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ABSTRACT

Arctic sea ice melting processes in summer due to internal atmospheric variability have recently received con-
siderable attention. A regional barotropic atmospheric process over Greenland and the Arctic Ocean in summer
(June—August), featuring either a year-to-year change or a low-frequency trend toward geopotential height rise, has
been identified as an essential contributor to September sea ice loss, in both observations and the CESM1 Large
Ensemble (CESM-LE) of simulations. This local melting is further found to be sensitive to remote sea surface
temperature (SST) variability in the east-central tropical Pacific Ocean. Here, we utilize five available large “initial
condition” Earth system model ensembles and 31 CMIP5 models’ preindustrial control simulations to show that the
same atmospheric process, resembling the observed one and the one found in the CESM-LE, also dominates internal
sea ice variability in summer on interannual to interdecadal time scales in preindustrial, historical, and future sce-
narios, regardless of the modeling environment. However, all models exhibit limitations in replicating the magnitude
of the observed local atmosphere-sea ice coupling and its sensitivity to remote tropical SST variability in the past four
decades. These biases call for caution in the interpretation of existing models’ simulations and fresh thinking about
models’ credibility in simulating interactions of sea ice variability with the Arctic and global climate systems. Further
efforts toward identifying the causes of these model limitations may provide implications for alleviating the biases
and improving interannual- and decadal-time-scale sea ice prediction and future sea ice projection.

1. Introduction role in regulating sea ice decadal variability in the past (Day
et al. 2012; Zhang 2015; Notz and Marotzke 2012; England
et al. 2019). However, the relative contribution of internal
variability to the total sea ice change and how models sim-
ulate the melting process due to intemnal variability are still
unclear, which hinders us from making a more reliable
projection of Arctic sea ice melting in the upcoming decades.

Internal drivers of sea ice variability have been sug-
gested to originate from both oceanic (Zhang 2007;
Tokinaga et al. 2017) and atmospheric processes (Lee
2012; Notz 2014; Swart et al. 2015; Grunseich and
Wang 2016; Ding et al. 2017; Wernli and Papritz
2018; Olonscheck et al. 2019; Labe et al. 2019). Previous
Corresponding author: Qinghua Ding, ginghua@ucsb.edu research successfully linked observed Arctic summer

The recent dramatic reduction in summer [June-August
(JTA)] Arctic sea ice cover has become an iconic symbol of
climate change (Vaughan et al. 2013). The scientific com-
munity has reached broad consensus that the observed sea
ice decline is mostly attributable to anthropogenic forcing
and its associated positive feedbacks, collectively known as
Arctic amplification (Deser et al. 2010; Cohen et al. 2014;
Screen and Simmonds 2010; Simmonds 2015; Notz and
Stroeve 2016; Screen et al. 2018; Jahn 2018). In addition, it is
well known that internal variability has played an important
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circulation anomalies—featuring either a year-to-year
change or a low-frequency trend toward regional geo-
potential height rise above Greenland and the Arctic
Ocean—to September sea ice variability over the past
four decades and drew attention to the importance of a
local Arctic internal atmospheric process driving sea ice
variability (Ding et al. 2017, 2019). This circulation
pattern resembles a barotropic anticyclone favoring a
circulation-driven tropospheric warming and moisten-
ing and manifests as the primary mechanism of the local
atmosphere—sea ice coupling (Ding et al. 2017, 2019).
Analysis by Ding et al. (2019) using the fully coupled
CESM1 Large Ensemble (CESM-LE) simulations alone
attributes 40%-50% of the observed summer sea ice
melting since 1979 to this internal atmospheric process,
which is also suggested by Hahn et al. (2018) to be in
connection with the recent rapid Greenland ice sheet
melt. Additionally, the Atlantic multidecadal oscillation
and the Pacific decadal oscillation were both suggested
to be major internal drivers of Arctic surface tempera-
ture and sea ice variability via their related ocean and
atmosphere heat transport on multidecadal/centennial
time scales (Chylek et al. 2009; Zhang 2015; Screen and
Francis 2016; Castruccio et al. 2019).

Besides these two prominent extratropical sea surface
temperature (SST) modes, which are believed to be
important due to their proximity to the Arctic, more
recent studies have revealed that internal SST variability
residing in the tropical Pacific can also have substantial
impact on Arctic climate (Ding et al. 2014; Baxter et al.
2019; Screen and Deser 2019). Meehl et al. (2018), using
an atmosphere-only model, suggested that summer sea
ice variability is more sensitive to SST anomalies in the
tropical Atlantic in line with a more recent study that
emphasized the importance of an atmospheric bridge
connecting the tropical Atlantic and Pacific (McCrystall
et al. 2020). In addition, Baxter et al. (2019) showed
observational and modeling evidence that a Rossby
wave train, induced by a cold SST anomaly in the east-
central tropical Pacific, can propagate into the Arctic
and manifest as an anomalous high pressure over the
Arctic Ocean. This high pressure plays a key role to
physically link September sea ice variability with tropical
SST changes (Baxter et al. 2019; Ding et al. 2017, 2019).

Nonetheless, remote drivers of Arctic sea ice vari-
ability are still controversial. Svendsen et al. (2018) im-
puted an important role for Pacific decadal variability in
driving the early-twentieth-century warming and pro-
posed that the current transitioning of the interdecadal
Pacific oscillation (IPO) from cooling to a warming
phase can lead to an accelerated Arctic warming.
Consistently, Screen and Deser (2019) also attribute an
important role for Pacific Ocean variability in the
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timing of a seasonally ice-free Arctic in the CESM-LE
simulations. However, Ding et al. (2019) and Baxter
et al. (2019) both note that the summer IPO-Arctic
linkage in the CESM-LE is different from that in
observations. Observations reveal an out-of-phase rela-
tionship between tropical and Arctic surface tempera-
ture trends: negative tropical SST changes are associated
with positive Arctic surface temperature changes.
Nevertheless, CESM-LE historical simulations feature an
opposite trend: positive tropical SST trends fall in line
with positive Arctic surface temperature trends. In
addition, Blanchard-Wrigglesworth and Ding (2019) re-
cently realized that summertime tropical-Arctic linkages
are quite weak in the CESM-LE. The complex nature of
how lower latitude processes may influence Arctic cli-
mate change is further exemplified by atmosphere-only
model relaxation experiments (Ye and Jung 2019) along
with Dong et al. (2019) who highlighted how important the
differences in the relative contribution of regional specific
Pacific surface warming in global feedback changes
are. Furthermore, Bonan and Blanchard-Wrigglesworth
(2020) recently proposed that the relatively short obser-
vational record may hinder us from fully understanding the
stationarity of tropical-Arctic linkages.

All these emphasize existing nontrivialities of tropical-
Arctic teleconnections and that tropical forcing on Arctic
climate simulated in the CESM-LE should be treated
cautiously. More large ensemble simulations are needed
to evaluate the common features and performance in
simulating tropical-Arctic linkages across all available
models in the community and whether models share a
similar atmosphere-driven process governing Arctic sea
ice variability as revealed in observations and the CESM-
LE (Ding et al. 2017, 2019). Recently, six additional large
ensembles (from five independent modeling centers)
have become available and four of them provide neces-
sary variables for an analysis of the atmosphere-sea
ice coupling, which provides a new opportunity to achieve
our goal. However, a total of five large ensembles
(including the CESM-LE) are still not enough to repre-
sent the full spectrum of models’ performance in simu-
lating sea ice response to the atmosphere. To increase
models’ diversity in this study, we use a complementary
way to explore models’ internal variability through a
pseudoensemble method (Rosenblum and Eisenman
2017; Ding et al. 2019) focusing on the preindustrial
control simulations from CMIP5. By comparing the five
large ensembles with 31 long (longer than 200 years of
integration) control simulations from CMIP5, we aim to
search for common features of local and remote atmo-
spheric drivers of internal sea ice variability in the pre-
industrial, historical, and future simulations in multiple
warming scenarios as well as to assess the ability of
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current climate models to capture observed features of
these local and remote drivers.

Since the atmosphere—sea ice interactions may share
some similar coupling mechanisms on year-to-year and
low-frequency time scales in observations (Ding et al. 2017,
2019), we focus our model analysis on both year-to-year
(using correlation analyses in section 4a) and low-frequency
(using a linear trend-based method in sections 4b—d) time
scales when studying the atmosphere-sea ice coupling. Our
study, therefore, provides a chance to gain a deeper insight
into physical mechanisms behind both the recent sea ice
loss and year-to-year variability in summer. Through our
analysis, we also aim to advance our understanding of
tropical-Arctic linkages and their possibly decisive role in
determining the interannual and decadal prediction of
summertime Arctic sea ice.

2. Data and methods
a. Reanalysis, SST, and sea ice data

We use monthly geopotential height Z and temperature T
data at 27 pressure levels and the surface temperature (TS)
variable from the European Centre for Medium-Range
Weather Forecasts interim reanalysis (ER A-Interim, here-
inafter ERA-I) (Dee et al. 2011). Despite uncertainties be-
tween different reanalysis datasets, Ding et al. (2017) showed
that ERA-I well reproduces the radiosonde measurements
in and around the Arctic, therefore we compare our model
results with ERA-L SST data are obtained from ERSSTV5
(Huang et al. 2017). Sea ice data are derived from the
National Snow and Ice Data Center (NSIDC) climate data
record of passive microwave sea ice concentration (SIC),
version 3, of the NSIDC (Cavalieri et al. 1996). We calculate
sea ice area (SIA) as the product of ice concentration and
grid element area in each sea ice grid. Then the total
September sea ice area index (SIA index) is constructed as
the sum of sea ice area in all Arctic grid cells where ice
concentration is greater than 15%. Given the sensitivity of
sea ice’s annual minimum to climate variability in the Arctic,
we focus on the September total sea ice area index from
observations and each of the model simulations.

b. Time frame

We target our historical analysis at the 1979-2012
period when the strongest September sea ice melting
is observed along with remarkable JJA geopotential
height rise above northeastern Canada and Greenland
(Ding et al. 2014, 2017, 2019; Mioduszewski et al. 2016).
After 2012 the Arctic circulation shows a pattern with
less prominent height rise and a slowdown in September
sea ice melting (Swart et al. 2015; Baxter et al. 2019).
Results, however, appear to be insensitive to the chosen
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time window. Our future analysis, involving the RCP2.6,
RCP4.5, and RCP8.5 scenarios (Taylor et al. 2012), is
focused on the next three decades until 2050, when the
models show the strongest sea ice melting (Fig. 1).

¢. Model experiments: Five large ensembles,
preindustrial, and historical simulations in CMIP5

Internal variability is an inherent feature of the cli-
mate system. When creating single-model large ensem-
ble simulations, unlike the CMIP5 ensemble, the same
model is Tun several times with small perturbations in
the initial condition, thus the single runs—that share the
model physics and the external forcing—are considered
parallel realizations of the same model. In this way in-
ternal variability and the forced component are sepa-
rable within a certain model, which is an advantage over
using multimodel simulations when exploring internal
processes in the climate system (Drétos et al. 2015).
Here we utilize five currently available *‘initial condi-
tion” large ensembles (LE) of fully coupled Earth
System Models collected by the U.S. CLIVAR Large
Ensembles working group (Deser et al. 2020) including
(i) the Max Planck Institute 100-member Grand Ensemble
(MPI-GE; Maher et al. 2019), (ii) the CanESM2 50-
member LE (CanESM-LE) (Kirchmeier-Young et al.
2017), (iii) the 40-member CESM-LE (Kay et al. 2015),
(iv) the CSIRO Mk3.6 30-member LE (Jeffrey et al. 2013),
and (v) the GFDL CM320-member LE (GFDL-LE) (Sun
et al. 2018). We use model output for 1979-2080 with
CMIPS5 historical forcing (Taylor et al. 2012) until 2005 and
RCP8.5 forcing for 2006-80. Additionally, we use the other
two available RCP2.6 and RCP4.5 forcing scenarios from
MPI-GE for 2006-80, which allows us to examine inter-
actions between intemal climate variability and anthropo-
genic forcing with different intensity. In addition, we utilize
historical + RCP8.5 (1979-2080) simulations of 31 climate
models from CMIPS5 and preindustrial simulations of the
same group of CMIP5 models (Table 1). These preindustrial
runs contain integrations longer than 200 years representing a
realization of one individual model. The reason we include
these runs in our study is to assess whether the bias in Arctic
teleconnections from the five large ensembles are common
across all available models in CMIP5. To reduce uncertainty
arising from the different model physics, we will primarily
focus on the mean of four of the five large ensembles (ex-
cluding CSIRO-LE; for details see section 3) and the mean of
31 preindustrial simulations and before averaging all model
outputs are regridded onto the ERA-I 1.5° regular grid ap-
plying the ERA-I land-sea mask.

d. Statistical significance and MCA

We use the Student’s ¢ test to calculate significance of
both correlations and composite values. Linear trends of
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FiG. 1. (a) Time evolution of the observed (1979-2017) (purple), the multimodel ensemble mean of CMIP5 models (gray), and the
forced model component of five LE simulations (single-model LE historical + RCP8.5 ensemble mean) September SIA indices (1979-
2080) as indicated on the legend (10° km?). Also shown is the time evolution of the ensemble mean (thick solid line) and the slow (thin
solid line ) and fast (dashed line) groups (based on 15% of the total ensemble members) for (b) MPI-GE, (c) CanESM-LE, (d) CESM-LE,
(e) CSIRO-LE, and (f) GFDL-LE, along with (g) 31 CMIP5 model SIA indices (thin gray lines) and the multimodel ensemble mean (thick
gray line). (h) Box-and-whiskers plot of September total SIA linear trends (1979-2012) in the five LE simulations (indicated below the x
axis) and the observed trend (red dashed line: —0.95 X 10° km® decade™!). The whiskers extend to 1.5 X IQR. Crosses mark average
values; plus signs mark the outliers (outside 1.5 X IQR). The median is indicated with an orange horizontal line.
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TABLE 1. The 31 climate models in the CMIPS5 historical +
RCP8.5 and preindustrial control experiments that were used in
the study, and the length of the preindustrial (PI) run. Expansions/
definitions of the models are available online (https://www.ametsoc.org/
PubsAcronymList).

TOPAL ET AL.

CMIP5 model name Length of PI run (yr)

1. ACCESS1.0 500
2. ACCESS1.3 500
3. CanESM2 996
4. CMCC-CESM 277
5. CMCC-CM 330
6. CMCC-CMS 500
7. CNRM-CM52 490
8. CNRM-CM5 850
9. CSIRO Mk3.6.0 500
10. GFDL CM3 500
11. GFDL-ESM2G 500
12. GFDL-ESM2M 500
13. GISS-E2-H 251
14. GISS-E2-H-CC 780
15. GISS-E2-R 251
16. GISS-E2-R-CC 1062
17. HadGEM2-CC 240
18. HadGEM2-ES 314
19. INM-CM4 500
20. IPSL-CMSA-LR 1000
21. IPSL-CM5B-LR 300
22, IPSL-CMSA-MR 300
23. MIROC-ESM 870
24. MIROC-ESM-CHEM 255
25. MIROCS 630
26. MPI-ESM-LR 1000
27. MPI-ESM-MR 1000
28. MPI-ESM-P 1156
29. MRI-CGCM3 500
30. NorESM1-M 252
31. NorESM1-ME 501

time series are removed each time before calculating
correlations. Maximum covariance analysis (MCA }—which
uses singular value decomposition of the covariance matrix
to search for optimally coupled patterns between the two
input fields (Bretherton et al. 1992)—is applied to explore
the covariability between Arctic sea ice and atmospheric
circulation.
e. Fast-minus-slow composite: A simple but efficient
way to distinguish internal from forced variability

Teasing apart internal variability of any observed and
simulated variable from its forced component is chal-
lenging. Here, making use of the state-of-the-art large
ensemble simulations, we implement a simple method to
separate atmospheric processes originating from inter-
nal climate variability from those resulting from the
models’ forced component, which is regarded as the
cumulative effects of anthropogenic plus natural exter-
nal forcing. Because we are especially interested in
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searching for an internal atmospheric process acting as a
driver upon summer sea ice melting as described in Ding
et al. (2019), we focus on the spread of September total
SIA index variable between the members of the en-
semble that lets us separate groups of members showing
fast and slow melting for a given time period (based on
linear trends). Having identified those members of the
fast- and slow-melting groups we average the corre-
sponding linear trends in JJA, for example, 200-hPa
geopotential height Z200, in each group and calcu-
late the difference between the two Z200 composites
(divided by two, so as to scale to the ensemble mean).
We do the same with zonal mean geopotential height Z,
zonal mean temperature T, surface temperature TS and
September SIA. We will refer to the difference of the
fast and slow group Z200, Z, T, TS, and SIA trends as the
fast-minus-slow Z200, Z, T, TS, and SIA composites,
respectively. Because all ensemble members are forced
in the same way, the fast-minus-slow composites remove
the forced signal and retain signals that originate from
fundamental internal atmospheric variability. Since
correlation between sea ice and a given atmospheric
variable, assuming linearity, reflects the strength of the
coupling between them, we can compare the composite
trend patterns to the results obtained from the correla-
tion analysis to determine whether a similar pattern is
present over the two time scales. The selection of the
number of ensemble members belonging to the fast and
slow groups is based on choosing ~15% (approximately
1 standard deviation from the mean) of the total number
of ensemble members (members in each group: MPI-
GE: 15, CanESM-LE: 7, CESM-LE: 6, CSIRO-LE: 5,
and GFDL-LE: 3 members).

To account for possible limitations of the fast-minus-
slow composite, we further explore how well the fast-
and slow-melting groups represent the total ensemble
spread of the simulated atmosphere—sea ice coupling. In
doing so, first, we calculate linear trends in all members
of a given LE over 1979-2012 for both JJA Z200 and
September SIC within the Arctic (north of 60°N).
Second, we remove the ensemble mean trend from each
member, so the residual trends of each member only
reflect inherent internal variability of a model over the
selected time period. To understand how sea ice and
7200 are coupled in the Arctic due to pure internal
variability, we calculate MCA (Bretherton et al. 1992;Li
etal. 2017) between JJA Z200 and September SIC trend
fields across all the members in a given LE. In this way,
the time expansion coefficients will not reflect temporal
changes, rather member series, which we compare with
the magnitude of September total SIA index linear trend
derived from each member. The comparison reveals
that the fast and slow melting groups (based on 1
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standard deviation of linear trends in September total
SIA index) show the strongest negative and positive
loading in the intermember MCA. Thus, we are confi-
dent that the fast-minus-slow composite can basically
capture the leading mode of covariability between Z200
and sea ice for 1979-2012 as well as for the future (2020-
50) time frame as the repeated analysis confirmed.

[ Pseudoensemble of preindustrial CMIP5
simulations

Additionally, we extend the fast-minus-slow method
to 31 CMIP5 models that have at least 200-yr-long pre-
industrial control simulations. Cutting the 200+-yr-long
control runs into consecutive 34-yr periods we create a
pseudoensemble with n — 33 members, where n is the
length of the given CMIP5 model’s control run (Rosenblum
and Eisenman 2017; Ding et al. 2019) and each member
corresponds to a 34-yr-long time series. Although the
pseudoensemble members are not initialized with pertur-
bations in the initial condition and the consecutive members
have overlapping periods—therefore, strictly speaking,
they do not represent the full scope of possible climate
states allowed by internal variability—the control runs
have constant external forcing thus the members of the
pseudoensemble are assumed to be generated by the
given model’s purely internal climate physics (or model
specific biases as is the case with single-model LEs as well).
We then search for the 34-yr-long periods showing the
fastest and slowest sea ice melting based on linear trends
and difference the corresponding 7200, Z, T, TS, SIA
trends to construct the fast-minus-slow composite. Similar
to the real-ensemble calculations we select 15% of the total
number of the pseudoensemble members for each of the
fast and slow groups. Averaging these 31 fast-minus-slow
composite patterns we provide an overview of CMIP5
model performance in capturing the observed coupling of
sea ice with both the local Arctic and remote tropical at-
mosphere on low-frequency time scales.

3. September sea ice changes in the historical and
future warming scenarios

Figure 1 gives an overview of the time evolution of the
September total SIA index in observations and model
simulations for 1979-2080, in addition to the linear
trends in each model ensemble members compared to
the observed melting rate over the historical era (1979-
2012; Fig. 1h). Figure 1a shows the historical + RCP8.5
ensemble mean simulations of each large ensemble’s
September total SIA indices (solid colored lines) and the
ensemble mean of 31 CMIP5 runs (solid gray line) along
with the NSIDC observations (solid purple line). The
observed prominent rate of melting and interdecadal
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variability are not well captured in any of the single-
model or the CMIP5 multimodel ensemble mean sim-
ulations (Fig. 1a; Baxter et al. 2019). This indicates a
possible role for internal variability in driving sea ice
variability in the past and very likely in the upcoming
decades too. Furthermore, the large decline seen in the
observed record between 1979 and 2012 lies outside the
1.5 X interquartile range (IQR) of four LE simulations’
spread, except for the GFDL-LE, which shows extensive
melting (Fig. 1h). Sources for this underestimation may
be rooted in a lower sea ice sensitivity (Rosenblum and
Eisenman 2017; Notz and Stroeve 2016) of most current
climate models or other processes inherent to the cli-
mate dynamics, part of which is the subject of the pres-
ent study.

Except for the CSIRO-LE, each of the ensemble
simulations underestimate SIA on the historical time
frame relative to observations with the CESM-LE re-
sembling the observed SIA magnitude the best (Fig. 1a).
The CMIPS ensemble mean relatively well represents
the average of the other LEs’ sea ice conditions on the
historical time frame; however, after the early 2010s,
four of five LE experiments (except for the CSIRO-LE)
start to melt sea ice considerably faster than the CMIP5
mean. On the historical time frame, of the five model
ensembles, the GFDL-LE and the CanESM-LE melt
sea ice the fastest with ice-free conditions (<10°km?) in
the near future, and the MPI-GE (Notz et al. 2013) and
the CSIRO-LE mean simulations show the slowest rate
of ice melt on both the historical and future time win-
dows (Fig. 1a). The rate of summer sea ice melt in the
CESM-LE accelerates after 2012 picturing a seasonally
ice-free Arctic Ocean in the model within the next three
decades (Screen and Deser 2019). The colored thin
dashed (thin solid) lines in Figs. 1b-{ represent the fast
(slow) sea ice melting groups in each of the model en-
sembles. These are the members’ average September total
SIA index time series that were selected to construct the
fast-minus-slow composites. Note, that for all the five
model ensembles the members of the fast group initially
contain more ice than those of the slow group, which seems
natural, since, by construction, the fast group has to start
with more ice so that it has more ice to melt (Figs. 1b-f).

Note also that the magnitude of the ensemble mean of
the CSIRO-LE SIA simulations considerably stands out
from the other simulations, indicating that a realistic
summer mean sea ice state may be missing in the model
(Uotila et al. 2013), which makes the comparison with
observed summer sea ice conditions questionable. The
lack of a correctly replicated summer mean state might
also affect other current climate models, which are po-
tential targets of future large ensemble simulations:
the large spread in the simulated total September SIA
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2020-50 based on the RCP8.5 scenario.

indices between different CMIPS models are visualized
in Fig. 1g. The poor comparison between CSIRO-LE
atmosphere-sea ice interactions and observations is
even more clearly seen when examining the spatial
pattern of the linear trend in September SIA in Fig. 2
(notice how different CSIRO-LE is from the other four
LE simulations in Figs. 2g,1). Therefore, when attempt-
ing to reduce uncertainty arising from the different
model physics, we will focus on the mean of only four of
the five LE simulations (excluding CSIRO-LE) in the
later parts of the paper. However, we note that even
including CSIRO-LE in the calculation of the average
does not significantly alter the results (not shown).
Figure 2 demonstrates September sea ice melting
rates in observations (Fig. 2a), in the mean of the four
LEs’ ensemble mean (excluding CSIRO-LE, Fig. 2b), in
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the mean of 31 CMIP5 (Fig. 2c) and in each of the five
LEs’ historical (Figs. 2d-h) and future (Figs. 2i-m) en-
semble mean simulations. In general, on the historical
time frame the mean of four LE and the 31 CMIP5 mean
model simulations share the observed sea ice melting
spatial pattern, albeit with some differences in the
melting trend magnitudes (Figs. 2b,c). We note that the
CanESM-LE shows the strongest melt closer to the pole
rather than in the marginal seas as seen in the other
three LEs and in the observed record. We will show later
that although each model exhibits different total STA
variability, the coupling patterns of SIA with the atmo-
sphere from year-to-year are very similar (Figs. 3, 4),
indicating that the models’ bias in simulating the mean
SIA is not critical to the determination of the coupling of
the atmosphere to sea ice, which is mainly associated
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Fi1G. 3. Linear correlation of JJA (a) Z200, (b) zonal mean geopotential height, and (c) temperature with September total SIA index in
ERA-I reanalysis for 1979-2012 (contoured values are significant at 95% confidence level). Correlation of JJA (d) Z200, (e) zonal mean
geopotential height, and (f) zonal mean temperature with September SIA index for 1979-2012 averaged over four LEs" historical +
RCP8.5 runs [correlations are computed as the mean (denoted with angle brackets) of the four correlation maps (excluding CSIRO-LE)
each of which is constructed as first computing correlation in each of the members of a given single-model LE and then averaging over the
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with SIA anomalies. This finding is consistent with the
trend-related composites on the low-frequency time
scales as well, however, seems to be contingent upon
simulating the real summer mean state relatively well.

4. Atmosphere-sea ice coupling
a. Year-to-year coupling: Observed versus simulated

Observations reveal that in the past decades, summer
sea ice variability has been driven by a remarkable rise
in geopotential height above northeast Canada and
Greenland with the strongest height rise occurring during
2007-12 (Ding et al. 2014, 2017, 2019; Baxter et al. 2019).
The associated circulation pattern in the Arctic favors a
warming and moistening (increased specific humidity) at-
mosphere through a circulation-driven adiabatic warming
process, which likely contributed to accelerated summer
sea ice melt between 2007 and 2012 (Baxter et al. 2019). To
better illustrate this coupling in observations and model
simulations on the year-to-year time scales, we compute
the correlation of linearly detrended JJA 7200, zonal
mean geopotential height, and temperature with linearly
detrended September SIA index in ERA-Interim (Figs.
3a—), in the five model ensembles and in 31 CMIP5
models for 1979-2012. Correlations had first been com-
puted in each of the ensemble members then averaged
over the whole given ensemble. To get an overall picture of
how models capture the observed Arctic atmosphere-sea
ice coupling on interannual time scales we average the four
correlation maps belonging to each of the four large en-
semble simulations (Figs. 3d—f). Similarly, we average the
31 correlation maps derived from each of the individual
CMIP5 model historical + RCP8.5 runs (Figs. 3g-i). We
also show correlations between Arctic area-averaged
(north of 60°N) JJA Z200 and total September SIA in-
dex for the CMIP5 multimodel and five single-model
ensembles’ individual members (Fig. 3j). In Fig. 4 corre-
lations calculated for each of the five individual LE mean
simulations are additionally presented.

Figures 3 and 4 show that September SIA index is
negatively correlated with both JJTA upper-level geo-
potential height and lower-midtropospheric temperature
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in both observations and the CMIP5 multimodel or
single-model ensemble mean simulations. This corre-
sponds to the inverse relationship between temperature
or geopotential height and sea ice changes. However,
the magnitude of the correlation is consistently under-
estimated by all models, especially in the cases of the
CSIRO-LE and the CanESM-LE, which, in line with the
lack of a correctly resembled summer mean sea ice state
(Fig. 2g) or melting spatial pattern (Figs. 2e,g), appear to
show less strong interannual atmosphere-sea ice con-
nection (Figs. 4d,e,j,k). Figure 3j demonstrates that the
ensemble spread is the largest for the CanESM-LE and
the CSIRO-LE, relative to the size of the ensembles, and
these models show the least negative correlations across
their members. Additionally, all large ensembles show
improvements relative to the CMIP5 ensemble and the
CESM-LE appears the best in resembling the observed
correlation. Observations reveal stronger interannual
coupling between sea ice and both upper-level geopotential
heights (—0.65 vs —0.3) and lower-tropospheric tempera-
tures (—0.75 vs —0.5) than the models (Fig. 3). We find that
the difference between the models and observations is
greater if we compare summertime temperature values and
September sea ice than doing so with the annual means as
presented by Olonscheck et al. (2019).

Overall, both the perturbed initial condition and
CMIP5 models capture the observed interannual cou-
pling of Arctic summertime circulation and September
sea ice variability but with weaker magnitudes and
with a somewhat different horizontal Z200 and vertical
height/temperature profiles, which is an important lim-
itation common to all the models (Figs. 3, 4). Thus, our
analysis suggests that simulated sea ice appears to be less
sensitive to changes in the atmosphere than observed in
the past 40 years (Ding et al. 2017).

b. Low-frequency atmosphere—sea ice coupling from
1979 to 2012

Figures 3 and 4 demonstrate that the notable atmosphere—
sea ice coupling seen in year-to-year observations is generally
captured in model simulations, albeit with some prominent
structural differences. The same circulation-driven process

—

whole given LE]. Correlation of JJA (g) Z200, (h) zonal mean geopotential height, and (i) zonal mean temperature with September SIA
index for 1979-2012 averaged (denoted with angle brackets) over 31 CMIPS models’ historical + RCP8.5 runs (correlations are first
computed in each of 31 models, and then the 31 correlation patterns are averaged to construct a 31-member multimodel ensemble).
Contours in (d)—(i) do not represent significance because we do not account for the significance of the averaged correlation maps.
(j) Correlation of Arctic area-averaged (60°-90°N; 0°-359°E) JJA Z200 and September SIA index in each of the members of the five LE
simulations: the whiskers extend to 1.5 X IQR. Crosses mark average values; plus signs mark the outliers (outside 1.5 X IQR). The median
is indicated with an orange horizontal line. The red dashed line indicates the ERA-I correlation value (r = —0.58). All variables are

linearly detrended before calculating correlations.
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FiG. 4. Linear correlation of JJA (left) Z200, (center) zonal mean geopotential height, and (right) zonal mean temperature with
September SIA index using the five LEs: (a)-(c) MPI-GE, (d)-(f) CanESM-LE, (g)-(i) CESM-LE, (j)—(1) CSIRO-LE, and (m)-(o)
GFDL-LE. Correlations are first computed in each of the members of a given single-model LE and then are averaged over the whole given
LE. Contours do not represent significance because we do not account for the significance of the averaged correlation maps. All variables

are linearly detrended before calculating correlations.
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F1G. 5. Observed (ERA-Interim/NSIDC) (a) Z200, (b) zonal mean geopotential height, (c) zonal mean temperature, and (d) September
SIA linear trends for 1979-2012. Historical (e) Z200, (f) zonal mean geopotential height, (g) zonal mean temperature and (h) September
SIA fast-minus-slow composite trends and the ensemble mean (i) Z200, (j) zonal mean geopotential height, (k) zonal mean temperature
and (1) September SIA trends averaged over the four LE historical + RCP8.5 experiments for 1979-2012 [excluding CSIRO-LE; the mean
of four Z200, height, temperature, and sea ice either fast-minus-slow composite or ensemble mean (forced) trends is denoted with angle
brackets]. Note the color bar differences between the composite in (e)-(g) and the forced [in (i)-(k)] or observed [in (a)-(c)] trend

magnitudes.

may also be important on low-frequency time scales as Ding
et al. (2019) already showed for both observations and the
CESM-LE. Because the 7200, zonal mean geopotential
height Z, and zonal mean temperature T fast-minus-slow
composites reflect the coupling between trends in the atmo-
spheric variable and sea ice, we can compare the composite
trend patterns to the ones obtained previously with correla-
tion analysis and use the similar features of the two to assume
an alike physical mechanism over the two time scales. Thus,
to reach a more comprehensive understanding of how JJTA
atmospheric circulation can drive September sea ice vari-
ability independent from the different modeling environ-
ments, we further examine the long-term behavior of this
atmospheric process utilizing the fast-minus-slow composites
of JJA 7200, Z, T, and September SIA derived from his-
torical, future, or preindustrial runs of the available climate
simulations and compare them to observations.

We first show the observed linear trends of JJA Z200,
Z, T, and September SIA in the Arctic for 1979-2012
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(Figs. 5a—d). Based on Figs. Sa—c for the past four de-
cades, the Arctic summer circulation has been dominated
by an atmospheric process resembling an anticyclone
centered above Greenland and northeast Canada, which
can cause tropospheric warming on top of the local an-
thropogenically forced temperature rise. This observed
circulation pattern is reproduced in the mean of four
LE simulations’ historical fast-minus-slow composites
(Figs. S5e—g) rather well, in contrast with the linear trend
patterns derived from the ensemble mean (forced com-
ponent) simulations, which show uniform height rise and
warming in the Arctic without any regional anticyclone-
driven features (Figs. 5i-k). We note that the composite
trend magnitudes (Figs. Se—g) are markedly weaker than
the observed trend magnitudes (Figs. 5a—c) suggesting
that internal atmospheric variability may play a key role
in the observed summer circulation changes; however,
models exhibit limitations in fully capturing the magni-
tude of the internal atmospheric process. Because the
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spatial patterns of changes in the atmospheric variables
on the low-frequency time scales (Figs. Se-g) strongly
resemble the ones we have seen in the atmosphere-sea
ice correlation maps (Figs. 3, 4), the weaker composite
magnitudes may be related to the tendency for models to
underestimate atmosphere-sea ice correlations (Figs. 3, 4)
relative to observations. This can be a consequence of a
shared physical mechanism over the two time scales
(Ding et al. 2017).

For further investigation we also compute the mean of
four LEs’ fast-minus-slow composite of September SIA
to extract the internal trend component of sea ice melt
(Fig. 5h) and compare it to the forced component
(Fig. 51). Although the mean of the four LE simulations’
Z or T composite trend magnitudes are smaller by a
factor of 3—4 relative to the corresponding forced com-
ponent magnitudes (Figs. Se-g vs Figs. 5i-k), the dif-
ference between the internal and the forced sea ice
melting pattern magnitudes or spatial distributions is
less pronounced. The fact that the prominent difference
between internal and forced atmospheric trend magni-
tudes does not result in large differences between forced
and internal sea ice melting rates further emphasizes the
necessity to search for associated atmospheric changes
to understand the underlying mechanism responsible for
the melting.

Evidence for sea ice-related atmospheric changes can
also be found in the individual LE simulations’ and 31
CMIPS preindustrial control simulations’ composite
patterns for 1979-2012 in Figs. 6 and 7. During 1979-
2012, three of the five LE experiments’ fast-minus-slow
SIA composites (except for the CanESM-LE and the
CSIRO-LE) resemble the observed sea ice melting
spatial pattern with the strongest melting occurring
round the edge of the Arctic basin with a corresponding
high pressure in the upper troposphere and surface
warming (Fig. 6). Notably, the CanESM-LE—which shows
the strongest sea ice melt in the central Arctic—and the
CSIRO-LE—with only weak year-to-year coupling—both
share the features of the observed atmospheric process in
the fast-minus-slow composites albeit with some differ-
ences, especially in the sea ice composites because of
the model’s lack of a realistic summer mean state (CSIRO-
LE) or the biased spatial melting pattern (CanESM-LE,
CSIRO-LE). Importantly, the same patterns representing
the low-frequency atmosphere—sea ice coupling are repro-
duced in the pseudoensemble of 31 CMIPS preindustrial
runs without the presence of anthropogenic forcing (Fig. 7).

With the qualitative analysis of historical and prein-
dustrial fast-minus-slow composites in the various
model experiments we have shown robust evidence that
the regional barotropic height increase over the Arctic
in summer due to internal variability—via an adiabatic
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warming process—also dominates summer sea ice vari-
ability on low-frequency time scales in both the real- and
pseudoensemble simulations (Figs. 5-7; Wernli and
Papritz 2018; Ding et al. 2019). Our results further sup-
port the findings of Ding et al. (2019) that this internal
atmospheric process is a contributor to sea ice melt
across different model environments. We have also
drawn attention to the fact that current climate models
possibly underestimate the strength of atmosphere-sea
ice coupling relative to the observed one in ERA-I on
both year-to-year and low-frequency time scales. The
weaker year-to-year coupling of sea ice with the atmo-
sphere (Figs. 3, 4) may indicate a weaker coupling
mechanism in the trend-related composites as well. In
ERA-I, the maximum JJA Z200 change over 1979-2012
in the Arctic is 26m decade ' whereas models show
only 4-7m decade ' in the fast-minus-slow composites
and the maximum JJA TS change over 1979-2012 in the
Arctic is 0.6°C decade™ whereas models show only
0.12°C decade ! in the fast-minus-slow composites. The
relative role of the internal component, therefore, needs
further estimation; however, our results indicate that
models fail to replicate the full strength of the observed
atmosphere—sea ice connection.

c. Low-frequency atmosphere-sea ice coupling from
2020 to 2050

How this atmospheric process, identified in observa-
tions and historical/preindustrial model simulations, will
behave in the future, has so far been unaddressed in the
literature. Therefore, we now evaluate the fast-minus-
slow composites in all the available future scenario runs
of the five large ensembles for 2020-50.

In general, the mean of the fast-minus-slow compos-
ites corresponding to the four models’ (excluding the
CSIRO-LE) RCP8.5 scenarios (Figs. 8a—), unlike the
forced model component linear trends (Figs. 8e—g), are
reminiscent of the atmospheric structure that dominates
sea ice variability on interannual to interdecadal time
scales in observations, historical and preindustrial model
simulations. Similar to the historical period, all individ-
ual models show high pressure in the Arctic upper tro-
posphere along with surface warming concomitant to
sea ice loss (Fig. 9). The composite trend magnitudes are
comparable to the small historical and preindustrial
composite magnitudes (relative to the observed trends).
We suggest that the small magnitudes seen in the future
fast-minus-slow composites (Figs. 8a—c, 9) may also be
connected to the underestimated atmosphere-sea ice in-
terannual coupling (Figs. 3,4) rooted in the model’s physics.

Examining the mean of four LEs’ September SIA
composites we can also see that future sea ice melt oc-
curs over the Arctic Ocean, north of Greenland, and
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FiG. 6. Historical fast-minus-slow composite trend plots of JJA (left) Z200, (left center) zonal mean geopotential height, (right center)
zonal mean temperature, and (right) September SIA for the five LEs’ historical + RCP8.5 experiments for 1979-2012: (a)-(d) MPI-GE,
(e)-(h) CanESM-LE, (i)—(1) CESM-LE, (m)~(p) CSIRO-LE, and (q)—(t) GFDL-LE. Crosses indicate significance on the 95% confidence
level (two-sample ¢ test).

Canada in the internal component reminiscent of the ice trend components (Fig. 8d vs Fig. 8h) the atmospheric
ensemble mean SIA trends (forced component) (Figs. 8d,h).  circulation patterns differ considerably (Figs. 8a—c vs
Despite minor differences in the magnitudes and spatial ~ Figs. 8e—g). Also, models show discernible sea ice melt
patterns of sea ice melt between the forced and internal sea  during 2020-50 relative to 1979-2012 (Fig. 2), whereas
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FiG. 7. The mean (denoted with angle brackets) of 31 fast-minus-slow (a) Z200, (b) zonal mean geopotential height, (c) zonal mean
temperature and (d) September SIA composites constructed using each 34-yr-long period of long preindustrial control integration of 31
individual CMIP5 models, also known as the pseudoensemble method (see section 2f).

the differences in the magnitude of sea ice associated
atmospheric changes are not so pronounced between
the two periods (Figs. 6, 9). These suggest that circula-
tion may be of key importance in driving future sea ice
loss and raise the question of whether improvements in
modeled atmosphere—sea ice connections will help us to
quantify the relative role for internal variability in the
ongoing Arctic climate change along with improve the
accuracy of modeled sea ice sensitivity (Zelinka et al.
2020; SIMIP Community 2020; Winton 2011).

d. A role for the differing amount of external forcing

When addressing future changes in the climate system
the impact of anthropogenic forcing is a key issue. To
address the question of how the identified internal at-
mospheric process may be influenced by external forcing

a <Z200 diff.> 20-50 b <Height diff.> 20-50

¢ <Temp. diff.> 20=50

with different intensity, we perform supplementary
calculations and show evidence that—according to
the fast-minus-slow composites derived from each of the
three RCP scenarios of MPI-GE for 2020-50—the
circulation-driven process exists in all three forcing ex-
periments (Fig. 10). Furthermore, in the case of the
RCP4.5 scenario the composite trend magnitudes (for
7200, Z and T) are larger (Figs. 10d-f) relative to the
RCP2.6 (Figs. 10a—). However, interestingly, the RCP8.5
scenario again shows smaller trend magnitudes (Figs. 10g—i)
comparable to the RCP2.6. This might be indicative of a
nontrivial response of the atmospheric process’s strength
to the external forcing with different intensities and that
there might exist an optimal amount of external forcing in
the model when sea ice is more sensitive to changes in the
atmosphere than other forcing scenarios. However, the
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F1G. 8. Future (a) Z200, (b) zonal mean geopotential height, (c) zonal mean temperature and (d) September SIA fast-minus-slow
composite trends and the ensemble mean (e) Z200, (f) zonal mean geopotential height, (g) zonal mean temperature and (h) September
SIA trends averaged over four large ensembles’ RCP8.5 experiments for 2020-50 [excluding CSIRO-LE; the mean of each of the four
Z200, height, temperature, and sea ice either fast-minus-slow composite or ensemble mean (forced) trends is denoted with angle brackets|.
Note the color bar differences between (e)—(g) and (a)—(c).
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FiG. 9. Future fast-minus-slow composite trend plots of JJA (left) Z200, (left center) zonal mean geopotential height, (right center)
zonal mean temperature, and (right) September SIA for the five LEs’ RCP8.5 experiments for 2020-50: (a)~(d) MPI-GE, (e)-(h)
CanESM-LE, (i)-(1) CESM-LE, (m)—(p) CSIRO-LE, and (q)-(t) GFDL-LE. Crosses indicate significance on the 95% confidence level
(two-sample ¢ test).

extent to which the response of the coupling to the dif- evidence suggest a strong role for the internal atmospheric
ferent intensity of external forcing is nontrivial needs fur-  process in driving sea ice loss with some yet-to-be-
ther study particularly using other models with differing determined contribution from the differing intensity of
external forcing scenarios. Taken together, these lines of external forcing in the upcoming decades.
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to each of the three scenarios. Crosses indicate significance on the 95% confidence level (two-sample ¢ test).
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So far, we have demonstrated strong, qualitative con-
sensus between the observed and modeled circulation—
sea ice coupling pattern on both interannual and
low-frequency time scales that is generated by internal
variability in model simulations regardless of the differing
external forcing scenarios or the model physics. However,
we have also seen that all models tend to underestimate
the magnitude of the atmosphere-sea ice coupling on
year-to-year (Fig. 3), which presumably has impacts on
the fast-minus-slow composite trend magnitudes. To
gain a more detailed understanding of this discrepancy,
we turn to analyzing remote drivers of this local coupling.

5. Tropical drivers of local atmosphere—sea ice
coupling

a. Observed connection between tropical JJA SST
and September SIA

In this section we attempt to assess what physical
mechanism can possibly drive the atmospheric process
revealed in the preindustrial, historical, and, more im-
portantly, future model runs. Observations show sig-
nificant negative convective heating anomalies over the
east-central Pacific in summer during 1979-2012 result-
ing in a Rossby wave train-like atmospheric telecon-
nection pattern representing the leading internal mode
connecting the Arctic to the tropics (Ding et al. 2014,
2019; Baxter et al. 2019). This propagating Rossby wave
train has been attributed to part of the observed prom-
inent geopotential height rise over Greenland between
2007 and 2012 causing rapid sea ice loss in addition to the
anthropogenically forced melting (Baxter et al. 2019).
Because of the observed modest but significant positive
correlation (~0.5) between September SIA and tropical
JJA SST and TS (Figs. 11a,b), we search for possible
remote dynamical coupling between the summer tropi-
cal SST and the subsequent September sea ice condi-
tions (Ding et al. 2014, 2017; Meehl et al. 2018; Baxter
et al. 2019).

b. The missing tropical-Arctic connection in the five
large ensembles and CMIP5

Figure 11 shows how September sea ice is statistically
connected to the preceding summer tropical TS values
by showing linear correlations in the five LE historical
experiments (Figs. 11c-g). Correlations are first com-
puted in each member of the given ensemble (after re-
moving the ensemble mean from each member) and
then averaged over the whole ensemble in each of the
five single-model ensembles. Additionally, the correla-
tion maps for the mean of the four LEs (Fig. 11h) and the
mean of 31 CMIP5 unforced preindustrial simulations
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(Fig. 12a) along with the individual CMIP5 models
(Fig. 12b) and the individual ensemble members (Fig. 11i)
are shown. We find that neither of the models share
the observed significant positive correlations from the
northeast-central Pacific (0°-25°N;180°~115°W) on year-
to-year time scales in either the historical LE or CMIP5
preindustrial runs. Only 3 (<1%) of the 240 (100 + 50 +
40 + 30 + 20) LE members capture significant positive
correlation, with none of them being as high as the ob-
served one. Most important is that prevalent members of
the LEs and of the CMIP5 multimodel ensemble show
negative correlations indicating an opposite sign coupling
relative to observations, with a warm-Pacific-warm-Arctic
pattern instead of the observed cold-Pacific-warm-Arctic
pattern.

The lack of a correctly replicated Pacific—Arctic con-
nection motivates us to utilize the fast-minus-slow JJA
7200 and TS composites to trace back possible mecha-
nisms that can lead to the formation of the Arctic anom-
alous high pressure seen in the composites in Figs. 5-10.
We plot fast-minus-slow TS (shading) and Z200 (contours)
composites in the Northern Hemisphere for the historical
in Fig. 13 and for the future time frame in Fig. 14 to visu-
alize internal variations in summertime TS and Z200 as-
sociated with September sea ice conditions.

As for the historical time frame, the models capture
signals from the tropics connected to Arctic September
sea ice variability; however, neither the sign nor the
magnitude is reproduced compared to the observed TS
and Z200 linear trends (Figs. 13a,b). Observations reveal a
negative trend in the northeast-central Pacific surface
temperatures for 1979-2012 resembling the negative phase
of the PO, while models do not show such pattern in either
the fast-minus-slow or the forced trend components. The
composites exhibit the opposite phase of the IPO in each
of the simulations: a positive summer IPO pattern con-
comitant to sea ice retreat. The modeled atmospheric
teleconnection pattern seems to behave as a stationary
wave superimposed onto the zonal mean flow with the
warm phase in the tropical Pacific, instead of mirroring the
observed Rossby wave train (Ding et al. 2014; Baxter et al.
2019) with negative phase in the tropics.

Further details of the simulated atmospheric tele-
connection are revealed via the future composite plots
in Fig. 14. Models stick to simulating a positive-IPO-like
pattern in their future composites with warm TS anom-
alies in the east-central Pacific and cold anomalies in
the northwest-central Pacific. The CESM-LE and the
GFDL-LE exhibit more widespread, while the MPI-GE a
dampened warming signal in the tropical Pacific com-
pared to the historical period (Figs. 13, 14). However, no
clear signal is observed from the tropical Atlantic, except
for the CanESM-LE, which exhibits widespread cooling
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Fi1G. 11. Observed correlation of (a) linearly detrended JJA surface temperature (TS) and (b) linearly
detrended JJA sea surface temperature (SST: ERSSTvS) with detrended September SIA index for 1979
2012. Also shown is the single-model LE average correlation between JJA TS and September SIA index for
1979-2012 in the five single-model large ensemble experiments (c) MPI-GE, (d) CanESM-LE, (e) CESM-
LE, (f) CSIRO-LE, and (g) GFDL-LE and (h) the average of 4 LEs (excluding CSIRO-LE). The forced
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in both the tropical and midlatitude Atlantic. Clearly,
models disagree on specific details on how midlatitude or
even tropical TS changes are associated with future sea
ice loss.

Overall, the mismatch of the observed remote drivers
of summertime sea ice variability warns us that current
model dynamics may miss some important physical
linkages connecting the Arctic to the lower latitudes.
In addition, a recent study by Bonan and Blanchard-
Wrigglesworth (2020) suggested that the observed
Pacific-Arctic teleconnection may not be stable on
longer time scales. Thus, we propose further research
toward the application of paleoclimate proxy records in
the tropics and the Arctic to shed more light on tropical—
Arctic dynamical linkages, which might be a promising
candidate for a more reliable decadal-scale sea ice
prediction.

6. Discussion and conclusions

In this paper, through an analysis of five large en-
semble and dozens of long preindustrial simulations
with a focus on simulated internal atmospheric vari-
ability, we have (i) evaluated current climate models’
ability to replicate the dynamical processes partially
responsible for the observed sea ice loss and its local and
remote atmospheric drivers, and (ii) showed evidence
for the importance of atmospheric drivers of future
sea ice loss. The primary atmosphere—sea ice coupling
mechanism is based on a series of model experiments in
Ding et al. (2017) and is understood as a circulation-
driven process that warms and moistens the lower
troposphere adiabatically, thus regulating longwave ra-
diation that causes sea ice melt. In this paper further
evidence is presented that the same mechanism also
represents the dominant internal atmospheric process in
models that creates favorable conditions for sea ice
melting on both the historical and future time frames,
and thisis regardless of differences in model physics. We
have also seen that the atmosphere—sea ice coupling
manifests in a somewhat different structure with exter-
nal forcing at different intensities, thus, further research
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is advocated. Moreover, since models fail to fully
replicate the observed intensity and sensitivity of the
coupling between local and remote circulation changes
with sea ice, the guantitative estimation to what extent
the identified internal circulation variability can en-
hance the effect of anthropogenic forcing on the ob-
served sea ice loss, along with the role of Pacific Ocean
variability in decadal sea ice predictions remain uncertain.

One source of uncertainty is due to the limitation of
the models in capturing the observed magnitude of the
local atmosphere-sea ice coupling pattern (Fig. 3).
Because of the similarities between the atmosphere—sea
ice interactions seen on year-to-year and low-frequency
time scales, it is reasonable to assume that the under-
estimated year-to-year coupling has an impact on the
low-frequency focused composite calculations as well,
likely contributing to the consistently weak magnitudes
captured in the fast-minus-slow composites. Model
limitations in simulating wind-driven mechanisms or
moisture and cloud variability could be sources of biases
in replicating the observed atmosphere-sea ice coupling
(Hofer et al. 2019; Huang et al. 2019).

Another source of uncertainty regarding decadal sea
ice simulation is model limitations in capturing the ob-
served teleconnection originating from the tropical
Pacific. In light of our results, recent findings of Screen
and Deser (2019) involving the use of simulated IPO
phase changes as a predictor of seasonal sea ice condi-
tions might be suspect given that current LEs’ historical
simulations fail to capture the correct sign of the ob-
served Pacific decadal TS trends. This casts a shadow
over models’ credibility in simulating future changes in
the tropical Pacific that could be used for Arctic sea ice
projections. Suggestions for the importance of summer
Atlantic tropical SST in driving sea ice variability
(Meehl et al. 2018; Castruccio et al. 2019; McCrystall
et al. 2020) seems to be at odds with our findings: in our
Z200/TS composite plots, no common features are ob-
servable across the models in the tropical Atlantic regions
(Figs. 13, 14). We advocate future efforts dedicated to
elucidating the relative contribution of tropical Atlantic
and Pacific SST variability along with untangling which

—

component (ensemble mean) is removed from each member before calculating correlations. Correlation is
first computed in each member, then averaged over the whole ensemble for each of (c)-(g). (i) Correlation
in all members of the five LEs (indicated below the x axis) between detrended northeast-central Pacific
area-averaged [0°-25°N;180°-115"W, indicated with the gray-outlined box in (a) and (b)] JJA TS and
September SIA index for 1979-2012. The whiskers extend to 1.5 X IQR. Crosses mark average values; plus
signs mark the outliers (outside 1.5 X IQR). The median is indicated with an orange horizontal line. The
horizontal dashed red line marks the observed correlation; the black dotted lines mark the significance

(based on Student’s ¢ test 95% confidence interval).

Brought to you by UNIVERSITY OF CALIFORNIA Santa Barbara | Unauthenticated | Downloaded 05/31/21 05:52 PM UTC



7450

ERREREERRL

Y
- ) W AN

JOURNAL OF CLIMATE

VOLUME 33

31 CMIP5 control JJA TS vs. Sep SIA

T

a“g&

1111110099000
o«

©OO0000N R
m{nmahun

r { 4
J0E GOE 90E 120E 150E 120 150W 120W S0W 6OW 30W

. b Correlation (JJA TS ; Sep SIA) over the Northeast central Pacific in 31 CMIP5 Pl runs

0.41
0.31
0.2
0.1

=0.1
-0.2-
-0.31
-0.41
-0.5

Observollon
ACCESS1-0
ACCESS1-3
CanESMZ
CMCC—CESM
CMCC=CM
CMCC-CuMS
CHNRM-CM5-2
CHRM=CMS
C5IRD=Mk3.6.0
GFDL-CM3
GFOL-ESMZG
CFDL=ESMZM
GISS-E2-H-CC
GISS—E2-H

GISS=-E2=-R=CC

GISS<E2=R
HodGEMZ—CC
HodGEMZ=ES

INM—-CM4
IPSL=CM3A-LR
IPSL=CMSA=MR
IPSL=CMEB=LR
MIROCS
MIROC—ESM—CHEM
MIROC=ESM
MPI-ESM-LR
MPI—EM—MR
MPI=ESM=P
MR1I=CGCM3
HerESM1-M
MerESW1-ME

FiG. 12. (a) 31-member multimodel ensemble average correlation of JJA TS with September total SIA index
from the CMIP5 long preindustrial (PI) control runs (blue shading and contour) and observed correlation of JJA
SST (ERSSTv5) with September total SIA index for 1979-2012 (red contour). The correlation map for each CMIP5
model is calculated separately over the entire integration period (see Table 1), and then the 31 correlation patterns
are averaged to construct a 31-member multimodel ensemble average. All variables are linearly detrended before
correlation. (b) Correlation between linearly detrended September total SIA index and linearly detrended
northeast-central Pacific area-averaged [0°-25°N;180°-115°W, indicated with the gray-outlined box in (a)] TS in
observations (r = 0.45, with p < 0.05; pink bar) and in each of the 31 individual CMIP5 multimodel ensemble

members’ PI runs (gray bars).

side of the tropical Pacific basin has more prominence in
driving Arctic sea ice variability (Dong et al. 2019,
Warner et al. 2020).

We also note that in models the local Arctic
atmosphere—sea ice coupling still exists without prom-
inent remote tropical forcing although the magnitude of
the coupling is weaker. This indicates that the genera-
tion of the local coupling could also be due to local
feedback. Further research toward identifying the rela-
tive role of the local and remote forcing mechanisms in
the observed atmosphere—sea ice interactions is needed.

Although a recent study by Olonscheck et al. (2019)
also emphasized that atmospheric processes dominate
Arctic sea ice variability, we cannot rule out the role of
the heat content change in the ocean (Steele et al. 2008,
2010; Zhang et al. 2013; Deser et al. 2015). Limitations of
our methodology can also leave undetected variability
belonging to either atmospheric or oceanic processes,
since the fast-minus-slow method relies on a subjective
choice of ensemble members belonging to the fast and
slow groups. However, applying our linear method to
the pseudoensemble of preindustrial control simula-
tions, we also showed an example of how long control
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runs may be utilized to evaluate model performance. We
are also aware that there is no guarantee that the strength
of the teleconnections remains constant in the future
under high emission scenarios (Herein et al. 2016, 2017,
Tél et al. 2020; Haszpra et al. 2020); therefore nonlinear,
higher-order processes may also play a significant role.
Our study reveals that current climate model simula-
tions are able to replicate the physical mechanism of the
observed atmosphere—sea ice coupling in preindustrial,
historical, and future model simulations, emphasizing
the importance of internal atmospheric variability in
driving present and future sea ice melting. The present
analysis, however, is solely focused on reaching a qual-
itative understanding of internal drivers of sea ice loss
across different model environments; thus, the relative
contribution of internal variability remains an open
question in light of limited model performance. Overall,
we argue that more effort should be given to model
development to correctly replicate these physical link-
ages in our observed climate system. Phase 6 of the
Coupled Model Intercomparison Project (CMIP6) with
updated model versions potentially will improve the
presented uncertainties, and, if so, CMIP6 simulations
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Fi1G. 13. Linear trends of JJA Z200 (contours) and (a) TS (ERA-I; shading) or (b) SST (ERSSTvS5; shading) for
1979-2012 in observations. Also shown are historical fast-minus-slow composite trends of JJA Z200 (contours) and
TS (shading) in the five LEs’ historical + RCP8.5 simulations for 1979-2012: (c) MPI-GE, (d) CanESM-LE,
(e) CESM-LE, (f) CSIRO-LE, (g) GFDL-LE, and (h) the average of four LE (excluding CSIRO-LE; denoted with
angle brackets). Crosses indicate significant TS composite values on the 95% level (two-sample ¢ test).

may be promising sources of improved decadal-scale sea
ice predictability.
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