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Abstract—The paper describes a data-driven system
identification method tailored to power systems and
demonstrated on models of synchronous generators (SGs).
In this work, we extend the recent sparse identification of
nonlinear dynamics (SINDy) modeling procedure to
include the effects of exogenous signals and nonlinear
trigonometric terms in the library of elements. We show
that the resulting framework requires fairly little in terms
of data, and is computationally efficient and robust to
noise, making it a viable candidate for online identification
in response to rapid system changes. The proposed method
also shows improved performance over linear data-driven
modeling. While the proposed procedure is illustrated on a
SG example in a multi-machine benchmark, it is directly
applicable to the identification of other system components
(e.g., dynamic loads) in large power systems.

Index Terms— Power system, Dynamic model,
identification, Nonlinear dynamics, Sparse model.

System

1. INTRODUCTION

Dynamic modeling of power systems has received
increased attention lately due to changes in components (such
as inverter-connected sources and loads) and in data availability
(such as Phasor Measurement Units—PMUs). While there
exists a plethora of dynamical models for components and
interconnections, their practical identifiability from data is a
long-standing problem. Our own efforts in this direction have
focused on model reduction and global identifiability of models
in transient stability studies [1], and have provided some new
connections with analytical tools such as the singular
perturbation theory. In this paper, we open another line of
inquiry—assuming we have a practically identifiable model,
and an optimized set of parameters for it, what can be said about
the inevitable discrepancies between the model predictions and
the measurements? In other words, is there a structure in the
error signals that can be utilized to possibly amend the model,
while maintaining identifiability? This is tantamount to
appending the original model with new parts that are driven by
the actual data. The tool that we explore for this purpose
belongs to the family of symbolic regression methods.

Symbolic regression parallels the idea of standard
regression in searching a space for the best fit to data but
operates in a space of mathematical expressions to derive a
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model that best matches a given set of data in terms of accuracy
and simplicity (parsimony). The candidate expressions are
formed by combining building blocks that comprise functions,
constants, and other mathematical expressions. Challenges
come from the large space of candidate models and the (likely)
non-uniqueness of solutions.

We focus on transient stability, which focuses on system-
level behavior, and de-emphasizes microscopic (component-
level) accuracy. This means that we do not have to explore all
possible microscopic dynamics, enabling us to focus on a much
smaller, nested hierarchy of models. We use physical intuition
of the phenomena to restrict the set of building blocks to include
in the algorithm. This decision could potentially limit
performance since there is no theoretical guarantee of
completeness [2]. However, we show in our application section
that our observed performance is encouraging.

Our point of departure is the equation-based modeling
framework [3], where authors developed an algorithm for the
sparse identification of nonlinear dynamics (SINDy) from data
relying on the fact that most dynamical systems of interest have
relatively few nonlinear terms, each belonging to a family (i.e.,
polynomial nonlinearities, etc.). This method uses sparsity
promoting techniques to find models that automatically balance
sparsity in the number of terms with model accuracy. This
algorithm is extended to include controls in [4].

In this paper, we use a modified SINDy algorithm to
identify system-wide aspects of dynamic components (in our
case a SG example). The model identification is performed
from locally recorded measurements only. Having in mind the
structure of the standard power system equations, the library
of dynamical elements in SINDy is extended with state
multiplication and trigonometric functions of states and
external measurements.

The outline of the paper is as follows: in Section Il we give
the problem formulation; Section III describes the SINDy
algorithm with extended the library of elements, while Section
IV describes the SINDy’s extension with external
measurements; Section V shows the steps and convergence
details of SINDy algorithm; the proposed algorithm is applied
to a SG example in Section VI, Section VII presents
conclusions. The Appendix contains basic SG’s parameters
adapted for SINDy-based model identification.
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II. PROBLEM FORMULATION
The Differential Algebraic Equation (DAE) based form of
power system dynamical models used in transient stability is [1]
x =dx/dt = f(x,2,t) (1)
0=g(xz1t) ()
where x is the vector of (differential) state variables, z are the
algebraic variables, and ¢ is the (scalar) time variable. The
system measurement vector is assumed to be of the form
y = h(x,z1). 3)
To apply the SINDy framework, we formally transform into

ODE form by solving for z in (2) and substituting to (1) and (3),
we have

xzf’(x‘t) (la)
y=h(x1). (37)
For power system-based equations, for derivation of (1°)
and (3°), see, for example [9].

III.  SPARSE IDENTIFICATION OF NONLINEAR DYNAMICS
(SINDY)

The SINDy algorithm seeks to identify a fully nonlinear
dynamical system, x (1°) from measurement data set, y (3°). It
relies on the fact that many dynamical systems have relatively
few terms in the right-hand side of the governing equations (17)
and (3’). Based on standard equations in [9], an appropriate
library of candidate nonlinear functions is as follows

1
X
Tiy) —
0°(X) = ——sin(X) —— @
cos(X) ——
where
X1
X2
X=|. )
xn
Our dynamical model may be written in the following form
X =20"(X) (6)

The matrix E in the above library is sparse for most
dynamical systems (including power system dynamics). For
identification of E, the sparse (symbolic) regression may be
applied [4-6]. The selection of the library of candidate
dynamics is a crucial choice in the SINDy algorithm. Note that
in a power system case mixed nonlinear (trigonometric)
multiplications of variables are possible (for example,
Vsin(6 — 0) and Vcos(§ — 8)—see [9]). The library may be
simply extended to support other nonlinearities (for example a
saturation).

Each row of (6) represents a row in (1) and a sparse vector
of coefficients §; corresponding to the k-th row of E can be
found using a sparse regression algorithm [4], as

Sk = ar%minllik =0T X3 + 2211kl )
k
where x;, represents kth row of X (5). The penalizing || - ||,

term promotes sparsity in the vector &. The parameter A is
selected to identify the optimal model that best balances low
model complexity with accuracy. A coarse sweep of A is
performed to identify the rough order of magnitude, where
terms are eliminated and where error begins to increase [7].

IV. THE SINDY WITH MEASUREMENTS

The SINDy model can be extended to include input
"measurements" as a part of the DAEs prediction model. These,
in turn, can also come from a fixed (say physics-based) portion
of the model. Then, the nonlinear dynamical system with input
measurements (y) from (1°) is

X=f”(x,y.t) (1”)
y=h@x10 (3™)

The SINDY algorithm is simply generalized to include
actuation, as this merely requires building a larger library

0T (X,Y) of candidate functions that include the measurement
set (Y)

[ﬂ =20T(X,Y) (6°)

&, = argmin ||[;cl]k - §07T(X,Y)

2
+20&N )
Sk 2

V. THE SINDY ALGORITHM AND CONVERGENCE
Eq. (7°) can be rewritten as
x = argmin||Ax — bl|3 + 2?||x]|, 7
X
where x € R" is unknown (x = &) associated with vector of

observations (b = [;] ) in R™ and A € R™*™ is a matrix with
k
m>n [A=0T(X,V)].

The SINDy algorithm is [8]
e Calculate

x0 = A'b (8)
where AT is a matrix A pseudo-inverse.
e Solve
sk={jenl:|xf| =4}, k=0 )
xktt = argmin  |[Ax—b|3, k=0 (10)

x€R™:supp(x)=Sk,
The convergence results of the SINDy algorithm may be
summarized in [8, Theorem 2.10]:
e x¥ converges to a fixed point of the iterative scheme (8)-(10)
in at most n steps;
¢ a fixed point of the iterative scheme is a local minimizer of
the objective function (7).
e a global minimizer of objective function (7”) is a fixed point
of the iterative scheme;
o x* strictly decreases the objective function (7°) unless the
iterates are stationary.

VI.  APPLICATION

We consider transient stability-related models in the DAE
form in a Matlab-derived simulation environment. Our Matlab
code is fully general in the sense that it allows for a variety of
recorded measurements:

- rotor angle, 6 (t) and speed, w(t);

- active, P, (t) and reactive, Q4 (t) power generations;

- nodal voltage magnitude, V (t) and angle, 6(t).

These measurements are obtained by simulations on the
IEEE 14-bus test example [9, Fig. 2.4]. We start transients
following the three-phase short circuit in bus 4, which cleared
after 250 ms. Note that the size of the test system is mostly
irrelevant for this study because the proposed methodology is
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based only on local measurements at the connection point with
the rest of the power system. We deal with the model of a
synchronous generator (SG)—for its mathematical description
and used parameters, see [9].

The proposed model identification approach may be applied
for the dynamic model reduction, where the time variation of
state variables, x(t) is obtained from simulations by the
detailed model. Derivatives x;(t) used in (7) are obtained
numerically (backward differencing) from data.

A. Linear Terms in Right-side of Differential Equations

A first group of tests is performed with an aim for
identification of four single (8, @, e"’z, and e'é) and two paired
(8&a and éc'; &e."i) differential equations in the fourth-order SG
model from [9], using only linear terms in the differential

equations. The "fictive current measurements” i; and i, are

then calculated, assuming that eg (t)&eg(t) are known.
Optimization problem (7) is solved by:

1) SINDy algorithm [4, 8],

2) Lasso software [10].

Note that output from Lasso for the constant terms is always
equal to zero, as Lasso tries to remove those predictors (input
variables) which no have additional information about the
output (important for the state prediction). Thus, constant terms
in the mechanical equations (Qp, P,/2H + D/2H, and
vr/Tgo) are excluded from Lasso optimization.

Results obtained for six different cases are presented in
Table I, while the transient responses for SG in bus 4 are shown
in Figure 1. For numerical integration, the Matlab’s ode45
function is extended with additional external inputs (in our case,
with the measurements).

TABLE I: EXPECTED MODEL IDENTIFICATION FOR LINEAR TERMS IN RIGHT-SIDE OF DIFFERENTIAL EQUATIONS

States Used Expected coefficients Identified, SINDy Identified, Lasso
Measurem. Constants (C) Variables (V) Measurements (M) C \% M C \% M
) —QO, = —2160 = —376.99 0 Q, = 2m60 =376.99 | —376.99 0 376.99 |—-376.99 0 376.99
P, D D 1
o P, my = —o. ——=0.198 ——=10.395 0.474 —0.197 | 0.384 | 0474 | —0.177 | 0.376
9 20 o = 0474 2H 2H
; 3—0873 —iz—ozn xd_x:i
e iq S ! : ———F = —-0.857 0.873 —0.210 | —0.857 ] 0.873 | —0.210 | —0.857
Tao Tao T
. L Xg— X,
e, iy 0 e 0 | -0682]| 1347 | 0 |-0682| 1347
q0 qu
8 —Q, = 2160 = —376.99 0 Q, = 2m60 =376.99 | —376.99 0 376.99 |-376.99 0 376.99
, P P, D D
g — 4+ —=10474 ——=-0.198 —— =-0.395 - - -
) oH + 20 20 o 0.433 0.164 | —0.384 | 0.474 0 0.374
i v - —0.211| _Xd x:i
. ¢ f — 0873 - —¢ = —0.857 —0.857 —0.857
e T’ do T a0 0.873 —0.210 0.873 | —0.190
do
i 0 1.861 1.845
q
; 0 ——— = —-0.667 0 —-0.783 -0.523
; ¢ 40 Xq— Xg 0 0 |-0653
e iy — =1347 —0.653 | 1.347 1.347
g0
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Figure 1.
B. Nonlinear (Trigonometric) Terms in Right-side of DAEs

The second group of tests is performed with the fourth-order
dynamical model [9]; for this model, the measurements F,(t),
V(t) and 6(t) are simulations with PSAT-based dynamic
model [9]. [Note that measurement P, (t) may be calculated and
included directly into differential equations (as a function of
measurements V(t), 6(t), and state variables eq(t) and ey (t).
However, in this case, the quadratic sine and cosine terms need
to be included in the model library [9].

In this case, there are 7 variables in vector X (5) (6, w, e,’I,
eg, V, 6, and F)) and 10 elements in a library of candidate
nonlinear functions in O (X) (4) (Const., §, w, eqs ey P, V.0,
Vcos(é — 0), and Vsin(é — 8)—for details, see [9].

Model parameters expected from this analysis are shown in
Table II. Results obtained by the previously mentioned two
solvers: 1) SINDy algorithm [4, 8], and 2) Lasso software [10])
are compared regarding the Mean Squared Error (MSE)
between measured and identified state variables:

1) SINDy algorithm MSE = 262.496
2) Lasso software MSE = 757064.255

The results for both solvers are shown in Figure 2. From
these results, we may observe that the identification matrix ()
is the full matrix and MSE is still very high (especially for Lasso
algorithm); a sparsity in both software is additionally induced
through the use of £, regularization in (7). The number of non-
zero elements in the identification matrix (£) in Lasso software
may be controlled by the parameter DFmax (maximum number
of non-zero coefficients in the model). The reported MSE is still
high in both cases. Additionally, the identified model in terms
of elements is different from the one expected in Table II; this
is especially important for trigonometric terms.

From the above results, we can conclude that the list of
parameters for identification needs to be shortened. While we
omit the details here for space reasons, by fixing zero elements
in mechanical equations, the calculated MSE (by Matlab

Transient responses for analyzed cases from Table I

software) is decreased to 0.048. Optimization in SINDy
algorithm (7) is least-square based and the measurement noise
does not have significant influence on the optimization results.

VIL

In this paper, we have demonstrated the applicability of the
sparse identification of nonlinear dynamics (SINDy) algorithm
for data-driven identification of dynamic models in power
systems. The SINDy model has been extended to discover the
nonlinear model (described by state multiplications and
trigonometric terms) with exogenous signals measurements.
Since the proposed extension only identifies a few "active"
terms in the dynamic responses, it requires less data than other
leading machine learning techniques and prevents overfitting.
The proposed model identifies strongly nonlinear systems from
local measurement data only, and the model identification is
fast enough to discover models in real-time, even in response to
abrupt changes to the model (for example, for outages or short-
circuits). Note that a critical step in the proposed model is the
choice of library functions, which is based on the expert
knowledge. A poor choice of library functions will generally
yield a non-sparse model.

Although the preliminary application of the proposed model
is encouraging, this work motivates several future extensions
that are possible within the developed framework:

e Identification of high-dimensional dynamic models with a
low-dimensional attractor (the model reduction).

e The model identification with limited measurement set.

e Inclusion of physical constraints in a known model structure,
which may benefit real-time identification (constrained
sparse identification [11]). It is possible to use a constrained
least-squares algorithm, for example, to enforce parameter
limits. Enforcing constraints has the potential to further
reduce the amount of data required to identify models, and to
improve numeric in some cases.

e Regression models for the dynamic response prediction.

CONCLUSION
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The proposed framework has significant potential for real-
time identification of nonlinear power system dynamic models,
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6 0 0 0 0 0 0 1
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a. SINDy algorithm
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Figure 2. Model identification for nonlinear (trigonometric) terms in right-side of differential equations.

b. Lasso software
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