PHYSICAL REVIEW D 102, 086013 (2020)

Quiver mutations, Seiberg duality, and machine learning

Jiakang Bao®,"" Sebastian Franco,”**" Yang-Hui He®,"*** Edward Hirst®,"" Gregg Musiker,"! and Yan Xiao"®?
1Department of Mathematics, City, University of London, London EC1V OHB, United Kingdom
2Physics Department, The City College of the CUNY,

160 Convent Avenue, New York, New York 10031, USA
3Physics Program, The Graduate School and University Center,

The City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
*Initiative for the Theoretical Sciences, The Graduate School and University Center,

The City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
*Merton College, University of Oxford, Oxford OX14JD, United Kingdom
8School of Physics, NanKai University, Tianjin, 300071, People’s Republic of China
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA
8Departmem‘ of Physics, Tsinghua University, Beijing 100084, China

® (Received 26 July 2020; accepted 27 August 2020; published 15 October 2020)

We initiate the study of applications of machine learning to Seiberg duality, focusing on the case of
quiver gauge theories, a problem also of interest in mathematics in the context of cluster algebras. Within
the general theme of Seiberg duality, we define and explore a variety of interesting questions, broadly
divided into the binary determination of whether a pair of theories picked from a series of duality classes are
dual to each other, as well as the multiclass determination of the duality class to which a given theory
belongs. We study how the performance of machine learning depends on several variables, including
number of classes and mutation type (finite or infinite). In addition, we evaluate the relative advantages of
Naive Bayes classifiers versus convolutional neural networks. Finally, we also investigate how the results
are affected by the inclusion of additional data, such as ranks of gauge/flavor groups and certain variables
motivated by the existence of underlying Diophantine equations. In all questions considered, high accuracy

and confidence can be achieved.

DOI: 10.1103/PhysRevD.102.086013

I. INTRODUCTION
A. Preface

Seiberg duality [1] for supersymmetric quantum field
theories is one of the most fundamental concepts in modern
physics, generalizing the classical electromagnetic duality
of the Maxwell equations. In parallel, cluster algebras [2,3]
have become a widely pursued topic in modern mathemat-
ics, interlacing structures from geometry, combinatorics,
and number theory. These seemingly unrelated subjects
were brought together in [4-7] in the context of quiver

“jiakang.bao @city.ac.uk
"sfranco@ccny.cuny.edu
?hey @maths.ox.ac.uk
Sedward.hirst@city.ac.uk

'” musiker@math.umn.edu
steven1025xiao @ gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2020/102(8)/086013(28)

086013-1

gauge theories realized as world-volume theories of
D-brane probing Calabi-Yau singularities. Interestingly,
the common theme—quiver Seiberg duality in physics
and mutations of cluster algebras in mathematics—
emerged almost simultaneously around 1995, completely
unbeknownst to the authors of each. It was not until almost
a decade later that a proper dialogue was initiated.

Meanwhile, the authors of [8—12] placed the study of
quiver gauge theories and toric Calabi-Yau spaces on a firm
footing via brane tilings, or dimer models, which are
bipartite tilings of the torus. In the mathematics community,
cluster algebras have taken a life of their own [13]. Seiberg
duality for quiver gauge theories and cluster mutations for
quivers have thus allianced a fruitful matrimony. Continued
and often surprising interactions between the physics and
mathematics have persisted, ranging from quantum field
theory (QFT) amplitudes [14,15], to quantization [16], to
dualities [17].

Recently, a program of using the latest technology of
machine learning and data science to study mathematical
structures was launched [18-20]. Indeed, the authors of
[18,21-24] introduced the machine learning paradigm to
string theory, and [25,26] to symmetries and dualities.

Published by the American Physical Society

https://orcid.org/0000-0002-9583-1696
https://orcid.org/0000-0002-0787-8380
https://orcid.org/0000-0003-1699-4399
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.086013&domain=pdf&date_stamp=2020-10-15
https://doi.org/10.1103/PhysRevD.102.086013
https://doi.org/10.1103/PhysRevD.102.086013
https://doi.org/10.1103/PhysRevD.102.086013
https://doi.org/10.1103/PhysRevD.102.086013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

Methods in neural networks and classifiers have been applied
to study diverse problems in physics and mathematics ranging
from classifications of Calabi-Yau threefolds [27-30], to flux
compactifications in string theory [31], to AdS/CFT [32], to
distinguishing elliptic fibrations [33,34], to finding bundle
cohomology on varieties [23,35], to knot hyperbolic volumes
[36], to distinguishing standard models properties [37-39], to
machine learning the Donaldson algorithm for numerical
Calabi-Yau metrics [40], to the algebraic structures of groups
and rings [41], to dessin d’enfants [42], and to the Birch-
Swinnerton-Dyer conjecture in number theory [43], etc.

Given the highly combinatorial nature of quivers
and cluster algebras, it is natural to ask whether the
machine learning program could be applied to this context.
Specifically, one could wonder where in the hierarchy of
difficulty, from the least amenable numerical analysis to the
most resilient number theory, would quivers and mutations
reside. This is thus the motivation of our current work. The
paper is organized as follows. After a rapid parallel
introduction to Seiberg duality in quiver gauge theories
and cluster mutation, from the physics and mathematics
point of view in Secs. Il A and II B, we proceed in Secs. III
to V to study a host of pertinent problems which we will
summarize shortly. We conclude in Sec. VI and present
some details of the neural networks and their performances
over training in the Appendixes.

B. Summary of results

To provide the readers with an idea of the machine
learning performance at a glance, we provide here a brief
description of the problem styles addressed in this paper, a
list of the quivers used to generate the mutation classes
examined in the investigations, and a table summarizing the
investigations’ key results.

1. Data format

The datasets used in these investigations represent each
quiver in consideration by its graph-theoretic adjacency
matrix (in some investigations with an additional vector
structure augmented on). Each investigation has its own
dataset of quivers, generated using the SAGE software [44],
such that each full dataset is the union of mutually
exclusive sets of quiver matrices, where all quivers in each
set belong to the same duality class.

Two styles of classification problems are addressed in this
paper, and each processes the input quiver data in a different
format. The first is binary classification on pairwise data
inputs. Here each data input is a pair of matrices, and each
pair can be classified as having its two constituent quivers
in the same class or not in the same class. On these
problems the Naive Bayes (NB) classification method, as
described in Appendix A 2, performed best and was hence
used. The second problem style is multiclassification
directly on the matrices. Here each data input is a matrix,
and the matrix is classified into one of the duality classes
the classifier is trained on. On these problems convolu-
tional neural networks (NN), as described in Appendix A
3, performed best and were hence used.

Within each investigation fivefold cross validation was
used to produce a statistical dataset of measures for the
analysis of the classifier’s performance. In fivefold cross
validation, five independent classifiers are each trained on
80% of the data and validated on the remaining 20%, such
that the union of the validation sets gives the full dataset for
the investigation. Measures of the classifiers’ performance
are calculated for each classifier and averaged. In addition,
the investigations were also run for varying training/
validation percent splits, with results plotted as “learning
curves,” shown in Appendix B.

2. Quivers considered

Here we list the quivers used to generate the duality
classes making up the datasets of the investigations consid-
ered in this paper. They are listed with an adjacency matrix
representation and are labeled in the form Qi. Different
combinations of these quivers (with further Dynkin type
examples) were used in each investigation, as listed in the
Table I below with “investigation description.”

The first three quivers, Q1, Q2, Q3, as well as Q12,
Q13, Q15, are finite mutation type under the duality,
while the remaining listed here are infinite mutation type.
Additionally other Dynkin and finite mutation types were
used in investigations, labeled in the standard SAGE quiver
package format [45]. These additional quivers considered
were either the Dynkin type of various sizes, labeled by
the letter and rank of the Dynkin diagram they are
equivalent to (with direction added to the edges), or the
affine type which corresponds to affine Dynkin diagrams

TABLE I. The quivers considered in machine learning and their training results.
Investigation description Quivers Results (acc, @)
NB classification between two mutation classes [‘A, 4]—[‘D,” 4] (1.00, 1.00)
Q4—Q5 (1.00, 1.00)
['D,; 41—['A) (3, 1), 1] (1.00, 1.00)
[‘D, 4]—Q4 (1.00, 1.00)
NB classification on datasets with varying quiver sizes Q4—Q5—Q9—Q10 (1.00, 1.00)

(Table continued)

086013-2

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

TABLE 1. (Continued)

Investigation description Quivers Results (acc, ¢)
NB classification on datasets with more [‘A, 6]—[‘D,” 6]—[‘E,” 6] (0.90, 0.82)
than two mutation classes [‘A, 4]1—[‘D, 4]—[‘A, 3, 1), 11—[‘A) (2, 2), 1] (0.85, 0.70)
[‘A, 6]—[‘D,” 6]—[‘E,” 6]—[‘A, 4]—[‘D,” 4] (0.75, ~)
[‘Ay 3, D), 11—[A (2, 2), 1]
Q4—Q5—Q6 (0.91, 0.82)
Q4—Q5—Q6—Q7 (0.86, 0.72)
Q4—Q5—Q6—Q7—Q8 (0.84, 0.67)
[‘'T, 4, 4, H]—['T, 4, 5, 3)]—[T,) 4, 6, 2)] (0.89, 0.78)
NB extrapolation predictions: validating Train [‘A, 6], ['D,” 6]—Valid [‘E,” 6] (0.60, 0.25)
on different classes/mutation depths Train Q4, Q5 low depths (0.50, 0.00)
to training -Valid Q4, Q5 high depths
Train Q4, Q5 low & high depths (0.65, 0.33)
-Valid Q4, Q5 middle depths
NB classification on enhanced datasets Q4—Q5—Q6 (0.91, 0.83)
with rank vectors Q4—Q5—Q6—Q7 (0.86, 0.72)
Q4—Q5—Q6—Q7—Q8 (0.84, 0.67)
NB classification on enhanced datasets Q9—Q10—Q11 (0.91, 0.84)
with Diophantine variables Q4—Q5—Q06 (0.91, 0.83)
Q4—Q5—Q6—Q7 (0.86, 0.72)
Q4—Q5—Q6—Q7—Q8 (0.84, 0.69)
NN classification between finite-type classes Q12—Q13—Q15 (0.33, ~)
NN classification on mixed mutation Q12—Q13- Q14 (0.55, ~)
type (finite and infinite)
NN classification against random Q9—Antisymm 0.97, ~)
antisymmetric matrices
NN classification on enhanced datasets Q12—Q13—Q14 (1.00, ~)
with rank vectors Q12—Q13—Q15 0.71, ~)
NN extrapolation predictions: validating on Train Q12, Q13, Q14 low depths—Valid Q12, Q13, 0.74, ~)
different mutation depths to training Q14 high depths
(with rank vector data enhancement) Train Q12, Q13, Q14 low & high depths—Valid Q12, (1.00, 1.00)
Q13, Q14 middle depths
Train Q12, Q13, Q14, Q15 low & high depths—Valid Q12, (0.98, ~)
Q13, Q14, Q15 middle depths
NN classification against random Q9—Antisymm (1.00, ~)
antisymmetric matrices Q9—Q10—Antisymm (0.85, ~)

(with rank vector data enhancement)

and are labeled using Kac’s notation with the Dynkin
letter, the rank, and an optional twist. In the case of affine
A, the rank is given by a pair of integers for the number of
clockwise/anticlockwise edges, respectively. The specific
affine quiver used to generate a mutation class used in an
investigation is the choice autogenerated by the SAGE
|

()—»n'i.f"%des 0--- 00

—-10

O 0-..

Q1: [‘A’, n]

(O—

package for the input label information. Finally, the T type
are so named for being shaped like a letter “T,” their three
integer entries give the number of nodes in each of the
branches from the branch point (inclusive). These quivers
are described further as they are introduced with each
investigation.

0---0 0 O
n-4 nodes ’ T ’
~ 00 -1-1
0---1.0 O
0---10 0

086013-3

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO PHYS. REV. D 102, 086013 (2020)

01 0 000

-1 0 1 000
Q 0 -1 0 101
/L 0O 0 -1 010
O Q O O O 0O 0 0 —-100
0O 0 -1 000
Q3: [‘E’, 6]

Q 7 0 2 0 —2 Q ; 0 1 0 -1
-2 0 2 0 10 3 =2
0 -2 0 2 -3 0 3
2 0 -2 0 1 2 -3 0

Q4 Q5
0 —-1-2 3 0 3 0 -3
1 0 =21 -3 0 3 0
2 2 0 —4 0 -3 0 3
-3—-14 0 030—30
Q6 Q7
0 2 3 -5
-2 0 -1 3
-3 1 0 2
5 -3-20
Q8

086013-4

PHYS. REV. D 102, 086013 (2020)

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

Q11

Q10

Q9

1 =10 0 0 O
-1 0

0
1

0 0 0 0
1

1
-1 0

-1 0 0

0
-1

1

0

0

1
-1 0

0 0 -10

1

1
0 00 0 -10
0 0 0 O

0 O

-1

1

Q12: triangulated 10-gon in the mutation class [‘A’, 7]

/O
Vv

0 2-10 0 00

-2 0

1 0 0 0 0
-10 -11 1 -1
0 -20 0

1
0

0 1

0 0-12 0 0 0
0 0-10 0 0 2
01 0 0 -20

0

Q13: [X, 7]

0 2 0 0 0 0 =2
-20 2 0 0 0 0
0 -20 2 0 0 0

0 0-20 2 0 0
0 0 0 -20 2 0
0 0 0 0 -20 2

2 0 0 0 0 =20

Q14

086013-5

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

&&W

01 0 0000
-1 0 1 0000
0-10 1010
0 0-10100
0 0 0-1000
0 0-1000O0T1
0 00 00-10

Q15: T-type, [‘T7, [3,3,3]], which is also of type affine Eg, ['E’, 6, 1]

3. Investigation results

Here we tabulate each investigation with a brief descrip-
tion, a list of the quivers used to generate the duality classes
in the dataset, and the measures of the learning perfor-
mance. The measures of performance (as described in
Appendix A 4) are presented as a pair: (acc, ¢), consisting
of accuracy of agreement, acc, and Matthews’ correlation
coefficient, ¢, where calculated. Both evaluate to 1 for
perfect learning, and results are shown to two decimal
places.

Dynkin and T type quivers are denoted using the SAGE
quiver package convention; other infinite mutation type
quivers are denoted using the label assigned in the
preceding “quivers considered” list.

NB classifier results showed perfect classification
between two mutation type classes. Classifying classes
of different quiver sizes was trivial and did not reduce
performance as expected. Where classification was
between more than two classes, the performance was lower
but still very good. Enhancing the datasets with rank
information, or Diophantine-inspired variables, did not
improve NB classification.

NN required rank information in their dataset to classify
well, but with this included NNs outperformed the NB
classifier, particularly when classifying quivers at unseen
mutation depths and when classifying against random
antisymmetric matrices.

We should also mention that we are using the word
“depth” throughout the paper. Starting with a quiver (at
depth 0) having n nodes, we have n choices of dualizing
one node. These newly generated quivers are said to be at
depth 1. We can then apply mutations to these depth-one
quivers again by choosing one node to dualize. Such
quivers obtained are at depth 2 (except the quiver at
depth 0 we start with, i.e., dualizing the same node twice).
Hence, when we say a quiver is at depth k, the (shortest)
distance would be k from this quiver to our starting quiver
under mutations.

I1. DRAMATIS PERSONAE
A. Seiberg duality

In this section we review Seiberg duality, which is an IR
equivalence between 4d N' = 1 gauge theories [1]. We will
phrase our discussion in the language of quivers, since all
the theories considered in this paper are of this type.

Let us consider dualizing a node j in the quiver, which
does not have adjoint chiral fields." The transformation of
the gauge theory can be summarized in terms of the
following rules:

1. Flavors. In physics, the arrows connected to the
mutated node are usually referred to as flavors. The
flavors transform by simply reversing their orienta-
tion, namely:

(1.a) Replace every incoming arrow i — j with the
outgoing arrow j — i. Calling X;; the incoming arrow,
we replace it by the dual flavor X ;.

(1.b) Replace every outgoing arrow j — k with the
incoming arrow k — j. Calling X the outgoing
arrow, we replace it by the dual flavor X;.

This is the quiver implementation of the fact that the
magnetic flavors are in the complex conjugate representa-
tions, of both the dualized gauge group and the spectator
nodes, of the original flavors.” This transformation is
shown in Fig. 1.

2. Mesons. Next we add mesons, i.e., composite
arrows, to the quiver as follows. For every 2-path
i > j — k we add a new arrow i — k. This meson
M, can be regarded as the composition of the
flavors i — j and j — k of the original theory,
namely M;; = X;;X ;. In other words, we generate
all possible composite arrows consisting of incom-

'Generalizations of Seiberg duality to gauge groups with
adjoints are known under certain conditions (see, e.g., [46—48]).

In our discussion, including the points that follow, we allow
for the possibility of chiral fields connecting a given pair of nodes
in both directions.

086013-6

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

i X J X K i X J X K
i\ J i kj
O——0 O = —0O
M.
FIG. 1. Schematic representation of Seiberg duality. The

dualized node j can actually be connected to multiple nodes
by incoming and outgoing arrows.

ing and outgoing chiral fields. Figure 1 also illus-

trates the addition of a meson.
3. Ranks. The rank of the dualized node transforms

as

N = Ny, —Nj, (2.1)

where N 7 is the number of flavors at the dualized node
Jj. Later we will consider generic quivers, which are not
necessarily anomaly-free. These quivers are interest-
ing from a mathematical point of view and, in such
cases, we will not consider the ranks of the nodes.
Ranks will only be taken into account for anomaly-free
quivers, i.e., theories for which the gauge (and hence
dualizable) nodes have an equal number of incoming
and outgoing arrows. In these cases,

ij - Ninj - Noulj’ (22)
which, more explicitly, is given by
ij = Nin,- = ZaijN,-, (23)

i—j

with a;; the (positive) number of bifundamental arrows
going from node i into node ;.

4. Superpotential. The superpotential transforms as

follows:

(4.a) In the original superpotential, we replace instances
of X;;X j with the meson M, obtained by composing
the two arrows.

(4.b) Cubic dual flavors—meson couplings. For every
meson, we add a new cubic term in the superpotential,
coupling it to the corresponding magnetic flavors.
Namely, we add the term M ;X ;X ;.

If there are fields that acquire mass in this process, we can
integrate them out using their equations of motion.

All the rules discussed above, with the exception of the
one for the ranks, are the same ones that are used for cluster
algebras. Cluster algebras also come equipped with a set of
generators known as cluster variables.

B. Mutation of cluster algebras

Mathematically speaking, an algebra is a structure that
functions as a vector space with the additional feature that
elements can be multiplied together. An algebra can be
presented by generators, think of basis vectors, and

relations, i.e., algebraic dependencies generalizing linear
dependencies of a vector space. A rank n cluster algebra is a
subalgebra of the field of rational functions in n variables
where its generators can be grouped together into alge-
braically independent sets known as clusters, also all of size
n, such that certain exchange relations allow one to
transition from one cluster to another [2]. These exchange
relations, known as cluster mutation, can be described
using the language of quivers, echoing the description of
Seiberg duality in physics.
5. Cluster variables. Given an initial cluster {x;,x,,
...y X, }» we allow cluster mutations in n directions,
each of the form

o= I o+ Il »

i—jinQ j—kinQ

for each 1<j<mn, and where the products
are over all incoming arrows and outgoing
arrows, respectively. We thus get a new generator,
cluster variable, x;, yielding the cluster {x, x,, ...,
Xj1,X; Xjqy, .., X, }. The process of cluster
mutation may be continued but to mutate while
using this new cluster as a reference, we use the
quiver ;0 in place of Q, where p;Q is the quiver
obtained by applying the rules of Seiberg duality at
node j.

Given a quiver Q, we construct the associated cluster
algebra A, by applying cluster mutation in all directions
and iterating to obtain the full list of cluster variables, i.e.,
generators of A,. Generically, this process yields an
infinite number of generators for the cluster algebra, as
well as an infinite number of different quivers along the
way. However, in special cases, a cluster algebra and its
defining quiver have a specified mutation type.

We refer to a cluster algebra, or its associated quiver, as
being of finite type if it has a finite number of generators,
i.e., cluster variables, constructed by the cluster mutation
process.3 As proven by Fomin and Zelevinsky [3], the list
of cluster algebras of finite type exactly agree with
Gabriel’s ADE classification® of quivers admitting only

3This is a different statement than saying the cluster algebra is
finitely generated, or Noetherian, as an algebra. There are
examples of Noetherian algebras that admit an infinite number
of cluster variables as generators. The simplest such example
corresponds to the quiver associated with SU(2) theories con-
sisting of two nodes and two arrows between them. There are an
infinite number of cluster variables for the associated cluster
algebra even though as an algebra, it is generated by four
elements [49,50].

“The ADE’s are just the usual label following the label Dynkin
diagrams. Or if we allow cluster algebras associated with skew-
symmetrizable matrices rather than only quivers, which must be
skew symmetric, we get the Cartan-Killing or Dynkin classi-
fication including types B, C, F,, and G, as well.

086013-7

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

finitely many indecomposable representations [51], or
those equivalent to them via quiver mutation, i.e.,
Seiberg duality.

Another important family of cluster algebras are those of
the finite mutation type. Such cluster algebras are those with
only a finite number of quivers reachable via mutation, i.e.,
Seiberg duality. This class of cluster algebras completely
encompasses the subclass of cluster algebras of finite type.
In totality, this class contains all rank 2 cluster algebras, such
as the aforementioned cluster algebra associated with
SU(2), cluster algebras of surface type, and 11 exceptional
types (Eg, E7, Eg, affine Eq, E4, Eg, elliptic Eg, E;, Eg, and
two additional quivers known as X¢ and X57) [52,53]. Such
finite mutation type quivers have also been studied pre-
viously in the physics literature where they were referred to
as complete quantum field theories [54].

Cluster algebras of surface types, i.e., associated with
orientable Riemann surfaces, were first described by
Fomin, Shapiro, and Thurston [55]. Generically, the quiver
associated with a triangulation of a Riemann surface is
obtained by taking the medial graph where nodes of the
quiver correspond to nonboundary arcs of the triangulation,
and we draw an arrow of the quiver between nodes i and j
for every triangular face where arcs associated with i and j
meet at a vertex and j follows i in clockwise order.
Mutating at a node corresponds to flipping between the
two possible diagonals for triangulating a quadrilateral.
Since such triangulations live on an orientable Riemann
surface, any associated quiver has at most two arrows
between any given pair of nodes, thus demonstrating that
such cluster algebras admit only finitely many quivers and
are hence of the finite mutation type. The 11 exceptional
cases of Felikson, Shapiro, and Tumarkin do not have a
surface model but at least the finite and affine type E
quivers are well-known from previous representation
theory, e.g., Gabriel’s ADE classification, and Kac’s
extension to affine quivers [56].

In this paper we will focus on the transformation of the
quiver (rules 1 and 2) and in some cases include informa-
tion on the ranks (rule 3), so we will not deal with rule 4 nor
with rule 5. Even with this restriction, we will manage to
obtain nontrivial results. Having said that, the superpoten-
tial is a crucial element of the duality, as is the mutation of
cluster variables in the context of cluster algebras. We plan
to incorporate both of these in future studies.

III. RECOGNIZING MUTATIONS

There are various ways to construct the dataset. We can
directly assign each mutation class a different label. Then
the machine will be asked to do a multiclass classification.
We can also have datasets that consist of matrix pairs so that
every {input — output} has the form

{(M,M,) - 1/0}, (3.1)

where 1 indicates that M; and M, are in the same class
while O indicates that they are not. Let us first start with the
latter using the Mathematica built-in function CLASSIFY.

A. Classifying two mutation classes

As the simplest example, let us machine learn only two
different classes, [‘A,” 4] and [‘D, 4],5 shown with their
adjacency matrices as Q1 and Q2, for the cases n = 4, in
the quivers list of Sec. I B.

Notice that these matrices/quivers are of finite mutation
types, i.e., the duality trees are closed. Many (but not all)
quivers in finite mutation types6 contain sources and sinks, and
are hence anomalous. Albeit not physically meaningful, we
are still interested in these quivers from pure mathematics and
machine learning viewpoints. Furthermore, we can compare
these results with those from infinite mutation types.

The result’ of fivefold cross validation is tabulated in
Table II. We also plot the learning curves at different
training percentages in Fig. 1 1. We can see that the machine
gives 100% accuracy most of the time, which is very
inspiring.

Before we add more mutation classes to our data, we are
also curious about how the machine would behave when it
is asked to predict unseen classes. In the above two-class
example, the validation set V is the complement of the
training set 7. Therefore, what the machine validates are in
the same classes as those being trained. Now let us train the
[‘A, 6] and [‘D,’” 6] classes and validate [‘E,” 6] (shown as
Q3 in the quivers considered list). In the validation dataset,
I’s are always from pairs in [‘E,” 6] while 0’s are from
[‘E,; 6]/[‘'A, 6] or [‘E,” 6]/[‘D,’ 6] pairs.8 The learning result
with various training percentages is given in Fig. 2. We find
that the overall result is not very satisfying, and the

5 Henceforth, we will use the same notation as in SAGE [44,45]
for known quiver mutation types, and we will not specify the
matrices and quivers.

To be clear, we should point out that finite mutation types and
finite types refer to different concepts. In the sense of [3,52], a
finite mutation type indicates that there are finitely many dual
quivers generated from our starting quiver while a finite type is
the namesake of a Dynkin type. Sometimes we will use the term
“finite classes.” This is the same as “finite mutation types.”
However, note the word ‘“class” is slightly different from
“mutation type” in our context. Each class refers to one duality
tree. For instance, [‘A,” 4] and [‘A,” 5] are not in the same class as
they are certainly not duals, but they are both of finite mutation
types.

"Note the metrics used to evaluate the machine’s performance
(accuracy, F-score, and MCC ¢) are defined in Appendix A 4.

8Unlike 1’s, the 0’s always have a matrix from trained classes.
However, as we will further study in Sec. III B and Appendix A 2
when finding the optimal method of the classifier, assigning 1
or 0 to a given pair is solely determined by the two matrices in this
pair. Any other matrices, no matter whether they are related by
mutations to the matrices in this pair, are irrelevant. In this sense,
the [‘E,” 6]/['A, 6] and the [‘E, 6]/[‘'D,” 6] pairs are always
unseen classes.

086013-8

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

TABLE II. Training and validating two classes: [‘A,” 4] and
[‘D, 4]. We generate (144 + 50) matrices. There are 9026 1’s and
7193 0’s. The method is chosen by the machine. The results are
accurate to the floating point precision, but decimal points are not
shown.

F-Score ¢
1+0 1+0

Accuracy
1+0

Matthews ¢ could be indeterminate occasionally. From the
confusion matrices, we can know that there is still always a
zero entry. This zero always appears at false positive (FP)
or true negative (TN); i.e., only 1’s or only O’s are predicted
when the actual values are O in each single training. It is
reasonable to see that such result as the machine has met
some unseen mutation classes. This also shows that the
machine is certainly not learning mutations (at least not the
whole knowledge thereof) when the dataset contains only
two different mutation classes.’

B. Fixing the Method

The cLASSIFY function in Mathematica has an option
where one can specify the method used in the classifier. So
far, this value is default in our experiments, and the method is
chosen automatically by the machine. However, it is worth
finding what method can give better predictions. It turns out
that the NB is the method we should choose. When studying
the ADE Dynkin type quivers with six nodes above, we find
that at each training percentage, the relatively higher
accuracy is obtained only when the machine chooses NB.
Hence, we perform this experiment with the same dataset
again, but this time, we fix our method to NB. The learning
curves are reported in Fig. 3. We find that the standard
deviations are indeed reduced. The trends of the curves
behave like those of the usual learning curves. Moreover,
although there is still always a zero entry in the confusion
matrix, the Matthews ¢ is never indeterminate anymore. In
contrast, we can try what happens if we fixate on other
methods. As an example, the result of using only random
forest with the same dataset at 80% training percentage is
reported in Table III. It is obviously inferior to the result
using NB. Henceforth, unless specified, we will always
apply NB in the CLASSIFY function for future experiments. 10

°One may wonder whether the dimensions of matrices would
affect our result, but in fact it is not a main influence. We will
further study this when we include more different mutation
classes in our training.

"We also tried different methods when machine learning the
example in Sec. III D which has four different classes. It turns out
that in the built-in CLASSIFY function, NB gives nearly 85%
accuracy at 80% training percentage while NN gives ~60%
accuracy and support vector machine (SVM) gives ~50% accuracy.
Moreover, NN and SVM would take 1-2 minutes while NB would
only take 1-2 seconds.

1 =
0.9
0.8}
0.7
0.6 -
g 05F
g 04f
g 03
g 02f
T 0l
& ol
—0.1F
:8§ i —e— Accuracy
—04Ff - ¢
0.5 L L 1 |

30 40 50 60 70 80 90 100
Training(%)

FIG. 2. Training two classes: [‘A,” 6] and [‘D,” 6], and validating
[‘E; 6] (0’s from [‘E,” 6]-['A, 6] and [‘E, 6]-[‘D, 6] pairs). We
generate 517, 572, and 600 matrices, respectively. We choose
training data out of 14182 pairs and validation data out of 13897
pairs. Data with indeterminate ¢)’s, which appeared several times,
are not plotted. These indeterminate ¢’s appeared 7 times in all
(training and validation 10 times at each training percentage). The
method is chosen by the machine.

Now, we would like to understand why NB always yields
such good results. In Appendix A 2, we give a mathemati-
cal background of NB. The main reason is that the mutual
independence of matrix pairs coincides with the basic
assumption of NB.

C. Two classes revisit

To some extent, machine learning finite mutation classes
would not be that necessary in application simply because we
can traverse all the matrices. Let us try another example
which contains two infinite mutation classes. The first one is
the theory living on D3s probing F,, the zeroth Hirzebruch
surface, which is isomorphic to P! x P!, as depicted in Q4

1 =
0.9+
0.8
0.7F
0.6
g 05¢F
204}
g 03[
& 02f
01}
oW 0F
—01}k
:8% | —e— Accuracy
—04} =0
_0'5 1 1 1 1 1 1 1 1 ul
20 30 40 50 60 70 80 90 100
Training(%)

FIG. 3. Training two classes [‘A,” 6] and [‘D,’” 6], and validating
[‘E,’ 6] (0’s from [‘E,” 6]-['A, 6] and [‘E,” 6]-[‘D,” 6] pairs). We
generate 517, 572, and 600 matrices, respectively. We choose
training data out of 14182 pairs and validation data out of 13897
pairs. There are no indeterminate ¢’s. The method is NB.

086013-9

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

TABLEIII. Learning on ADE quivers with the random forest method. Compared to Fig. 3, Naive Bayes performs
superiorly and never gives indeterminate results.

Accuracy [%] 60.3214 46.1786 50.2143 51.2857 53.2500
¢ 0.3468220 —0.2088830 Indeterminate —0.0184085 0.1678070
Accuracy [%] 54.8571 49.8929 47.5714 49.6071 50.6071

¢ 0.2026570 —0.0377965 —0.1103220 0.0925057 Indeterminate

[57,58]. The second one is generated by the quiver and
adjacency matrix given in QS, which is also anomaly-free.

The learning result of fivefold cross validation is
tabulated in Table IV. We also plot the learning curve at
different training percentages in Fig. 12, showing results as
perfect as the example of [‘A, 4] and [‘D,” 4]. It is also
worth noting that comparing Fig. 12 with Fig. 11, we see
that the learning curve now looks smoother and more
beautiful when we use NB.

Now that infinite mutation types generate infinitely
many quivers under the Seiberg duality mutation, we
can do something that is not done in finite mutations. In
the training dataset 7', we include the matrices generated to
some depth (equal to the number of mutations from the
original quiver) in the duality tree. However, the validation
dataset V consists of matrices generated at depths that are
far away from those in 7. We still start with the above two
matrices and generate (102 4 138) matrices. From these
matrices, we create 6933 1’s and 6358 0’s. Then the 1’s and
0’s of T will be evenly chosen out of the 13291 pairs. For V,
we start with the following matrices:

0 211 —16644 765262
-211 0 —-1658 76232
16644 1658 0 —46 |’
—-765262 —76232 46 0
0 2586 39 55
2586 0 39603 —47
, (3.2)
-39 39603 0 843
-55 47 -843 0

and generate (161 + 161) matrices. From these matrices, we
create 5689 1’s and 5663 0’s. Then the 1’s and 0’s of V will be
evenly chosen out of the 11352 pairs. We make a dataset with
12000 pairs in all. At 90% training percentage, the result is

TABLE IV. Training and validating two classes: Q4 and QS.
We generate (102 + 138) matrices. There are 6344 1’s and 6268
0’s. The method is NB.

Accuracy

1£0

F-Score ¢
1£0 1£0

tabulated in Table V. This shows that the machine is just
guessing. Since it is predicting those of unseen depths, the
result is not very surprising. As a matter of fact, the confusion
matrices always have a vanishing TP (actual=predicted=1)
and an extremely small FP (actual = 0, predicted = 1). This
shows that the machine tends to regard the pairs from unseen
depths as unrelated theories.

We now have seen that the machine does a good job for
validation, but does not perform well when meeting unseen
depths far away. It would be natural to ask, given both
matrices of depth O to depth n; and of depth n, to depth n;
(n3 > ny, > ny > 0), whether the machine can extrapolate
the matrices of depths between n; and n,. We still
contemplate the above case with two different mutation
classes (Q4 and Q5), but this time, we have n; = 3, n, = 6,
and ny = 8 for both of the two classes (and hence, we are
validating matrices of depths 4 and 5)."" The learning result
at 90% training percentage is listed in Table VI. We can see
that the result is better than the one in Table V. It is very
natural to expect this since we are having many more
matrices trained (or more precisely, the ratio of seen against
unseen matrices is much larger). On the other hand, we
should also expect that the result would still have much
room to be improved regarding the feature of NB.

We now make a proposal using the assumption of NB.
As discussed in Sec. III B and Appendix A 2, whether a pair
of matrices are related to each other by mutations is
independent of other matrices. This condition certainly
applies here.

We can actually visualize the duality trees of quivers.
Examples can be found in Figs. 2 and 7 in [58]. Since a
mutation can act on every single node of a quiver, an n-
node quiver is directly connected to n other dual quivers.
This is true for any quiver in any mutation class.
Furthermore, the duality tree of an infinite mutation class
is apparently infinite. Thus, it does not matter which quiver
we choose to start with due to the symmetry of the duality
tree.'” Now, from the example of Table V, we know that the
machine is poor at predicting matrices of depths from

"In our training set, we also include pairs of 1’s from depths
0-3 and depths 6-8. Likewise, in our validation set, we also
include pairs of 1’s from depths 4-5 and depths 0-3/6-8. Same is
for 0’s as well.

2For a finite mutation, this is also true as the duality tree will
finally close and be symmetric.

086013-10

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

TABLE V. Training infinite type quiver matrices at low depths from the originals, and validating on matrices at

depths far away. The method, NB, performs poorly.

Accuracy [%] 50.0833 51.1667

49.8333 47.8333 47.9167

¢ —0.0807034 —0.0922570

—0.0811080 —0.0520199 —0.1067660

TABLE VI. For the training set, we have 19267 1’s and 19243 0’s. For the validation set, we generate 13020 1’s
and 13227 0’s. Then we choose correspondingly many pairs used for validation, viz. 3946 pairs.

Accuracy [%] 65.3891 65.5761 66.6277 66.2772 65.9500
¢ 0.333734 0.329995 0.347612 0.333243 0.336945

(ny + 1) to n, when only matrices within depths n; are
trained. This can be illustrated as in Fig. 4(a).

Likewise, for the example of Table VI, we have Fig. 4(b).
Then we can have a green disk of trained matrices, centered
at each point (up to the azimuth) in the blue annulus,
tangent to the two boundaries of the blue annulus as shown
in Fig. 5(a). We can use such trained green disk/dataset to
predict the matrices inside the white annulus bounded by
the green disk and the disk of radius n,. By the same
reasoning, the machine would give poor predictions to
those matrices. Notice that the disks of radii n, and n, have
a leaf-shaped overlap, which means that given the small
blue disk and the green disk as the training set, this leaf
would not enjoy a good prediction. If we draw the green
disk along the blue annulus, then those green disks, along
with the blue disk in the middle, will become the same
training set as in Fig. 4(b). The leaf-shaped overlaps will
form the white annulus in the middle bounded by the blue
disk and the blue annulus, which is the unseen dataset as in
Fig. 4(b). Since the machine cannot learn well in the leaf
shapes, although the training set is larger [compared to
Fig. 4(a)] which may improve the result, as a consequence of
mutual independence assumption, the performance of the
machine would still not be greatly improved. Nevertheless,

RS N9

() (b)

FIG. 4. (a) The blue disk of radius n, indicates that the matrices
up to depth n; are trained. The annulus between circles of radii n;
and n, is the data used in prediction. The behavior of the machine
is poor when predicting the matrices in this white annulus.
(b) The blue disk and blue annulus indicate the seen matrices in
the duality tree. The middle white annulus is used in prediction.

we should emphasize that this is mainly due to the particular
feature of NB. As we will see in Sec. III E, this illustration for
NB would be quite different for NN.

=
5

/\

() (b)

FIG. 5. (a) We can choose a matrix in the blue annulus and
generate the green disks. Then the overlap of disks with radii n,
and n, form a leaf shape, whose interior consists of unseen
matrices. (b) We can draw all the green disks along the blue
annulus. Each disk is contained in a white disk of radius n,. The
green disks then form the blue annulus, and the leaf-shaped
overlaps form the big white annulus in the middle.

1 =
0.9}
0.8}
0.7}
g 06t
g 0.5}
< 04rf
0.3L —o— NB
—=—Random Forest
0.2} L NN
0.1} —— SVM
0 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 8 90
Training(%)

FIG. 6. Training and validating three classes: Q4, QS, and Q6.
We generate (38 + 48 + 53) matrices. There are 2365 1’s and
2397 0’s.

086013-11

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

TABLE VII. Training and validating three classes: [‘A,” 6], [‘D,” 6], [‘E,” 6]. We generate (76 4 77 + 77) matrices.
There are 6116 1°s and 6049 0’s. The method is NB.

Accuracy F-Score ¢
0.90291800 + 0.00920160 0.90936100 + 0.00886124 0.81580000 + 0.01625320
TABLE VIII. Training and validating three classes: Q4, QS, and Q6. We generate (102 + 138 + 161) matrices.

There are 11563 1’s and 11482 0’s. The method is NB.

Accuracy
0.90553300 4 0.00970378

F-Score ¢
0.91187400 £ 0.00831757 0.82051800 £ 0.01696320

TABLE IX. Training and validating four classes: Q4, Q5, Q6, and Q7. We generate (102 + 138 + 161 + 102)
matrices. There are 16059 1’s and 16250 0’s. The method is NB.

PHYS. REV. D 102, 086013 (2020)

Accuracy F-Score ¢
0.85739200 £ 0.00750116 0.86872800 £ 0.00563417 0.72165300 £ 0.01548070
TABLE X. Training and validating five classes: Q4, QS5, Q6, Q7, and Q8. We generate
(102 + 138 + 161 4 102 + 161) matrices. There are 23645 1’s and 23698 0’s. The method is NB.

Accuracy F-Score ¢
0.83572900 £ 0.00292061 0.84193700 £ 0.00320654 0.67346000 £ 0.00515131
TABLE XI. Training on three infinite type quivers using the neural network method within Mathematica’s
CLASSIFY function.

Accuracy F-Score ¢
0.76590900 =+ 0.05281270 0.77165100 £ 0.04618850 0.53412100 £ 0.10287100

D. Classifying more mutation classes

We now contemplate the datasets containing more
mutation classes. It is natural to first consider the case
with three mutation classes. We again use [‘A, 6], [‘D,’ 6],
and [‘E, 6] as an example. Of course, unlike the afore-
mentioned case, all three classes have to appear in the
training dataset this time. The learning result of fivefold
cross validation is reported in Table VII.

The learning curve at different training percentages is
given in Fig. 13. We can see that the performance, albeit not
as perfect as the cases with two classes, is still very
satisfying, with ~90% accuracies and ~0.8 Matthews
correlation coefficients when only ~60% of the data is
trained.

We can also add one more class into the two-class
example for Q4 and Q5. The new one is generated by Q6.
The learning results are reported in Table VIII for fivefold
cross validation and Fig. 14 for learning curves. The
performance is still very nice, though it is not as perfect
as the two-example class.

Let us now contemplate examples with four and five
mutation classes. To compare this with the three-class
example above, we first choose Q4, QS, and Q6 for our
data. For the four-class example, the remaining quiver is
depicted in Q7.

The learning results are reported in Table IX for fivefold
cross validation and Fig. 15 for learning curves.

For the five-class example, we further include Q8. The
learning results are reported in Table X for fivefold cross
validation and Fig. 16 for learning curves. Indeed, we see
that the numbers of different classes can affect the perfor-
mance of the machine.

Nevertheless, a better learning result is always wanted.
When we are having more classes, a combinatorial problem
arises. If there are more mutation classes in the data, there
will be more and more distinct pairs of 0’s than pairs of 1’s.
If we want adequate combinations of 0’s, then to keep the
dataset well-balanced, correspondingly many 1’s are
required as well. However, all the distinct pairs of 1’s will
be included while 0’s may still not be enough. On the other

086013-12

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

() (b)

FIG. 7. The quiver obtained from triangulation of a surface
[55]. (a) The triangulation of a 10-gon. (b) The quiver from a
triangulated 10-gon. Note that this quiver is in the mutation class
of type [‘A, 7].

hand, if we keep adding pairs to our dataset, although we
will have more combinations of 0’s, there will be duplicated
pairs of 1’s. These repeated pairs will not be helpful and
hence the dataset will be biased. Thus, how the number of
mutation classes is (quantitatively) related to the number of
matrices generated and the number of pairs assigned is a
newly raised question. Roughly speaking, the best way is
perhaps to include all the 1’s and correspondingly many
0’s. Then the number of distinct pairs is maximized while
keeping the dataset balanced. Another possible way to
resolve this is to use multiclassification with one single
matrix as a data point instead of matrix pairs so that the
combinatorial problem could be avoided. Let us now
contemplate such multiclassifications.

E. Multiclass classifications

For datasets consisting of matrix pairs, we have already
seen that NB is the best method for learning mutations. To
make this more convincing and clearer, we also plot the
learning curves with different methods in Fig. 6 as an
example.13 We also tabulate the fivefold cross validation for
NN in Table XI. We should emphasize that the NN here
used in Mathematica is different from the (C)NN we will
use below for multiclassifications. The NN in Mathematica
CLASSIFY is used for matrix pairs while NN in PYTHON
using TensorFlow [59] deals with a single matrix as one data
point in the dataset.'* Unless specified, we will always refer
to multiclassifications in PYTHON with TensorFlow when
saying NN below.

BAt first, we would like to try many more matrices and much
larger datasets. However, a normal laptop is not capable of giving
the whole learning curve of SVM. Nevertheless, this example
with a smaller size can still tell the difference between various
methods. Here, although random forest is still inferior to NB, the
discrepancy is small. However, one can check that if we include
more matrices and more data, the advantage of NB over other
methods will be greater.

We should mention that Mathematica now also incorporates
a complicated neural network, though we are using TensorFlow
here for CNN to make a clearer distinction between binary and
multiclassifications in our discussions.

Besides pairing matrices and assigning 1’s and 0’s, there
is a more direct way to classify theories in distinct duality
trees as aforementioned. We can simply assign different
mutation classes with different labels, and then let the
machine tell which classes the given quivers belong to. So
far, we have been using Mathematica and its built-in
function to do the machine learning. One can still use
CLASSIFY and NB to do the training, but it turns out that NB
(and the Mathematica classifier) is only good when the data
are a set of pairs. Thus, we turn to PYTHON to perform
machine learning on mutations with the help of SAGE [44]
and TensorFlow . Henceforth, when we say that the method is
NB (or NN), we simultaneously mean that the type of the
dataset used is the one suitable for this method. This time
we choose three classes generated by Q12, Q13, Q14.
Quiver Q12 is defined through triangulation of a 10-gon,
and this process is shown in Fig. 7.

According to the theorem by Felikson, Shapiro, and
Tumarkin [52], the first two classes are finite while the third
one is infinite. Now we label the three classes with [1, 0, 0],
[0, 1, 0], and [0, 0, 1], respectively. Thus, when the machine
predicts [a,, a,, a3, it is giving probabilities of which class
the matrix being predicted should belong to, where a;’s are
the probabilities of the three classes, respectively. For
instance, if the output is [0.9,0.06, 0.04], then the machine
classifies the matrix into the first class.

We use convolutional neural networks (CNNSs) to deal
with the dataset which contains (1547 + 1956 + 1828)
matrices. We find that there is only ~55% of accuracy
when 80% of data is trained. However, it is quite remark-
able that for the last class, which is the only infinite one, the
machine has a 100% accuracy; i.e., it always correctly
recognizes the matrices in this class and never misclassifies
other matrices to this class. Hence, the machine seems to
have learned something related to finite and infinite
mutations. We will explore this in Sec. V D.

F. Classifying against random antisymmetric matrices

There is also another possible way to have a machine
learning model on quiver mutations. If we are given
some quiver and a class of dual theories, we may wonder
whether this quiver also belongs to the duals. Therefore, we
can train the machine using a specific class of matrices, along
with some randomly generated antisymmetric matrices.

So as not to just learn anomalies, when we are dealing
with anomaly-free quivers, we should mainly have random
matrices that are anomaly-free as well. For simplicity, let us
contemplate the 3 x 3 matrices. As the nullity of a nonzero
3 x 3 matrix is at most 1, it should be easier to generate
matrices that are anomaly—free.15 We first test the dP,

BSFor matrices of higher dimensions, anomalous matrices
might be more easily generated randomly. What one could do
is to use other different known classes of (anomaly-free) quivers
to form a randomly generated set.

086013-13

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

TABLE XII. Training and validating four classes: [‘A’, 4], ['D’, 4], [‘A’, (3,1),1], and [‘A, (2,2),1]. We generate
(52 + 50 + 70 4 54) matrices. There are 5503 1’s and 5512 0’s. The method is NB.

Accuracy F-Score ¢
0.84648200 + 0.00502814 0.85653500 + 0.00533456 0.69999000 + 0.0073538

theory, viz. the class generated by Q9, with correspond-
ingly many random antisymmetric matrices. We generate
matrices up to depth 7, and we have (382 + 388) matrices
for training and validation. The learning curves are plotted
in Fig. 17.

As we can see, the result is pretty good with ~90%
accuracy when only ~60% of data is trained. If we use this
model to predict unseen matrices, i.e., the 384 matrices at
depth 8 plus 377 random matrices, the prediction can still
reach ~97% accuracy. The accuracy for the matrices in the
dP, duals is ~93% while the accuracy for random matrices
is 100%.

IV. EXAMPLES WITH DIFFERENT TYPES

Let us go back to NB with matrix pairs and contemplate
a heuristic example with four different classes. We use
[‘A; 4], ['D,; 4], ['A, (3,1),1] and [‘A, (2,2),1] here,
where the latter two are called affine types. The learning
results are again reported using fivefold cross validation
and learning curves as in Table XII and Fig. 18, respec-
tively. Even at 95% training percentage, the accuracy is
~85%, and the Matthews ¢ is only ~0.7. This is certainly
not that satisfying.'®

We can simply put all the finite and affine types we meet

sofar ([‘A, 4], ['D, 41, ['A,” 3,1),1], [‘A) (2,2),1], [‘A, 6],
[‘D, 6], [‘E, 6]) together to create a dataset containing
seven different mutation classes. We try the following three
experiments:

(1) We generate 52, 50, 70, 54, 76, 77, and 77 matrices,
respectively. We have 14821 pairs in our dataset with
7360 1’s and 7461 O’s.

(2) We generate 144, 50, 120, 54, 76, 77, and 77
matrices, respectively. We have 46332 pairs in our
dataset with 22387 1’s and 23945 O’s.

(3) We generate 144, 50, 120, 54, 200, 213, and 213
matrices, respectively. We have 43588 pairs in our
dataset with 21229 1’s and 22359 0’s.

Notice that in these three experiments, we also have matrix
pairs {(Myy4, Mgys) — 0} in our data; that is, we also
include the trivial zeros from pairs of two quivers with
different numbers of nodes. In all of the experiments, when
we train 95% of the dataset and validate the remaining 5%,
the accuracy is about 70%—80%, and ¢ is about 0.4-0.6.

'we already know that the numbers of mutation classes in the
training data can affect our result. Nevertheless, it is reasonable to
speculate that other factors such as the quiver types may also have
influence.

As expected, when we have more mutation classes, the
performance of the machine becomes worse.

As a sanity check, we remove {(M 4, Mgys) — 0} in
our data. For instance, we generate 52, 50, 70, 54, 76, 77,
and 77 matrices, respectively, and create 14254 pairs with
7375 1’s and 7529 0’s. We find that the accuracy becomes
65%—75%, and ¢ becomes 0.4-0.5. Getting a lower
accuracy and a lower ¢ completely makes sense.
Quivers with different numbers of nodes are apparently
not dual to each other. Henceforth, we will not include pairs
of matrices with different dimensions for 0’s in our datasets
which easily learned to classify as 0’s.

A. Dynkin and affine types

So far in this section, we have discussed two different
(finite) mutation types. We mainly deal with ADE types
and include affine types as well. In light of the above
learning results, we wonder whether different types would
affect our result. A simple check would involve only two
mutation classes with one Dynkin and one affine. For
instance, we test [‘D,” 4] and [‘A,’ (3,1),1] here. We pick out
two points in the whole learning curve as in Table XIII. The
learning result is as perfect as the result in the example of
[‘A, 4] and [‘D,” 4]. From the viewpoint of machine

TABLE XIII. We machine learn [‘D, 4] and [‘A, (3,1),1]
mutation classes. We generate 92 and 104 matrices, respectively.
There are 6347 1’s and 6320 0’s. The method is NB.

Accuracy [%]

Training percentage ¢

90% 100 100 100 100 100
1.00 1.00 1.00 1.00 1.00

55% 100 100 100 100 100

1.00 1.00 1.00 1.00 1.00

TABLE XIV. We machine learn [‘D, 4]’s and F theory’s
quiver mutation classes. We generate 92 and 102 matrices,
respectively. There are 6313 1’s and 6316 0’s. The method is NB.

Accuracy [%]

Training percentage ¢

90% 100 100 100 100 100
.00 1.00 1.00 1.00 1.00

55% 100 100 100 100 100

1.00 1.00 1.00 1.00 1.00

086013-14

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

TABLE XV. Training and validating five classes: [‘A,” 4], [‘D,” 4], [‘A, 6], ['D,” 6] and [‘E,” 6]. We generate
(52 + 50 + 76 + 77 + 77) matrices. There are 6791 1’s and 6726 0’s. The method is NB.

Accuracy F-Score ¢
0.88710300 + 0.00751058 0.89368900 + 0.00711335 0.78158800 + 0.01641340
TABLE XVI. Training and validating three classes: [‘T, (4,4,4)], ['T, (4,5,3)], and [T, (4,6,2)]. We generate

(65 + 65 + 66) matrices. There are 2553 1°s and 2565 0’s. The method is NB.

Accuracy

F-Score ¢

0.88569500 £ 0.00987409

0.89199500 £ 0.00793421

0.77648300 £ 0.01925770

learning, this is definitely a successful and exciting result.
More importantly, our point here is to seek out the influence of
different types. We find that learning mutation classes of the
same type (e.g., only Dynkin) and learning those of different
types (e.g., Dynkin + affine) have the same performance.

Let us further try an example with one finite mutation
type ([‘D, 4]) and one infinite mutation type. For the
infinite one, we choose the quiver Q4. We pick out two
points on the learning curve as tabulated in Table XIV. We
see that it is still as perfect as the case with two Dynkin
types ([‘A, 4],[‘D,” 4]). To summarize, the mutation types
would not really affect our learning performance for NB.

We return to our example with seven classes ([‘A,” 4],
['D,) 4], ['A;7 G011, [FA) 2.2),1], ['A 6], ['D,” 6],
[‘E,” 6]). This time let us remove the two affine types and
study the learning performance of the data with five classes.
The results are reported in Table XV for fivefold cross
validation and 19 for learning curves. We find that the result
is improved. It is even better than the result of four classes
(['A; 4], ['D, 4], ['A) 3,1),1], ['A) (2,2),1]). Unlike the
above tests, this seems to tell us that the influence from
different types outcompetes the influence from the number
of mutation classes. However, as we will see next, this is
not the real reason.

B. T Type

Now, we perform a test on three infinite classes, all of
which are T types [45]: [‘'T, (4,4,4)], [‘'T,” (4,5,3)], and [T,
(4,6,2)]. A quiver of T type is an orientation of a tree
containing a unique trivalent vertex, of three leaves of
degree one, and with the remaining vertices in the branches
being of degree two. When we say a quiver is of type [T,
(a, b, ¢)], we mean there are a total of (a —2) + (b —2) +
(¢ —2) vertices of degree two, summing up the contribu-
tions from the three branches. They are all 10 x 10
matrices.'” The learning results are given in Table XVI
for fivefold cross validation and Fig. 20 for learning curves.

1

"We already know that the sizes of matrices will not have a big
influence on our results, so we are free to choose matrices of any
dimension.

TABLE XVII. Training and validating four classes: Q4, QS5,
Q9, and Q10. We generate (102 + 138 + 94 + 138) matrices.
There are 12276 1°s and 11915 0’s. The method is NB.

Accuracy

1+0

F-Score ¢
1+0 1£0

We see that the performance is basically the same as the
three-infinite-class example in Sec. III D. Therefore we do
not see the influence of mutation types here. Again, the
influence of numbers of classes should dominate the
performance of the CLASSIFY function in Mathematica.

C. Splitting the dataset

Let us now try to solve the puzzle left at the end of
Sec. IVA. Consider the quivers and matrices in Q9 and
Q10. We can machine learn the dataset with these two
classes. This yields 100% accuracy and ¢ = 1 most of the
time, which is good as expected. However, we can put these
two quivers and the two quivers in Sec. III C (Q4 and Q5)
together and machine learn the four classes generated from
these four quivers. The fivefold cross validation is given in
Table XVII. We also pick out three points on the learning
curve, which is tabulated in Table XVIII.

Unlike the usual result one should expect from a four-
class case, this learning result is almost as good as two-
class cases. In fact, this is the key. Since we have two
classes of 3 x 3 matrices and two classes of 4 x 4 matrices,
the machine actually splits the dataset into two pieces; Viz.
it treats 3 x 3 and 4 x4 matrices separately. Just as
including zeros from pairs of matrices of different sizes,
although machine learning is not affected by dimensions of
matrices longitudinally,18 there is a transversal influence of

BFor the sake of brevity, by this, we mean that if we have two
datasets with, say, k different mutation classes of m x m matrices
and k different mutation classes of n x n matrices (m # n), the
performance should roughly be the same. On the other hand, if
we have matrices of different sizes in one dataset, we shall say
that we are studying how the matrix dimensions affect the results
transversally.

086013-15

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

TABLE XVIIL

We generate 102, 138, 94, and 138 matrices, respectively. There are 13199 1’s and 12469 0’s.

Accuracy [%]

Training percentage ¢

90% 100.0000 100.0000 100.0000 100.0000 100.0000
1.000000 1.000000 1.000000 1.000000 1.000000

80% 100.0000 100.0000 100.0000 100.0000 100.0000
1.000000 1.000000 1.000000 1.000000 1.000000

50% 99.9532 99.9844 99.9922 99.9844 99.9922
0.999065 0.999688 0.999844 0.999688 0.999844

the matrix dimensions. Now we are able to explain why in
Sec. IVA, the example with five classes ([‘A,” 4], [‘D,” 4],
[‘A, 6], ['D,” 6], [‘E, 6]) has a better result than the one
with four classes ([‘A, 4], ['D,” 4], ['A,) 3,1),1], [‘A;
(2,2),1]). Effectively, the machine is dealing with (2 + 3)
classes and 4 classes, respectively.

V. ENHANCING THE DATASET
A. Adding ranks of nodes for NB

Since physically interesting quivers have (round) nodes
as gauge groups, each node carries the rank information of
the gauge group. Thus, we can further add the rank
information to “help” the machine learn Seiberg duality.
Above all, these quivers should be anomaly-free, which is
encoded by the kernel of the adjacency matrix M with
certain rules under Seiberg duality as discussed in Sec. IT A
[60,61]. We simply add the ranks of nodes as a column
vector v to our dataset by

{(My.v1). (M3,v,) > 1/0}. (5.1)

We first test this on three classes as in Q4, Q5, and Q6.
The results are given in Table XIX for fivefold cross
validation and Fig. 21 for learning curves. We find that the
learning result is the same compared to the former example
with bare matrix input.

Now we add the class generated by Q7 to our data. The
four-class result is reported in Table XX for fivefold cross
validation and Fig. 22 for learning curves.

We also further include Q8 to construct the five-class
example with extra rank information. The result can again
be found in Table XXI for fivefold cross validation and
Fig. 23 for learning curves.

Again, we learn that the learning results are not improved
with the extra vectors. Based on the above results, it is
possible that the machine already sees the rank information
when we only feed it with bare matrix input (since it is
related to the adjacency matrix kernels), therefore it does
not require us to give the rank vector explicitly.

Moreover, we can try predicting totally unseen matrices as
well. Let us use the three-class example (Q4, QS5, and Q6).
We still train (102 + 138 4 161) matrices, viz. generate to
(and include) depths 4. Then our validation contains matrices

TABLE XIX. Training and validating three classes: Q4, QS, and Q6. We generate (102 + 138 + 161) matrices.
There are 11506 1’s and 11645 0’s. The method is NB. The rank information is included.

Accuracy

F-Score ¢

0.91041400 £ 0.00306970

0.91662600 £ 0.00340356

0.82855000 +£ 0.00626524

TABLE XX. Training and validating four classes: Q4, Q5, Q6, and Q7. We generate (102 4+ 138 + 161 + 102)
matrices. There are 13930 1’s and 14005 0’s. The method is NB. The rank information is included.

Accuracy F-Score ¢
0.85520000 £ 0.00674474 0.86390500 £ 0.00619574 0.71583900 £ 0.01142870
TABLE XXI. Training and validating five classes: Q4, QS, Q6, Q7, and Q8. We generate

(102 + 138 + 161 + 102 + 161) matrices. There are 22770 1’s and 22823 0’s. The method is NB. The rank

information is included.

Accuracy

F-Score ¢

0.84267400 £ 0.00915047

0.84683800 + 0.00846313

0.68633100 £ 0.01791090

086013-16

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

TABLE XXII.

Training and validating three classes: Q9, Q10, and Q11. We generate (94 + 138 + 123) matrices.

There are 11271 1’s and 11301 0’s. The method is NB. The Diophantine variables are included.

Accuracy

F-Score ¢

0.91148800 £ 0.00091432

0.91759000 £ 0.00115878

0.83179900 £ 0.00135928

TABLE XXIII.

Training and validating three classes: Q9, Q10, and Q11. We generate (94 + 138 + 123) matrices

without the augmented Diophantine variable information. There are 11239 1’s and 11298 0’s. The method is NB.

The dataset is composed of bare matrix pairs only.

Accuracy

F-Score ¢

0.91431900 £ 0.00644304

0.91987000 +£ 0.00657059

0.83621300 £ 0.01123010

of depths 5 and 6, which has (688 + 978 + 1258) matrices.
The training set has 12938 1’s and 12961 0’s while the
validation set has 8987 1’s and 8974 0’s. After picking out
correspondingly many pairs from each set, at 90% training,
we find that the accuracy is 0.50632400 4= 0.00932148, and
¢1s0.01286830 =+ 0.01174640. As aresult, the performance
is the same as before. Therefore, we would say for NB, the
machine already sees the rank information to some extent
even if we only have bare matrix input.19

B. Adding Diophantine variables

It is also natural to ask what would happen if we use
some other ways of dataset enhancement. For supercon-
formal chiral quivers, physical constraints should be
imposed to those block quivers. The following condi-
tions—chiral anomaly cancellation for the gauge groups,
vanishing Novikov-Shifman-Vainshtein-Zakharov (NSVZ)
f function for each coupling as well as their weighted sum,
and marginality of chiral operators in the superpotential at
interacting fixed point—Ilead to a Diophantine equation
[57,61,62].20 For three-block quivers, the Diophantine
equation reads

2 2
a a a

23 31 12
- + - + - = a12a23a317

5.2
[%5] 12%) as ()

where a;;’s are the numbers of arrows among blocks (i.e.,
entries of the matrix) and ¢;’s the numbers of nodes in the
blocks. Motivated by this intrinsic structure of the mutation
classes rooted in these physical constraints, we simply

arrange a2’s and a,a,as (which we shall call

1

19However, as we will see shortly, rank information would
make improvements when we have neural network and use
multiclassification.

More generally, monodromies give rise to mutation invar-
iants, which in turn can be formulated as a set of Diophantine
equations characterizing the space of dual theories (see, e.g.,
[6,63]).

Diophantine variables for simplicity) into a vector and
add it to the data. Now each pair looks like

{(M, (a1,, a35. a3, ayparzaz)"),

(N, (b3,, b3, b3, biybysbs))T) = 1/0}. (5.3)
However, we should emphasize that we are not actually
telling the machine that the quivers/matrices should obey
the Diophantine equation. Otherwise, for instance, for
superconformal three-block quivers, we would only have
16 of them [60]. We are just using some specific combi-
nations of a;;’s (inspired by Diophantine equations) and
putting this extra explicit vector in the data to see if this
would give any improvement.

We first try an example with three mutation classes of
3 x 3 matrices.”’ We use the quivers Q9, Q10, and Q11.
We list the fivefold cross validation result in Table XXII.
For reference, the learning result without including any
extra information/vectors is also given in Table XXIII. We
can see that there is no improvement.

Let us now try 4 x 4 matrices. Again we have three
classes as in Q4, QS, and Q6. The Diophantine equation for
four-block quivers reads [61]

A120730340 14

2 2 2 2 2 2
a a a a a a
12 1 14 2 24 4

a3a4 02(14 02(13 (1104 01(13 a1a2

A1p0oadyy Apdpzdysz 4130340413 dp3d34024

+ - + - . (5.4)

as ay ay (4]
We therefore add the vector
2 2 2 2 2 2
(aiy, ats, aiy, ags, @3y, A3y, A12A24014, A12A23013,
T
a130a34014, Ap3034024, a12a23a34a14) (5~5)

*!Since we have already seen that the machine almost always
gives correct predictions for two classes, we will start from three
classes.

086013-17

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

TABLE XXIV. Training and validating three classes: Q4, Q5, and Q6. We generate (102 + 138 + 161) matrices. There are 11490 1’s
and 11449 0’s. The method is NB. The Diophantine variables are included.

Accuracy

F-Score ¢

0.90980400 £ 0.00358550

0.91565100 =+ 0.00323882

0.82811200 £ 0.0057953

TABLE XXV. Training and validating four classes: Q4, Q5, Q6, and Q7. We generate (102 + 138 + 161 + 102) matrices. There are
14040 I’s and 14109 0’s. The method is NB. The Diophantine variables are included.

Accuracy

F-Score ¢

0.858965 £ 0.00349098

0.868007 £ 0.0032153

0.72425500 £ 0.00712124

TABLE XXVI. Training and validating five classes: Q4, QS5, Q6, Q7, and Q8. We generate (102 4 138 + 161 + 102 4 161) matrices.
There are 23211 1’s and 23316 0’s. The method is NB. The Diophantine variables are included.

Accuracy F-Score ¢
0.84443400 £ 0.00325140 0.84887800 £ 0.00285711 0.68986700 £ 0.00652878

to our data.”” The learning results are given in Table XXIV
and Fig. 24 for fivefold cross validation. The performance
is not really improved.

Let us contemplate an example with four mutation
classes. This time, we use the quivers Q4, QS, Q6, and
Q7. We report the results in Table XXV for fivefold cross
validation and Fig. 25 for learning curves. Again, the
performance is the same.

Now move on to the case with five mutation classes.
Besides the above four matrices, we further include the
quiver Q8. The experiment without adding the Diophantine
variables is done in Sec. Il D. The new learning results are
given in Table XXVI for fivefold cross validation and
Fig. 26 for learning curves. We find that this is still not
improved.

Moreover, we can try predicting totally unseen matrices as
well. Let us use the three-class example (Q4, QS5, and Q6).
We still train (102 + 138 + 161) matrices, viz. generate to
(and include) depths 4. Then our validation contains matrices
of depths 5 and 6, which has (688 + 978 + 1258) matrices.
The training set has 12886 1’s and 13029 0’s while the
validation set has 8979 1’s and 8981 0’s. After picking out
correspondingly many pairs from each set, at 90% training,
we find that the accuracy is 0.50191000 4 0.01061240, and
¢ is 0.00206997 £ 0.025543800. We also have the similar
experiment for NN, where this extra Diophantine-inspired
structure does not improve learning as well. This suggests
that such information does not help encode the structure of
the quivers, which may be reasonable as we are also
considering more general quivers and classes.

22Again, we are essentially adding these specific combinations
of variables to the dataset, not the equation.

C. Adding ranks of nodes for NN

Now back to the example of Q12, Q13, and Q14 in the
multiclass classification, let us add the rank information to
our dataset by augmenting the data input matrices to include
the rank vectors as before. We have (496 + 898 + 484)
matrices for training and validation. The learning curves of
accuracies are plotted in Fig. 8. We can see that the result is
greatly improved after we include the rank information. With
enough data trained, the accuracies approach 1, which is
much better than the examples using NB. We also notice that
atavery low training percentage, the machine again confuses
the two finite mutation classes while it almost always gives
correct results for the infinite one.® The test without rank
information above looks like the “limit” at a low training
percentage of the test with rank information. To see whether
this model is really useful, we use it to predict matrices
at unseen depths in these classes. For the predicted
(1051 + 3263 + 1344) matrices, we get ~74% accuracy
and ~71% F1 score. Although this has not reached perfect-
ness, in particular for the purpose of application, the result for
unseen matrices is still much better than those in NB. It is not
just guessing any more, and we are on track to further
improve this.

D. Finite and infinite mutations

Recall that in Sec. III E, the machines seem to treat finite
and infinite mutations separately. Hence, we replace the

“Notice that the machine tends to classify the matrices in the
first class as in the second class when making mistakes. This is
due to the imbalance in the data. In spite of this, we can still get a
very good result.

086013-18

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

1 -
09
0.8 |
) 07 [
]
g 0.6 |
§ 0.5
5 04
~ 03t —e—Total
- Q12
0.2r Q13
0.1F Q14
0 = 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90
Training(%)
FIG. 8. Training and validating three classes: Q12, Q13, and

Q14. We have (496 + 898 + 484) matrices. We use multiclass
classification in NN. The rank information is included via
imposing the null vector. The learning curves are all accuracies.

infinite one (Q14) with another finite class as shown in
Q15, which is anomalous.

We have tried CNN, as well as MLP and RNN, and find
that all of them predict [~0.333,~0.333,~0.333]. This
means that the machine is not able to decide the classes of
the matrices. Hence, comparing the two examples (Q11-13
and Q11,12,14), whether a mutation class is finite or
infinite could affect the learning result. More precisely,
the machine is learning something that helps it distinguish
between finite and infinite mutation types.

We can also include the rank information for the ex-
ample of Q12, Q13, and Q15. Although the quiver Q15
is anomalous, we can still assign some vector, say
(1,1,1,1,1,1,1)T to it. Then the anomalies for every node
should still add some consistent information on the duality
operation among duals.”* We have (496 + 484 + 499)
matrices for training and validation,” and the model will
be used to predict (1051 4 1344 + 1631) matrices. For
training and validation, the learning curves are plotted in
Fig. 9. We can see that with enough training, the result is still
very good. It is also worth noting that when the machine
meets a matrix belonging to the second class (Q13), it never
misclassifies the matrix to other classes; viz. the red learning
curve is a constant equal to 100%. Now for prediction, the
machine again gives ~71% accuracy and ~0.71 F1 score.

The above two examples show promising results for both
physicists and mathematicians. We see that imposing rank
information in NN significantly improves the performance
of the machine to learn Seiberg duality. From a pure

24Incidentally, this is also true for anomaly-free quivers. For
example, the rank of Q14 is (1,1,2,1,1,1,1)T, but we can get
the same good result if we assign a different vector, say
(1,1,1,1,1,1,1)T, as long as the following generated quivers
and additional vectors are consistent with this choice.

*This time we do not choose all the 614 matrices in 0—4 depths
for the third class so that the data would not be biased.

1 -
0.9}
0.8}
) 07 [
o
C;g 0.6
§ 0.5}
5 04F
~ oal —e—Total
' - Q12
0.2 Q13
0.1F —+— Q15
0 1 I 1 1 1
10 20 30 40 50 60 70 80 90
Training(%)

FIG. 9. Training and validating three classes: Q12, Q13, and
Q15. We have (496 + 499 + 484) matrices. We use multiclass
classification in NN. The rank information is included via
imposing the null vector. The learning curves are all accuracies.

mathematical point of view, in particular the second example
with all finite mutation types, this shows that the machine can
learn which quivers are from which surfaces (or the 11
sporadic quivers) if we enhance the data as above.

E. Predicting matrices at middle depths

Now we would like to know whether the results for
unseen data in predictions can be improved. Our strategy is
again to train the matrices up to some depths, as well as
some matrices at depths far away. Then we can check how
NN behaves when predicting the matrices at middle depths.
As a toy model, we train the matrices generated from Q12,
Q13, and Q14 at depths 0-3 and 5. Then we use the trained
model to predict the (351 4 705 + 350) matrices at depth 4.
In order to have a more balanced dataset, we choose 1062
matrices out of 3263 matrices at depth 5 for the class of
Q13. Therefore, we have (1196 4 1255 + 1478) matrices
for training and validation. We train 90% and validate the
remaining 10% for our model, which gives almost always
100% accuracy as expected. Impressively, after repeating
training/validation and prediction a few times, we find that
the machine almost always gives 100% accuracy on the
matrices at unseen depth (with only several errors out of
tens of thousands of predictions, and in particular these few
errors never happen for the infinite class). Such things do
not happen for the NB cases. This is a perfect result,
especially in the sense of application of machine learning
on quiver mutations. It means that we can have a model to
make good predictions on data of a different style to the
training data (here at unseen depths).

One may also wonder whether things would change if
more mutation classes are involved. Hence, we further
include Q15 to the above dataset. For just training and
validation, we find that the result is still that good. Having
more classes does not seem to affect the learning result too
much. Now we apply this model to matrices at unseen depth
just like the above case. Again, the machine gives ~98%
accuracy and ~0.98 F1 score, which is an impressive result.

086013-19

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

1F — —
09F
0.8}
0.7F
0.6
0.5F
04F

0.3+

—— Total
0.2 - Q9
0.1r ——Random

0 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 8 90
Training(%)

Performance

FIG. 10. Training and validating one class, Q9, with random
matrices. We have (382 + 384) matrices. We use classification in
NN. The rank information is included via imposing the null
vectors. The learning curves are all accuracies.

F. Classifying against random antisymmetric matrices

Let us do the same test involving randomly generated
antisymmetric matrices again, but with rank information
included. We still generate the matrices to depth 7 so that
there are 382 matrices. We train these together with 384
random antisymmetric matrices. The learning curves are
plotted in Fig. 10.”® As we can see, this again improves the
result significantly. Even at a low training percentage, the
accuracy still looks perfect. Now we use this to predict
the 384 matrices at depth 8, along with 461 unseen random
matrices. It turns out the accuracy is almost 100%, with
roughly ten mistakes only. Thus, if we would like to know
whether a quiver belongs to some specific class of theories,
this kind of model would be very useful. It is also worth
noting that here we do not even need to include matrices at
depths outside those used for predictions.

We can further try an example with two classes and some
random matrices. This time, Q10 is involved as well. We
now generate to depth 6 and choose 384 out of the 506
matrices for this newly added class. It turns out at 90%
training, the accuracy is only 0.8460000 + 0.0336155, with
the F1 score being 0.8420000 % 0.0258844. If we use this
model to predict matrices at the next unseen depths, along
with unseen random matrices, the accuracy is ~80%, with
the F1 score being ~0.81. This does not decrease too much
compared to the validation result. However, using a NN to
identify whether a random quiver belongs to a particular
duality class works best when considering only one class at
a time.

*Incidentally, one can still try to use CLASSIFY and NB in
Mathematica. However, as aforementioned, NB is only good when
the data are a set of pairs. For the example here, even at 90%
training, the accuracy is only 0.4619350 =+ 0.0148527. Even if we
try only two classes (without random matrices), but not making
pairs, the accuracy is only 0.6835440 4 0.2462260.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90
Training(%)

T

T

T

T

Performance
T T T

T

—e— Accuracy
- 10}

T

FIG. 11. Training and validating two classes: [‘A,” 4] and
[‘D,” 4]. We generate (144 + 50) matrices. There are 11784 1’s
and 7200 0’s. The method is automatically chosen by the machine
within Mathematica’s CLASSIFY function.

VI. CONCLUSIONS AND OUTLOOK

Based on all the tests above, we can see that Seiberg
duality and quiver mutations are very machine learnable.
Several points are summarized as below. We first list the
conclusions for NB and Mathematica classifier:

(i) The number of different mutation classes is the
dominant influence in our machine learning. Fewer
classes in the dataset would give better learning
results. Other factors (such as mutation types,
dimensions of matrices, and adding rank informa-
tion) are outcompeted for influence on the learning
when there is a larger number of mutation classes.

(i1) One reason that numbers of classes greatly affect our
result would be the large number of matrices we
have. In particular, (# [combinations of assigning
0]— #[combinations of assigning 1]) gets larger
when we include more mutation classes. We need
to find a balance between avoiding duplicated 1’s
and taking care of various combinations of 0’s. Our
strategy would be to generate as many distinct 1’s as
possible, and then to generate approximately the
same number of 0’s. Thus, we could maximize the
combinations of 0 without duplicated 1’s while
keeping the dataset unbiased.

(ii1)) The dimensions of matrices affect the result “trans-
versally” rather than “longitudinally.” If we have two
datasets with, say, k different mutation classes of
m x m matrices and k' different mutation classes of
n x n matrices (m # n), the performance should be
roughly the same. On the other hand, the machine
would spontaneously split the data into smaller parts
in terms of the dimensions of matrices. For instance,
a dataset with two classes of 4 x 4 matrices and three
classes of 5 x 5 matrices would lead to a better result
than the dataset four classes of 4 x 4 matrices does.
The former effectively has (2 + 3) classes, and

086013-20

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

hence the machine would have better performance in
contrast to those with pure four or five classes. Of
course, the (2 + 3)-class case would still be a bit
worse than a pure two-class example. Moreover, in
light of the above two points, we shall never include
trivial 0’s where each pair consists of matrices with
different sizes. Although the transversal influence of
dimensions does improve our result, this would
bring a larger discrepancy between combinations
of 0’s and 1’s, which can be cumbersome as
aforementioned, especially for the dataset with many
mutation classes. Now that these 0’s represent
theories that are obviously not dual to each other,
there is no necessity to have them in the dataset.

(iv) NB is the best method in the CLASSIFY function due
to its mutual independence assumption.

(v) The NB classifier already sees the hint of rank
information when we have only bare matrices as
input, and thus imposing rank information would not
further improve the machine learning result of the
NB classifier.

(vi) When the machine encounters mutation classes that
are not seen in the training data, the performance
gets worse. This is a reasonable result.

For multiclass classifications (and cases with random
antisymmetric matrices), we mainly use CNNs here, and
we see they behave differently compared to NB. What NB
is good at does not seem to work for a NN method, and vice
versa. NB gives good results when the data are arranged in
pairs while NN has great performance in multiclass
classifications. It turns out that NN would be more useful
in the application of machine learning mutations in light of
the following points:

(i) We find that NN can distinguish whether a mutation
class is finite or infinite, even without adding rank
information. If we have a finite (infinite) mutation
class among infinite (finite) mutation classes, the
machine can almost always give 100% accuracy to
single out that finite/infinite class.

(ii) We can impose the ranks as additional vectors aug-
mented to the matrices. Then an NN classifier can give
extremely good results for validation. This means the
ranks of nodes would somehow reveal the structure
behind a quiver to some extent. If we include some
matrices at depths far away, then the unseen matrices at
middle depths can be perfectly classified [as depicted in
Fig. 4()].%” The machine almost always give nearly
100% accuracy when making predictions. Furthermore,
the number of distinct mutation classes does not seem to
strongly affect the performance of NN in this case.

*'Notice the argument on unseen matrices when discussing NB
does not apply here for NN, as we have already seen from the
learning results. This should be due to NB’s mutual independence
condition, while NN does not have this.

(ii1)) We can train one class of matrices with some other
randomly generated matrices. Even without rank
information, the results are still quite nice (e.g., see
the results at the end of Sec. III F). To improve these
results, including rank information can bring great
improvements. If we use this model to predict matrices
at unseen depths in that class [as depicted in Fig. 4(a)],
as well as unseen random matrices, the results are still
almost-perfect (i.e., almost 100% accuracy). Unlike
the above bullet point, this does not even require
matrices at depths far away to be involved in training.
However, this kind of model only works best for
classification with one class (against the random
matrices). Having more classes would make it lose
efficacy (e.g., two classes plus random matrices would
decrease the accuracy of predictions to 80%).

We see that ~100% accuracy for predictions can be
obtained in all the above three points. These are the key
results that might be useful in real-world application.
Outlook It would also be interesting to ask whether the
machine can recognize totally unseen classes (rather than
just matrices at unseen depths in trained classes) after
training. For NB and Mathematica, we can use matrix pairs
and the predictions on pairs involving unseen classes will
still be 0 or 1. However, as we have already seen, such a
model is poor at prediction on unseen data; hence it may
not be that useful here. On the other hand, NN performs
well for predictions. However, it is not suitable for a dataset
with matrix pairs. Therefore, we can apply these classi-
fication networks to only multiclass classification prob-
lems. Unfortunately, due to the problem structure of
multiclassification, NNs can only recognize, and classify
into, categories that are trained. When meeting an unseen
class, it would treat the matrix as some element from a
trained class. The design of supervised learning used with
these NNs implies no machine can even tell that such a
matrix does not belong to any trained class, let alone
recognize a totally unseen class. Perhaps the closest
realization so far would be the model containing random
matrices. Then the machine would at least know that the
unseen classes are different from the class being trained.

Thus, it would be natural to ask whether the advantages

of the above two methods can be combined. NB has better
behavior when the matrices are paired, and NN can have
really good results when dealing with matrices at unseen
depths. From the perspective of machine learning, the
network structure, such as the choices of layers and loss
functions, might be improved. We hope that in the future
we can develop new techniques for our models, especially
for NNs or similar models, to make good predictions for
matrix pairs and hence be useful for unseen classes.

More generally, we can imagine training the machine

with a large number of pairs consisting of a randomly
generated quiver and a dual connected to it by a single
Seiberg duality on one of its nodes. We could then

086013-21

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

investigate if the machine can determine whether a pair of
quivers are dual. If successful, this would arguably amount
to the machine “learning Seiberg duality.”

There are many other directions for future work as well.
For instance, supervised learning is used in this paper. We
would also like to see what would happen if we do not label
the matrices and let the machine learn without supervision.
We are also not taking superpotentials into account here.
All the bidirectional arrows get canceled as we integrate out
these fields. It would be intriguing to explore nontrivial
superpotential quivers. Such data may be constructed with
the help of Kasteleyn matrices [8,9]. Moreover, similar to
what we have done for Seiberg duality in 4d, we can try
applying the machine to 2d N = (0, 2) triality [64,65], to
0d N =1 quadrality [66], and to the order (m + 1)
dualities of m-graded quivers that generalize them [17].
It is also worth noting that in [22], machine learning is
applied to D-branes probing toric Calabi-Yau (CY) cones.
Therefore, it is possible for us to study volume minimi-
zations with machine learning. Finally, it would be inter-
esting to ask whether the concept of finite types could be
machine learned. Such types are exactly the ADE Dynkin
types and their matrices have eigenvalues less than 2 [67].
Matrices and their eigenspaces are ubiquitous in math-
ematics, physics, and machine learning. This would lead to
a deeper study of matrices in machine learning.

ACKNOWLEDGMENTS

The authors thank the Institute for Mathematics and its
Applications for their hospitality and for their hosting of the
workshop “SageMath and Macaulay2: An Open Source
Initiative” that inspired the genesis of this paper. The open
source software SAGE [44], including its cluster algebra and
quiver package [45], was especially fundamental to this
project. J. B. thanks Zijing Wu for useful discussions. The
research of S. F. was supported by the U.S. National Science
Foundation Grants No. PHY-1820721 and No. DMS-
1854179. Y. H. H. thanks STFC for Grant No. ST/JO0037X/
1. E. H. thanks STFC for the Ph.D. studentship. G. M. thanks
the NSF for Grants No. DMS-1745638 and No. 1854162.

APPENDIX A: MACHINE LEARNING
STRUCTURE

1. Mathematica’s CLASSIFY

Within the Mathematica software, the CLASSIFY function
allows analysis of a variety of allowed input data types.
These input data types include strings, sounds, and images,
as well as the familiar numerical inputs. In our case the
input data are tensor structures with integer entries. It may
hence be noted that the generality of this function’s data
inputs may reduce the likelihood of it being optimized for
use exclusively with tensors.

The cLASSIFY function takes as input training and
validation sets, and in our case these were lists of pairs

of square matrices (or pairs of matrices along with vectors
of their respective rank data). In addition, within the calling
of the function, the user can specify the classification
method used, as well as the classification performance goal,
and even allow the option for the pseudorandom number
seeding for the classification process.

The performance goal used was the standard “automatic”
option. This selection calculates a weighted tradeoff for the
final classifier that is trained such that it has high accuracy
of output while still running quickly in subsequent clas-
sifications, and not requiring excessive memory storage.

More importantly in the creation of the classifier is the
classification method used. Mathematica allows nine method
options, which among them include Decision Trees, Markov
Sequence Classifiers, Support Vector Machines, and Simple
Artificial Neural Networks. When running CLASSIFY without
specifying a method, the program will run all methods and
output a learning curve to allow comparison of performance
between the methods on the input dataset (using parameters
for comparison based on the validation data) [68].

In initial testing of the CLASSIFY function with some of
the datasets, the Naive Bayes method was consistently
superior in the performance of its classifier. This is linked to
the independence of the pair structure of the input data.
Therefore, to avoid superfluous classifier training the
method was specified to be Naive Bayes for the remainder
of the investigation. Further discussion of the design and
success of this method is discussed in Appendix A 2.

2. The Naive Bayes method

We have seen that the Naive Bayes method, as a machine
learning classifier, always gives us the best result when
applying the built-in CLASSIFY to learn the matrix muta-
tions. Essentially, our model is a conditional probability
problem: p(v;|T), where T acts as the condition for the
machine to predict each v; € V to be 0 or 1. Then Bayes’
theorem yields

_ p(Tlv)p(v;) p(T,v;)
PO ="y T)

Since p(T) does not affect our result as this is solely
determined by the fixed training set T = {¢,,1,,...,1,} in
each single experiment, we can fixate on the numerator:

(A1)

p(T,v;)

= p([l, ...,ln, Ul‘)

= p(tl|t2’ R Ui)p(t27 cen I vi)

= p(tilty, .- g vi) p(t2|t3, - 1y 0) - p(|03) p(05).

(A2)

Naive Bayes is “naive” because it assumes that every ¢, is
independent of the other conditions in 7', which is exactly

086013-22

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

the property of matrix mutations. Whether a pair of
matrices/quivers are related by mutations is always inde-
pendent of other matrices/quivers. This is the reason why
the NB method is always the ideal choice.

Therefore, we may omit all the #;’s in the conditional
probability of ¢;, viz.

p(tltigrs -ty v;) = p(t;|v;). (A3)
As a result, we have
p(vi|T) o P(Ui)HP(fﬂ”i)- (Ad)

J
For our binary classification, the output is either 0 or 1.

Then the Bayesian classifier Cy should output n (n =0, 1)
if p(v; =n|T) > p(v; = 1 —n|T) [69]. Hence, we require

p(v; =n|T)

m > 1. (AS)

Cg(v; =n) =

For the NB classifier, we get

p(v; =n) H

p(v,-:l—n) j

p(tjlvi=n)

> 1.
plifvi=1-n)

Cng(v; =n) =

(A6)

As NB is the simplest (Bayes) network, it is often faster
than other methods. More importantly, the assumption of
conditional independence in NB reflects the special feature
of the data.

3. pYTHON’s CNNs

In investigations requiring multiclass classification, a
more technical machine learning structure is needed to
allow high-performance classification. To facilitate this the
TensorFlow library and within this the machine learning
specific sublibrary KERAS were used [59].

Artificial NNs are code structures for nonlinear function
fitting. Their design was generally inspired by that of a
biological brain, and they have seen significant success in
recent years where computation speed can now account for
the computational inefficiency of using these networks
compared to traditional algorithms. The networks used in
this investigation were dense and deep, in that they had all
neurons fully connected between layers, and there were
multiple hidden layers in the network.

More specifically the network style used was a CNN.
The defining feature of these networks is the local action at
the neurons in the hidden layers which preserves the
multidimensional structure of the tensor input, acting with
a simple linear 2d function, and then applying nonlinear
activation. Important to stress is the importance of the
nonlinearity in the activation functions at each neuron,
allowing NN to well address problems of higher complex-
ity. These networks are traditionally used for image

recognition, as the use of convolution is good for identify-
ing local structure in arrays with dimension larger than 1—
this motivated their use for this matrix-based datatype [70].

The specific CNN used in this investigation had a
sequential structure such that it was a linear stack of
layers. The network had three convolutional layers,
each with LeakyReLU activation, and each followed by a
Maxpooling layer. Then there are two generic dense layers,
one with LeakyReLU activation and the other with softmax
activation. The Maxpooling layers simply assign to an entry
the maximum value of a set of some of the surrounding
entries. They are traditionally used in the CNN structure.

LeakyReLLU was used as the standard activation function
at each layer. This activation is simple to compute, it is
monotonic, and it is inherently nonlinear, with the added
benefit of fast gradient descent in training due to its
proportional derivative form. This function leaves positive
inputs to the neuron unchanged, but scales negative inputs
down (in our case by a factor of 10). The additional dense
layers are needed in CNNs to recreate the vector data
structure for classification. Softmax was used as the final
activation as it is a sigmoid equivalent, however with
traditionally better results and a normalized output essential
for classification problems with multiple classes.

When compiling the NN, additional inputs of loss
function, optimizer, and metric are required. The loss
function is a measure of the performance of the model,
it is the function whose optimal value will indicate a well-
trained NN, and hence it is a good model. “Mean squared
error” was used for the loss function in this investigation,
this measure is simple, and it is computationally in-
expensive. It is calculated as the sum of squares of the
difference between each input and its predicted value by the
model, therefore the output values used in training are
vector floats bounded by 0 and 1 to reflect the hot encoding
of the Boolean output nature in this classification. The
optimizer is the method by which the parameters of the
network are updated in accordance with the performance of
the loss function. Here the “Adam” optimizer was used,
which is an inexpensive first-order gradient based method
[71]. Finally, the metric used was “accuracy,” and this gives
the final measure of the NNs’ performance and is simply
the proportion of correct classifications the model performs
on the validation dataset.

4. Measures of the machine’s performance

Measures of the performance of a classification method
are essential for justifying the use of machine learning. The
most standard measure of a classifier is “accuracy.” As
mentioned in Appendix A 3, this is the proportion of
correct classifications performed by the classifier on a
validation dataset. To ensure the measure is unbiased, it is
important the validation dataset is not used for training
while still being representative.

086013-23

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

To ensure representative validation datasets, as well as
provide a means of calculating error for these measures, k-
fold cross validation was used. In these investigations
k=5, and hence in each investigation the full dataset
(all data points with their respective classification labels)
were first randomized, then split into five equal size
subdatasets. The machine learning process for training
and then validating the classifier was then iterated 5 times,
where in each case the validation dataset was a different
subdataset from the split, and the training dataset was the
remaining four sets combined. For each of the five
iterations the measures of performance were calculated
and recorded, giving a small dataset for each measure from
which mean and standard errors could be calculated [72].

More technical measures of performance used include
Matthew’s correlation coefficient (MCC, ¢) and F1 score
(also called just F-Score). Both these measures take into
account Type I and II errors from misclassification. A Type
I error is a “false positive” (FP), where for example a
random matrix is classified as in the mutation class, and
conversely a Type II error is a “false negative” (FN), where
a quiver matrix is classified as not in the class being trained
by the machine.

The F1 score measure gives equal weight to Type I and II
errors, whereas the MCC measure uses variable weights
based on the occurrence of true positives and negatives (TP/
TN). These factors make MCC a more favorable measure in
this style of binary classification problem [73].

All three measures can be summarized as functions over
the “confusion matrix” defined,

TP FN
M = , (A7)
FP TN
such that
accuracy:= 1IN
Y I P TN+ FP+FN’
2-TP
Flscore:=——————,
2-TP+FP+FN
TP-TN—-FP-FN
MCC:=

/(TP+FP)-(TP+FN)-(TN+FP)- (TN +FN)

(A8)

The first two measures, accuracy and F1 score, evaluate in
the range [0, 1], while the MCC measure takes values in
[—1, 1]. In all cases a value of 1 indicates perfect prediction
of the model. All measures can be generalized to the
multiclassification cases also, evaluating in the same ranges.

APPENDIX B: INVESTIGATION
LEARNING CURVES

This Appendix section presents additional learning curves
calculated for the investigations, as discussed in the paper.

T

1F '/./—f‘——.—-—-—-—-—n
0.9

08 &
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 1 1 1 Il Il Il Il Il

I
10 20 30 40 50 60 70 8 90
Training(%)

Performance
T T T T T T

T

—e— Accuracy
=9

T

FIG. 12. Training and validating two classes: Q4 and Q5. We
generate (102 + 138) matrices. There are 6208 1’s and 6154 0’s.
The method is NB.

0.9F
0.8}
0.7} ¥
0.6

0.5
0.4
0.3
0.2
0.1

0 L 1 1 1 1 1 1 i

10 20 30 40 50 60 70 80 90 100
Training(%)

Performance
T T T

T

—e— Accuracy
- 1]

T

FIG. 13. Training and validating three classes: [‘A,” 6], ['D,” 6]
and [‘E,; 6]. We generate (76 + 77 4+ 77) matrices. There are
6122 1’s and 6090 0’s. The method is NB.

0.9}
0.8}
0.7+ w
0.6 |
0.5
0.4
0.3
0.2
0.1

0 L 1 1 1 1 1 1

1
10 20 30 40 50 60 70 80
Training(%)

Performance
T T T

T

—e— Accuracy
= ¢

T

i 1
90 100

FIG. 14. Training and validating three classes: Q4, Q5, and Q6.
We generate (102 + 138 + 161) matrices. There are 11966 1°s
and 11494 0’s. The method is NB.

086013-24

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

1 -
0.9
0.8
0.7
0.6 "
0.5 .

0.4
0.3
0.2
0.1

0 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 8 90
Training(%)

T

|

Performance

T T T T T
n

|

n

T

—e— Accuracy
- 10}

T

FIG. 15. Training and validating four classes: Q4, Q5, Q6, and
Q7. We generate (102 + 138 + 161 + 102) matrices. There are
16059 1°’s and 16250 0’s. The method is NB.

09+
0.8
0.7F R i
0.6 "

0.4+
0.3
0.2
0.1

1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Training(%)

Performance
o
Ut
T

—e— Accuracy
. 10}

FIG. 16. Training and validating five classes: Q4, Q5, Q6, Q7,
and Q8. We generate (102 4+ 138 + 161 + 102 + 161) matrices.
There are 23377 1°s and 23442 0’s. The method is NB.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

O 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90
Training(%)

Performance
T T T T T T T

T

T

FIG. 17. Training and validating one class, Q9, with random
matrices. We have (382 + 388) matrices. We use a NN classifier.
The learning curves are all accuracies.

1 -
0.9
0.8 /MH
g 0.7 R 4
2061 —
g N
5 0.5} /
T 04p ¥
o
0.3}
021 —e— Accuracy
0.1} - ¢
0 1 1 ul 1 1 1 1 1 al 1
10 20 30 40 50 60 70 80 90 100

Training(%)

FIG. 18. Training and validating four classes: [‘A,” 4], ['D,” 4],
[‘A, (3,1),1], and [‘A; (2,2),1]. We generate (52 + 50 + 70 + 54)
matrices. There are 5503 1°s and 5512 0’s. The method is NB.

0.9
0.8
0.7
0.6 |- L
0.5 4
0.4
0.3
0.2 —e— Accuracy
0.1 I)

0 1 1 1 1 1 1 1

1
10 20 30 40 50 60 70 80
Training(%)

Performance

1 1
90 100

FIG. 19. Training and validating five classes: [‘A, 4], [‘D,” 4],
[‘A) 6], ['D, 6] and [‘E, 6]. We generate (52 + 50 + 76+
77 + 77) matrices. There are 6699 1’s and 6711 0’s. The method
is NB.

0.9}

0.7
0.6
0.5
0.4
0.3
0.2
0.1

O 1 Il 1 Il 1 I Il

I
20 30 40 50 60 70 80 90
Training(%)

Performance
T T T T T

T

—e— Accuracy
- ¢

T

FIG. 20. Training and validating three classes: [‘T,” (4,4,4)],
[‘T, (4,5,3)], and [T, (4,6,2)]. We generate (65 + 65 + 66)
matrices. There are 2476 1’s and 2301 0’s. The method is NB.

086013-25

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

1F
09F
0.8F
0.7F =
0.6
0.5
0.4
0.3
0.2
0.1

0 L 1 1 1 1 1 1 1

1
10 20 30 40 50 60 70 80 90
Training(%)

Performance
T T T T

T

—e— Accuracy
- 10}

T

FIG.21. Training and validating three classes: Q4, QS, and Q6.
We generate (102 + 138 + 161) matrices. There are 11506 1’s
and 11645 0’s. The method is NB. The rank information is
included.

0.9
0.8
0.7

T

m\

T

n
L

|

|

|
-

T

051
0.4
0.3
0.2
0.1

0 L 1 1 1 1 1 1 1

1
10 20 30 40 50 60 70 8 90
Training(%)

T

Performance

T

T

—e— Accuracy
- 10}

T

FIG. 22. Training and validating four classes: Q4, Q5, Q6, and
Q7. We generate (102 + 138 + 161 + 102) matrices. There are
13930 1’s and 14005 0’s. The method is NB. The rank
information is included.

0.9
0.8
0.7
007 -
0.5
0.4
0.3
0.2
0.1

T

\

Performance

Performance
T T T

T

—e— Accuracy
- 9

T

1 1 1 1 1

10 20 30 40 50 60 70 8 90
Training(%)

FIG. 23. Training and validating five classes: Q4, QS5, Q6, Q7,
and Q8. We generate (102 4+ 138 + 161 + 102 + 161) matrices.
There are 22770 1°s and 22823 0’s. The method is NB. The rank
information is included via imposing the null vectors.

09F
0.8F
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 1 1 1 Il Il Il Il Il

I
10 20 30 40 50 60 70 8 90
Training(%)

Performance
T T T T T
n
.

T

—e— Accuracy
- ¢

T

FIG. 24. Training and validating three classes: Q4, QS, and Q6.
We generate (102 + 138 + 161) matrices. There are 11490 1’s
and 11449 0’s. The method is NB. The Diophantine variables are
included.

T

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

O 1 1 I Il Il Il Il

1 I
10 20 30 40 50 60 70 8 90
Training(%)

Performance

T T T T T
R

"

T

—e— Accuracy
- ¢

T

FIG. 25. Training and validating four classes: Q4, Q5, Q6, and
Q7. We generate (102 + 138 4+ 161 + 102) matrices. There are
14099 I'’s and 14118 0’s. The method is NB. The Diophantine
variables are included.

0.8
0.7

T
HIH
n
|
|
L}
|]

0.5
0.4
0.3
0.2
0.1

T

T

T

T

—e— Accuracy
= ¢

T

1 1 1 1 1

1
10 20 30 40 50 60 70 8 90
Training(%)

FIG. 26. Training and validating five classes: Q4, QS, Q6, Q7,
and Q8. We generate (102 4+ 138 + 161 + 102 + 161) matrices.
There are 23273 1’s and 24217 0’s. The method is NB. The
Diophantine variables are included.

086013-26

QUIVER MUTATIONS, SEIBERG DUALITY, AND MACHINE ...

PHYS. REV. D 102, 086013 (2020)

See Figs. 12-26. Each graph shows the performance of the
investigation’s classification method on the specified dataset
for varying proportional splits of the dataset into training and

validation data. Measures of classification performance
considered were accurate, as well as Matthew’s correlation
coefficient, ¢, as discussed in Sec. A 4.

[1] N. Seiberg, Electric-magnetic duality in supersymmetric
non-Abelian gauge theories, Nucl. Phys. B435, 129
(1995).

[2] S. Fomin and A. Zelevinsky, Cluster algebras. 1. Founda-
tions, J. Am. Math. Soc. 15, 497 (2002).

[3] S. Fomin and A. Zelevinsky, Cluster algebras. II. Finite type
classification, Inventiones Mathematicae 154, 63 (2003).

[4] B. Feng, A. Hanany, and Y.-H. He, D-brane gauge theories
from toric singularities and toric duality, Nucl. Phys. B595,
165 (2001).

[5] B. Feng, A. Hanany, Y.-H. He, and A. M. Uranga, Toric
duality as Seiberg duality and brane diamonds, J. High
Energy Phys. 12 (2001) 035.

[6] F. Cachazo, B. Fiol, K. A. Intriligator, S. Katz, and C. Vafa,
A geometric unification of dualities, Nucl. Phys. B628, 3
(2002).

[7] G. Beaujard, J. Manschot, and B. Pioline, Vafa-Witten
invariants from exceptional collections, arXiv:2004.14466.

[8] A. Hanany and K. D. Kennaway, Dimer models and toric
diagrams, arXiv:hep-th/0503149.

[9] S. Franco, A. Hanany, K. D. Kennaway, D. Vegh, and B.
Wecht, Brane dimers and quiver gauge theories, J. High
Energy Phys. 01 (2006) 096.

[10] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, and
B. Wecht, Gauge theories from toric geometry and brane
tilings, J. High Energy Phys. 01 (2006) 128.

[11] B. Feng, Y.-H. He, K. D. Kennaway, and C. Vafa, Dimer
models from mirror symmetry and quivering amoebae, Adv.
Theor. Math. Phys. 12, 489 (2008).

[12] S. Benvenuti, B. Feng, A. Hanany, and Y.-H. He, Counting
BPS operators in gauge theories: Quivers, syzygies and
plethystics, J. High Energy Phys. 11 (2007) 050.

[13] S. Fomin, L. Williams, and A. Zelevinsky, Introduction to
Cluster Algebras. Chapters 1-3, arXiv:1608.05735.

[14] J. L. Bourjaily, S. Franco, D. Galloni, and C. Wen, Strati-
fying on-shell cluster varieties: The geometry of non-planar
on-shell diagrams, J. High Energy Phys. 10 (2016) 003.

[15] N. Arkani-Hamed, S. He, T. Lam, and H. Thomas, Binary
geometries, generalized particles and strings, and cluster
algebras, arXiv:1912.11764.

[16] V. V. Fock and A. B. Goncharov, Cluster ensembles, quan-
tization and the dilogarithm, Ann. Sci. Ecole Norm. Supér.
Ser. 4 42, 865 (2009).

[17] S. Franco and G. Musiker, Higher cluster categories and
QFT dualities, Phys. Rev. D 98, 046021 (2018).

[18] Y.-H. He, Deep-learning the landscape, arXiv:1706.02714.

[19] Y.-H. He, Machine-learning the string landscape, Phys. Lett.
B 774, 564 (2017).

[20] Y.-H. He, The Calabi-Yau landscape: From geometry, to
physics, to machine-learning, arXiv:1812.02893.

[21] J. Bao, Y.-H. He, E. Hirst, and S. Pietromonaco, Lectures on
the Calabi-Yau landscape, arXiv:2001.01212.

[22] D. Krefl and R.-K. Seong, Machine learning of Calabi-Yau
volumes, Phys. Rev. D 96, 066014 (2017).

[23] F. Ruehle, Evolving neural networks with genetic algo-
rithms to study the string landscape, J. High Energy Phys.
08 (2017) 038.

[24] J. Carifio, J. Halverson, D. Krioukov, and B.D. Nelson,
Machine learning in the string landscape, J. High Energy
Phys. 09 (2017) 157.

[25] P. Betzler and S. Krippendorf, Connecting dualities and
machine learning, Fortschr. Phys. 68, 2000022 (2020).

[26] S. Krippendorf and M. Syvaeri, Detecting symmetries with
neural networks, arXiv:2003.13679.

[27] R. Altman, J. Carifio, J. Halverson, and B.D. Nelson,
Estimating Calabi-Yau hypersurface and triangulation
counts with equation learners, J. High Energy Phys. 03
(2019) 186.

[28] M. Demirtas, C. Long, L. McAllister, and M. Stillman, The
Kreuzer-Skarke axiverse, J. High Energy Phys. 04 (2020)
138.

[29] Y.-H. He, V. Jejjala, and L. Pontiggia, Patterns in Calabi—
Yau distributions, Commun. Math. Phys. 354, 477 (2017).

[30] T. W. Grimm, F. Ruehle, and D. van de Heisteeg, Classify-
ing Calabi-Yau threefolds using infinite distance limits,
arXiv:1910.02963.

[31] A. Cole, A. Schachner, and G. Shiu, Searching the land-
scape of flux vacua with genetic algorithms, J. High Energy
Phys. 11 (2019) 045.

[32] K. Hashimoto, S. Sugishita, A. Tanaka, and A. Tomiya,
Deep learning and the AdS/CFT correspondence, Phys.
Rev. D 98, 046019 (2018).

[33] L. B. Anderson, X. Gao, J. Gray, and S.-J. Lee, Fibrations in
CICY threefolds, J. High Energy Phys. 10 (2017) 077.

[34] Y.-H. He and S.-J. Lee, Distinguishing elliptic fibrations
with AL Phys. Lett. B 798, 134889 (2019).

[35] C.R. Brodie, A. Constantin, R. Deen, and A. Lukas,
Machine learning line bundle cohomology, Fortschr. Phys.
68, 1900087 (2020).

[36] V. Jejjala, A. Kar, and O. Parrikar, Deep learning the hyper-
bolic volume of a knot, Phys. Lett. B 799, 135033 (2019).

[37] A. Miitter, E. Parr, and P. K. Vaudrevange, Deep learning in
the heterotic orbifold landscape, Nucl. Phys. B940, 113
(2019).

[38] R. Deen, Y.-H. He, S.-J. Lee, and A. Lukas, Machine
learning string standard models, CERN Reports No. CERN-
TH-2020-050 and No. CTPU-PTC-20-06, 2020.

[39] Y. Gal, V. Jejjala, D. K. M. Pena, and C. Mishra, Baryons
from mesons: A machine learning perspective, arXiv:
2003.10445.

086013-27

https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1016/0550-3213(94)00023-8
https://doi.org/10.1090/S0894-0347-01-00385-X
https://doi.org/10.1007/s00222-003-0302-y
https://doi.org/10.1016/S0550-3213(00)00699-4
https://doi.org/10.1016/S0550-3213(00)00699-4
https://doi.org/10.1088/1126-6708/2001/12/035
https://doi.org/10.1088/1126-6708/2001/12/035
https://doi.org/10.1016/S0550-3213(02)00078-0
https://doi.org/10.1016/S0550-3213(02)00078-0
https://arXiv.org/abs/2004.14466
https://arXiv.org/abs/hep-th/0503149
https://doi.org/10.1088/1126-6708/2006/01/096
https://doi.org/10.1088/1126-6708/2006/01/096
https://doi.org/10.1088/1126-6708/2006/01/128
https://doi.org/10.4310/ATMP.2008.v12.n3.a2
https://doi.org/10.4310/ATMP.2008.v12.n3.a2
https://doi.org/10.1088/1126-6708/2007/11/050
https://arXiv.org/abs/1608.05735
https://doi.org/10.1007/JHEP10(2016)003
https://arXiv.org/abs/1912.11764
https://doi.org/10.24033/asens.2112
https://doi.org/10.24033/asens.2112
https://doi.org/10.24033/asens.2112
https://doi.org/10.1103/PhysRevD.98.046021
https://arXiv.org/abs/1706.02714
https://doi.org/10.1016/j.physletb.2017.10.024
https://doi.org/10.1016/j.physletb.2017.10.024
https://arXiv.org/abs/1812.02893
https://arXiv.org/abs/2001.01212
https://doi.org/10.1103/PhysRevD.96.066014
https://doi.org/10.1007/JHEP08(2017)038
https://doi.org/10.1007/JHEP08(2017)038
https://doi.org/10.1007/JHEP09(2017)157
https://doi.org/10.1007/JHEP09(2017)157
https://doi.org/10.1002/prop.202000022
https://arXiv.org/abs/2003.13679
https://doi.org/10.1007/JHEP03(2019)186
https://doi.org/10.1007/JHEP03(2019)186
https://doi.org/10.1007/JHEP04(2020)138
https://doi.org/10.1007/JHEP04(2020)138
https://doi.org/10.1007/s00220-017-2907-9
https://arXiv.org/abs/1910.02963
https://doi.org/10.1007/JHEP11(2019)045
https://doi.org/10.1007/JHEP11(2019)045
https://doi.org/10.1103/PhysRevD.98.046019
https://doi.org/10.1103/PhysRevD.98.046019
https://doi.org/10.1007/JHEP10(2017)077
https://doi.org/10.1016/j.physletb.2019.134889
https://doi.org/10.1002/prop.201900087
https://doi.org/10.1002/prop.201900087
https://doi.org/10.1016/j.physletb.2019.135033
https://doi.org/10.1016/j.nuclphysb.2019.01.013
https://doi.org/10.1016/j.nuclphysb.2019.01.013
https://arXiv.org/abs/2003.10445
https://arXiv.org/abs/2003.10445

BAO, FRANCO, HE, HIRST, MUSIKER, and XIAO

PHYS. REV. D 102, 086013 (2020)

[40] A. Ashmore, Y.-H. He, and B. A. Ovrut, Machine learning
Calabi-Yau metrics, arXiv:1910.08605.

[41] Y.-H. He and M. Kim, Learning algebraic structures:
Preliminary investigations, arXiv:1905.02263.

[42] Y.-H. He, E. Hirst, and T. Peterken, Machine-learning
Dessins d’Enfants: Explorations via modular and Seiberg-
Witten curves, arXiv:2004.05218.

[43] L. Alessandretti, A. Baronchelli, and Y.-H. He, Machine
learning meets number theory: The data science of Birch-
Swinnerton-Dyer, arXiv:1911.02008.

[44] The Sage Developers, SageMath, The Sage mathematics
software system (Version 9.0), 2019.

[45] G. Musiker and C. Stump, A compendium on the cluster
algebra and quiver package in sage, arXiv:1102.4844.

[46] D. Kutasov and A. Schwimmer, On duality in supersym-
metric Yang-Mills theory, Phys. Lett. B 354, 315 (1995).

[47] D. Kutasov, A comment on duality in N = 1 supersymmetric
nonAbelian gauge theories, Phys. Lett. B 351, 230 (1995).

[48] A. Kapustin, The Coulomb branch of N =1 supersym-
metric gauge theory with adjoint and fundamental matter,
Phys. Lett. B 398, 104 (1997).

[49] A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster
algebras. III. Upper bounds and double Bruhat cells, Duke
Math. J. 126, 1 (2005).

[50] P. Sherman and A. Zelevinsky, Positivity and canonical
bases in rank 2 cluster algebras of finite and affine types,
Moscow Math. J. 4, 947 (2004).

[51] P. Gabriel, Unzerlegbare darstellungen. I, Manuscr. Math. 6,
71 (1972); Erratum, Manuscr. Math. 6, 309 (1972).

[52] A. Felikson, M. Shapiro, and P. Tumarkin, Skew-symmetric
cluster algebras of finite mutation type, J. Eur. Math. Soc.
14, 1135 (2012).

[53] H. Derksen and T. Owen, New graphs of finite mutation
type, Electron. J. Comb. 15, R139 (2008).

[54] M. Alim, S. Cecotti, C. Cérdova, S. Espahbodi, A. Rastogi, and
C. Vafa, BPS quivers and spectra of complete N = 2 quantum
field theories, Commun. Math. Phys. 323, 1185 (2013).

[55] S. Fomin, M., and D. Thurston, Cluster algebras and
triangulated surfaces. Part I: Cluster complexes, arXiv:
math/0608367.

[56] V. G. Kac, Infinite root systems, representations of graphs and
invariant theory, Inventiones Mathematicae 56, 57 (1980).

[57] B. Feng, A. Hanany, Y.-H. He, and A. Igbal, Quiver
theories, soliton spectra and Picard-Lefschetz transforma-
tions, J. High Energy Phys. 02 (2003) 056.

[58] S. Franco, A. Hanany, Y.-H. He, and P. Kazakopoulos,
Duality walls, duality trees and fractional branes, arXiv:hep-
th/0306092.

[59] M. Abadi et al., TensorFlow : Large-scale machine learning
on heterogeneous systems, 2015.

[60] S. Benvenuti and A. Hanany, New results on superconfor-
mal quivers, J. High Energy Phys. 04 (2006) 032.

[61] A. Hanany, Y.-H. He, C. Sun, and S. Sypsas, Supercon-
formal block quivers, duality trees and diophantine equa-
tions, J. High Energy Phys. 11 (2013) 017.

[62] S. Franco and A. Hanany, Toric duality, Seiberg duality and
Picard-Lefschetz transformations, Fortschr. Phys. 51, 738
(2003).

[63] S. Franco, A. Hasan, and X. Yu, On the classification of
duality webs for graded quivers, J. High Energy Phys. 06
(2020) 130.

[64] A. Gadde, S. Gukov, and P. Putrov, (0, 2) trialities, J. High
Energy Phys. 03 (2014) 076.

[65] S. Franco, S. Lee, and R.-K. Seong, Brane brick models
and 2d (0, 2) triality, J. High Energy Phys. 05 (2016) 020.

[66] S. Franco, S. Lee, R.-K. Seong, and C. Vafa, Quadrality for
supersymmetric matrix models, J. High Energy Phys. 07
(2017) 053.

[67] J. H. Smith, Some properties of the spectrum of a graph, in
Combinatorial Structures and their Applications (Proc.
Calgary Internat. Conf., Calgary, Alta., 1969) (Gordon
and Breach, New York, 1970), pp. 403-406.

[68] W.R. Inc., Mathematica, Version 12.0.

[69] H. Zhang, The optimality of naive bayes, in Proceedings of
the Seventeenth International Florida Artificial Intelligence
Research Society Conference, FLAIRS (The AAAI Press,
Menlo Park, 2004), Vol. 2, p. 01.

[70] K. O’Shea and R. Nash, An introduction to convolutional
neural networks, arXiv:1511.08458.

[71] D.P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv:1412.6980.

[72] R. Kohavi, A study of cross-validation and bootstrap for
accuracy estimation and model selection, in IJCAI95:
Proceedings of the 14th International Joint Conference
on Artificial Intelligence (Morgan Kaufmann Publishers
Inc.,, San Francisco, 1995), Vol. 2, pp. 1137-1143.

[73] D. Chicco and G. Jurman, The advantages of the matthews
correlation coefficient (mcc) over fl score and accuracy
in binary classification evaluation, BMC Genomics 21, 6
(2020).

086013-28

https://arXiv.org/abs/1910.08605
https://arXiv.org/abs/1905.02263
https://arXiv.org/abs/2004.05218
https://arXiv.org/abs/1911.02008
https://arXiv.org/abs/1102.4844
https://doi.org/10.1016/0370-2693(95)00676-C
https://doi.org/10.1016/0370-2693(95)00392-X
https://doi.org/10.1016/S0370-2693(97)00209-8
https://doi.org/10.1215/S0012-7094-04-12611-9
https://doi.org/10.1215/S0012-7094-04-12611-9
https://doi.org/10.17323/1609-4514-2004-4-4-947-974
https://doi.org/10.1007/BF01298413
https://doi.org/10.1007/BF01298413
https://doi.org/10.1007/BF01304615
https://doi.org/10.4171/JEMS/329
https://doi.org/10.4171/JEMS/329
https://doi.org/10.37236/863
https://doi.org/10.1007/s00220-013-1789-8
https://arXiv.org/abs/math/0608367
https://arXiv.org/abs/math/0608367
https://doi.org/10.1007/BF01403155
https://doi.org/10.1088/1126-6708/2003/02/056
https://arXiv.org/abs/hep-th/0306092
https://arXiv.org/abs/hep-th/0306092
https://doi.org/10.1088/1126-6708/2006/04/032
https://doi.org/10.1007/JHEP11(2013)017
https://doi.org/10.1002/prop.200310091
https://doi.org/10.1002/prop.200310091
https://doi.org/10.1007/JHEP06(2020)130
https://doi.org/10.1007/JHEP06(2020)130
https://doi.org/10.1007/JHEP03(2014)076
https://doi.org/10.1007/JHEP03(2014)076
https://doi.org/10.1007/JHEP05(2016)020
https://doi.org/10.1007/JHEP07(2017)053
https://doi.org/10.1007/JHEP07(2017)053
https://arXiv.org/abs/1511.08458
https://arXiv.org/abs/1412.6980
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7

