the measurements

axis and the time axis are the same as in Fig. 4). From the
presented results, the bad elements of the eigenvector and their
sources by participation factors may be identified.

The computation time for manifold learning with reduced
tensor is approximately 7 s.1

B. Parameter Identification

The proposed algorithm for parameter identification (Sec-
tion IV) is verified on the example of uncertain parameters for
the single-phase Motor D [22], see Fig. A1:
Xstall – stall reactance, in [pu];
Tth – thermal time constant, in [s];
θ2t – thermal protection trip completion level (in [pu]

temperature).

Unavailable real-time (typically PMU-based) measurements
in point where the WECC load model is connected, for on-line
parameter estimation, are replaced with 50 random variations
of the above parameter set in range ±10 % (from values given
in [20]–[22]: Xstall = 0.1, Tth = 15, and θ2t = 1.9). These
parameter sets are used to calculate the trajectories of the mea-
sured variables [y(t)]. For three available measurements (m ∈
M = {PD, QD, Vload}) and one time window (w ∈ W) with

1Intel(R) Core(TM) i7-6860HQ CPU @ 2.70 GHz, 64-bit Operating System,
32 GB RAM.
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Fig. 6. Optimized parameters of Motor D for the analyzed daily profile.

Np = 50 parameter variations we generate the measurement
tensor Y ∈ R3×50×172 with trajectories Y (m,w, t), where for
very quickly changing parameter case (from Section IV) are:
N ′

m = 3, N ′
w = 1 · Np = 50, and Nt = 172.

Optimized parameters of Motor D for the analyzed daily load
profile are shown in Fig. 6. In this figure, the stalling effect
clearly can be identified in the change of θ2t between the 17th
and 19th hours.

The computation time for parameter identification is approx-
imately 1.2 s/time window (w).

C. State Prediction

For state prediction, input (y) and output (ψk) for restriction
operator, ψk = Θ−1 (y) (Section VI), are composed of a set
of measurements (tensor Y , shown in Fig. 1 and used for
the calculation in Section VII-A) and the calculated embed-
ding {eigenvalues (λk) and elements of eigenvectors [ψk(t)];
k = 1, 2, . . . ,K, shown in Fig. 7 for four (k = 1; 2; 3; 4)
dominant eigenvalues}, respectively.

To generate the Kriging model (Section VI-C), we use the
DACE toolbox in Matlab [23].

For state prediction, the reduced measurement tensor (Y ∈
R3×719×172, Section VII-A) is used (to reduce the calculation
time further, only a selected number of time windows (w ∈
W) trajectories may be used—for example, every 20th). Input
measurement vector for state (measurement) prediction (22) and
eigenvector for dominant eigenvalue (k = 1), ψ1, for DACE
toolbox are prepared as:

y(m,w, t)DACE =

⎡
⎢⎢⎢⎢⎢⎢⎣

y (m, 1, t)
...

y (m,w, t)
...

y (m, Nw, t)

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 7. Elements of the eigenvector for prediction model [restriction
operator, ψk = ψk (t) = Θ−1 (y)] in time windows axis (top panel) and
time axis (bottom panel).

ψDACE
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ1
...
ψ1
...
ψ1

⎤
⎥⎥⎥⎥⎥⎥⎦

where:

m ∈ M = {PD, QD, Vload}

y (m,w, t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y (m,w, 1)
...

y (m,w, t)
...

y (m,w, Nt)

⎤
⎥⎥⎥⎥⎥⎥⎦
; y (m,w, t) ∈ {Y }

ψ1 =

⎡
⎢⎢⎢⎣
ψ1 (1)
ψ1 (2)

...
ψ1 (Nt)

⎤
⎥⎥⎥⎦
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Fig. 8. State (active power transients) prediction model [lifting operator,
y(PD,w, t) = Θ(ψ1)] for dominant eigenvalue (λ1), ψ1 = ψ1(t).

Fig. 9. MSE of state [active power transients, y(PD,w, t)] prediction model
for the dominant eigenvalue (λ1), ψ1 = ψ1(t).

In the two-column input measurement matrix requested for
the DACE toolbox, the first column is defined above (Nw ·Nt)-
dimensional measurement column-vector y(m,w, t)DACE,
while the second column is composed of the correspond-
ing repeated time points (t = 1, 2, . . . , Nt) for the ana-
lyzed time windows (w ∈ W). Similarly,ψDACE

1 is (Nw ·Nt)-
dimensional vector.

The state (measurement) prediction model is shown on the
‘Active powers’ example in Fig. 1 [y(PD,w, t)], where this
surface is divided into an (80 × 80)-dimensional meshed grid.

Results for the prediction model obtained from the active
power measurement, y(PD,w, t) and embedding (elements of
the eigenvector for the dominant eigenvalue, k = 1), ψ1 =
ψ1 (t), are shown in Fig. 8, while the MSE is shown in Fig. 9.

The computation time for the state prediction is approximately
27 s.

From Fig. 9 we can conclude that in the corridor with time
responses (first plot in Fig. 1) we have very small MSE, while

in uncovered areas with measurement points, MSE increases
drastically (as expected).

VIII. CONCLUSION

The development of mathematical techniques that operate
directly on observations, or measurements (data-driven ap-
proaches) bypasses the need to precisely select variables and
parameters, and to derive accurate equations in closed form
(gray-box approach). Initially unorganized measurement data
are classified along the dimensions of measurements (inputs),
state variables (time windows in our case), parameter settings
(inputs), and time snapshot values (depending on the specified
tensor), and iteratively lead to the construction of an informed
metric for each type of variation.

The manifold learning algorithm that we describe has been
tested in black-box and gray-box settings in a large power
system. Data classification and reduction have been illustrated
on an example of transient dynamics involving a widely used
load model. We believe that control design based on this method-
ology is an interesting avenue to be explored, for example by
considering a three-dimensional tensor for each controller output
consisting of initial conditions, parameters, and the time axis.
The results thus far are encouraging and point toward the need
to blend general big-data procedures like manifold learning with
power system specific customizations and extensions.

APPENDIX

WECC LOAD DYNAMIC MODEL

The WECC load dynamic model (shown in Fig. 10) is repre-
sented by DAEs, as in [20]–[22] and therein references.

Fig. 10. WECC load dynamic model.
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