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Abstract. The flight of monarch butterflies is characterized by a relatively large wing,
flapping at a relatively low frequency coupled with abdomen undulation. This paper presents
the dynamics of a flapping wing flyer that can be applied to the coupled motion of the
wing, body, and abdomen at the monarch butterfly scale, which is formulated directly on the
configuration manifold. The resulting thorax and abdomen motion as well as the resultant
forces are consistent with the flight of a live monarch butterfly. Based on these, beneficial
effects of the abdomen undulation in the flight of monarch butterflies are illustrated. For
both hover and forward-climbing trajectories, the abdomen undulation results in a reduction
of the energy and power consumption. Furthermore, the Floquet stability analysis shows that
the periodic orbits associated with both flight modes are stable. In particular, the abdomen
undulation improves the stability. Compared to the dynamics of hawkmoth, bumblebee, and
fruitfly models, the monarch possesses superior stability properties.

Keywords: insect flight, abdomen, energy consumption, dynamics and stability

Submitted to: Bioinspir. Biomim.

1. Introduction

The monarch butterfly is one of the most popular butterfly species in North America with wing
lengths of around 4 cm. They exhibit remarkable flight characteristics [1], migrating annually
from North America to Mexico - up to 4000 km [2–4], the longest flight range among insects
[2, 5–7]. An accurate model of the butterfly dynamics can contribute to our understanding of
the long-range monarch migration. This, in turn, can potentially inform the development of
long-range micro flying robots. However, the physical mechanism enabling this long-range
flight is not well understood yet.

Compared to the wealth of research on the flight of insects such as flies [8, 9], bees
[10, 11], dragonflies [12–16], or birds and bats [17], butterfly flight remains inadequately
understood due to their many unique characteristics. Unlike most insects, the fore and
hindwings of butterflies are relatively large and move in sync [18]. Butterflies are extremely
evasive with agile maneuvers [19–22] and body undulations with closely coupled wing-body
interaction [21, 23, 24]. The butterfly body exhibits considerable vertical oscillation during
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flight due to the instantaneous change in wing shape and inertia [23, 25], resulting in a bumpy
flight trajectory.

The main obstacle in discovering the long-range flight mechanisms in the monarch flight
is this highly coupled dynamics of the slowly flapping motion and the body. The large wings
continuously rotate during flight, which is also affected by the body dynamics. Furthermore,
the thorax of the monarchs continuously pitches while their abdomen moves relative to the
thorax during flight. As a consequence, most flight dynamic equations of motion and control
schemes that have been derived in the literature cannot be used to study the butterfly flight.
More specifically, the conventional models exploit the large disparity in the time scales of
wingbeat frequency and body dynamics assuming smaller insects such as fruit flies and
bumblebees [26, 27]. Furthermore, many flapping wing dynamics models are based on
the common simplified formulation where the nonlinear time-varying flapping dynamics are
transformed into linear time-invariant systems by considering small perturbations averaged
over the period of flapping [28–31]. These approaches are not suitable to analyze the low-
frequency flapping dynamics of monarch butterflies.

There are several key open research questions associated with the effects of dynamics on
the butterfly flight. Whereas the pitching motion of smaller flying insects play a critical role
in aerodynamic force generation [8, 17], most butterfly wings are structurally restricted from
pitching [25]. It is presumed that the body attitude and vertical displacement benefits the
aerodynamic force generation. A simple flapping wing motions affects the body dynamics,
which alter the effective angle of attack and, hence, the flapping wing aerodynamics. This
mechanism was illustrated by an experiment involving a simple flapping butterfly inspired
ornithopter without a tail, which could fly forward passively without a feedback controller
by adjusting the center of mass [25]. However, there are also reports that contradict these
findings and beneficial effects. Flight of model butterflies was shown to be unstable under
periodic flapping motion, because the body pitch angle diverged [32, 33]. The motion of
the abdomen had to be actively controlled to stabilize the butterfly flight [33]. Furthermore,
the abdominal undulation can potentially redirect lift forces for effective flight control [34].
However, the effects of the abdominal undulation on the energy consumption and stability are
unknown.

The objective of this paper is to derive, validate, and analyze a dynamic model that can
characterize the monarch butterfly flight. Here, we focus on the question if the abdominal
motion relative to the thorax can save power or enhance stability. We also test the hypothesis
if the undulating motion of the abdomen can be purely passive. If the mechanism enabling the
forward flight of butterflies is passive, or partly passive, the power consumption is expected
to be lower than an actively controlled flight.

To answer these questions, we model a flapping wing flyer as articulated rigid bodies,
where two wings and an abdomen are connected to a thorax via spherical joints. An intrinsic
form of Lagrangian mechanics is developed to include and study the inertial effects of the
relative rotation between each part. These are developed on the nonlinear configuration
manifold in a global fashion such that large angle rotational maneuvers can be analyzed
without singularities and ambiguities inherent to the common attitude parameterizations.
Further, the resulting elegant, structured form of the equations of motion can be easily utilized
in stability analysis and controller design.

To model the flapping wing aerodynamics, a quasi-steady blade element model is
formulated without relying on the common assumption that the flapping frequency is
sufficiently large. For the butterfly flight, the aerodynamic forces generated by the wing vary
along the spanwise direction as the velocity generated by the flapping is comparable to the
velocity of the thorax. We find the expression for the angle of attack at each infinitesimal
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chord of the wing as a function of the wing kinematics and the rotation and translation of the
body, which is then utilized to compute the aerodynamic forces and moments. In short, the
proposed dynamic model captures the unique characteristics of the butterfly flight dynamics
where the flapping of large wings are coupled with the thorax and the abdomen undulation.
More specifically, it can represent the effects of the mass distribution of the relatively large
wing, the inertial coupling with the abdomen undulation, and the low frequency flapping
aerodynamics coupled with the body motion. The live monarch butterfly flight is measured
using a motion-tracking system [24], and the corresponding wing kinematics and the body
undulations are extracted.

Next, based on the proposed dynamic model of butterflies, we compute a particular wing
kinematics and body/abdomen undulation required to complete a specific flight maneuver,
namely hovering flight and forward-climbing flight. It is formulated as an optimization
problem to satisfy constraints required for the selected maneuver, while minimizing a
performance index characterizing energy and power consumption.

Finally, we analyze the stability of periodic orbits constructed above utilizing the Floquet
theory [35]. After analyzing the effects of abdomen undulation on stability, the stability of the
live monarch butterfly flight is discussed. These are further compared against other insects
with varying flapping frequencies and wing sizes.

In short, the main contributions of this paper are threefold: proposing a new dynamic
model that can characterize the unique properties of butterfly, analyzing the flight dynamics
of live monarch butterfly, and characterizing the beneficial effects of abdomen undulation in
energy and stability.

2. Dynamics of Flapping-Wing Flyer

In this section, we present a dynamic model of a flapping-wing unmanned aerial vehicle that
can characterize the flight of monarch butterflies, where wing flapping motion is coupled
with abdomen undulation. The standard notations utilized in this paper are listed here for
convenience. First, SO(3) = {R ∈ R3×3 | RTR = I, det(R) = 1} denotes the rotation
group in three dimensions, and so(3) = {A ∈ R3×3 | A = −AT } is the corresponding
Lie algebra. Define the hat map ∧ : R3 → s0(3) as x̂y = x × y for any x, y ∈ R3, along
with its inverse the vee map, ∨ : so(3) → R3. Next, the n-dimensional i-th standard basis
of Rn is represented by ei ∈ Rn , for instance, e1 = (1, 0, . . . , 0) ∈ Rn. Moreover, all the
units used are in SI, e.g., kg, m, s, and rad, unless specified otherwise. Furthermore, for a
three dimensional Euclidean vector, v, its 1st component v1 corresponds to the x-axis, 2nd
component v2 to the y-axis and the 3rd component v3 to the z-axis.

Full derivation and details of this model are lengthy and presented in the online
supplementary material. The morphological parameters along with the inertial properties of
real butterflies which are used as input for the results presented in the later sections can be
found in the online supplementary material.

2.1. Flapping Wing Kinematics

The articulated rigid body model of a flapping wing flyer consists of a body, an abdomen, and
two wings attached to the body. Here, the body refers to a single rigid body which integrates
the head and the thorax. Also, we do not distinguish hindwings from forewings.

An inertial frame FI = {ix, iy, iz} is defined, which is compatible to the standard NED
(north-east-down) frame in flight mechanics. The various components of the model relative
to this frame are the body, right wing, left wing, and abdomen.
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Figure 1. Inertial frame, body fixed frame, wing frame and the stroke frame.

For the body (head/thorax), a body-fixed frame FB = {bx,by,bz} (fig. 1.(a)) is
attached at center of mass of the body which is located at x ∈ R3 in FI . The kinematics
of its attitude, R ∈ SO(3), is

Ṙ = RΩ̂, (1)

where Ω ∈ R3 is its angular velocity resolved in the body-fixed frame.
The motion of the right wing is described in a frame FR = {rx, ry, rz} (fig. 1.(b)),

attached to the right wing root. The stroke frame, FS = {sx, sy, sz} (fig. 1.(c)), is obtained
by translating FB to the center of wing roots, and rotating it about by by the stroke angle, β.
Denote the fixed vector joining the origins of FB and FR as µR ∈ R3.

φ > 0

sy

ry

(a) flapping angle,
φR ∈ [−π, π)

θ > 0

rx

sx

(b) pitch angle,
θR ∈ [−π, π)

ψ > 0 ry

sy

(c) deviation angle,
ψR ∈ [−π, π)

Figure 2. Euler angles: positive values are indicated from FS (green) to FR (red).

Let QR ∈ SO(3) be the attitude of the right wing relative to FS . It can be represented
by the combination of 1–3–2 Euler angles (φR(t), ψR(t), θR(t)) as

QR = exp(βê2) exp(φRê1) exp(−ψRê3) exp(θRê2). (2)

Figure 2 illustrates the physical interpretations of these angles. Moreover, its time-derivative
is Q̇R = QRΩ̂R for ΩR ∈ R3 resolved in the right wing frame.

Similarly, the attitude of the left wing can be decomposed as,

QL = exp(βê2) exp(−φLê1) exp(ψLê3) exp(θLê2), (3)

along with Q̇L = QLΩ̂L for ΩL ∈ R3.
The frame attached to the abdomen FA = {ax,ay,az} is connected to the main body

through a spherical joint. Hence, its orientation is identical to the body when there is no
relative rotation. Denote its relative attitude asQA ∈ SO(3) with Q̇A = QAΩ̂A for ΩA ∈ R3.
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Since the motion of the flapping wing model is influenced by the wing, we parameterize
the wing kinematics [36]. We describe the three components - flapping angle, the pitch angle,
and the deviation angle. Let f be the flapping frequency and T = 1

f be the corresponding
time period.

The flapping angle, φ, is parameterized by the expression,

φ(t) =
φm

sin−1 φK
sin−1(φK cos(2πft)) + φ0, (4)

where φm is the amplitude, φ0 is the offset, and 0 < φK ≤ 1 characterizes shape of the
waveform (φK → 0 implies sinusoidal; φK → 1 implies triangular). Considering the
above expression along with the physical interpretation in Figure 2(a), we observe that when
0 ≤ t ≤ T

2 upstroke occurs and when T
2 ≤ t ≤ T downstroke occurs.

The pitch angle, θ, is parameterized by the expression,

θ(t) =
θm

tanh θC
tanh(θC sin(2πft+ θa)) + θ0, (5)

where θm is the amplitude, θ0 is the offset, θC ∈ (0,∞) characterizes shape of the waveform
(θC → 0 implies sinusoidal; θC → ∞ implies step function), and θa ∈ (−π, π) is the phase
offset.

The deviation angle, ψ, can be written as,

ψ(t) = ψm cos(2πψNft+ ψa) + ψ0, (6)

where ψm is the amplitude, ψ0 is the offset, and ψa ∈ (−π, π) is the phase offset. ψN takes
the value of either 1 or 2 which represent the number of oscillations per flapping period.

Live monarch butterflies in free flight utilize both their body and the abdomen with active
pitching motion (Section 2.4). Hence, in this model they are assumed to oscillate accordingly.
That is, the body pitch angle is given by,

θB(t) = θBm
cos (2πft+ θBa

) + θB0
, (7)

characterized by the parameters θBm
, θBa

θB0
∈ R, which are the amplitude, phase

offset, and offset, respectively. Utilizing this, the attitude of the body can be expressed as
R(t) = exp(θB(t)ê2). The relative pitch of the abdomen is described likewise,

θA(t) = θAm cos (2πft+ θAa) + θA0 , (8)

with θAm
, θAa

, θA0
∈ R, where the subscript are the same as for the abdomen, and the

corresponding relative attitude of the abdomen is given by QA(t) = exp(θA(t)ê2).

2.2. Blade-Element Quasi-Steady Aerodynamics Model

To obtain dynamics of the system, the wing aerodynamic forces and moments should be
evaluated. Along with a quasi-steady aerodynamics assumption, the blade-element theory
is utilized [37]. More explicitly, it implies that the aerodynamic force generated by an
infinitesimal chord is independent of the span-wise velocity component, and that the force
and moment generated are equivalent to those for steady motion at the same instantaneous
velocity and angle of attack.

Only the expressions for the right wing are mentioned since similar ones can be obtained
for the left wing. Consider ρf as the atmospheric density, and CL, CD as the lift and drag
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coefficients, respectively. We utilize the classical experimental results [8, 38] to model the
force coefficients as

CL(α) = 0.225 + 1.58 sin((2.13α◦ − 7.2)
π

180
), (9)

CD(α) = 1.92− 1.55 cos((2.04α◦ − 9.82)
π

180
), (10)

where α◦ = α 180
π . The lift LR, drag DR, and aerodynamic moment MR generated by the

right wing are

LR(r) =

∫ l

0

1

2
ρfU

2
RCL(α)c sgn(eT1 URe

T
3 UR)

e2 × UR
‖e2 × UR‖

dr

=

∫ l

0

1

2
ρfCL(α)c sgn(eT1 URe

T
3 UR)(e2 × UR)‖UR‖dr, (11)

DR(r) = −
∫ l

0

1

2
ρfCD(α(r))c(r)‖UR(r)‖UR(r)dr, (12)

MR(r) =

∫ l

0

re2 × (dLR + dDR), (13)

where r ∈ R is the distance between the wing root and a point on the wing along spanwise
direction, l ∈ R is the wing span, UR ∈ R is the velocity of the aerodynamic center at r, and
α ∈ R is the angle of attack, defined, respectively, as

UR(r) = (I3×3 − e2eT2 )QTR(RT ẋ+ Ω× µR) + r(QRΩ + ΩR)× e2, (14)

αR(r) = cos−1(
|eT1 UR(r)|
‖UR(r)‖

). (15)

The empirical results for CL and CD in equations (9) and (10) were based on a fruit
fly wing geometry and wing motion, whereas we model the monarch wing geometry and
motion. There are two main considerations related to these differences: i) The difference
in the wing shape results in a spanwise variation in the chord c(r). Dickinson et al. [8]
measured the lift L and drag D, which they normalized by the wing area to obtain CL and
CD. Because of the difference in the wing shape and wing motion, we use the blade element
approach to account for the spanwise variations in the aerodynamic parameters, e.g., relative
velocity UR and angle of attack α, as shown in equations (11) and (12). In fact, (11) and
(12) reduce to those used by Dickinson et al. (1999), when the linear velocity and angular
velocity of the body as well as the wind velocity are small compared to the wing velocity.
ii) The difference in the size and motion results in a different Reynolds number. In our
study, we define the Reynolds number based on wing length R and mean wingtip velocity
Uref , such that Re = ρfUref l/µ, where µ is the dynamic viscosity. Although there is a large
difference in the Reynolds number between the fruit fly (Re ≈ 100) and the monarch butterfly
(Re ≈ 11500) in our study, multiple previous studies utilize the aerodynamic model of Sane
and Dickinson [39] or Dickinson et al. [8] to investigate the stability and control of insects,
larger than fruit flies [27, 29, 40–42]. In addition, most, if not all, studies that solve Navier-
Stokes equations to model a butterfly flight assume a Reynolds number that is much lower
than those relevant to monarch butterflies [32, 43–45].

Additionally, the monarchs have both fore- and hindwings, flapping in unison. Therefore,
we consider the fore- and hindwings as a unified wing coupled together. This approach was
used in literature for butterflies [32, 46, 46] and bees [47].
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When the flapping frequency is sufficiently large, or equivalently when ΩR is relatively
large compared with other terms, it can be simply approximated by UR(r) ≈ rΩR × e2,
which is often used for relatively fast flapping insect models, e.g. flies or bees. However, the
flapping frequency of a butterfly is about 10 Hz, where the contribution of the flapping toUR is
comparable to other terms caused by the body velocity. These expressions include spanwise
variations of aerodynamic parameters like relative velocity and angle of attack, which are
essential for accurate estimation corresponding to low frequency flapping of large wings.

The projected surface area of the abdomen as well as the velocity magnitude of the
abdominal motion are much smaller than those of the wings. The aerodynamic forces are
proportional to the wing area and velocity magnitude squared. Therefore, the aerodynamic
forces generated by the abdomen are much smaller than those by the wings. Since the
aerodynamic forces on the abdomen are insignificant compared to the forces on the wings,
their contribution to aerodynamic forces and moments is neglected [48].

2.3. Geometric Formulation of Flapping Wing Dynamics

The dynamics of the proposed flapping wing model is formulated by Lagrangian mechanics
on a manifold [49]. A single configuration of the system consists of g = (x,R,QR, QL, QA)

which evolves on the Lie group G = R3 × SO(3)
4, Its time variation is characterized by

ξ = (ẋ,Ω,ΩR,ΩL,ΩA) in the Lie algebra, g = R3 × so(3)4 ' R3 × (R3)4.
Using these notations, the kinematics equations can be generalized as,

ġ = gξ. (16)

Now, denote the symmetric, positive-definite inertia tensor by J : G × g → g∗, and define
(Kg(ξ))(·) : G × g → g∗ such that T∗eLg · DgJg(ξ) · χ = (Kg(ξ))(χ) = Kg(ξ)χ, where
T, L and D denote the tangential map, the left group action, and the derivative operator,
respectively. Essentially, Kg(ξ)χ corresponds to the directional derivative of Jg when g is
varied along the direction gχ.

Considering U : SO(3) → R as the potential field, define a Lagrangian L : G × g → R
as L(g, ξ) = 1

2 〈Jg(ξ), ξ〉 − U(g). From which, Euler–Lagrange equations can be formulated
as [49],

Jg(ξ̇) + Kg(ξ)ξ − ad∗ξ · Jg(ξ)−
1

2
K∗g(ξ)ξ + T∗eLgDgU(g) = f , (17)

where f ∈ R15 includes aerodynamic forces and internal torques. Here, moments acting on
each of the three joints (wings and abdomen) control the dynamics. The detailed expressions
for all the components involved can be found in the online supplementary material.

To simplify the mathematical analysis and the results obtained, it is assumed that
attitude of the wings, abdomen, and body are prescribed, i.e., (R(t), QR(t), QL(t), QA(t))
are considered as control variables determined as a function of time, instead of toques acting
on the joint. Let m ∈ R be the total mass of the vehicle, g ∈ R be the acceleration due to
gravity and Fi = Li + Di ∈ R3 be the net aerodynamic force generated by each sub-part.
Under the assumption, the position dynamics are simplified into

mẍ+
∑

i∈{R,L,A}

{
Ji12Ω̇ + Ji13Ω̇i + Ki12Ω + Ki13Ωi

}
= R

∑
i∈{R,L,A}

QiFi +mge3. (18)

This equation simply prescribes the evolution of vehicle position under the influence of
coupling between various parts, and external forces and moments (FA = 0 as mentioned in the
previous sub-section). Then using (17) the control torques acting on the joints, (τR, τL, τA),
can be reconstructed.
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Figure 3. Monarch motion capture.

2.4. Comparison to Experimental Measurements of Freely Flying Monarchs

This dynamic model has been compared against the flight of live monarch butterfly acquired
by a motion capture system, following a well-documented procedure [24]. We attached twelve
customized reflective markers to a monarch as illustrated in Figure 3(a). The position of
each marker is measured by a VICON motion capture system at 200 Hz. As illustrated in
Figure 5(b), the actual flight trajectory is a slightly curved climbing. But, we analyze the
gathered data by assuming that it is a straight path in the subsequent development.

The time histories of marker positions are converted into (x,R,QR, QL, QA) as follows.
We let the origin of the body be at the center of T1 and T2. For the body attitudeR, we assume
that the first axis is along T1 − T2 and the second axis is parallel to the ground, i.e., there is
no body roll. This is reasonable as the measured flight trajectory is almost straight. For the
attitude of the abdomen, the first axis points from the center of A1 and A2 toward T2, and the
second axis is parallel to the ground. The resulting rotation matrix is left multiplied by RT to
obtain the relative attitude QA.

For the right wing attitude, we assume the wing root is located at the center of T1 and T2.
The wing plane always passes through the wing root exactly, and it is spanned by the three
markers on the right wing. However, due to the measurement errors and the flexibility of the
wing, those points did not exactly lie on a single plane. Instead, we find the normal vector
of the plane such that the sum of the squared distance between each marker and the plane is
minimized. The normal vector yields the third axis of FR. For the second axis, the vector
from the wing root to RW3 is projected on to the fitted plane. The first axis is determined by
the cross product of the second axis and the third axis. These yield the rotation matrix of the
right wing from the inertial frame, and by left multiplying RT , we obtain QR. The attitude of
the left wing, namely QL is constructed similarly. We find the stroke plane such that the sum
of the squared distance for QR(t)e2 and QL(t)e2 for varying t over the experiment period is
minimized.

Our results show that the right wing tip is ahead of the left wing tip (Figure 4(a)). This
might have been caused by the asymmetry of the particular monarch butterfly used in the
experiment, or the bias in the marker attachment. Instead of dealing with the asymmetry
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Figure 4. Monarch wing kinematics. The wing kinematics angles are in degrees.

in the left wing and the right wing, we multiply exp(7.77 π
180 ê3) to QR and QL such

that they become symmetric in the least square sense. The resulting stroke plane angle is
β = 25.42 deg. From the given β, and rotated QR(t), QL(t), we can determine the wing
kinematics angles (φR(t), θR(t), ψR(t), and (φL(t), θL(t), ψL(t)) according to equations (2)
and (3), respectively. These are illustrated in Figure 4. The wing kinematics angles for
the right wing are mostly consistent with the left wing, except the small deviation angle.
Assuming the symmetric wing kinematics, we take the average between the right wing and
the left wing and fitted with Fourier series to be used in the subsequent dynamic simulations.
The frequency of oscillation experimentally measured is fn = 10.2 Hz.

From the above wing kinematics angles and the body/abdomen attitude obtained by
the actual monarch butterfly, we numerically integrate the quasi-steady position dynamics,
namely equation (18). The corresponding results are compared against the experimental data.
These are illustrated in Figure 5. In general, the downstrokes generate the lift upward, and the
upstrokes generate thrust forward, while yielding a climbing trajectory with oscillation.

The proposed quasi-steady aerodynamic model generates greater lift and thrust, and
consequently causing higher climb rate and forward velocity. However, it is consistent with
the experimental data in a qualitative manner.

3. Beneficial Effects of Abdomen in Energy and Power

It has been shown that Monarch butterfly actively undulates its abdomen during flight. The
geometric formulation of the dynamics presented in the above section is particularly useful
to study the dynamic coupling between abdomen undulation and monarch flight. In this
section, we focus on the effects of abdomen in energy and power consumption for two flight
maneuvers.

We first find the wing kinematics and the abdomen undulation that yield a periodic
motion of the butterfly. This is formulated as a constrained optimization problem to minimize
a certain performance index representing variations of the energy and power over a period
while ensuring the boundary condition for periodicity. Then, the effects of abdomen are
analyzed. Two cases, namely a hovering flight and a climbing flight, are considered, but these
results are readily extended to other maneuvers.
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(a) Position trajectory of the body (in m) (b) Position of the body (in m)

(c) Velocity of the body (in m/s) (d) Resultant force in the body-fixed frame (in N)

(e) Wing kinematics angles (in deg) (f) Body pitch / Abdomen relative pitch (in deg)

Figure 5. Comparison between the proposed model (blue) and the experimental data (red);
shaded area corresponds to downstroke; the resultant force of the experiment is constructed by
the acceleration of the thorax, multiplied by the total mass and subtracted by the gravity.
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3.1. Construction of Periodic Motion

The optimization problem to construct a periodic motion is formulated as follows. First, the
objective function is

J = w1

∫ T

0

E(t)dt+ w2

∫ T

0

√ ∑
i∈{R,L,A}

‖τi‖2dt, (19)

where w1, w2 ∈ R are positive weighting factors, and E(t) ∈ R is the total energy of the
model given by

E(t) =
1

2
ξTJg(ξ)ξ + U(t), (20)

consisting of the kinetic energy and the gravitational potential energy. Hence, we are
minimizing the average energy of the system along with a factor corresponding to average
joint torques.

As the energy and the power are periodic, this essentially minimizes the variation of the
energy and the power integrated over the flapping period.

The optimization parameters are composed of the wing flapping frequency, parameters
that describe wing kinematics and body/abdomen undulation, and the initial velocity. More
specifically, the parameters are the flapping frequency f , stroke plane angle β, flapping angle
(φm, φK , φ0), pitch angle (θm, θC , θ0, θa), deviation angle (ψm, ψ0, ψa), body undulation
(θBm , θB0 , θBa), abdomen undulation (θAm , θA0 , θAa), and initial velocity ẋ(0). And ψN
is fixed at 2 oscillations per flapping period. It is also assumed that the left wing motion is
symmetric to the right wing.

Finally, the constraints enforced for periodicity are

x(0) = x(T )− xf , ẋ(0) = ẋ(T ), (21)

where xf ∈ R3 is the final position to be reached after a flapping cycle. For example,
xf = 0 for a hovering flight. Also, there are inequality constraints imposing bounds on
the optimization parameters, which are selected to ensure that the wing flapping and the
body/abdomen undulation are physically feasible, |φm|+ |φ0| < φmax.

We consider two cases of periodic motion, namely hovering around a particular point
and a forward climbing trajectory. Further, to study the effects of the abdomen, we
solve an additional optimization for each case, assuming that the abdomen is fixed to the
body, i.e., θA(t) = θA0

and compare the resulting energy and power consumption. The
corresponding optimization problems are numerically solved using global optimization tools,
namely ‘MultiStart’ in MATLAB ‡. Here, various local minimum problems are solved with
multiple start points to get an estimate of the global minimum. For all the simulations in
this paper, each local minimum problem is tackled using ‘fmincon’ with the ‘interior-point’
algorithm. The parameters are constrained by the imposed bounds (see Table 1) along with
nonlinear constraints like |φm|+ |φ0| < φmax.

3.2. Hovering Flight

To hover at a particular point, the position attained at the end of a flapping cycle should
be identical to the initial value, i.e., xf = x(0) = [0, 0, 0]Tm in (21). The parameters
obtained after optimization for this maneuver are enlisted in the second column of Table 1.

‡ https://github.com/fdcl-gwu/FWUAV/tree/insects exp/matlab
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(a) x, position trajectory of the body (in m) (b) ẋ, velocity of the body (in m/s)

(c) Wing kinematics angles (φ, θ, ψ) (in deg) (d) Body/relative abdomen pitch θB , θA (in deg)

(e) Energy (in J) and torque (in Nm) comparison (f) Power comparison (in W)

(g) Modeled torque (in Nm) with abdomen flapping

Figure 6. Hovering flight: (a)-(d) flight trajectory with abdomen undulation generated using
optimized parameters, shaded region corresponds to downstrokes; (e)-(f) comparison between
motion with abdomen undulation (blue) and without abdomen undulation (red).
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Table 1. Parameters obtained through optimization with weights in (19) as w1 =
1× 104, w2 = 1× 103; also the natural frequency experimentally observed is fn =
10.2 Hz, maximum flapping angle is taken to be φmax = 5π/12; specified data is for cases
with and without abdomen undulation for both hovering and forward climbing; all angles are
in radians.

Parameters Hovering undulation Forward climbing

Lower Upper With Without With Without
bound bound abdomen abdomen abdomen abdomen

f(Hz) 0.85fn 1.15fn 11.7220 11.6431 8.6954 8.7149
β −π/8 π/5 0.3057 0.3240 0.0492 0.1420
φm 0 π/2 0.6073 0.6217 1.0151 1.0184
φK 0 1 0.3077 0.3073 0.4013 0.5747
φ0 −π/3 π/36 0.0780 0.0566 0.0112 −0.0002
θm 0 4π/18 0.6657 0.6617 0.3154 0.3073
θC 0 3 1.4382 1.5745 1.4456 1.2895
θ0 −π/6 π/6 0.1642 0.1437 −0.1078 −0.1207
θa −π/2 π/2 −0.0896 0.0621 0.2665 0.3782
ψm 0 π/36 0.0018 0.0233 0.0043 0.0130
ψN —— —— 2 2 2 2
ψa −π π −0.4165 0.1970 −0.9208 −1.5263
ψ0 −π/36 π/36 0.0297 0.0000 −0.0064 −0.0008
θBm

0 π/12 0.2582 0.2371 0.2565 0.2390
θB0 π/12 π/3 0.9212 0.9350 0.7090 0.6061
θBa −π/2 −5π/12 −1.3364 −1.4701 −1.4722 −1.4775
θAm

0 π/12 0.1905 —— 0.1265 ——
θA0

−π/12 π/4 0.6806 0.6182 0.6465 0.5993
θAa

−7π/6 −π −3.6186 —— −3.3923 ——
ẋ1(0) (m/s) −2 2 −0.3069 −0.3256 1.1993 1.1928
ẋ2(0) (m/s) −2 2 0.0000 0.0000 0.0000 0.0000
ẋ3(0) (m/s) −2 2 −0.0543 −0.0359 −0.9058 −0.9322

J —— —— 0.0298 0.0313 0.5870 0.5899

The corresponding states are illustrated at Figure 6(a-d). In particular, there is about 90 deg
phase lag in the abdomen pitch angle, compared with the body pitch. More specifically, the
body pitch is almost synchronous to the wing flapping: the pitch angle increases over the
upstroke and it decreases over the downstroke. Due to the phase lag, the pitch angle of the
abdomen relative to the body is minimized over the upstroke, and it is maximized over the
downstroke. In order words, the tip of the abdomen bends more towards the head in the middle
of the downstroke as seen in Figure 7(g).

The third column of Table 1 shows a fictitious case when there is no abdomen undulation
for comparison. After the periodic motion is obtained, (17) is used to reconstruct the torques
required at the joints (τR, τL, τA). The corresponding power at the joints are evaluated as
PR = τTR (QRΩR), PA = τTA (QAΩA). When abdomen undulation is included, there is a
10.7% reduction in mean energy (Figure 6(e)) and a 6.1% reduction in total mean power
(Figure 6(f)) with a slightly lower torque input (Figure 6(e)). The optimal value of the
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(a) t = 0 (b) t = T/8 (c) t = 2T/8 (d) t = 3T/8

(e) t = 4T/8 (f) t = 5T/8 (g) t = 6T/8 (h) t = 7T/8

Figure 7. Snapshots of flapping maneuver for hovering: (a)-(e) correspond to the upstroke;
(e)-(h) and then back to (a) correspond to the downstroke; the resultant aerodynamic force at
each instance is illustrated by black arrows.

objective function decreases as a result. These illustrate the beneficial effects of abdomen
undulation in the energy and the power consumption.

Next, we test the question if the presented optimal abdomen undulation can be achieved
in a passive way. So the hypothesis is that all the beneficial effects that are shown in
the paper can be obtained without actively controlling the abdomen. Hence, we express
the torque at the joint between the abdomen and the body as the torque generated by a
torsional spring-damper system. More specifically, we consider the non-zero component
of the abdomen torque which is along the 2nd axis (τA2

= τA · e2 ∈ R) and model it as
τA2

(t) = −kθA(t) − c̃θ̇A(t) + τ0 for fixed constants k, c̃, τ0. Using a least squares fit for
the data, we obtain k = 7.5026× 10−5 N m rad−1, c̃ = 1.3595× 10−7 N m s rad−1, τ0 =
5.1370× 10−5 N m. Figure 6(g) illustrates that there is a good agreement between the actual
abdomen torque and the spring-damper model. This suggests the possibility of achieving the
beneficial effects with passive abdomen undulation excited by the coupling with the wing
flapping and the body motion.

3.3. Forward-climbing Flight

For the forward-climbing trajectory, we consider the position attained at the end of a cycle to
be, xf = [0.1654, 0, −0.0626]Tm. This value is motivated by the experimental results shown
in Section 2.4. The parameters obtained after optimization for this maneuver are enlisted at
the 4th column of Table 1, and the corresponding states are illustrated at Figure 8(a-d). The
resulting flapping motion is illustrated in Figure 9 as well. Also, the additional case without
abdomen undulation (5th column of Table 1) is presented with the variation of E, Ė and
power.
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(a) x, position trajectory of the body (in m) (b) ẋ, velocity of the body (in m/s)

(c) Wing kinematics angles (φ, θ, ψ) (in deg) (d) Body/relative abdomen pitch θB , θA (in deg)

(e) Energy (in J) and torque (in Nm) comparison (f) Power comparison (in W)

(g) Modeled torque (in Nm) with abdomen flapping

Figure 8. Forward climbing orbit with abdomen undulation generated using optimized
parameters, shaded region corresponds to downstrokes; and comparison between motion with
abdomen undulation (blue) and without abdomen undulation (red).
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(a) t = 0 (b) t = T/8 (c) t = 2T/8 (d) t = 3T/8

(e) t = 4T/8 (f) t = 5T/8 (g) t = 6T/8 (h) t = 7T/8

Figure 9. Snapshots of flapping maneuver for forward-climbing; (e)-(h) and then back to (a)
correspond to the downstroke; the resultant aerodynamic force at each instance is illustrated
by black arrows.

Similar to the hovering flight, when abdomen undulation is included, there is a
4.1% reduction in mean energy (Figure 8(e)) and a 1.2% reduction in total mean power
(Figure 8(f)) along with a 2.2% reduction in torque input (Figure 8(e)). For the spring-
damper model of the abdomen torque, we obtain k = 7.9354× 10−5 N m rad−1, c̃ =
−5.2353× 10−7 N m s rad−1, τ0 = 4.7894× 10−5 N m (Figure 8(g)).

4. Beneficial Effects of Abdomen Undulation in Stability

Now that desired trajectories have been obtained through optimization, we study the stability
properties of each periodic orbit, as well as the effects of the abdomen. This is achieved using
Floquet stability theory for periodic orbits.

4.1. Floquet Stability

Let the trajectory of the position dynamics (18) obtained after optimization in the previous
section be denoted by (xd(t), ẋd(t)) ∈ R6. When xf in equation (21) is non-zero, xd(t) is
not periodic. As such, we introduce a shifted position x̃d(t) = xd(t) − (t/T )xf , which is
periodic by construction. Let xd(t) = (x̃d(t), ẋd(t)) ∈ R6 be the concatenation of the shifted
position and the velocity, which satisfies xd(t + T ) = xd(t) for any t > 0. The objective of
this section is studying the stability properties of the periodic orbit xd(t).

Let x(t) be a solution of the given dynamic model perturbed from xd. Also, let
x = (x̃, ẋ) ∈ R6 with x̃(t) = x(t) − (t/T )xf . The resulting perturbation from the desired
periodic trajectory is denoted by δx = x−xd = (δx̃, δẋ) ∈ R6. By linearizing the dynamics
in (18) about the desired trajectory, evolution of the perturbation variable over time is obtained
as

d(δx̃)

dt
= δẋ, (22)

m
d(δẋ)

dt
= R(t){QR(t)δFR(t, δẋ(t)) +QL(t)δFL(t, δẋ(t))}, (23)
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where R(t), QR(t), QL(t) are values obtained from the periodic orbit, and δFR, δFL are the
variation of corresponding forces due to velocity perturbation. For instance, for the right wing,

δFR = δLR + δDR, (24)

which is evaluated using (11), (12) wherein,

δUR(r) = (I3×3 − e2eT2 )QTRR
T δẋ,

δαR(r) =
−1

sin(αR(r))
sgn(eT1 UR(r))× eT1

(
I3×3 −

UR(r)UTR (r)

‖UR(r)‖2

)
δUR(r)

‖UR(r)‖
,

δCL(α(r)) = 1.58 cos((2.13α◦ − 7.2)
π

180
)× 2.13 δαR(r),

δCD(α(r)) = 1.55 sin((2.04α◦ − 9.82)
π

180
)× 2.04 δαR(r).

Using the above expressions, the linearized equations corresponding to perturbation
dynamics (22), (23) can be expressed as

δẋ = A(t)δx, (25)

where A(t) ∈ R6×6 is a periodic matrix with T as the period, i.e., A(t+ T ) = A(t), ∀t ≥ 0.
Even though δx(t) might not be periodic, it can be decomposed into a combination of periodic
solutions with time varying multipliers [35]. Let the solution of the matrix differential
equation Ψ̇ = AΨ starting from any invertible Ψ(0) ∈ R6×6 be Ψ(t) ∈ R6×6. This
solution is called as the fundamental matrix of (25). It can be determined that Ψ(t + T ) =
Ψ(t)M, ∀t ≥ 0 where M ∈ R6×6 is called the monodromy matrix [35, Chapter 3.5].
One of the simplest ways to compute the monodromy matrix is M = Ψ−1(0)Ψ(T ) starting
with Ψ(0) = εI6×6 where ε ∈ R is a very small number characterizing the magnitude of
perturbation.

The eigenvalues of the monodromy matrix, ρi, corresponding to the eigenvectors vi ∈
R6, are called the characteristic multipliers of the periodic ODE. Let δxi(t) ∈ R6 be the
solution of the system starting from δx(0) = vi, i.e., δxi(t) = Ψ(t)vi. Then,

δxi(t+ T ) = Ψ(t+ T )vi = Ψ(t)Mvi = ρiΨ(t)vi = ρiδxi(t). (26)

Therefore, the characteristic solution, which starts from an eigenvector of M, is scaled by
the corresponding multiplier after each period. As the general solution which starts from
any initial condition can be written as a linear combination of {δxi(t)}6i=1, the perturbation
asymptotically converges to zero if the characteristic multipliers satisfy |ρi| < 1, ∀i, implying
that the periodic orbit is attractive.

Furthermore, define µi ∈ R such that ρi = eµiT , which are called the characteristic
exponents of (25). Now let pi(t) = δxi(t)e

−µit whose value after a period remains the same,
pi(t + T ) = δxi(t + T )e−µite−µiT = ρiδxi(t)e

−µite−µiT = pi(t). So the characteristic
modes can be written as

δxi(t) = eµitpi(t),

which implies the general solution is a combination of exponentially scaled periodic
trajectories. Thus, the condition for attractivity can be restated as Re(µi) < 0 for all
i. It can be observed that the characteristic properties vi, ρi are dimensionless since M is
dimensionless, except µis which can be measured in s−1.
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4.2. Hovering Flight

Consider the hovering flight constructed using optimization in Section 3.2. Now we
numerically calculate the monodromy matrix, M. The nontrivial characteristic modes δxi and
periodic parts pi are shown in Figure 10. Also the characteristic multipliers and corresponding
eigenvectors come out to be

ρ = {1, 1, 1, 0.4869, 0.3343, 0.7921}, (27)

[v1, . . .v6] =


1 0 0 0.0655 −0.0742 0
0 1 0 0 0 −0.3432
0 0 1 −0.0747 −0.0196 0
0 0 0 −0.6977 0.9970 0
0 0 0 0 0 0.9393
0 0 0 0.7094 0.0014 0

 ,

while the characteristic exponents are

µ = {0, 0, 0, −8.4355, −12.8449, −2.7314}s−1.
On the other hand, if we consider the case when there is no abdomen oscillation, they

change into

µ = {0, 0, 0, −8.1835, −12.9912, −2.7176}s−1.
Before discussing these results, we first present the results of the forward-climbing flight

as follows.

4.3. Forward-climbing Flight

From the monodromy matrix of the forward-climbing flight, the characteristic multipliers and
the corresponding eigenvectors are obtained to be

ρ = {1, 1, 1, 0.4350, 0.1237, 0.2891}, (28)

[v1, . . .v6] =


1 0 0 −0.1075 0.0215 0
0 1 0 0 0 0.0951
0 0 1 0.0941 0.0635 0
0 0 0 0.7983 −0.5399 0
0 0 0 0 0 −0.9955
0 0 0 −0.5851 −0.8391 0

 ,

while the characteristic exponents are

µ = {0, 0, 0, −7.2374, −18.1747, −10.7911}s−1. (29)

The nontrivial characteristic modes are shown in Figure 11. For the other case when there is
no abdomen oscillation, the characteristic exponents are

µ = {0, 0, 0, −6.6876, −19.1890, −11.1126}s−1. (30)
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Figure 10. Characteristic modes δxi and periodic trajectories pi for i ∈ {4, 5, 6} for the
hover trajectory. Legend indicates the index of each component of a trajectory in R6 along
with the corresponding unit.

4.4. Flight Stability

For both of hovering and forward climbing, the periodic orbit is stable because |ρi| ≤ 1 for
all i. Specifically, for the first three modes corresponding to the position perturbation, the
characteristic multiplier is ρ = 1. This implies that when the initial position is perturbed,
the periodic orbit is displaced accordingly in the three-dimensional space without altering its
shape or velocity. This is not surprising as the aerodynamic forces (24) are independent of δx.

However, the velocity mode of the periodic orbit is attractive, because any initial
perturbation in the velocity can be written as a linear combination of v4,v5,v6 whose
characteristic multipliers are strictly less than 1. This can be interpreted from the fact that a
velocity perturbation along a direction increases the effective angle of attack and the dynamic
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Figure 11. Characteristic modes δxi and periodic trajectories pi for i ∈ {4, 5, 6} for the
forward-upward trajectory. Legend indicates the index of each component of a trajectory in
R6 along with the corresponding unit.

pressure for the aerodynamic force acting on the opposite direction, thereby generating a
restoring force.

The trajectory along each of the last three modes is as follows. For both of hovering
and climbing, any longitudinal velocity perturbation (δẋ1 − δẋ3) is spanned by the fourth
and the fifth modes. And a lateral perturbation (δẋ2) is contributed by the last, sixth mode.
Moreover, each mode includes the perturbation on position in the opposite direction to the
velocity perturbation. For example, in the last mode of the climbing trajectory, the velocity
perturbed along the negative y direction will asymptotically converge to zero, which results in
a net position displacement along the negative y direction. The initial position displacement
along the positive y direction will compensate it as shown at Figure 11. Besides, it can be
observed that the characteristic exponents for the climbing trajectory are greater in magnitude
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than the hovering case, implying it is more stable.
Finally, we analyze the effects of the abdomen undulation in stability. For hovering flight,

the abdomen undulation improves the convergence rate of the fourth mode, and it makes the
fifth mode slightly slower (i.e., worsens the convergence rate or decreases it in magnitude).
The effects on the last lateral mode is negligible. The forward climbing shows the similar
results, where the difference in the lateral mode is more significant. However, for an arbitrary
velocity perturbation contributed by all of the last three modes, the overall convergence is
determined by the slowest mode, as the slowest mode is what remains after the other faster
and more stable modes are converged. Having stated that, it is apparent that the abdomen
undulation improved the convergence rate of the slowest fourth mode: the maximum (slowest)
characteristic exponent for the last three modes of the hovering flight is decreased (became
faster) from −2.7176 s−1 to −2.7314 s−1 due to the abdomen undulation; similarly, that of
the forward-climbing is reduced from −6.6876 s−1 to −7.2374 s−1. In short, we conclude
that the abdomen undulation also improved the stability property indicated by the convergence
rate of the slowest mode, or more specifically, it reduces the quantity of maxi{µi| µi < 0}.

4.5. Stability of Monarch Butterfly Flight

Next, we analyze the stability of monarch by using the flight data reproduced by the quasi-
steady dynamics presented in Section 2.4. While the flight trajectory in Figure 5 does
not appear to be periodic, its velocity trajectory asymptotically converges as illustrated by
Figure 12.

1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 12. Velocity trajectory of the Monarch flight starting from v(0) reconstructed in
Section 2.4

Specifically, the trajectory becomes almost periodic after three flapping cycles. Using
this trajectory after t = 4T as a reference periodic orbit, we numerically obtain the
fundamental solution, Ψ(t), for the perturbation ODE similar to (25). Then Floquet theory can
be applied to obtain a constant monodromy matrix. Specifically, starting with Ψ(0) = εI6×6,
we can get M = Ψ−1(t)Ψ(t + T ) for any t ≥ 4T . Thus the nontrivial characteristic modes
are shown in Figure 13 along with the periodic parts pi which actually become periodic after
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this initial time. The resulting characteristic multipliers and the eigenvectors are as follows,

ρ = {1, 1, 1, 0.2117, 0.1421, 0.2991},

[v1, . . .v6] =


1 0 0 −0.0562 0.0078 0
0 1 0 0 0 −0.0950
0 0 1 0.0630 −0.0760 0
0 0 0 0.7141 0.0162 0
0 0 0 0 0 0.9955
0 0 0 −0.6949 0.9969 0

 ,

while the characteristic exponents are,

µ = {0, 0, 0, −15.8731, −19.9474, −12.3416}s−1. (31)

The stability properties are similar with those of Section 4.4 constructed by optimizing
the particular wing kinematics model represented by equations (4)–(6). That said, it is
intriguing to observe that the reconstructed flight of monarch has substantially smaller
characteristic exponents. In other words, the wing kinematics captured from a live Monarch
butterfly exhibit superior stability properties compared with the particular wing kinematics
given by (4)–(6). One reason could be that the experimental data was approximated as the sum
of a large number of Fourier modes whereas (4)–(6) are described by a simpler mathematical
model.

4.6. Comparison with Other Insects

Finally, we study the performance and stability properties of other insects, namely hawkmoth,
bumblebee, and fruitfly with varying flapping frequencies and wing sizes. We characterize
these properties compared to those of the monarch butterfly. As the wing chord of such
insects are not available as a function of the distance from the root, we consider a simple wing
geometry assuming an elliptical wing cross-section along the chord as

c(r) =
4c̄

π

√
1− r2

d2
,

where c̄ ∈ R is the mean chord length and d ∈ R is the wing base to tip distance.
The required morphological and aerodynamic parameters are listed in Table 2 for these

insects. The main morphological parameters, i.e., the total massm, wing massmw, wing base
to tip distance d, and mean chord c̄, follow the data as reported in Berman and Wang [36], who
used experimentally measured values of fruit flies, bumblebees, and hawkmoth as reported in
Sun and Du [50]. The multi-body features needed for our model are obtained by scaling the
characteristics of these insects proportionate to the detailed monarch model. That is, once
we have total mass of the insect, m and its wing, mw we approximately obtain all the other
parameters enumerated in the online supplementary material.

Furthermore, the lift and drag coefficients are

CL(α) = CT sin(2α),

CD(α) = CD(0) cos2(α) + CD(π/2) sin2(α),

where the parameters CT , CD(0), CD(π/2) were obtained by fitting empirical data [36].
Using these data, we generate wing kinematics parameters for a hovering flight by

following the optimization procedure in Section 3 for each insect. The corresponding results
are listed in Table 3 in comparison to the monarch. As frequency decreases and total mass
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Figure 13. Characteristic modes δxi and periodic trajectories pi for i ∈ {4, 5, 6} for the
experimental trajectory. Legend indicates the index of each component of a trajectory in R6

along with the corresponding unit.

of the insect increases, the value of optimized J also becomes larger since it is comprised of
energy and power factors.

The optimized kinematics in Table 3 are similar to experimentally observed data. For
the fruit fly, the optimized flapping frequency was 285.2398 Hz, slightly higher than the
observed flapping frequency range of 210 − 260 Hz in empirical studies [36]. The flapping
amplitude was 67 deg, which is within the range of measured range of 60 − 73 deg [51].
The pitch amplitude was 37 deg, similar to the reported pitch angle at the mid-stroke of the
range 20− 55 deg [8, 50, 52]. For the bumblebee, the optimized flapping frequency, flapping
amplitude, and pitch amplitude were 126.7285 Hz (observed range: 132 − 205 Hz [53, 54]),
72 deg (observed range: 55− 72.5 deg [54]), and 39 deg (observed pitch angle at mid-stroke:
28 deg [50]), respectively. For the hawkmoth, the optimized flapping frequency, flapping
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Table 2. Morphological parameters of a hawkmoth, bumblebee, and fruitfly [36].

Parameters Hawkmoth Bumblebee Fruitfly

f (Hz) 26.3 116 254
m(Total mass) (kg) 0.0016 1.75× 10−4 7.2× 10−7

mw(Wing mass) (kg) 4.7× 10−5 4.6× 10−7 8.6× 10−10

d (m) 0.0519 0.0132 0.002
c̄ (m) 0.0183 0.004 6.7× 10−4

CT 1.678 1.341 1.833
CD(0) 0.07 0 0.21
CD(π/2) 3.06 2.93 3.35

amplitude, and pitch amplitude were 30.2343 Hz (observed range: 23−26.5 Hz [55]), 47 deg
(observed range: 45− 62 deg [55]), and 40 deg (observed pitch angle at mid-stroke range: 32
- 61 deg [50, 52]).

To understand the perturbation dynamics the equation of motion (18) is linearized to
obtain (22) and (23). However, the expressions for variation in the lift and drag coefficients
change to

δCL(α(r)) = 2CT cos(2α) δαR(r)

δCD(α(r)) = (−CD(0) + CD(π/2)) sin(2α) δαR(r).

Using these values, the linearized equations can be rearranged into a periodic differential
equation similar to (25). Thus we can compute the characteristic properties utilizing Floquet
theory as explained in the previous section, which are summarized in Figure 14. While the
flapping frequency is lowest, the monarch butterfly exhibits the faster convergence rate than
the other three insects.
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Figure 14. Stability comparison plot.

5. Concluding Remarks

This paper presents a mathematical formulation for numerical simulation, periodic orbit
construction, and stability analysis of any flapping wing aerial flyer involving abdomen
undulation. The dynamics of the proposed flapping wing model is formulated by Lagrangian
mechanics on a manifold, composed of articulated rigid bodies such that the dynamic
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Table 3. Optimized parameters for other insects. All angles are in radians.

Parameters Monarch Hawkmoth Bumblebee Fruitfly

f(Hz) 11.7220 30.2343 126.7285 285.2398
β 0.3057 0.4970 0.4137 0.4684
φm 0.6073 0.8268 1.2541 1.1613
φK 0.3077 0.2029 0.5209 0.3545
φ0 0.0780 −0.0660 −0.0201 −0.0049
θm 0.6657 0.6977 0.6731 0.6389
θC 1.4382 1.7008 2.7406 2.1721
θ0 0.1642 0.0141 0.2314 0.1191
θa −0.0896 0.0851 −0.3277 −0.2280
ψm 0.0018 0.0742 0.0273 0.0239
ψN 2 2 2 2
ψa −0.4165 −1.3047 0.5897 2.3759
ψ0 0.0297 0.0000 0.0000 −0.0005
θBm 0.2582 0.0289 0.0381 0.1424
θB0 0.9212 1.0440 0.7324 0.9019
θBa −1.3364 −1.3900 −1.4296 −1.4481
θAm 0.1905 0.0384 0.0446 0.1780
θA0

0.6806 0.5495 0.6632 0.5951
θAa −3.6186 −3.6148 −3.5243 −3.4294
ẋ1(0) (m/s) −0.3069 −0.1198 −0.1169 −0.1589
ẋ2(0) (m/s) 0.0000 0.0000 0.0000 0.0000
ẋ3(0) (m/s) −0.0543 0.0061 −0.0710 −0.0775

J 0.0298 0.1282 9.436× 10−4 1.018× 10−6

effects of the inertial coupling between multiple parts can be accounted for explicitly.
The wing aerodynamics is modeled using a blade element approach assuming a quasi-
steady aerodynamic force and moment generation. This blade element formulation includes
expressions that are essential for accurate estimation of the forces of relatively slowly flapping,
large wings. Resulting trajectory and body pitch agrees reasonably well with experimental
observations of monarch free flight.

The role of the abdomen motion in energy and power consumption is analyzed in
hovering and forward climbing flights. Abdomen undulation in both flight modes resulted
in a reduction of mean power and energy. For the hovering flight mode, the reduction in
mean energy and total mean power is 10.7% and 6.1%, respectively, compared to the same
trajectory without the body undulation. In forward climbing flight, these reductions are 4.1%
and 1.2%, respectively.

To answer the second question if the abdomen undulation in monarch butterflies can
be achieved passively, we model the torque dynamics between the body and the abdomen
joint using a torsional spring-damper system. For both flight modes the spring-damper
model agrees well with the actual abdomen torque. These results suggest the power benefits
discussed above can be potentially achieved with passive abdomen undulation, excited by the
wing-body coupling.

The effects of abdomen undulation on stability are studied using the Floquet theory.
For both hovering and forward-climbing modes, the periodic orbit is attractive, providing a
theoretical argument supporting the experimental observation of the stable flight of tail-less
butterfly inspired ornithopter without a feedback controller [25]. Furthermore, the abdomen
undulation improves the overall stability. Comparison to the stability characteristics of
hawkmoth, bumblebee, and fruitfly models of varying flapping frequencies and wing sizes,
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the monarch dynamics possesses the fastest convergence rate, exhibiting superior stability
properties.

A beneficial role of the abdomen in insect flight, discussed in the literature, is the thrust
vector redirection [34]. The presented results suggest that the abdomen may have novel
desirable effects on the translational dynamics of butterfly flight, involving the total power
and energy reduction and improved nonlinear stability.

For future directions, we may study the effects of abdomen undulation in the stability
of the attitude dynamics. Furthermore, higher-fidelity aerodynamics model can be employed,
capturing the effects of evolution of unsteady vortex dynamics and fluid-structure interaction
of the wings.
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