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Our understanding of strong gravity near supermassive compact objects has recently improved thanks to
the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer
constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we
show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged
dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we
are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the
Sen black holes.

DOI: 10.1103/PhysRevD.103.104047

I. INTRODUCTION

Generalrelativity (GR) was formulated to consistently
account for the interaction of dynamical gravitational fields
with matter and energy, the central idea of which is that the
former manifests itself through modifications of spacetime
geometry and is fully characterized by a metric tensor.
While the physical axioms that GR is founded on are
contained in the equivalence principle [1,2],the Einstein-
Hilbert action further postulates that the associated
equations ofmotion involve no more than second-order
derivatives of the metric tensor.

The strength of the gravitational field outside an object of
mass M and characteristic size R,in geometrized units
(G ¼ c ¼ 1), is related to its compactnessC ≔ M=R,
which is ∼10−6 for the Sun,and takes values ∼0.2–1 for
compactobjects such as neutron stars and black holes.
Predictions from GR have been tested and validated by
various solar-system experiments to very high precision
[2,3], setting it on firm footing as the best-tested theory of
classical gravity in the weak-field regime.It is important,
however, to consider whether signatures of deviations from
the Einstein-Hilbertaction, e.g., due to higher derivative
terms [4–6], could appear in measurements of phenomena
occurring in strong-field regimes where C is large.
Similarly, tests are needed to assess whether generic

violations of the equivalence principle occurin strong-
fields due, e.g., to the presence ofadditional dynamical
fields, such as scalar [7,8] or vector fields [9–13], that may
fall off asymptotically.Agreement with the predictions of
GR coming from observations of binary pulsars [14–16],
and of the gravitationalredshift [17] and geodetic orbit-
precession [18]of the star S2 near our galaxy’s central
supermassive compactobject Sgr A⋆ by the GRAVITY
collaboration, all indicate the success of GR in describing
strong-field physics as well.In addition, with the gravita-
tional-wave detections of coalescing binaries of compact
objects by the LIGO/Virgo collaboration [19,20] and the
first images of black holes produced by EHT,it is now
possible to envision testing GR at the strongestfield
strengths possible.

While the inferred size of the shadow from the recently
obtained horizon-scale images of the supermassive com-
pact object in M87 galaxy by the EHT collaboration [21–
26] was found to be consistentto within 17% for a
68% confidence intervalof the size predicted from GR
for a Schwarzschild black hole using the a prioriknown
estimates forthe mass and distance ofM87* based on
stellar dynamics [27], this measurementadmits other
possibilities,as do various weak-field tests [2,28].Since
the number of alternative theories to be tested using this
measurement is large, a systematic study of the constraints
set by a strong-field measurementis naturally more
tractable within a theory-agnostic framework,and various
such systems have recently been explored [29–36].This
approach allows for tests of a broad range of possibilities
that may not be captured in the limited set of known
solutions. This was exploited in Ref. [28], where
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constraints on two deformed metrics were obtained when
determining how different M87* could be from a Kerr
black hole while remaining consistent with the EHT
measurements.

However, becausesuch parametric tests cannot be
connected directly to an underlying property of the alter-
native theory, here we use instead the EHT measurements
to set bounds on the physical parameters,i.e., angular
momentum, electric charge, scalar charge, etc.—and which
we will generically refer to as “charges” (or hairs)—that
various well-known black-hole solutions depend upon.
Such analyses can be very instructive [37–51] since they
can shed light on which underlying theories are promising
candidates and which must be discarded or modified. At the
same time, they may provide insight into the types of
additional dynamical fields that may be necessary fora
complete theoreticaldescription of physical phenomena,
and whether associatedviolations of the equivalence
principle occur.

More specifically, since the bending of light in the
presence of curvature—eitherin static or in stationary
spacetimes—is assured in any metric theory of gravity, and
the presence of large amounts of mass in very small
volumes can allow for the existence of a region where
null geodesics move on spherical orbits, an examination of
the characteristics of such photon regions, when they exist,
is a useful first step. The projected asymptotic collection of
the photons trajectories that are captured by the black hole
—namely,all of the photon trajectories falling within the
value of the impact parameter at the unstable circular orbit
in the case of nonrotating black holes—willappear as a
dark area to a distant observerand thus represents the
“shadow” of the capturing compact object. This shadow—
which can obviously be associated with black holes [52–
57], but also more exotic compactobjects such as grav-
astars [58,59] or naked singularities [60,61]—is determined
entirely by the underlying spacetime metric. Therefore, the
properties of the shadow—and atlowestorder its size—
representvaluable observablescommon to all metric
theories of gravity,and can be used to test them for their
agreement with EHT measurements.

While the EHT measurement contains far more informa-
tion related to the flow of magnetized plasma near M87*, we
will consider only the measurement of the size of the bright
ring. Here we consider various spherically symmetric black-
hole solutions,from GR that are either singular (see,e.g.,
[62]) or non-singular [63–65],and string theory [66–70].
Additionally, we also consider the Reissner-Nordström (RN)
and the Janis-Newman-Winicour (JNW) [71] naked singu-
larity solutions,the latter being a solution of the Einstein-
Klein-Gordon system.Many of these solutions have been
recently summarized in Ref. [36], where they were cast in a
generalized expansion of static and spherically symmetric
metrics. Since angular momentum plays a key role in
astrophysicalscenarios,we also consider various rotating

black-hole solutions [72–75] which can be expressed in the
Newman-Janis form [76] to facilitate straightforward ana-
lytical computations. It is to be noted that this study is meant
to be a proof of principle and that while the constraints we can
set here are limited, the analytical procedure outlined below
for this large class of metrics is general,so thatas future
observations become available, we expect the constraints that
can be imposed following the approach proposed here to be
much stronger.

II. SPHERICAL NULL GEODESICS AND
SHADOWS

For all the static,spherically symmetric spacetimes we
consider here,the definition of the shadow can be cast in
rather general terms. In particular, for all the solutions
considered, the line element expressed in areal-radial polar
coordinates ðt;̃r; θ; ϕÞ has the form1

ds2 ¼ gμνdxμdxν ¼ −fð r̃Þdt2 þ
gð̃rÞ
fð r̃Þ

dr̃2 þ r̃2dΩ2
2; ð1Þ

and the photon region,which degenerates into a photon
sphere,is located at r̃ ≕ r̃ps, which can be obtained by
solving [28]

r̃ −
2fðr̃Þ
∂ r̃ fð r̃Þ

¼ 0: ð2Þ

The boundary of this photon sphere when observed from
the frame of an asymptotic observer,due to gravitational
lensing,appears to be a circle of size [28]

r̃sh ¼
r̃psffiffiffiffiffiffiffiffiffiffiffiffi
fðr̃psÞ

p : ð3Þ

On the other hand,the class of Newman-Janis stationary,
axisymmetric spacetimes we consider here [76], which are
geodesically integrable (see, e.g., [55,77,78]), can be
expressed in Boyer-Lindquist coordinates (t; r; θ; ϕ) as

ds2 ¼ −fdt 2 − 2asin2θð1 − fÞdtdϕ

þ ½Σ þ a2sin2θð2 − fÞsin2θdϕ2 þ
Σ
Δ

dr2 þ Σdθ2;

ð4Þ

where f ¼ fðr; θÞ and Σðr; θÞ ≔ r2 þ a 2 cos2 θ and
ΔðrÞ ≔ Σðr; θÞfðr; θÞ þ a2 sin2 θ. In particular, these are

1We use the tilde on the radial coordinate of static spacetimes
to distinguish it from the corresponding radialcoordinate of
axisymmetric spacetimes.
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the stationary generalizations obtained by employing the
Newman-Janis algorithm [76])for “seed” metrics of the
form (1) with gð̃rÞ ¼ 1.2

The Lagrangian L for geodesic motion in the spacetime
(4) is given as 2L ≔ gμν_xμ_xν, where an overdot represents a
derivative with respectto the affine parameter,and 2L ¼
−1 for timelike geodesics and 2L ¼ 0 for null geodesics.
The two Killing vectors ∂t and ∂ϕ yield two constants of
motion

−E ¼ −f _t − a sin2 θð1 − fÞ_ϕ;

L ¼ −a sin2 θð1 − fÞ_t þ ½Σ þ a2 sin2 θð2 − fÞ sin2 θ_ϕ;

ð5Þ

in terms of which the geodesic equation for photons can be
separated into

Σ2_r2 ¼ ðr2 þ a 2 − aξÞ2 − ΔI ≕ RðrÞ; ð6Þ

Σ2_θ2 ¼ I − ða sin θ − ξ csc θÞ2 ≕ ΘðθÞ; ð7Þ

where we have introduced first ξ ≔ L=E, and then
I ≔ η þ ða − ξÞ2. Also, η is the Carter constant,and the
existence of this fourth constant of motion is typically
associated with the existence of an additional Killing-Yano
tensor (see for example [56,80]).

In particular, we are interested here in sphericalnull
geodesics (SNGs),which satisfy_r ¼ 0 and ̈r ¼ 0 and are
not necessarily planar;equivalently,SNGs can exist at
locations where RðrÞ ¼ 0 and dRðrÞ=dr ¼ 0. Since these
are only two equations in three variables (r, ξ, η), it is
convenient, for reasons that will become evident below, to
obtain the associated conserved quantitiesalong such
SNGs in terms of their radii r as (see also [81]),

ξSNGðrÞ ¼
r2 þ a 2

a
−

4rΔ
a∂r Δ

;

ηSNGðrÞ ¼
r2

a2ð∂r ΔÞ2 ½16a2Δ − ðr∂r Δ − 4ΔÞ2: ð8Þ

The condition that ΘðθÞ ≥ 0, which must necessarily hold
as can be seen from Eq.(7), restricts the radial range for
which SNGs exist, and it is evident that this range depends
on θ. This region, which is filled by such SNGs, is called
the photon region (see,e.g.,Fig. 3.3 of [52]).

The equality ΘðθÞ ¼ 0 determines the boundaries of the
photon region,and the (disconnected) piece which lies in
the exterior of the outermost horizon is of primary interest

since its image,as seen by an asymptotic observer,is the
shadow.We denote the innerand outer surfaces ofthis
photon region by rp−ðθÞ and rpþ ðθÞ respectively, with the
former (smaller) SNG corresponding to the location of a
prograde photon orbit (i.e., ξSNGðrp−Þ > 0), and the latter to
a retrograde orbit.

It can be shown that all of the SNGs that are
admitted in the photon region, for both the spherically
symmetric and axisymmetric solutions considered here,
are unstable to radial perturbations.In particular, for
the stationary solutions, the stability of SNGs at a
radius r ¼ r SNG with respect to radial perturbationsis
determined by the sign of ∂2r R, and when ∂2

r RðrSNGÞ >
0, SNGs at that radius are unstable.The expression for
∂2

r R reads

∂2
r R ¼

8r
ð∂r ΔÞ2 ½rð∂r ΔÞ2 − 2rΔ∂ 2

r Δ þ 2Δ∂ r Δ: ð9Þ

To determine the appearance ofthe photon region and
the associated shadow,as seen by asymptotic observers,
we can introduce the usual notion of celestial coordinates
ðα; βÞ, which for any photon with constants of the motion
ðξ; ηÞ can be obtained, for an asymptotic observer present
at an inclination angle i with respect to the spin-axis of
the compactobject as in [82]. For photons on an SNG,
we can set the conserved quantities (ξ,η) to the values
given in Eq. (8) above to obtain [80,81]

αsh ¼ −ξSNGcsc i; ð10Þ

βsh ¼ ðη SNG þ a 2cos2i − ξ2
SNGcot2iÞ1=2: ð11Þ

Recognizing that β ¼ 
ffiffiffiffiffiffiffiffiffi
ΘðiÞ

p
, it becomes clear that only

the SNGs with ΘðiÞ ≥ 0 determine the apparentshadow
shape. Since the photon region is not spherically symmetric
in rotating spacetimes,the associated shadow is also not
circular in general. It can be shown that the band of radii for
which SNGs can exist narrows as we move away from the
equatorial plane, and reduces to a single value at the pole, i.e.,
in the limit θ → π=2, we have rpþ ¼ rp− (see e.g., Fig. 3.3
of [52]). As a result, the parametric curve of the shadow
boundary as seen by an asymptotic observer lying along the
pole is perfectly circular, α2

sh þ β 2
sh ¼ ηSNGðrp;π=2 Þþ

ξ2
SNGðrp;π=2 Þ.

We can now define the characteristic areal-radius of the
shadow curve as [83]

r sh;A ≔
2
π

Z
rpþ

rp−

drβshðrÞ∂r αshðrÞ
1=2

: ð12Þ

2Note that while the Sen solution can be obtained via the
Newman-Janisalgorithm [79], the starting point is the static
EMd-1 metric written in a non-areal-radial coordinate ρ such that
gttgρρ ¼ −1.
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III. SHADOW SIZE CONSTRAINTS FROM THE
2017 EHT OBSERVATIONS OF M87*

Measurementsof stellar dynamics near M87* were
previously used to produce a posterior distribution function
of the angular gravitational radius θg ≔ M=D, where M is
the mass of and D the distance to M87*.The 2017 EHT
observations of M87* can be similarly used to determine
such a posterior [26]. These observations were used to
determine the angular diameter̂d of the bright emission
ring that surrounds the shadow [26]. In Sec. 5.3 there, using
synthetic images from general-relativistic magnetohydro-
dynamics (GRMHD) simulations of accreting Kerr black
holes for a wide range of physicalscenarios,the scaling
factor α ¼ d̂=θg was calibrated.For emission from the
outermost boundary of the photon region of a Kerr black
hole, α should lie in the range ≃9.6–10.4.

The EHT measurementpicks out a class of best-fit
images (“top-set”) from the image library, with a mean
value for α of 11.55 (for the “xs-ring” model) and 11.50
(for the “xs-ringauss” model),when using two different
geometric crescent models for the images, implying that the
geometric models were accounting for emission in the top-
set GRMHD images that preferentially fell outside of the
photon ring. Using the distribution of α for these top-set
images then enabled the determination of the posterior in
the angular gravitational radius PobsðθgÞ for the EHT data.
It is to be noted that this posteriorwas also determined
using direct GRMHD fitting, and image domain feature
extraction procedures, as described in Sec. 9.2 there, and a
high level of consistency was found across all measurement
methods. Finally, in Sec. 9.5 of [26], the fractional
deviation in the angular gravitationalradius δ was intro-
duced as

δ ≔
θg

θdyn
− 1; ð13Þ

where θg and θdyn were used to denote the EHT and the
stellar-dynamicsinferencesof the angular gravitational
radius, respectively.The posterior on δ—as defined in
Eq. (32) of [26]—was then obtained (see Fig. 21 there), and
its width was found to be δ ¼ −0.01  0.17, for a 68%
credible interval.This agreement of the 2017 EHT meas-
urement of the angular gravitational radius for M87* with a
previously existing estimate for the same,at much larger
distances, constitutes a validation of the null hypothesis of
the EHT, and in particular that M87* can be described by
the Kerr black-hole solution.

Since the stellar dynamics measurements [27] are sensi-
tive only to the monopole of the metric (i.e., the mass) due
to negligible spin-dependenteffects at the distances
involved in that analysis,modeling M87* conservatively
using the Schwarzschild solution is reasonable with their
obtained posterior.Then, using the angulargravitational

radius estimate from stellar dynamics yields a prediction for
the angular shadow radiusθsh ¼ rsh=D as being θsh ¼
3

ffiffiffi
3

p
θdyn. The 2017 EHT measurement,which includes

spin-dependenteffects as described above and which
probes near-horizon scales,then determines the allowed
spread in the angular shadow diameter as, θsh≈
3

ffiffiffi
3

p
ð1  0.17Þθg, at 68% confidence levels [28].Finally,

since both angular estimates θsh and θg make use of the
same distance estimate to M87*, it is possible to convert the
1-σ bounds on θsh to bounds on the allowed shadow size
for M87*.

That is, independently ofwhetherthe underlying sol-
ution be spherically symmetric (in which case we will
considerr̃ sh) or axisymmetric ðrsh;AÞ,the shadow size of
M87* must lie in the range 3

ffiffiffi
3

p
ð1  0.17ÞM [28], i.e.,

(see gray-shaded region in Fig.2)

4.31M ≈ rsh;EHT- min≤ r̃ sh; rsh;A ≤ r sh;EHT- max≈ 6.08M;

ð14Þ

where we have introduced the maximum/minimum
shadow radiir sh;EHT- max=rsh;EHT- min inferred by the EHT,
at 68% confidence levels.

Note that the bounds thus derived are consistentwith
compactobjects thatcast shadows thatare both signifi-
cantly smaller and larger than the minimum and maximum
shadow sizes that a Kerr black hole could cast, which lie in
the range,4.83M − 5.20M (see,e.g., [28,84]).

An important caveathere is that the EHT posterior
distribution on θg was obtained after a comparison with a
large library of synthetic images built from GRMHD
simulations of accreting Kerr black holes [25].Ideally, a
rigorous comparison with non-Kerr solutions would require
a similar analysis and posteriordistributions built from
equivalent libraries obtained from GRMHD simulations of
such non-Kerr solutions.Besides being computationally
unfeasible, this approach is arguably not necessary in
practice.For example,the recentcomparative analysis of
Ref. [50] has shown thatthe image libraries produced in
this way would be very similar and essentially indistin-
guishable, given the present quality of the observations. As
a result, we adopt here the working assumption that the 1-σ
uncertainty in the shadow angular size for non-Kerr
solutions is very similar to thatfor Kerr black holes,and
hence employ the constraints (14) for allof the solutions
considered here.

IV. NOTABLE PROPERTIES OF VARIOUS
SPACETIMES

As mentioned above,a rigorous comparison with non-
Kerr black holes would require constructing a series of
exhaustive librariesof synthetic imagesobtained from
GRMHD simulations on such non-Kerr black holes. In
turn, this would provide consistentposterior distributions
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of angular gravitational radii for the various black holes and
hence determine how δ varies across differentnon-Kerr
black holes, e.g., for Sen black holes. Because this is
computationally unfeasible—the construction of only the
Kerr library has required the joint effort of several groups
with the EHTC over a good fraction of a year—we briefly
discuss below qualitative arguments to support our use of
the bounds given in Eq. (14) above as an approximate, yet
indicative,measure.

To this end, we summarize in Table I the relevant
properties of the various solutions used here.First, we
have considered here solutions from three types
of theories, i.e., the underlying actions are either
(a) Einstein-Hilbert-Maxwell-matter [62–66,71,72,75],
(b) Einstein-Hilbert-Maxwell-dilaton-axion [67,68,74],or
(c) Einstein-Hilbert-Maxwell-Maxwell-dilaton [70].This
careful choice implies thatthe gravitationalpiece of the
action is always given by the Einstein-Hilbert term and that
matter is minimally coupled to gravity. As a result, the
dynamical evolution of the accreting plasma is expected to
be very similar to that in GR, as indeed found in Ref. [50].
Second, since a microphysical description that allows one
to describe the interaction of the exotic matter presentin
some of the regular black-hole spacetimesused here
[63,64]—which typically do not satisfy some form of
the energy conditions [75,85]—with the ordinary matter
is thus far lacking, it is reasonable to assume thatthe
interaction between these two types of fluids is gravita-
tional only. This is indeed what is done in standard
numerical simulations, either in dynamical spacetimes
(see,e.g., [86]), or in fixed ones [49,87]. Third, since
the mass-energy in the matter and electromagnetic fields for

the non-vacuum spacetimes used here is of the order of the
mass of the central compact object M, while the total mass
of the accreting plasma in the GRMHD simulations is only
a tiny fraction of the same,it is reasonable to treatthe
spacetime geometry and the stationary fields as unaffected
by the plasma. Fourth, we have also been careful not to use
solutions from theories with modified electrodynamics
(such as nonlinear electrodynamics).As a result, the
electromagnetic Lagrangian in allof the theories consid-
ered here is the Maxwell Lagrangian (see, e.g., the
discussion in [36] and compare with [53]).This ensures
that in these spacetimes lightmoves along the nullgeo-
desics of the metric tensor (see,e.g.,Sec.4.3 of [62] and
compare againstSec.2 of [88]). Therefore,we are also
assured thatray-tracing the radiation emitted from the
accreting matter in these spacetimescan be handled
similarly as in the Kerr spacetime.

Finally, under the assumption that the dominant effects
in determining the angular gravitationalradii come from
variations in the location of the photon region and in
location of the inner edge of the accretion disk in these
spacetimes, it is instructive to learn how these two physical
quantities vary when changing physicalcharges,and, in
particular, to demonstratethat they are quantitatively
comparableto the corresponding valuesfor the Kerr
spacetime.

For this purpose,we study the single-charge solutions
used here and report in Fig. 1 the variation in the location of
the photon spheres (left panel) and innermost stable circular
orbit (ISCO) radii (right panel) as a function of the relevant
physical charge (cf.left panel of Fig. 1 in the main text).
Note that both the photon-sphereand the ISCO radii

TABLE I. Summary of properties of spacetimes used here.For easy access,we show whether the spacetime
contains a rotating compact object or not, whether it contains a spacetime singularity, and what type of stationary
nongravitationalfields are presentin the spacetime.Starred spacetimes contain naked singularities and daggers
indicate a violation of the equivalence principle (see, e.g., [36]); In particular, these indicate violations of the weak
equivalence principle due to a varying fine structure constant,a resultof the coupling of the dilaton to the EM
Lagrangian [36,89].

Spacetime Rotation Singularity Spacetime content

KN [73] Yes Yes EM fields
Kerr [72] Yes Yes vacuum
RN [62] No Yes EM fields
RN* [62] No Yes EM fields
Schwarzschild [62] No Yes vacuum
Rot. Bardeen [75] Yes No matter
Bardeen [63] No No matter
Rot. Hayward [75] Yes No matter
Frolov [65] No No EM fields, matter
Hayward [64] No No matter
JNW* [71] No Yes scalar field
KS [66] No Yes vacuum
Sen† [74] Yes Yes EM, dilaton,axion fields
EMd-1† [67,68] No Yes EM, dilaton fields
EMd-2† [70] No Yes EM, EM, dilaton fields
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depend exclusively on the gtt componentof the metric
when expressed using an areal radial coordinater̃ (see, e.g.,
[28,36]). To gauge the effectof spin, we also show the
variation in the locations of the equatorialprograde and
retrograde circular photon orbits and the ISCOs in the Kerr
black-hole spacetime,expressed in terms of the Cartesian
Kerr-Schild radial coordinate rCKS, which, in the equatorial
plane,is related to the Boyer-Lindquistradial coordinate
used elsewhere in this work r simply via [90]

rCKS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a 2

p
: ð15Þ

It is apparent from Fig. 1 that the maximum deviation in
the photon-sphere size from the Schwarzschild solution
occurs for the EMd-1 black hole and is ≈75%,while the
size of the prograde equatorialcircular photon orbit for
Kerr deviates by atmost≈50%. Similarly, the maximum
variation in the ISCO size also occurs for the EMd-1
solution and is ≈73%, while the prograde equatorial ISCO
for Kerr can differ by ≈66%.

V. CHARGE CONSTRAINTS FROM THE EHT
M87* OBSERVATIONS

We first consider compact objects with a single “charge,”
and reportin the left panelof Fig. 2 the variation in the
shadow radius for various spherically symmetric black hole
solutions, as well as for the RN and JNW naked singular-
ities.3 More specifically, we consider the black-hole

solutions given by Reissner-Nordström (RN) [62],
Bardeen [63,75],Hayward [64,91],Kazakov-Solodhukin
(KS) [66], and also the asymptotically-flat Einstein-
Maxwell-dilaton (EMd-1) with ϕ∞ ¼ 0 and α1 ¼ 1
[67,68,88] solution (see Sec.IV of [36] for further details
on these solutions).For each of these solutions we vary
the corresponding charge (in units of M) in the allowed
range,i.e., RN: 0 < q̄ ≤ 1; Bardeen:0 < q̄m ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
;

Hayward: 0 < l̄ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
; Frolov: 0 < l̄ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
,

0 < q̄ ≤ 1; KS: 0 < l̄; EMd-1: 0 < q̄ <
ffiffiffi
2

p
, but report

the normalized value in the figure so that all curves are in a
range between 0 and 1.The figure shows the variation in
the shadow size of KS black holes over the parameter range
0 < l̄ <

ffiffiffi
2

p
. Note that the shadow radiitend to become

smaller with increasing physical charge, but also that this is
not universal behavior, since the KS black holes have
increasing shadow radii (the singularity is smeared out on a
surface for this solution, which increasesin size with
increasinḡl).

Overall, it is apparent that the regular Bardeen, Hayward,
and Frolov black-hole solutions are compatible with the
present constraints.At the same time, the Reissner-
Nordström and Einstein-Maxwell-dilaton 1 black-hole solu-
tions, for certain values ofthe physical charge,produce
shadow radii that lie outside the 1-σ region allowed by the
2017 EHT observations, and we find that these solutions are
now constrained to take values in,0 < q̄ ≲ 0.90 and 0 <
q̄ ≲ 0.95 respectively. Furthermore, the Reissner-Nordström
naked singularity is entirely eliminated as a viable model for
M87* and the Janis-Newman-Winicour naked singularity
parameter space is restricted further by this measurement to
0 < ˆ̄ν ≲ 0.47. Finally, we also find that the KS black hole is
also restricted to have charges in the rangēl < 1.53. In
addition, note that the nonrotating Einstein-Maxwell-
dilaton 2 (EMd-2) solution [70]—which depends on two

FIG. 1. Left: variation in the photon sphere radii for the single-charge nonrotating solutions as a function of the normalized physical
charge. Right: The same as in the left panel but for the ISCO radii. We include also, for comparison, the variation in the Kerr equatorial
prograde and retrograde photon sphere and ISCO radiiin the left and rightpanels respectively.

3While the electromagnetic and scalar charge parameters for
the RN and JNW spacetimes are allowed to take valuesq̄ > 1 and
0 < ˆ̄ν ≔ 1 − ν̄ < 1 respectively, they do not cast shadows forq̄ >ffiffiffiffiffiffiffiffi

9=8
p

and 0.5 ≤ ˆ̄ν < 1 (see, e.g., Sec. IV D of [36] and
references therein).
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independent charges—can also produce shadow radii that are
incompatible with the EHT observations; we will discuss this
further below. The two EMd black-hole solutions (1 and 2)
correspond to fundamentally differentfield contents, as
discussed in [70].

We report in the right panel of Fig. 2 the shadow
arealradius rsh;A for a number of stationary black holes,
such as Kerr [72], Kerr-Newman (KN) [73], Sen [74],
and the rotating versions of the Bardeen and Hayward
black holes [75]. The data refers to an observer
inclination angle of i ¼ π=2, and we find that the
variation in the shadow size with spin at higher
inclinations (of up to i ¼ π=100) is at most about
7.1% (for i ¼ π=2, this is 5%); of course,at zero-spin
the shadow size does notchange with inclination. The
shadow areal radii are shown as a function of the
dimensionless spin ofthe black hole a ≔ J=M 2, where
J is its angular momentum, and for representative values
of the additional parameters thatcharacterize the solu-
tions. Note that—similar to the angular momentum for a
Kerr black hole—the role of an electric charge or the
presenceof a de Sitter core (as in the case of the
Hayward black holes) is to reduce the apparentsize of
the shadow. Furthermore,on increasing the spin para-
meter, we recover the typical trend that the shadow
becomesincreasingly noncircular, as encoded,e.g., in
the distortion parameter δsh defined in [57,83] (see
Appendix). Also in this case, while the regular rotating
Bardeen and Hayward solutions are compatible with the
presentconstraints setby the 2017 EHT observations,
the Kerr-Newman and Sen families of black holes can
produce shadow arealradii that lie outside of the 1-σ
region allowed by the observations.

To further explore the constraintson the excluded
regions for the Einstein-Maxwell-dilaton 2 and the Sen
black holes, we report in Fig. 3 the relevant ranges for these
two solutions. The Einstein-Maxwell-dilaton 2 black holes
are nonrotating but have two physical charges expressed by
the coefficients 0 <̄qe <

ffiffiffi
2

p
and 0 < q̄m <

ffiffiffi
2

p
, while the

Sen black holes spin (a) and have an additionalelectro-
magnetic chargēqm. Also in this case, the gray/red shaded
regions referto the areas thatare consistent/inconsistent
with the 2017 EHT observations.The figure shows rather
easily that for these two black-hole families there are large

FIG. 3. Constraints setby the 2017 EHT observations on the
nonrotating Einstein-Maxwell-dilaton 2 and on the rotating Sen
black holes. Also in this case, the gray/red shaded regions refer to
the areas that are 1-σ consistent/inconsistent with the 2017 EHT
observations).

FIG. 2. Left: shadow radii r̃sh for various spherically symmetric black-hole solutions,as well as for the JNW and RN naked
singularities (marked with an asterisk),as a function of the physical charge normalized to its maximum value.The gray/red shaded
regions refer to the areas that are 1-σ consistent/inconsistent with the 2017 EHT observations and highlight that the latter set constraints
on the physical charges (see also Fig. 3 for the EMd-2 black hole). Right: shadow areal radii rsh;Aas a function of the dimensionless spin
a for four families of black-hole solutions when viewed on the equatorial plane (i ¼ π=2). Also in this case, the observations restrict the
ranges of the physicalcharges of the Kerr-Newman and the Sen black holes (see also Fig.3).
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areas of the space of parameters that are excluded at the 1-σ
level. Not surprisingly, these areas are those where the
physical charges take theirlargestvalues and hence the
corresponding black-hole solutions are furthest away from
the corresponding Schwarzschild orKerr solutions.The
obvious prospect is of course that as the EHT increases the
precision of its measurements, increasingly larger portions
of the space of parameters ofthese black holes will be
excluded.Furthermore,other solutions thatare presently
still compatible with the observationsmay see their
corresponding physical charges restricted.

VI. CONCLUSIONS

As our understanding of gravity under extreme regimes
improves,and as physical measurements of these regimes
are now becoming available—either through the imaging of
supermassive black holes or the detection of gravitational
waves from stellar-mass black holes—we are finally in the
position of setting some constraints to the large landscape
of non-Kerr black holes that have been proposed over the
years. We have used here the recent 2017 EHT observations
of M87* to set constraints, at the 1-σ-level, on the physical
charges—either electric, scalar, or angular momentum—of
a large variety of static (nonrotating) or stationary (rotating)
black holes.

In this way, when considering nonrotating black holes
with a single physical charge, we have been able to rule out,
at 68% confidence levels,the possibility that M87* is a
near-extremalReissner-Nordström orEinstein-Maxwell-
dilaton 1 black hole and thatthe corresponding physical
charge must be in the range, RN: 0 <q̄ ≲ 0.90 and EMd-1:
0 < q̄ ≲ 0.95. We also find that it cannotbe a Reissner-
Nordström naked singularity or a JNW naked singularity
with large scalar charge, i.e., only 0 <ˆ̄ν ≲ 0.47 is allowed.
Similarly, when considering black holes with two physical
charges (either nonrotating or rotating), we have been able
to exclude,with 68% confidence,considerable regions of
the space of parametersin the case of the Einstein-
Maxwell-dilaton 2, Kerr-Newman and Sen black holes.
Although the idea of setting such constraints is an old one
(see,e.g., [29–36,51,54,55]),and while there have been
recent important developmentsin the study of other
possible observationalsignatures ofsuch alternative sol-
utions, such as in X-ray spectra of accreting black holes
(see,e.g., [92]) and in gravitationalwaves [88,93–97],to
the best of our knowledge, constraints of this type have not
been set before for the spacetimes considered here.

As a final remark,we note thatwhile we have chosen
only a few solutions that can be seen as deviations from the
Schwarzschild/Kerrsolutions since they share the same
basic Einstein-Hilbert-Maxwellaction of GR, the work
presented hereis meant largely as a proof-of-concept
investigation and a methodologicalexample of how to
exploit observationsand measurementsthat impact the
photon region.While a certain degeneracy in the shadow

size induced by mass and spin remains and is inevitable,
when in the future the relative difference in the posterior for
the angular gravitational radius for M87* can be pushed to
≲5%, we should be able to constrain its spin, when
modeling it as a Kerr black hole.Furthermore,since this
posterior implies a spread in the estimated mass,one can
expect small changes in the exact values of the maximum
allowed charges reported here.Hence,as future observa-
tions—either in terms of black-hole imaging or of gravi-
tational-wave detection—willbecome more precise and
notwithstanding a poor measurementof the black-hole
spin, the methodology presented herecan be readily
applied to set even tighter constraintson the physical
charges of non-Einsteinian black holes.
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APPENDIX: DISTORTION PARAMETERS

Since the boundary of the shadow region is a closed curve
as discussed above,one can define various characteristic
features for a quantitative comparison [80,83].Out of the
many possible measures of distortion of this curve from a
perfect circle discussed in Ref. [83], we use here the simplest
one which was originally introduced in Ref. [80], namely

δsh ¼
αl;c − αl

r sh;c
; ðA1Þ

where rsh;c is the radius of the circumcircle passing through
the two points (since the images here are symmetric
about the α-axis) with coordinates ðαr; 0Þ and ðαt; βtÞ, which
are the rightmost and topmost points of the shadow curve,
and is given as [80],

r sh;c ¼
ðαt − αrÞ2 þ β 2

t
2jαt − αrj

; ðA2Þ

with ðαl ; 0Þ and ðαl;c; 0Þ the leftmost points of the shadow
curve and of the circumcircle respectively (see Fig. 3
of [57]).

In Fig. 4 we display the distortion parameter δsh for the
shadow curvesof various rotating black holes, for an
equatorialobserver,as an additional simple comparable
characteristic.We note also that the deviation of δsh from
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zero is insignificantfor observer viewing angles thatare
close to the pole of the black hole, as anticipated (not
displayed here).

As a concluding remark we note that the EHT bounds on
the size of the shadow of M87*,as discussed above and
displayed in Eq. (14), do not impose straightforward
bounds on its shape. In particular, we can see from
Fig. 4 that the rotating Bardeen black hole with q̄m ¼
0.25 for high spins can be more distorted from a circle than
a Kerr black hole but still be compatible with the EHT
measurement (see Fig. 2). On the other hand, even though
we are able to exclude Sen black holes with large
electromagnetic charges (see, e.g., the Sen curve forq̄m ¼
1.25 in the right panel of Fig. 2) as viable models for M87*,
its shadow is less distorted from a circle than thatof an
extremal Kerr black hole (see Fig.4). In other words,the
examples just made highlight the importance of using the
appropriate bounds on a sufficiently robust quantity when
using the EHT measurementto test theories of gravity.
Failing to do so may lead to incorrect bounds on the black-
hole properties. For instance, Ref. [54] is able to set bounds
on the parameter space of the uncharged, rotating Hayward
black hole by imposing bounds on the maximum distortion
of the shape of its shadow boundaries,albeit using a
different measure for the distortion from a circle [see
Eq. (58) there], whereas we have shown thatthis is not
possible,upon using the bounds 4.31M − 6.08M for the
size of their shadows (cf.right panel of Fig. 2).
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[96] F.-L. Julié, Gravitationalradiation from compactbinary
systems in Einstein-Maxwell-dilaton theories,J. Cosmol.
Astropart.Phys.10 (2018) 033.

[97] H. M. Siahaan, Merger estimates for Kerr-Sen black holes,
Phys.Rev.D 101, 064036 (2020).

[98] S. H. Völkel, E. Barausse, N. Franchini, and A. E. Broderick,
EHT tests of the strong-field regime of General Relativity,
arXiv:2011.06812.

[99] http://computeontario.ca.
[100] http://www.calculquebec.ca.
[101] http://www.computecanada.ca.
[102] E. W. Greisen, AIPS, the VLA, and the VLBA, in In: Heck

A. (eds) Information Handling in Astronomy - Historical
Vistas, edited by A. Heck, Astrophysics and Space Science
Library Vol. 285 (Springer,Dordrecht,2003),https://doi
.org/10.1007/0-306-48080-8_7.

[103] M. Kettenis,H. J. van Langevelde,C. Reynolds,and B.
Cotton, ParselTongue:AIPS Talking Python, in Astro-
nomical Data Analysis Software and Systems XV, edited by
C. Gabriel,C. Arviset, D. Ponz,and S. Enrique,Astro-
nomical Society of the Pacific Conference Series Vol. 351
(2006),https://ui.adsabs.harvard.edu/abs/2006ASPC..351.
.497K.

[104] O. Tange,login: The USENIX Magazine 36,42 (2011).
[105] A. A. Chael, M. D. Johnson, R. Narayan, S. S. Doeleman,

J. F. C. Wardle, and K. L. Bouman, High-resolution linear
polarimetric imaging for the event horizon telescope,
Astrophys.J. 829, 11 (2016).

[106] M. Shepherd,https://ui.adsabs.harvard.edu/abs/2011ascl
.soft03001S.

[107] S. van der Walt, S. C. Colbert, and G. Varoquaux,The
NumPy array: A structure for efficient numerical compu-
tation, Comput.Sci. Eng. 13, 22 (2011).

[108] E. Jones etal., SciPy:Open Source Scientific Tools for
Python (2001),http://www.scipy.org/.

[109] W. McKinney, Proc. IX Python in Science Conf., edited by
S. van der Waltand J.Millman (2010).

[110] T. P. Robitaille et al., Astropy: A community Python
packagefor astronomy,Astron. Astrophys. 558, A33
(2013).

[111] A. M. Price-Whelan (TheAstropy Collaboration), The
astropy project: Building an open-science project and
status of the v2.0 core package, Astron. J. 156, 123 (2018).

[112] T. Kluyver et al., Positioning and Power in Academic
Publishing: Players,Agents and Agendas,edited by F.
Loizides and B.Schmidt (IOS Press,2016).

[113] J. D. Hunter, Matplotlib: A 2D graphics environment,
Comput.Sci. Eng. 9, 90 (2007).

[114] A. E. Broderick, THEMIS: A parameter estimation frame-
work for the eventhorizon telescope,Astrophys.J. 897,
139 (2020).

[115] D. W. Pesce, A D-term modeling code (DMC) for
simultaneous calibration and full-stokes imaging of very
long baseline interferometric data,Astron. J. 161, 178
(2021).

[116] I. Martí-Vidal, A. Mus, M. Janssen,P. de Vicente,
and J. González,Polarization calibration techniques for
the new-generation VLBI,Astron. Astrophys.646, A52
(2021).

[117] J. Park,D.-Y. Byun, K. Asada,and Y. Yun, GPCAL: A
generalized calibration pipeline for instrumental polariza-
tion in VLBI data, Astrophys.J. 906, 85 (2021).

PRASHANT KOCHERLAKOTA etal. PHYS. REV. D 103, 104047 (2021)

104047-18


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18

