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Our understanding of strong gravity near supermassive compact objects has recently improved thanks to
the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer
constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we
show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged
dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we
are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the
Sen black holes.

DOI: 10.1103/PhysRevD.103.104047

I. INTRODUCTION violations of the equivalence principle occurin strong-

. . fields due, e.g., to the presence ofadditional dynamical
Generalrelativity (GR) was formulated to consistently fields. such ags scalar [F; 8] or vector fields [9_¥3] that may

account for the interaction of dynamical gravitational field§aII off asymptotically.Agreement with the predictions of

with matter and energy, the central idea of which is that t X : .
former manifests itself through modifications of spacetimleER coming from observations of binary pulsars [14-16],

geometry and is fully characterized by a metric tensor and of the gravitationalredshift [17] and geodetic orbit-
While the physical axioms that GR is founded on are. precession [18]of the star S2 near our galaxy’s central

: ; X . . . supermassive compadbject Sgr A* by the GRAVITY
contained in the equivalence principle [1,Zhe Einstein- : L . -
Hilbert action further postulates that the associated collaboration, all indicate the success of GR in describing

equations of motion involve no more than second-order strong-field physics as welln addition, with the gravita-
o . tional-wave detections of coalescing binaries of compact
derivatives of the metric tensor.

The strength of the gravitational field outside an object gpjects by the LIGO/Virgo collaboration [19,20] and the

mass M and characteristic size R,in geometrized units Irst Images of pl_ack holgs produced by EHT,it is now
(GYc%1),is related toits compactnessC = M=R possible to envision testing GR at the strongestfield

e 46 e strengths possible.
\(l:V:rlrcl;galcS:togjoectsfosrutgk? assu::’eirt]rccl):lals(tea Srsvgl:ljc?ilagkzhglgc:. While the inferred size of the shadow from the recently

" ) obtained horizon-scale images of the supermassive com-
Prgdlctlons from GR have Igeen tested and .valldate.d .by pact object in M87 galaxy by the EHT collaboration [21-
various solar-system experiments to very high precision

[2.3]. setting it on firm footing as the best-tested theor Of26] was found to be consistentto within 17% for a
o), setting it on i Ing ; o Y 9'68% confidence intervalof the size predicted from GR
classical gravity in the weak-field regimét is important,

. . " for a Schwarzschild black hole using the a priorknown
however, to consider whether signatures of deviations fro@stimates forthe mass and distance ofM87* based on
the Einstein-Hilbertaction, e.g., due to higher derivative

¢ 4-6 Id . ts of ph stellar dynamics [27], this measurementadmits other
erms [ - ] could appear in measurements ot p enomenBossibilities,as do various weak-field tests [2,28]Since
occurring in strong-field regimes where C is large.

Similarly tests are needed to assess whether generic the number of alternative theories to be tested using this
Y, 9 measurement is large, a systematic study of the constraints

- set by a strong-field measurementis naturally more

tractable within a theory-agnostic framewordnd various

Published by the American Physical Society under the terms o _ ;
the Creative CommonsAttribution 4.0 International license. Such systems have recently been explored [29-3GJnis

Further distribution of this work must maintain attribution to approach allows for tests of a broad range of possibilities

the author(s) and the published article’s titigournal citation, ~ that may not be captured in the limited set of known
and DOI. solutions. This was exploited in Ref. [28], where
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constraints on two deformed metrics were obtained whenblack-hole solutions [72-75] which can be expressed in the

determining how different M87* could be from a Kerr Newman-Janis form [76] to facilitate straightforward ana-
black hole while remaining consistentwith the EHT lytical computations. It is to be noted that this study is meant
measurements. to be a proof of principle and that while the constraints we can

However, becausesuch parametric tests cannot be  set here are limited, the analytical procedure outlined below
connected directly to an underlying property of the alter- for this large class of metrics is generaso thatas future
native theory, here we use instead the EHT measurementsbservations become available, we expect the constraints that
to set bounds on the physical parametersj.e., angular  can be imposed following the approach proposed here to be
momentum, electric charge, scalar charge, etc.—and whidfuch stronger.
we will generically refer to as “charges” (or hairs)—that
various well-known blaCk-h(?le SOIUFionS depend_upon. II. SPHERICAL NULL GEODESICS AND
Such analyses can be very instructive [37-51] since they SHADOWS
can shed light on which underlying theories are promising
candidates and which must be discarded or modified. At theFor all the static,spherically symmetric spacetimes we
same time, they may provide |ns|ght into the types of consider herethe definition of the shadow can be cast in
additional dynamicalfields that may be necessary fora ~ rather generalterms. In particular, for all the solutions
complete theoreticabescription of physical phenomena, considered, the line element expressed in areal-radial polar
and whether associatedviolations of the equivalence coordinates &F; 6; db has the form
principle occur.

More specifically, since the bending of light in the .
presence of curvature—eitherin static or in stationary ds? % g, dxidx’ % ~fobdf p
spacetimes—is assured in any metric theory of gravity, and
the presence of large amounts of massin very small
volumes can allow for the existence of a region where ﬁ,phere,is located at I = ,;, which can be obtained by
null geodesics move on spherical orbits, an examination o ving 128
the characteristics of such photon regions, when they eXiSS[,O g [28]
is a useful first step. The projected asymptotic collection of .
the photons trajectories that are captured by the black hole F— 2férb 1 0: 52b
—namely,all of the photon trajectories falling within the o¢forp
value of the impact parameter at the unstable circular orbit
in the case of nonrotating black holes—willappear as a  The boundary of this photon sphere when observed from
dark area to a distant observerand thus represents the the frame of an asymptotic observedue to gravitational
“shadow” of the capturing compact object. This shadow—ensing,appears to be a circle of size [28]
which can obviously be associated with black holes [52—

57], but also more exotic compacbbjects such as grav- P

astars [58,59] or naked singularities [60,61]—is determined Fsn /4 P—%@ﬁgﬁﬁifﬁfﬁﬁiﬁiﬁiﬁim o3P
entirely by the underlying spacetime metric. Therefore, the Fps

properties of the shadow—and dbwestorder its size—

representvaluable observablescommon to all metric ~ On the other handthe class of Newman-Janis stationary,
theories of gravity,and can be used to test them for their axisymmetric spacetimes we consider here [76], which are
agreement with EHT measurements. geodesically integrable (see, e.g., [55,77,78]), can be

While the EHT measurement contains far more informaeXpressed in Boyer-Lindquist coordinates (t; r; 6; ¢) as
tion related to the flow of magnetized plasma near M87*, we
will consider only the measurement of the size of the brighis? 14 —fdt 2 - 2asir’081 - fbdtdd
ring. Here we consider various spherically symmetric black- 3
hole solutionsfrom GR that are either singular (see,g., b 1.3 p &sirt082 — fbsirtddd? p —dré p £d6?;

[62]) or non-singular [63-65],and string theory [66—-70]. A

Additionally, we also consider the Reissner-Nordstrom (RN) 04b
and the Janis-Newman-Winicour (JNW) [71] naked singu-

larity solutions,the latter being a solution of the Einstein- where f for; 8 and 56r; 0P =fpa?cog8 and
Klein-Gordon systemMany of these solutions have been Agrb = $8r; 6bfdr; 6b pZ%sir? 6. In particular, these are
recently summarized in Ref. [36], where they were cast in a

gengrallzgd expansion of static and spherically Symmemmse the tilde on the radial coordinate of static spacetimes
metrics. S!nce angu_lar momentum pllaysa k.ey role n to distinguish it from the corresponding radial coordinate of
astrophysicakcenariosye also consider various rotating axisymmetric spacetimes.

gdb
forp

di2p F2d03;  61b

and the photon region,which degenerates into a photon
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the stationary generalizations obtained by employing the since its imageas seen by an asymptotic observés the
Newman-Janis algorithm [76]for “seed” metrics of the = shadow.We denote the innerand outer surfaces ofthis
form (1) with g&b % 12 photon region by f-86P and g, 66P respectively, with the
The Lagrangian L for geodesic motion in the spacetimeformer (smaller) SNG corresponding to the location of a
(4) is given as 2L = gx¥x", where an overdot represents aprograde photon orbit (i.eg&0r,-P > 0), and the latter to
derivative with respecto the affine parameterand 2L %2 a retrograde orbit.
-1 for timelike geodesics and 2L %4 O for null geodesics. It can be shown that all of the SNGs that are
The two Killing vectors ¢ and g, yield two constants of  admitted in the photon region, for both the spherically

motion symmetric and axisymmetric solutions considered here,
are unstable to radial perturbations.In particular, for
-E % —f - asirf 061 - fhp; the stationary solutions, the stability of SNGs at a

L % -a sir? 081 - fHLp 143 b & sir? 852 - fb sir? 6 radius r Ya rsng With respect to radial perturbationsis
55 determined by the sign of @R, and when #RdrgygP >

0, SNGs at that radius are unstable The expression for

0?R reads
in terms of which the geodesic equation for photons can be

separated into 8r
0?R V4

YVrOQAR — 2rAG2A b 200 A:  69P
5221, 32 p a2 - atH - Al = Rarb; 36D 86 AP ' '

3262 Vi | - da sin B - € csc B O36b; 57p To determine the appearance ofthe photon region and
the associated shadovas seen by asymptotic observers,

where we have introduced first €:=L=E, and then We can introduce the usual notion of celestial coordinates
| :=np da - £p2. Also, n is the Carter constantand the ~ 0a; BP, which for any photon with constants of the motion
existence of this fourth constant of motion is typically ~ 9¢; NP can be obtained, for an asymptotic observer present
associated with the existence of an additional Killing-Yan@t an inclination angle i with respectto the spin-axis of
tensor (see for example [56,80]). the compactobject as in [82]. For photons on an SNG,

In particular, we are interested here in sphericalnull ~ we can setthe conserved quantities (¢n) to the values
geodesics (SNGsyyhich satisfyr /4 0 and#% 0 and are  given in Eq. (8) above to obtain [80,81]
not necessarily planariequivalently, SNGs can exist at
locations where Rorp ¥4 0 and dRérbP=dr % 0. Since these
are only two equations in three variables (r, ¢, n), it is
convenient, for reasons that will become evident below, to
obtain the associated conserved quantitieslong such Ben % 0N sng b a2cogi — €2, cofiP=2  311b
SNGs in terms of their radii r as (see also [81]),

Ogh ¥4 —EgngCSC 010pP

p i ffiffi ffi ffi ffi i ffi ffi

r2pba2 4rA Recognizing that B 72 = Od4ik it becomes clear that only
SsneOrP V“T - m; the SNGs with @6ibP = 0 determine the apparersthadow
2 ' shape. Since the photon region is not spherically symmetric
NsnaOrb Vs %168\ - 8ro, A — 4AP:  &8pb in rotating spacetimesthe associated shadow is also not

a’80, AP circular in general. It can be shown that the band of radii for

" . . which SNGs can exist narrows as we move away from the
The condition that ©66P 2 0, Wh.'Ch must ngcessanly hOIdequatorial plane, and reduces to a single value at the pole, i.e.,
as can be seen from Eq.7), restricts the radial range for

. o _ ; .

which SNGs exist, and it is evident that this range depends the limit 8 ~ =2, we havey, A p- (see e.g,, Fig. 3.3

on 6. This region, which is filled by such SNGs, is called ©f [92]). As aresult, the parametric curve of the shadow

the photon region (seeg.g., Fig. 3.3 of [52]). boundary as seen by an asymptotic observer lying along the
The equality ©36b % 0 determines the boundaries of tHeole is perfectly circular, aZ,b BZ, % nsnadrpm=2 PP

photon region,and the (disconnected) piece which lies in EéNGérp;Fz b.

the exterior of the outermost horizon is of primary interest We can now define the characteristic areal-radius of the

shadow curve as [83]

Note that while the Sen solution can be obtained via the i
Newman-Janisalgorithm [79], the starting point is the static Fop 1=2
EMd-1 metric written in a non-areal-radial coordinate p such that lshA™= = drBg0rbgogdrb 612pb
Gt 9pp Va1, Tp-
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. SHADOW SIZE CONSTRAINTS FROM THE radius estimate from stellar dynamics yields a prediction for
2017 EHT OBSERVATIONS OF M87* trbefﬁlﬁwlar shadow radius6gy, 74 rg=D as being 64, V4

Measurementsof stellar dynamics near M87* were ~ © 3Oayn- The 2017 EHT measurement,which includes

previously used to produce a posterior distribution functioPin-dependenteffects as described above and which
of the angular gravitational radiug, & M=D, where M is probes qear-horlzon scaledhen detgrmlnes the allowed
the mass of and D the distance to M87*The 2017 EHT ~ SRAgfiin the angular shadow diameter as, 8=
observations of M87* can be similarly used to determine 3 381 0.17P8;, at 68% confidence levels [28]Finally,
such a posterior [26]. These observations were used to since both angular estimatesfand §, make use of the
determine the angular diameted of the bright emission same distance estimate to M87*, it is possible to convert the
ring that surrounds the shadow [26]. In Sec. 5.3 there, usihgf bounds on §, to bounds on the allowed shadow size
synthetic images from general-relativistic magnetohydro- for M87*.
dynamics (GRMHD) simulations of accreting Kerr black ~ Thatis, independently ofwhetherthe underlying sol-
holes for a wide range of physicalscenariosthe scaling ~ ution be spherically symmetric (in which case we will
factor a a &=Gg was calibrated. For emission from the cons:derrsh) .or'aX|symmetr|c Ynfrine shadow size of
outermost boundary of the photon region of a Kerr black M87* must lie in the range 3 301 0.17PM [28], i.e.,
hole, a should lie in the range =9.6-10.4. (see gray-shaded region in Fig)

The EHT measurementpicks out a class of best-fit .
images (“top-set”)from the image library, with a mean ~ 4-31M = Fsnent minS Foty Fsna = T siyeHT- max™ 6.08M;
value for a of 11.55 (for the “xs-ring” model) and 11.50 814b
(for the “xs-ringauss” model),when using two different
geometric crescent models for the images, implying that thédhere we have introduced the maximum/minimum
geometric models were accounting for emission in the topshadow radiir sp.g41- mazsh:EHT- min inferred by the EHT,
set GRMHD images that preferentially fell outside of the at 68% confidence levels.
photon ring. Using the distribution of a for these top-set Note that the bounds thus derived are consistentith
images then enabled the determination of the posterior incompactobjects thatcast shadows thatare both signifi-
the angular gravitational radius,206,P for the EHT data. cantly smaller and larger than the minimum and maximum
It is to be noted that this posteriorwas also determined shadow sizes that a Kerr black hole could cast, which lie in
using direct GRMHD fitting, and image domain feature the range4.83M - 5.20M (seeg.qg.,[28,84]).
extraction procedures, as described in Sec. 9.2 there, and aAn important caveathere is that the EHT posterior
high level of consistency was found across all measureméligtribution on § was obtained after a comparison with a
methods. Finally, in Sec. 9.5 of [26], the fractional large library of synthetic images built from GRMHD
deviation in the angular gravitationatadius & was intro- ~ simulations of accreting Kerr black holes [25]ldeally, a

duced as rigorous comparison with non-Kerr solutions would require
a similar analysis and posteriordistributions built from
5= By 1 513p equivalent libraries obtained from GRMHD simulations of
- Ooyn such non-Kerr solutions. Besides being computationally

unfeasible, this approach is arguably not necessary in

where § and y,,, were used to denote the EHT and the practice.For example the recentcomparative analysis of
stellar-dynamicsinferencesof the angular gravitational Ref. [50] has shown thatthe image libraries produced in

radius, respectively.The posterior on 5—as defined in this way would be very similar and essentially indistin-

Eq. (32) of [26]—was then obtained (see Fig. 21 there) aﬂ&ishable, given the present quality of the observations. As
its width was found to be & % -0.01 0.17. for a 68% ’ “a result, we adopt here the working assumption that the 1-a

credible interval.This agreement of the 2017 EHT meas- unlci_rtaint_y in the_ s}radfvzhar:fgulir Sizb? fc:(r hn?n-Keg
urement of the angular gravitational radius for M87* with %O utions 1S very simiiar 1o thatior Rerr b/ack holes,an

previously existing estimate for the samat much larger ence employ the constraints (14) for aff the solutions
distances, constitutes a validation of the null hypothesis ogon5|dered here.
:Ee EHT, and in par’ucula_r that M87* can be described by IV. NOTABLE PROPERTIES OF VARIOUS
e Kerr black-hole solution. SPACETIMES
Since the stellar dynamics measurements [27] are sensi-
tive only to the monopole of the metric (i.e., the mass) due As mentioned abovea rigorous comparison with non-
to negligible spin-dependenteffects at the distances Kerr black holes would require constructing a series of
involved in that analysis,modeling M87* conservatively exhaustive librariesof synthetic images obtained from
using the Schwarzschild solution is reasonable with their GRMHD simulations on such non-Kerr black holes. In
obtained posteriorThen, using the angulargravitational  turn, this would provide consistenposterior distributions
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TABLE I. Summary of properties of spacetimes used hefer easy accessye show whether the spacetime
contains a rotating compact object or not, whether it contains a spacetime singularity, and what type of stationary
nongravitationafields are presenin the spacetimeStarred spacetimes contain naked singularities and daggers
indicate a violation of the equivalence principle (see, e.g., [36]); In particular, these indicate violations of the weak
equivalence principle due to a varying fine structure constantesultof the coupling of the dilaton to the EM
Lagrangian [36,89].

Spacetime Rotation Singularity Spacetime content
KN [73] Yes Yes EM fields

Kerr [72] Yes Yes vacuum

RN [62] No Yes EM fields

RN* [62] No Yes EM fields
Schwarzschild [62] No Yes vacuum

Rot. Bardeen [75] Yes No matter

Bardeen [63] No No matter

Rot. Hayward [75] Yes No matter

Frolov [65] No No EM fields, matter
Hayward [64] No No matter

JNW* [71] No Yes scalar field

KS [66] No Yes vacuum

Seri [74] Yes Yes EM, dilaton, axion fields
EMd-1t [67,68] No Yes EM, dilaton fields
EMd-2f [70] No Yes EM, EM, dilaton fields

of angular gravitational radii for the various black holes arftie non-vacuum spacetimes used here is of the order of the
hence determine how 0 varies across differenton-Kerr  mass of the central compact object M, while the total mass
black holes, e.g., for Sen black holes. Because thisis  of the accreting plasma in the GRMHD simulations is only
computationally unfeasible—the construction of only the a tiny fraction of the same,it is reasonable to treatthe

Kerr library has required the joint effort of several groups spacetime geometry and the stationary fields as unaffected
with the EHTC over a good fraction of a year—we briefly by the plasma. Fourth, we have also been careful not to use
discuss below qualitative arguments to support our use ofsolutions from theories with modified electrodynamics

the bounds given in Eqg. (14) above as an approximate, ygsuch as nonlinear electrodynamics)As a result, the
indicative,measure. electromagnetic Lagrangian in albf the theories consid-

To this end, we summarize in Table | the relevant ered here is the Maxwell Lagrangian (see, e.g., the
properties of the various solutions used here. First, we  discussion in [36] and compare with [53]).This ensures
have considered here solutions fromthree types thatin these spacetimes lightnoves along the nullgeo-
of theories, i.e., the underlying actions are either desics of the metric tensor (see,g.,Sec.4.3 of [62] and
(a) Einstein-Hilbert-Maxwell-matter [62-66,71,72,75], compare againsBec.2 of [88]). Therefore,we are also
(b) Einstein-Hilbert-Maxwell-dilaton-axion [67,68,74r  assured thatray-tracing the radiation emitted from the
(c) Einstein-Hilbert-Maxwell-Maxwell-dilaton [70].This  accreting matter in these spacetimescan be handled
careful choice implies thatthe gravitationalpiece of the  similarly as in the Kerr spacetime.
action is always given by the Einstein-Hilbert term and that Finally, under the assumption that the dominant effects
matteris minimally coupled to gravity. As a result, the  in determining the angular gravitationatadii come from
dynamical evolution of the accreting plasma is expected t@ariations in the location of the photon region and in
be very similar to that in GR, as indeed found in Ref. [50].location of the inner edge of the accretion disk in these
Second, since a microphysical description that allows onespacetimes, it is instructive to learn how these two physical
to describe the interaction of the exotic matter preseint  quantities vary when changing physicathargesand, in
some of the regular black-hole spacetimesused here  particular, to demonstratethat they are quantitatively
[63,64]—which typically do not satisfy some form of comparableto the corresponding valuesfor the Kerr
the energy conditions [75,85]—with the ordinary matter spacetime.
is thus far lacking, it is reasonable to assume thathe For this purpose,we study the single-charge solutions
interaction between these two types of fluids is gravita- used here and report in Fig. 1 the variation in the location of
tional only. This is indeed what is done in standard the photon spheres (left panel) and innermost stable circular
numerical simulations, either in dynamical spacetimes orbit (ISCO) radii (right panel) as a function of the relevant
(see, e.g., [86]), or infixed ones [49,87]. Third, since physical charge (cfleft panel of Fig. 1 in the main text).
the mass-energy in the matter and electromagnetic fields wte that both the photon-sphereand the ISCO radii

104047-9



PRASHANT KOCHERLAKOTA etal. PHYS.REV.D 103, 104047 (2021)
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FIG. 1. Left: variation in the photon sphere radii for the single-charge nonrotating solutions as a function of the normalized physical
charge. Right: The same as in the left panel but for the ISCO radii. We include also, for comparison, the variation in the Kerr equatoric
prograde and retrograde photon sphere and ISCO randthe left and right panels respectively.

depend exclusively on the g componentof the metric
when expressed using an areal radial coordir{aé®, e.g., Bardeen [63,75],Hayward [64,91], Kazakov-Solodhukin

[28,36]). To gauge the effectof spin, we also show the (KS) [66], and also the asymptotically-flat Einstein-

variation in the locations of the equatorialprograde and Maxwell-dilaton (EMd-1) with ¢, %40 and a; %41

retrograde circular photon orbits and the ISCOs in the Kef67,68,88] solution (see SedV of [36] for further details
black-hole spacetimegxpressed in terms of the Cartesian on these solutions)For each of these solutions we vary
Kerr-Schild radial coordinategs, which, in the equatorial the corresponding charge (in units of M) in ths #ffﬁ‘#ﬁﬁiﬁiﬁiﬁiﬁiﬁiﬁi

plane,is related to the Boyer-Lindquistradial coordinate range,i.e., RN: 0 < Q.Sc s y QL S = S
used elsewhere in this work r simply via [90] Hayward: 0 < | < P %ﬁifzﬁﬁ ﬁﬁ@@ﬁ@%; ﬂf@ﬁ@%ﬂﬁlfﬁfﬁfﬂfﬂfﬂ
p fiffifffifififfififffifiT o< q<1. KS: 0< EMd-1: 0<q< "2 but report

r’pa? 015P  the normalized value in the figure so that all curves are in a
range between 0 and 1The figure shows the variation in
the s_ha%omfﬁi,ﬁe of KS black holes over the parameter range
0 <1< ° 2. Note that the shadow radiitend to become
smaller with increasing physical charge, but also that this is
not universal behavior, since the KS black holes have
increasing shadow radii (the singularity is smeared out on a
surface for this solution, which increasesin size with
creasingl).
Overall, it is apparent that the regular Bardeen, Hayward,
and Frolov black-hole solutions are compatible with the
present constraints. At the same time, the Reissner-

V. CHARGE CO,[\ISTRAINTS FROM THE EHT Nordstrém and Einstein-Maxwell-dilaton 1 black-hole solu-

M87* OBSERVATIONS tions, for certain values ofthe physical charge,produce

We first consider compact objects with a single “chargeshadow radii that lie outside the 1-o region allowed by the
and reportin the left panelof Fig. 2 the variation inthe 2017 EHT observations, and we find that these solutions are
shadow radius for various spherically symmetric black holeow constrained to take values if) < q < 0.90 and 0 <
solutions, as well as for the RN and JNW naked singular-q < 0.95 respectively. Furthermore, the Reissner-Nordstrom
i‘[ies_3 More specifically, we consider the black-hole naked singularity is entirely eliminated as a viable model for
M87* and the Janis-Newman-Winicour naked singularity
parameter space is restricted further by this measurement to
0 < v £ 0.47. Finally, we also find that the KS black hole is
also restricted to have charges in the rangé< 1.53. In
addition, note that the nonrotating Einstein-Maxwell-
dilaton 2 (EMd-2) solution [70]—which depends on two

solutions given by Reissner-Nordstrom (RN) [62],

rcks a

It is apparent from Fig. 1 that the maximum deviation in
the photon-sphere size from the Schwarzschild solution
occurs for the EMd-1 black hole and is =75%while the
size of the prograde equatoriaktircular photon orbit for
Kerr deviates by atmost=50%. Similarly, the maximum
variation in the ISCO size also occurs for the EMd-1 .
solution and is =73%, while the prograde equatorial 1Isco”
for Kerr can differ by =66%.

*While the electromagnetic and scalar charge parameters fo
the RN and JNW spacetimes are allowed to take gatuésand
B ?ﬁ%ifﬁfﬂfﬁfﬁ_'ﬁﬁfﬂ respectively, they do not cast shadowg for
9=8 and 0.5<v<1 (see,e.g. Sec. IVDof [36] and
references therein).
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Schwarzschild
=== RN
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Frolov (I = 0.4) —— EMd-1

Bardeen

alloweoﬂ region

0.4
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0.6

""" Kerr Bardeen (g, = 0.25) —— Hayward (I = 0.75)
71 — KN (g =0.25) Bardeen (g, = 0.75) —=- Sen (G, = 0.25)
=== KN (7= 0.95) Hayward (= 0.25) === Sen (g, = 1.25)

a

FIG. 2. Left: shadow radiifg, for various spherically symmetric black-hole solutionas well as for the JNW and RN naked
singularities (marked with an asterislgs a function of the physical charge normalized to its maximum valires gray/red shaded

regions refer to the areas that are 1-o consistent/inconsistent with the 2017 EHT observations and highlight that the latter set constrai

on the physical charges (see also Fig. 3 for the EMd-2 black hole). Right: shadow agggbsadifunction of the dimensionless spin

a for four families of black-hole solutions when viewed on the equatorial plane (i %4 m=2). Also in this case, the observations restrict th

ranges of the physicatharges of the Kerr-Newman and the Sen black holes (see alsoJjig.

independent charges—can also produce shadow radii that are further explore the constraintson the excluded
incompatible with the EHT observations; we will discuss thégions for the Einstein-Maxwell-dilaton 2 and the Sen
further below. The two EMd black-hole solutions (1 and 2black holes, we report in Fig. 3 the relevant ranges for these

correspond to fundamentally differenffield contents, as
discussed in [70].

We report in the right panel of Fig. 2 the shadow
arealradius rg,.5 for a number of stationary black holes,
such as Kerr [72], Kerr-Newman (KN) [73], Sen [74],
and the rotating versions of the Bardeen and Hayward
black holes [75]. The data refers to an observer
inclination angle of i% m=2, and we find that the
variation in the shadow size with spin at higher
inclinations (of up to i% m=100) is at most about
7.1% (for i va =2, this is 5%); of course,at zero-spin
the shadow size does notchange with inclination. The
shadow areal radii are shown as a function of the
dimensionless spin ofthe black hole a = J=M?, where
J is its angular momentum, and for representative values
of the additional parameters thatcharacterize the solu-
tions. Note that—similar to the angular momentum for a
Kerr black hole—the role of an electric charge or the
presenceof a de Sitter core (as inthe case of the
Hayward black holes)is to reduce the apparentsize of
the shadow. Furthermore,on increasing the spin para-
meter, we recover the typical trend that the shadow
becomesincreasingly noncircular, as encoded, e.g., in
the distortion parameter &, defined in [57,83] (see
Appendix). Also in this case, while the regular rotating
Bardeen and Hayward solutions are compatible with the
presentconstraints setby the 2017 EHT observations,
the Kerr-Newman and Sen families of black holes can
produce shadow arealradii that lie outside of the 1-0
region allowed by the observations.

two solutions. The Einstein-Maxwell-dilaton 2 black holes
are nonrotating but have, tyg;ghysical chaygaggxpressed by
the coefficients 0 <g. < 2and 0 <q, < 2, while the

Sen black holes spin (a) and have an additionatlectro-
magnetic chargg,,. Also in this case, the gray/red shaded
regions referto the areas thatare consistent/inconsistent
with the 2017 EHT observations he figure shows rather
easily that for these two black-hole families there are large

luded

egion

Sen

0.6
S}
0.4

excluded

regl

allowed region

0.2

0.0
0.0

0.2 0.4 0.6 1.0 1.2

4m

0.8 1.4

FIG. 3. Constraints seby the 2017 EHT observations on the
nonrotating Einstein-Maxwell-dilaton 2 and on the rotating Sen
black holes. Also in this case, the gray/red shaded regions refer to
the areas that are 1-o consistent/inconsistent with the 2017 EHT
observations).
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areas of the space of parameters that are excluded at thesize induced by mass and spin remains and is inevitable,
level. Not surprisingly,these areas are those where the when in the future the relative difference in the posterior for

physical charges take theidargestvalues and hence the

the angular gravitational radius for M87* can be pushed to

corresponding black-hole solutions are furthest away fron5%, we should be able to constrain its spin, when

the corresponding Schwarzschild oKerr solutions. The

modeling it as a Kerr black hole.Furthermore since this

obvious prospect is of course that as the EHT increases thesterior implies a spread in the estimated massg can
precision of its measurements, increasingly larger portiongxpect small changes in the exact values of the maximum

of the space of parameters ofthese black holes will be
excluded.Furthermore other solutions thatare presently
still compatible with the observationsmay see their

allowed charges reported herélence,as future observa-
tions—either in terms of black-hole imaging or of gravi-
tational-wave detection—willbecome more precise and

corresponding physical charges restricted. notwithstanding a poor measuremenbf the black-hole
spin, the methodology presented herecan be readily
applied to set even tighter constraintson the physical

VI. CONCLUSIONS
. . . charges of non-Einsteinian black holes.
As our understanding of gravity under extreme regimes
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San (i = 7/2)

0007 As a concluding remark we note that the EHT bounds on

the size of the shadow of M87*,as discussed above and
displayed in Eq. (14), do not impose straightforward
bounds on its shape. In particular, we can see from
Fig. 4 that the rotating Bardeen black hole with g, %

—0.05

0107 0.25 for high spins can be more distorted from a circle than
a Kerr black hole but still be compatible with the EHT

_0.15] measurement (see Fig. 2). On the other hand, even though
[ a0 | — e (Z:gim we are able to exclude Sen black holes with large
KN (g=095) L Sej({j‘m : 025; B electromagr!etlc charges (§ee, e.g., ’Fhe Sen curve,fd4

- Bardeen (Gn = 0.25) —— Sen (G, = 1.25) 1.25 in the right panel of Fig. 2) as viable models for M87*,

Bardeen (g, = 0.75) : its shadow is less distorted from a circle than thadf an
extremal Kerr black hole (see Figt). In other words,the
examples just made highlight the importance of using the
appropriate bounds on a sufficiently robust quantity when

0.0 0.2 0.4 0.6 08 i)
a

FIG. 4. Distortion parameter,, for a number of stationary ~ using the EHT measuremento test theories of gravity.
black holes observed on the equatorialplane (i ¥4 m=2) with ~ Failing to do so may lead to incorrect bounds on the black-
dimensionless spin éBecause for observers viewing the black hole properties. For instance, Ref. [54] is able to set bounds

ho
bo
ca

le from inclinations increasingly close to the pole, the shadown the parameter space of the uncharged, rotating Hayward

undary appears incre.as.ingly circuldéig distortions reported  p|5ck hole by imposing bounds on the maximum distortion

n be taken as upper limits. of the shape of its shadow boundariesalbeit using a
different measure for the distortion from a circle [see

zero is insignificantfor observer viewing angles thaare  Eq. (58) there], whereas we have shown thathis is not
close to the pole of the black hole, as anticipated (not  possible,upon using the bounds 4.31M — 6.08M for the
displayed here). size of their shadows (cfright panel of Fig. 2).
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