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Abstract—The paper describes a data-driven system 
identification method tailored to power systems and 
demonstrated on models of synchronous generators (SGs). 
In this work, we extend the recent sparse identification of 
nonlinear dynamics (SINDy) modeling procedure to 
include the effects of exogenous signals and nonlinear 
trigonometric terms in the library of elements. We show 
that the resulting framework requires fairly little in terms 
of data, and is computationally efficient and robust to 
noise, making it a viable candidate for online identification 
in response to rapid system changes. The proposed method 
also shows improved performance over linear data-driven 
modeling. While the proposed procedure is illustrated on a 
SG example in a multi-machine benchmark, it is directly 
applicable to the identification of other system components 
(e.g., dynamic loads) in large power systems. 
Index Terms— Power system, Dynamic model, System 
identification, Nonlinear dynamics, Sparse model. 

I. INTRODUCTION  
Dynamic modeling of power systems has received 

increased attention lately due to changes in components (such 
as inverter-connected sources and loads) and in data availability 
(such as Phasor Measurement Units—PMUs). While there 
exists a plethora of dynamical models for components and 
interconnections, their practical identifiability from data is a 
long-standing problem. Our own efforts in this direction have 
focused on model reduction and global identifiability of models 
in transient stability studies [1], and have provided some new 
connections with analytical tools such as the singular 
perturbation theory. In this paper, we open another line of 
inquiry—assuming we have a practically identifiable model, 
and an optimized set of parameters for it, what can be said about 
the inevitable discrepancies between the model predictions and 
the measurements? In other words, is there a structure in the 
error signals that can be utilized to possibly amend the model, 
while maintaining identifiability? This is tantamount to 
appending the original model with new parts that are driven by 
the actual data. The tool that we explore for this purpose 
belongs to the family of symbolic regression methods.  

Symbolic regression parallels the idea of standard 
regression in searching a space for the best fit to data but 
operates in a space of mathematical expressions to derive a 

model that best matches a given set of data in terms of accuracy 
and simplicity (parsimony). The candidate expressions are 
formed by combining building blocks that comprise functions, 
constants, and other mathematical expressions. Challenges 
come from the large space of candidate models and the (likely) 
non-uniqueness of solutions.  

We focus on transient stability, which focuses on system-
level behavior, and de-emphasizes microscopic (component-
level) accuracy. This means that we do not have to explore all 
possible microscopic dynamics, enabling us to focus on a much 
smaller, nested hierarchy of models. We use physical intuition 
of the phenomena to restrict the set of building blocks to include 
in the algorithm. This decision could potentially limit 
performance since there is no theoretical guarantee of 
completeness [2]. However, we show in our application section 
that our observed performance is encouraging.  

Our point of departure is the equation-based modeling 
framework [3], where authors developed an algorithm for the 
sparse identification of nonlinear dynamics (SINDy) from data 
relying on the fact that most dynamical systems of interest have 
relatively few nonlinear terms, each belonging to a family (i.e., 
polynomial nonlinearities, etc.). This method uses sparsity 
promoting techniques to find models that automatically balance 
sparsity in the number of terms with model accuracy. This 
algorithm is extended to include controls in [4].  

In this paper, we use a modified SINDy algorithm to 
identify system-wide aspects of dynamic components (in our 
case a SG example). The model identification is performed 
from locally recorded measurements only. Having in mind the 
structure of the standard power system equations, the library 
of dynamical elements in SINDy is extended with state 
multiplication and trigonometric functions of states and 
external measurements.  

The outline of the paper is as follows: in Section II we give 
the problem formulation; Section III describes the SINDy 
algorithm with extended the library of elements, while Section 
IV describes the SINDy’s extension with external 
measurements; Section V shows the steps and convergence 
details of SINDy algorithm; the proposed algorithm is applied 
to a SG example in Section VI; Section VII presents 
conclusions. The Appendix contains basic SG’s parameters 
adapted for SINDy-based model identification.  
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II. PROBLEM FORMULATION 
The Differential Algebraic Equation (DAE) based form of 

power system dynamical models used in transient stability is [1] 
𝒙̇ = 𝑑𝒙/𝑑𝑡 = 𝒇(𝒙, 𝒛, 𝑡) (1) 

𝟎 = 𝒈(𝒙, 𝒛, 𝑡) (2) 
where x is the vector of (differential) state variables, z are the 
algebraic variables, and t is the (scalar) time variable. The 
system measurement vector is assumed to be of the form 

𝒚 = 𝒉(𝒙, 𝒛, 𝑡). (3) 
To apply the SINDy framework, we formally transform into 

ODE form by solving for 𝒛 in (2) and substituting to (1) and (3), 
we have  

𝒙̇ = 𝒇′(𝒙, 𝑡) (1’) 
𝒚 = 𝒉′(𝒙, 𝑡). (3’) 

For power system-based equations, for derivation of (1’) 
and (3’), see, for example [9].  

III. SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS 
(SINDY)  

The SINDy algorithm seeks to identify a fully nonlinear 
dynamical system, 𝒙̇ (1’) from measurement data set, 𝒚 (3’). It 
relies on the fact that many dynamical systems have relatively 
few terms in the right-hand side of the governing equations (1’) 
and (3’). Based on standard equations in [9], an appropriate 
library of candidate nonlinear functions is as follows 

𝚯T(𝑿) = [

  1  
  𝑿  
 sin(𝑿)  

 cos(𝑿)  

] (4) 

where  

𝑿 = [

 𝒙1

𝒙2

⋯
𝒙𝑛

] (5) 

Our dynamical model may be written in the following form 
 𝑿̇ = 𝚵𝚯T(𝑿) (6) 

The matrix 𝚵 in the above library is sparse for most 
dynamical systems (including power system dynamics). For 
identification of 𝚵, the sparse (symbolic) regression may be 
applied [4-6]. The selection of the library of candidate 
dynamics is a crucial choice in the SINDy algorithm. Note that 
in a power system case mixed nonlinear (trigonometric) 
multiplications of variables are possible (for example, 
𝑉sin(𝛿 − 𝜃) and 𝑉cos(𝛿 − 𝜃)—see [9]). The library may be 
simply extended to support other nonlinearities (for example a 
saturation).  

Each row of (6) represents a row in (1’) and a sparse vector 
of coefficients 𝝃𝑘 corresponding to the 𝑘-th row of 𝚵 can be 
found using a sparse regression algorithm [4], as 

𝝃𝑘 = argmin
𝝃𝑘

‖𝒙̇𝑘 − 𝝃𝑘𝚯T(𝑿)‖2
2 + 𝜆2‖𝜉𝑘‖1 (7) 

where 𝒙𝑘 represents 𝑘th row of 𝑿 (5). The penalizing ‖ ∙ ‖1 
term promotes sparsity in the vector 𝝃𝑘. The parameter 𝜆 is 
selected to identify the optimal model that best balances low 
model complexity with accuracy. A coarse sweep of 𝜆 is 
performed to identify the rough order of magnitude, where 
terms are eliminated and where error begins to increase [7].  

IV. THE SINDY WITH MEASUREMENTS  
The SINDy model can be extended to include input 

"measurements" as a part of the DAEs prediction model. These, 
in turn, can also come from a fixed (say physics-based) portion 
of the model. Then, the nonlinear dynamical system with input 
measurements (y) from (1’) is  

𝒙̇ = 𝒇′′(𝒙, 𝒚, 𝑡) (1’’) 
𝒚 = 𝒉′(𝒙, 𝑡) (3’’) 

The SINDY algorithm is simply generalized to include 
actuation, as this merely requires building a larger library 
𝚯T(𝑿, 𝒀) of candidate functions that include the measurement 
set (𝒀)  

[𝑿̇
𝒀

] = 𝚵𝚯T(𝑿, 𝒀) (6’) 

𝝃𝑘 = argmin
𝝃𝑘

‖[
𝒙̇
𝒚

]
𝑘

− 𝝃𝑘𝚯T(𝑿, 𝒀)‖
2

2

+ 𝜆2‖𝜉𝑘‖1 (7’) 

V. THE SINDY ALGORITHM AND CONVERGENCE  
Eq. (7’) can be rewritten as 

𝒙 = argmin
𝒙

‖𝑨𝒙 − 𝒃‖2
2 + 𝜆2‖𝒙‖1 (7’’) 

where 𝒙 ∈ ℝ𝒏 is unknown (𝒙 ≡ 𝝃𝑘) associated with vector of 

observations (𝒃 ≡ [
𝒙̇
𝒚

]
𝑘

) in ℝ𝒎 and 𝑨 ∈ ℝ𝒎×𝒏 is a matrix with 

𝑚 ≥ 𝑛  [𝑨 ≡ 𝚯T(𝑿, 𝒀)].  
The SINDy algorithm is [8] 

 Calculate 
 𝒙0 = 𝑨†𝒃 (8) 

where 𝑨† is a matrix 𝑨 pseudo-inverse.  
 Solve 

 𝑺𝑘 = {𝑗 ∈ [𝑛]: |𝒙𝑗
𝑘| ≥ 𝜆}, 𝑘 ≥ 0 (9) 

 𝒙𝑘+1 = argmin
𝒙∈ℝ𝒏:supp(𝒙)⊆𝑺𝑘

𝑘

‖𝑨𝒙 − 𝒃‖2
2, 𝑘 ≥ 0 (10) 

The convergence results of the SINDy algorithm may be 
summarized in [8, Theorem 2.10]:  
 𝒙𝑘 converges to a fixed point of the iterative scheme (8)-(10) 

in at most 𝑛 steps; 
 a fixed point of the iterative scheme is a local minimizer of 

the objective function (7’).  
 a global minimizer of objective function (7’) is a fixed point 

of the iterative scheme; 
 𝒙𝑘 strictly decreases the objective function (7’) unless the 

iterates are stationary.  

VI. APPLICATION  
We consider transient stability-related models in the DAE 

form in a Matlab-derived simulation environment. Our Matlab 
code is fully general in the sense that it allows for a variety of 
recorded measurements: 

- rotor angle, 𝛿(𝑡) and speed, 𝜔(𝑡); 
- active, 𝑃𝑔(𝑡) and reactive, 𝑄𝑔(𝑡) power generations;  
- nodal voltage magnitude, 𝑉(𝑡) and angle, 𝜃(𝑡).  
 

These measurements are obtained by simulations on the 
IEEE 14-bus test example [9, Fig. 2.4]. We start transients 
following the three-phase short circuit in bus 4, which cleared 
after 250 ms. Note that the size of the test system is mostly 
irrelevant for this study because the proposed methodology is 
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based only on local measurements at the connection point with 
the rest of the power system. We deal with the model of a 
synchronous generator (SG)—for its mathematical description 
and used parameters, see [9].  

The proposed model identification approach may be applied 
for the dynamic model reduction, where the time variation of 
state variables, 𝒙(𝑡) is obtained from simulations by the 
detailed model. Derivatives 𝒙̇𝑘(𝑡) used in (7) are obtained 
numerically (backward differencing) from data.  
A. Linear Terms in Right-side of Differential Equations 

A first group of tests is performed with an aim for 
identification of four single (𝛿̇, 𝜔̇, 𝑒𝑞

′̇ , and 𝑒𝑑
′̇ ) and two paired 

(𝛿̇&𝜔̇ and 𝑒𝑞
′̇ &𝑒𝑑

′̇ ) differential equations in the fourth-order SG 
model from [9], using only linear terms in the differential 

equations. The "fictive current measurements" 𝑖𝑑 and 𝑖𝑞 are 
then calculated, assuming that 𝑒𝑞

′ (𝑡)&𝑒𝑑
′ (𝑡) are known.  

Optimization problem (7) is solved by:  
1) SINDy algorithm [4, 8],  
2) Lasso software [10].  

Note that output from Lasso for the constant terms is always 
equal to zero, as Lasso tries to remove those predictors (input 
variables) which no have additional information about the 
output (important for the state prediction). Thus, constant terms 
in the mechanical equations (Ω𝑏, 𝑃𝑚 2𝐻⁄ + 𝐷 2𝐻⁄ , and 
𝑣𝑓 𝑇𝑑0

′⁄ ) are excluded from Lasso optimization.  
Results obtained for six different cases are presented in 

Table I, while the transient responses for SG in bus 4 are shown 
in Figure 1. For numerical integration, the Matlab’s ode45 
function is extended with additional external inputs (in our case, 
with the measurements).  

TABLE I: EXPECTED MODEL IDENTIFICATION FOR LINEAR TERMS IN RIGHT-SIDE OF DIFFERENTIAL EQUATIONS 

States Used 
Measurem. 

Expected coefficients Identified, SINDy Identified, Lasso 
Constants (C) Variables (V) Measurements (M) C V M C V M 

𝛿̇ 𝜔 −Ω𝑏 = −2𝜋60 = −376.99 0 Ω𝑏 = 2𝜋60 = 376.99 −376.99 0 376.99 −376.99 0 376.99 

𝜔̇ 𝑃𝑔 𝑃𝑚

2𝐻
+

𝐷

2𝐻
= 0.474 −

𝐷

2𝐻
= 0.198 −

1

2𝐻
= 0.395 0.474 −0.197 0.384 0.474 −0.177 0.376 

𝑒𝑞
′̇  𝑖𝑑 

𝑣𝑓

𝑇𝑑0
′

= 0.873 −
1

𝑇𝑑0
′

= −0.211 −
𝑥𝑑 − 𝑥𝑑

′

𝑇𝑑0
′

= −0.857 0.873 −0.210 −0.857 0.873 −0.210 −0.857 

𝑒𝑑
′̇  𝑖𝑞 0 −

1

𝑇𝑞0
′

= −0.667 𝑥𝑞 − 𝑥𝑞
′

𝑇𝑞0
′

= 1.347 0 −0.682 1.347 0 −0.682 1.347 

𝛿̇ 
𝜔̇ 𝑃𝑔 

−Ω𝑏 = −2𝜋60 = −376.99 
𝑃𝑚

2𝐻
+

𝐷

2𝐻
= 0.474 

0 

−
𝐷

2𝐻
= −0.198 

Ω𝑏 = 2𝜋60 = 376.99 

−
1

2𝐻
= −0.395 

−376.99 

0.433 

0 

−0.164 

376.99 

−0.384 

−376.99 

0.474 

0 

0 

376.99 

−0.374 

 

𝑒𝑞
′̇  

 
 

𝑒𝑑
′̇  

𝑖𝑑 
 

𝑖𝑞 

𝑣𝑓

𝑇𝑑0
′

= 0.873 

 
 

0 

−
1

𝑇𝑑0
′

= −0.211 

−
1

𝑇𝑞0
′

= −0.667 

−
𝑥𝑑 − 𝑥𝑑

′

𝑇𝑑0
′

= −0.857 

0 

 
 

0.873 
 
 
 
0 

 
 

−0.210 
 
 
 
 

−0.653 

 
−0.857 

 
1.861 

 
 

0.873 
 
 
 
0 

 
 

−0.190 
 
 
 

−0.653 

 
−0.857 

 
1.845 

𝑖𝑑 
 

𝑖𝑞 

0 
𝑥𝑞 − 𝑥𝑞

′

𝑇𝑞0
′

= 1.347 

−0.783 
 

1.347 

−0.523 
 

1.347 

 

 
 a. State 𝛿̇ and measurement 𝜔  b. State 𝜔̇  and measurement 𝑃𝑔  

 
 c. State 𝑒𝑞

′̇  and "fictive measurement" 𝑖𝑑  d. State 𝑒𝑑
′̇  and "fictive measurement" 𝑖𝑞  
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 e. States 𝛿̇ & 𝜔̇ and measurement 𝑃𝑔  

 
 f. States 𝑒𝑞

′̇  & 𝑒𝑑
′̇  and "fictive measurements" 𝑖𝑑 & 𝑖𝑞  

Figure 1.  Transient responses for analyzed cases from Table I 

B. Nonlinear (Trigonometric) Terms in Right-side of DAEs 
The second group of tests is performed with the fourth-order 

dynamical model [9]; for this model, the measurements 𝑃𝑔(𝑡), 
𝑉(𝑡) and 𝜃(𝑡) are simulations with PSAT-based dynamic 
model [9]. [Note that measurement 𝑃𝑔(𝑡) may be calculated and 
included directly into differential equations (as a function of 
measurements 𝑉(𝑡), 𝜃(𝑡), and state variables 𝑒𝑞

′ (𝑡) and 𝑒𝑑
′ (𝑡). 

However, in this case, the quadratic sine and cosine terms need 
to be included in the model library [9].  

In this case, there are 7 variables in vector 𝑿 (5) (𝛿, 𝜔, 𝑒𝑞
′ , 

𝑒𝑑
′ , 𝑉, 𝜃, and 𝑃𝑔) and 10 elements in a library of candidate 

nonlinear functions in 𝚯T(𝑿) (4) (Const., 𝛿, 𝜔, 𝑒𝑞
′ , 𝑒𝑑

′ , 𝑃𝑔, 𝑉, 𝜃, 
𝑉cos(𝛿 − 𝜃), and 𝑉sin(𝛿 − 𝜃)—for details, see [9].  

Model parameters expected from this analysis are shown in 
Table II. Results obtained by the previously mentioned two 
solvers: 1) SINDy algorithm [4, 8], and 2) Lasso software [10]) 
are compared regarding the Mean Squared Error (MSE) 
between measured and identified state variables: 
1) SINDy algorithm MSE = 262.496 
2) Lasso software MSE = 757064.255 

 

The results for both solvers are shown in Figure 2. From 
these results, we may observe that the identification matrix (𝚵) 
is the full matrix and MSE is still very high (especially for Lasso 
algorithm); a sparsity in both software is additionally induced 
through the use of ℓ1 regularization in (7). The number of non-
zero elements in the identification matrix (𝚵) in Lasso software 
may be controlled by the parameter DFmax (maximum number 
of non-zero coefficients in the model). The reported MSE is still 
high in both cases. Additionally, the identified model in terms 
of elements is different from the one expected in Table II; this 
is especially important for trigonometric terms.  

From the above results, we can conclude that the list of 
parameters for identification needs to be shortened. While we 
omit the details here for space reasons, by fixing zero elements 
in mechanical equations, the calculated MSE (by Matlab 

software) is decreased to 0.048. Optimization in SINDy 
algorithm (7) is least-square based and the measurement noise 
does not have significant influence on the optimization results.  

VII. CONCLUSION 
In this paper, we have demonstrated the applicability of the 

sparse identification of nonlinear dynamics (SINDy) algorithm 
for data-driven identification of dynamic models in power 
systems. The SINDy model has been extended to discover the 
nonlinear model (described by state multiplications and 
trigonometric terms) with exogenous signals measurements. 
Since the proposed extension only identifies a few "active" 
terms in the dynamic responses, it requires less data than other 
leading machine learning techniques and prevents overfitting. 
The proposed model identifies strongly nonlinear systems from 
local measurement data only, and the model identification is 
fast enough to discover models in real-time, even in response to 
abrupt changes to the model (for example, for outages or short-
circuits). Note that a critical step in the proposed model is the 
choice of library functions, which is based on the expert 
knowledge. A poor choice of library functions will generally 
yield a non-sparse model. 

Although the preliminary application of the proposed model 
is encouraging, this work motivates several future extensions 
that are possible within the developed framework:  
 Identification of high-dimensional dynamic models with a 

low-dimensional attractor (the model reduction). 
 The model identification with limited measurement set. 
 Inclusion of physical constraints in a known model structure, 

which may benefit real-time identification (constrained 
sparse identification [11]). It is possible to use a constrained 
least-squares algorithm, for example, to enforce parameter 
limits. Enforcing constraints has the potential to further 
reduce the amount of data required to identify models, and to 
improve numeric in some cases. 

 Regression models for the dynamic response prediction.  
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The proposed framework has significant potential for real-
time identification of nonlinear power system dynamic models, 
where the transient responses may be generated continuously 
by the load/generation increments due to the daily 
load/generation profiles. The ability to identify accurate and 
efficient models with small amounts of data may be a key factor 
of recovery in time-critical scenarios, such as the model 
changes that could lead to the power system instability.  
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APPENDIX: SG INPUT DATA 
Input SG’s parameters for simulations are as follows: 
Ω𝑏 = 2𝜋𝑓 = 120𝜋; 𝜔0 = 1 pu; 𝑃𝑚 = 0.7 pu; 𝐷 =

0.5 pu; 2𝐻 = 2.53 𝑀𝑊𝑠/𝑀𝑉𝐴; 𝑣𝑓 = 4.1468; 𝑇𝑑0
′ = 4.75 s; 

𝑇𝑞0
′ = 1.5 s; 𝑥𝑑 = 5 pu; 𝑥𝑞 = 4.88 pu; 𝑥𝑑

′ = 0.928 pu; 𝑥𝑞
′ =

2.86 pu. 

TABLE II: EXPECTED MODEL IDENTIFICATION FOR NONLINEAR (TRIGONOMETRIC) TERMS IN RIGHT-SIDE OF DIFFERENTIAL EQUATIONS 

 𝛿̇ 𝜔̇ 𝑒𝑞
′̇  𝑒𝑑

′̇  𝑃𝑔 𝑉 𝜃 
Const. 

−Ω𝑏 = −2𝜋60 = −376.99 𝑃𝑚

2𝐻
+

𝐷

𝐻
= 0.4743 

𝑣𝑓

𝑇𝑑0
′ = 0.8730 0 0 0 0 

𝛿 0 0 0 0 0 0 0 

𝜔 Ω𝑏 = 2𝜋60 = 376.99 −
𝐷

2𝐻
= −0.1976 0 0 0 0 0 

𝑒𝑞
′  0 0 −1 −

(𝑥𝑑 − 𝑥𝑑
′ )

𝑥𝑑
′ 𝑇𝑑0

′ = −1.134 −1 −
(𝑥𝑞 − 𝑥𝑞

′ )

𝑥𝑑
′ 𝑞𝑇𝑞0

′ = −1.1375 0 0 0 

𝑒𝑑
′  0 0 0 0 0 0 0 

𝑃𝑔 0 −
1

2𝐻
= −0.3953 0 0 1 0 0 

𝑉 0 0 0 0 0 1 0 
𝜃 0 0 0 0 0 0 1 

𝑉cos(𝛿 − 𝜃) 0 0 
(𝑥𝑑 − 𝑥𝑑

′ )

𝑥𝑑
′ 𝑇𝑑0

′ = 0.9238 0 0 0 0 

𝑉sin(𝛿 − 𝜃) 0 0 0 
(𝑥𝑞 − 𝑥𝑞

′ )

𝑥𝑞
′ 𝑇𝑞0

′ = −0.4709 0 0 0 

 
a. SINDy algorithm 

 

 
b. Lasso software  

Figure 2.  Model identification for nonlinear (trigonometric) terms in right-side of differential equations.
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