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The paper explores interleaved and coordinated refinement of physics- and data-driven models in describing
transient phenomena in large-scale power systems. We develop and study an integrated analytical and com-
putational data-driven gray box environment needed to achieve this aim. Main ingredients include computa-
tional differential geometry-based model reduction, optimization-based compressed sensing, and a finite ap-
proximation of the Koopman operator. The proposed two-step procedure (the model reduction by differential
geometric (information geometry) tools, and data refinement by the compressed sensing and Koopman theory

based dynamics prediction) is illustrated on the multi-machine benchmark example of IEEE 14-bus system with
renewable sources, where the results are shown for doubly-fed induction generator (DFIG) with local mea-
surements in the connection point. The algorithm is directly applicable to identification of other dynamic
components (for example, dynamic loads).

1. Introduction

Development of mathematical techniques that operate directly on
observations or measurements (i.e., data-driven methods) is of in-
creasing relevance for large-scale power systems. Reasons for unavail-
ability of verified system-level equation-based models needed for stu-
dies of stability, dynamic performance and restoration vary, and
include: 1. component (particularly load) variations, 2. obsoleteness/
undocumented modifications, and 3. models in the form of computer
code or tabulated experimental data.

We envision development of a two-step procedure, in which nom-
inal dynamical models are tested for practical identifiability in the first
step using differential geometric tools, and then are appended by the
data-driven refinement on the second step, using tools from compressed
sensing and Koopman operator theory.

Equation-free approaches are effective for many power electronic
and power systems [1,2], where this method assumes full access to the
lower level models that can be precisely initialized and simulated at
will. We are interested in approaches that would be effective in more
restricted situations in which only some data (experimental or simu-
lated) are available without access to the detailed simulation model or
to the system itself.

Diffusion maps for manifold learning [3] are an example of methods
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that by-pass the need to precisely select variables and parameters as
well as the need to derive accurate, closed-form equations (i.e., white or
gray-box approaches).

Available SCADA and especially Phasor Measurement Unit (PMU)
based measurements provide a very large volume of data (typically the
transient responses) in modern power systems. It is a common ex-
pectation that only a few parameters are needed to characterize the
modes that are active at a given operating point, thus suggesting a
possibility of significant data size reduction. Data compression typically
relies on sparsity of the signal of interest in a transformed basis (for
example, in Fourier transform basis).

In this paper we explore the interplay among several concepts
needed to achieve coordinated physics- and data-driven modeling of
power system dynamics.

The outline of the paper is as follows: in Section 2 is provides the
problem formulation; Section 3 describes the basis for dynamic model
reduction by differential geometric (information geometry) tools, while
Section 4 describes the compressed sensing algorithm; Section 5 pro-
vides the details of the data-driven Koopman operator based prediction;
the overall procedure is applied to the benchmark 14-bus system in
Section 6, and Section 7 presents conclusions.
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2. Problem formulation

The equation-driven framework for dynamical power system models
is based on (nonlinear) differential and algebraic equations (DAEs),
respectively [4]

dx/dt = f(x,z, p. t) (1)

0=g(x z p 1) (2)

where x is the vector of state variables, z are the algebraic variables, p
are parameters, and t is the (scalar) time variable.
System measurements are assumed to be of the form

y= h(x, z, p. 1) (3)

In realistic conditions, measured (y™) and calculated (¥°) values of
variables in measurement points may be different, due to: uncertain
parameters (vector p), un-modeled dynamics, different initial condi-
tions, etc.

System identification is the standard approach to solve the above
problem via parameter optimization as
p = argmin [y™ — y<[l,

p (4
subject to (1-3). An alternative is based on the equation-free models
[1,2,5]. However, both approaches have a drawback in practical ap-
plications, due to the sensitivity of the optimized solution to model
parametrization and to initial conditions.

In this paper we advance a hybrid approach, in which a portion of
the equation-based model is retained. This portion is certified via dif-
ferential-geometric tools to be robustly identifiable in a given mea-
surement structure. We propose a gray box modeling approach, con-
sisting of equation-based modeling for the retained part in the
reduction procedure

yr,rt'd — ¢(xred) (5)

and data-driven modeling for the difference between measured (y™)
and calculated (y® redy yalues, or

Ay — ym — yc‘rcd (6)

where the transformation y©"d = ¢(y™) is possibly nonlinear, and un-
known in advance.

Flow-chart of the proposed gray box environment with three main
ingredients (Information Geometry-based the dynamic model reduc-
tion, compressed sensing, and the Koopman theory-based dynamic
prediction) is shown in Fig. 1.

3. Reduction of the dynamic model

Information geometry refers to a geometric interpretation of sta-
tistics in which a parametric model is interpreted as a manifold [6].
Parameters of the model act as coordinates, which effectively shift
emphasis from model parameters to model behaviours, i.e., model
properties that are invariant to re-parameterization [4,6,7]. Combining
this theory with computational differential geometry leads to a rich
toolbox for exploring global properties of parametric models.

The fundamental quantity in Information Geometry is the Jacobian
matrix J, (1) = 6k (t)/dp. The Jacobian is calculated by solving the first
order sensitivities of (1-3).

The Fisher Information Matrix (FIM) is the Riemannian metric on
the manifold and is constructed from the Jacobian as I = J;‘]p. The
metric quantifies the local, linear properties of the model manifold by
defining an inner product between vectors in parameter space that is
induced by properties in the model's behaviour space.

Local quantities are extended to a nonlocal analysis through a geo-
desic. Geodesics are analogues of straight lines on curved surfaces. They
are constructed numerically by solving a second order ordinary differ-

ntial equation (ODE) in parameter space
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Fig. 1. Flow-chart of the proposed gray box environment.
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The geodesic is parameterized by its arc length as measured on the
model manifold, denoted by 7. T are the Christoffel symbols [6], which
are formally expressed in terms of first and second order parametric
sensitivities of (1-3). However, the unique structure of the geodesic
Eq. (7) enables for some numerical shortcuts. Because of the sums over
the indices j and k in (7), it is not necessary to calculate all the Chris-
toffel symbols. Instead, the relevant combinations can be calculated
directly and efficiently following methods described in [4,6,7 and re-
ferences therein].

To solve (7), it is also necessary to specify initial conditions. A un-
ique solution to the geodesic equation is determined by specifying a
starting point and direction in parameter space. Here, we take the in-
itial values to be the "true" parameter values and the initial direction to
be the eigenvector of the FIM with smallest eigenvalue. Our analysis
then proceeds by first solving (1-3) along with their first order sensi-
tivities, and constructing the Jacobian and FIM. Next the relevant
combinations of the Christoffel symbols are evaluated and combined
into the right-hand side of (7). These steps become the right-hand-side
routine of a numerical ODE integrator that repeats these steps as it
marches through parameter space along the geodesic.

Often, the geodesic will exhibit a "finite-time" singularity, where
"time" refers to the parameter z, not the time parameter, t in (1-3).
When this occurs, the geodesic extends parameters to extreme values,
such infinity or zero, for finite values of 7. We then say the corre-
sponding parameters are practically unidentifiable and that the model
manifold has a boundary. Furthermore, the complete boundary of a
model manifold is typically made up of several "faces" (like the faces of
a high-dimensional polyhedron). Each face corresponds to a different
parameter being pushed to an extreme limit. A knowledge of these
"faces" on the model manifold is useful for identify-ability analysis,
model reduction, and experimental design.

For the case of a doubly-fed induction generator ((DFIG) that we
consider in detail later (see Appendix for detailed equations), the fol-
lowing modeling recommendations were obtained from above analysis
(for more details, see [7]):
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e Inertia (H,,) is well-conditioned and can be estimated from the
motion equation [7, Table I, Case 1] .

¢ Time constants (T, and T.) are ill-conditioned (two zero eigenvalues
dominantly influence their participation factors) and cannot be es-
timated simultaneously from electrical equations and available
measurements [7,Table II, Cases 2—4].

® Reactances (x; and x,) are well-conditioned and may be estimated
simultaneously from electrical equations and available measure-
ments [7,Table 1, Case 5].

® Reactance x; and time constant T, are both non-identifiable due to a
correlation in which x; becomes zero and T. becomes infinite.
Similarly, there is also a correlation in which x, and x; become zero
and T, becomes infinite.

The reduced DAEs model may be represented as

dx"’d/’d[ =f'ra'd (xrcd’ zZ, P, [) (1’)
0=g™, z,p.1) 29
yord = h(x™d, z, p, 1) (3

Note that vector of algebraic variables (z) is not reduced in this
model. This conclusion is not general, and it depends on the type of the
model that is a candidate for reduction.

4. Compressed sensing

The key idea behind data compression is the hope that in a trans-
formed basis (such as the one obtained by Fourier transform) the data
will be sparse. Instead of collecting high dimensional measurements
and then compressing, it is possible to acquire a few ("compressed")
measurements and then solve for the sparsest high-dimensional signal
that is consistent with available measurements. This procedure enables
a set of measurements to be recovered from what would otherwise be
highly incomplete information. Compressibility means that for the re-
corded signal with an appropriate basis, only a few elements of the basis
("modes") are needed ("active"), reducing the number of numerical
values that must be stored for an accurate representation. This means
that a compressible signal x € R" may be written as a sparse vector
s € R" on a transform basis ¥ € R™" [8,9]

x=Ws (8)

Therefore, once a signal is compressed, one needs only store sparse
vector s rather than the entire x. If signal x (with n measurements) is K-
sparse in W, measurements y € RP with K < p < < n are given as

y=&x 9)

where the measurement matrix ® € RP*" represents a set of p linear
measurements on the state x. The choice of @ is of critical importance
in compressed sensing and will be discussed in more details in Section
VI

Substituting (9) to (8) we have

y = OWs = Os (10)

where this system of equations is underdetermined, since there are
potentially infinitely many consistent solutions (s).

The sparsest solution (§) satisfies the following optimization pro-
blem:

Ay .
§ = argmin ||s|[,

s (11a)
subject to:
y = ®Ws = Os (11b)
where || - || 1 is the &4 norm, given by |s[l; = }};_, Is¢|. Note that the £

minimum-norm solution is sparse, while the {, minimum-norm solution
s not (see Fig. 6). Alternative formulations of (11) (for example, with
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quadratic constraints, bounded residual correlation and other) may be
found in [8].

The transient responses in power systems typically are recorded
with a wide range of timestamps (from several seconds for SCADA
measurements, over 50-100 ms for calculated values by transient ana-
lysis software (for example PSS/E), to microseconds for PMU-based
measurements). Intuitively, we expect that detailed transient responses
may be identified from a reduced number of saved discrete points.
Additionally, initial conditions tend to vary slowly during the daily
load/generation profile variations.

We may conclude that there are two promising options for com-
pression of recorded measurements:

e Reduction of the number of elements in vector s (variable in
transform basis). In our case, this is a reduction in the number of
necessary Fast Fourier Transformation (FFT) coefficients.

e Reduction of sampling points in the time axis and along the initial
condition axis (for suitably slowly varying signals).

Note that above algorithm for compressed sensing is applied for the
difference between measured and calculated values (6) (see Fig. 1).

5. Data-driven Koopman operator

For real-valued observation (measurement) functions ¢, M — R (M
denotes the state space, and R denotes the scalar measurement space),
which are elements of an infinite-dimensional Hilbert space, the dy-
namic model (1-3) may be re-written in compact form as [also see (9)]

y=¢x) (12)

The Koopman operator (K) is an infinite-dimensional linear op-
erator, acting on a Hilbert space of measurement functions (¢) as
[8,10,11]

Kip = ¢ok: (13)

where F, is a transition function of states (x) in state space (M), de-
termined by (1-3).

Schematic illustration of the Koopman operator for the nonlinear
dynamical system is shown in Fig. 2.

The Koopman operator provides an alternative perspective for the
evolution of measurements in discrete-time y, = ¢(x;) from (9), which
is of the primary interest of this paper.

For the sampled-data system with time step At from (13) is

P (1) = Harp (i) (14

In other words, this operator defines an infinite-dimensional linear
dynamical system that uses the observation (in our case the measure-
ments) in the function of the state [y, = ¢(x;)] to the next time step.

The Koopman operator is linear, a property which is based on the
linearity of the addition operation in function space

Farlon @, (x1) + o, (1)) = o Kard, (x1) + 0 HKa i, (1) (15)

The discrete-time Koopman operator, K¢ (x;) corresponding to
eigenvalue A from (14) satisfies

; 3 M :.-".."._' R
X108/ 1] ym:of s,
z. ernane XN yt " yN
L] L]
Xié yie
Fo: X2 Xep0; @0 X 2 ¥ Kt Yo 2 Ve
Fig. 2. Schematic illustration of the Koopman operator for the nonlinear dy-
namical system.
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Fup (i) = A (1) (16)

In the case of multiple measurements, these measurements may be
arranged in a vector ¢(x)

¢1(x)
y=¢x) = #:(x)
#p(x) 17)

Individual measurements may be expanded in terms of eigenfunc-
tions (p;(x), providing the basis for Hilbert space

LOED WO (17)

where v; is the j-th Koopman mode associated with eigenfunction ¢;(x).
Based on the decomposition from (18), it is possible to represent the
dynamics of the measurements [¢p(x)] as

Ye =) = Kid(xo) = KL 2:0:1 @ (x0)y;
= I K oy = X2, Ay (ko s

The sequence of triples, {4;, @ vj}‘j’-":1 is the Koopman mode decom-
position [10,11].

The Koopman operator provides a global linear (infinite dimen-
sional) representation of the nonlinear dynamical system. Dynamic
mode decomposition approximates the Koopman operator with a best-
fit (finite) linear model from time-dependent measurements. There are
several algorithms for identifying Koopman embeddings and eigen-
functions from data, such as extended mode decomposition [12], or QR
decomposition of the input snapshot matrix [13]. In this paper we apply
the basic algorithm from [8].

Note that above algorithm for data-driven Koopman theory-based
dynamic prediction is applied to the compressed difference between
measured and values calculated by the reduced model, Ay“™ (see Fig. 1).

6. Application

We have developed a Matlab- and PSAT-based [14] simulation en-
vironment, which implements the DAEs-based model, as in (1), (2). The
original IEEE 14-bus test system with synchronous generators (SG —
describing conventional units and interconnections) [14] is modified to
include doubly-fed induction generator (DFIG — capturing prevalent
type of wind plants today) in bus 6 and direct-drive synchronous gen-
erators (DDSG - used by industry to model solar plants and the new
generation of wind) in bus 8, as shown in Fig. 3. Our software en-
vironment is general in the sense that it allows for a variety of

Fig. 3. Modified IEEE 14-bus test system with three types of resources (SG,
YFIG, and DDSG).
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measurements: rotor speed (w,,), active (P,) and reactive (Q,) power
generations, nodal voltage magnitude (V) and angle (6). For four gen-
erating unit types [solar (S), wind (W), thermal (T), and hydro (H)] and
four load types the different daily generation/load curves are supposed.

6.1. Dynamic model reduction

For the case of DFIG with three electrical parameters in (A1) (ex-
tension to the control parameters may be found in [4]), we identify the
following manifold faces, each corresponding to a different unidentifi-
able parameter in the model (see Appendix for clarification): x, — =
and x,, T.— 0, forming the reduced three-order model in (1°).

Transient responses (recorded for 9 s, with time stamps each 0.05 s)
are obtained by three-phase short-circuit on bus 4, following the fault
clearing after 250 ms. Total 1440 (every 60 s, or 60 x 24) initial
conditions are simulated by full (used as the measured values) and
reduced DAEs-based models. Note that for storing only five measure-
ments for the measured and calculated by the reduced model we need
about 24 Mb. Additional storage capacity is needed for storing state
variables. These results are shown in Fig. 4a, b. Differences and their
surface between measured transients and transients calculated by the
reduced model are also shown in Fig. 4 (subplots ¢, d).

From the results presented in Fig. 4 we conclude that the differences
between measured (¥™) and calculated (in our case by the reduced
model) (y°) values [Ay = y™ — y¢ in (3)] may be significant (in ana-
lyzed case 10-20 %, where the higher differences occur in the period
right after the fault clearing). Similarly, these differences are challen-
ging for identification, and typically require alternative methods, such
as Koopman modes and/or Deep Neural Networks.

6.2. Compressed sensing

The optimization problem (11) is solved by CVX software [15];
several interesting cases (measurement responses) will be described in
the sequel.

The basic results for differences (between measured and calculated
values by reduced model) of the bus voltage magnitude measurements
are omitted from the paper, due to space constraints [similar plot with
ones in Fig. 4.¢, d (for active powers)].

For initial solution (xp) two alternatives have been explored: (1)
minimum energy x, = @0@'x [9], and (2) percentage of retained largest
FFT coefficients. In the simulations presented below, the second option
was used, with the threshold of only 5 % retained the largest FFT
coefficients. In the analyzed case, the number of elements in vector x
(xp) is 260640. This is the total number of decision variables in the
optimization (11), while the maximum number of linear constraints in
(11) is also 260640 for the fully determined problem.

The differences (between measured and calculated values by re-
duced model) are transformed into a grayscale figure (normalized to the
range 0-1), which is fully adapted for the compressed sensing algo-
rithm. Grayscale transformation of the initial point (xg) is shown in
Fig. 5, where only initial conditions from 500 to 1000 are shown (re-
duced initial condition's axis is shown, due to the large axes
ratio—1440/181~7.95).

Solutions and their histogram of the £;-minimum norm for variables
in the Fourier domain (s;) for the fully determined problem are shown
in Fig. 6. Reconstructed differences of the bus voltage magnitudes are
shown in Fig. 7 (values are scaled to 0-1 range).

Based on the results presented in Fig. 6, only a small number of FFT
coefficients is necessary for signal reconstruction, suggesting the pos-
sibility of extreme compression. One characteristic truncation case is
shown in Fig. 8. Based on these results, we conclude that with only 5 %
of FFT coefficients the differences of bus voltage magnitudes may be
reconstructed properly.

Optimal truncation (optimal hard threshold) for (un)known noise
and a rectangular matrix X € R™"™ may be found in [16].
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Fig. 5. Grayscale transformation of initial condition (x). (scaled to the range 0-1).
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Time |s]

Fig. 8. Reconstructed differences (between measured and calculated values by
the reduced model) of bus voltage magnitudes for underdetermined problem
(scaled to the range 0-1) with truncation down to 5 %.

Reduction of sampling points can be performed in two axes: (1) time
axis, reducing the number of timestamps for transient responses, and (2)
initial condition axis, reducing the number of analyzed initial conditions.

After additional initial point reduction, where only every second
point is retained, the reconstructed differences (between measured and
calculated values by the reduced model) of bus voltage magnitudes are
shown in Fig. 9. For reduction in both axes [panel b)], only 25 % of
original points are used for the measurement reconstruction.

It is important to note that the reduced cases are not based on inter-
polation for reduced points, but the optimization problem is solved with
the full dimension of vector s and a reduced number of constraints in (11).

6.3. Koopman analysis

Results obtained for predicted differences (between measured and
calculated values by the reduced model) of reactive power by the

Time [s]
a) Time
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compressed sensing and the Koopman modes are shown in Fig. 10;
reconstructed results correspond to truncation down to only 4 %.

7. Conclusions

In this paper, we describe the analytical and computational en-
vironment needed to achieve coordinated physics- and data-driven
modeling of power system dynamics. It combines three ingredients:

M Computational Information Geometry based reduction,
W Optimization-based compressed sensing,
B Approximation of the Koopman operator based prediction.

In future work, we plan to further quantify scaling properties of the
overall algorithm, explore optimization in compressed sensing, and
evaluate deep neural network-based environments for predicting dy-
namics in power systems.
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Differential (motion and electrical) and algebraic equations for DFIG are described respectively as:

. Tn—Te
W, = "
m I,
A 1
ep = TP(KP¢(mm - qu‘) - ep)
f=1: v
ig = Ky (V = Vi) — T
P 1 _xs+x#.p‘:(:um) i
Mg wV  am e
0 if wy<0.5
g= 10 (@m) =420, —1 If 05<w, <1
1 if wy>1
where:
Pu. o Y
Tm = w:': Te = xy(qu lsg — [rd[s'q)x
. . . . X Vipd V2,
H; = Vsdlsd + Vsqlsg + Vrdlrd + Vrglrgs Qg = _Xs+xp - x__“’
P I X+ : ; .
lsg = Prtwin?l (=Xybrg + Vig) = Xpdrd — Vgl
_ (1_\—+xﬂ)i3q+xyi,-q—um_
lsda = ri‘:!
Vg = —V5ind; vy = Veos;
Vg = —Frlpg + (1 - wm)[(xs + xu)irq + xpi.vq];
Vg = —lhlpg — (1 - mm)[(xs + x,u)[rd + x,ulsd]'
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