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Abstract We present an improved technique for sus-
ceptibility artifact correction in Echo Planar Imaging
(EPI), a widely used ultra fast Magnetic Resonance
Imaging (MRI) technique. Our method corrects geo-
metric deformations and intensity modulations present
in EPI images. We consider a tailored variational image
registration problem incorporating a physical distortion
model and aiming at minimizing the distance of two
oppositely distorted images subject to invertibility con-
straints. We derive a novel face-staggered discretization
of the variational problem that renders the discretized
distance function and constraints separable. Motivated
by the presence of a smoothness regularizer, which leads
to global coupling, we apply the Alternating Direction
Method of Multipliers (ADMM) to split the problem
into simpler subproblems. We prove the convergence
of ADMM for this non-convex optimization problem.
We show the superiority of our scheme compared to
two state-of-the-art methods both in terms of correc-
tion quality and time-to-solution for 13 high-resolution
3D imaging datasets.
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1 Introduction

Echo-Planar-Imaging (EPI) is an ultra fast Magnetic
Resonance Imaging (MRI) technique that is widely used
in medical imaging applications [29]. For example, EPI
is used in the neuroscience to accelerate the acquisi-
tion of Diffusion Tensor Images (DTI) [18] or intra-
operatively to guide surgery [4]. While offering a sub-
stantial reduction of scan time, a drawback of EPI is its
high sensitivity to small inhomogeneities of the local
magnetic field. In practical applications the magnetic
field is perturbed inevitably by susceptibility variations
of the object being imaged. The strength of the inhomo-
geneity is correlated with the strength of the external
magnetic field [21] and, thus, correcting for these arti-
facts becomes increasingly relevant for high-resolution
MRI.

The distortions are mainly caused by susceptibility
variations across different tissue types; see the physical
distortion model derived in [3]. It was shown that the
distortion consists of two components: a geometric dis-
placement and a modulation of image intensities. It is
important to note that for EPI-MRI the displacement is
practically limited to a fixed and a priori known direc-
tion, the so-called phase-encoding direction. Distortions
in the other directions (frequency encoding and slice
selection direction) are negligible. It is this particular
structure that we exploit in this work to obtain a par-
tially separable objective function and an efficient opti-
mization scheme. The intensity modulation is given by
the Jacobian determinant of the geometric transforma-
tion and ensures mass-preservation under the assump-
tion that the Jacobian determinant is strictly positive
almost everywhere. As mentioned in [3] this property
needs to be ensured by judicious choice of the measure-
ment parameters.
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In recent years many approaches for susceptibility
artifact correction were proposed; see, e.g., [13] for an
extensive overview. Most of them employ the physical
distortion model in [3], and fall into one of two cate-
gories. One approach is to obtain a field map, which
is an estimate of the field inhomogeneity, from a ref-
erence scan and apply the physical model for suscepti-
bility artifacts [16,17]. Alternatively, the field map can
be estimated using an additional EPI image with re-
versed phase-encoding gradients and thus opposite de-
formations. The estimation problem can be phrased as a
nonlinear image registration problem as originally pro-
posed in [3]. This approach, commonly referred to as
reversed gradient method, is taken in the following.

There are several numerical implementations of the
reversed gradient method, e.g., [15,26,24,13,27,1]. For
a pair of images acquired with reversed phase-encoding
gradients, the goal is to estimate the field inhomogene-
ity such that the resulting deformations render both im-
ages as similar as possible to one another. Recently, sev-
eral studies have confirmed the quality of reversed gra-
dient approaches, e.g., in quantitative MRI (qMRI) [14],
perfusion weighted MRI [31], and Arterial Spin Label-
ing (ASL) [19].

Despite the increasing popularity of reversed gradi-
ent methods, relatively little attention has been paid to
their efficient numerical implementation. Although the
methods in [15,26,24,13,27,1] are all based on the same
physical distortion model, they employ different dis-
cretizations and optimization strategies. Hessian-based
minimization schemes are used in [26,24,13,27,1]. As to
be expected, the computationally most expensive step
in these iterative methods is computing the search di-
rection, which requires approximately solving a large
linear system. An often neglected aspect is the impact
of the chosen discretization on the complexity of this
step. As we show in this work, a careful numerical dis-
cretization, which is motivated by the physical distor-
tion model, can be exploited to substantially reduce the
computational cost of this step.

In this paper, we present a novel fast and scalable
numerical optimization scheme that considerably ac-
celerates reversed gradient-based susceptibility artifact
correction. Similar to [26,24,13], we consider a varia-
tional formulation consisting of a distance functional
and a smoothness regularization functional. We use a
discretize-then-optimize paradigm and follow the gen-
eral guidelines described in [20]. In contrast to exist-
ing works, we derive a face-staggered discretization that
exploits the fact that, in EPI-MRI, displacements are
practically limited along the phase encoding direction.
We show that this discretization leads to a separable
structure of the discrete distance function, whereas the

smoothness regularizer yields global coupling but has
exploitable structure. We derive a completely paralleliz-
able algorithm that aims at minimizing the non-convex
objective function using the framework of the Alternat-
ing Direction Method of Multipliers (ADMM) [2]. We
prove that ADMM converges to a stationary point of
the Lagrangian associated with the non-convex objec-
tive function. The complexity of our method is essen-
tially linear and the steps of the ADMM method can be
separated into several small-dimensional subproblems
that can be solved efficiently and in parallel.

The paper is organized as follows. Section 2 intro-
duces the forward and inverse problem of susceptibility
artifact correction. Section 3 describes the discretiza-
tion using a face-staggered grid for the displacement.
Section 4 describes and proves the convergence of the
optimization method. Section 5 outlines the potential
of our method using high-resolution imaging data. Fi-
nally, Section 6 concludes the paper.

2 Variational Formulation

In this section, we briefly review the physical distortion
model derived in [3] and the variational formulation of
EPI susceptibility artifact correction also used in [26,
24]. For clarity of presentation, we limit the discussion
to the three-dimensional case, which is most relevant
for our applications.

Let us first derive the forward problem. Let 2 C R?
be a rectangular domain of interest, let v € R® denote
the phase-encoding direction, and let the magnitude of
the field inhomogeneity at a point € {2 be b(x), where
in the forward problem b : {2 — R is assumed to be
known. As derived in [3], the distorted measurement
Ty, : R® — R and the undistorted image Z : R®> — R
satisfy

I(z) = Iyp(z + b(z)v) - det V(x + b(x)v)
=T, o(x +b(x)v) - (1+0"Vb(z)), (1)

where det V(z + b(z)v) denotes the Jacobian determi-
nant of the transformation x + b(z)v. Following [20]
we assume that the images are continuously differen-
tiable and compactly supported in (2. Note that the
Jacobian determinant simplifies to a directional deriva-
tive since displacements are limited along one direction.
Similarly, let Z_, denote a second image acquired with
reversed phase-encoding direction —v but otherwise un-
changed imaging parameters. Using the physical distor-
tion model (1), we have

T(x) = Tyo(z 4 b(z)v) - (1 + 0" Vb(z))
=7 o(x—b(x)v)- (1 —v"Vb(x)). (2)
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In the inverse problem, both the inhomogeneity b
and the undistorted image Z are unknown. However,
given two images 7, and Z_, acquired with opposite
phase-encoding directions +v and —wv, respectively, the
goal is to estimate b such that the second equality in (2)
holds approximately. As common we relax the equality
in (2) to an £2-distance term

1

D) = /Q (Tro(B) = T-o(8)? da 3)

where we denote transformed images by
Tio(b) = Zyy(x +b(x)v) - (1 + 0T Vb(z))
and

T o(b) =Z_y(z — b(z)v) - (1 — 0 Vb(x)).

Minimizing the distance term alone is an ill-posed prob-
lem and thus regularization is added; see [26,24,13].
In [21], methods for computing the field inhomogeneity
b from susceptibility properties of the brain are devel-
oped. In this work it is shown that the field inhomogene-
ity should be in the Sobolev space H!(§2) and thus, we
consider the smoothness regularizer

st =5 [ IVH@) de. (W

It is important to note that the physical distortion
model (1) only holds if the Jacobian determinants for
both phase-encoding directions are strictly positive for
almost all x € £2; see [3]. Therefore, as firstly suggested
in [26,24], we impose a constraint on the Jacobian de-
terminant

—1<v'Vb(z) <1 for almost all z € . (5)

As also discussed in [25, Sec. 3], we restrict the set of
feasible field inhomogeneities to a closed ball B with
respect to the £5°-norm whose radius depends only on
the diameter of §2. To this end, note that both the
distance and the regularization functional vanish for
any large enough constant field inhomogeneity b, due
to the fact that Z,, and Z_, are supported within the
bounded set (2. However, these global minimizers of
D(b) and S(b) would be implausible in practical appli-
cations. This leads to the variational problem

Igéig J () =D(b) + aS(b)

subject to —1<wv'Vb(z) <1, Vzen, (6)

where the regularization parameter a > 0 balances be-
tween minimizing the distance and the regularity of the
solution. There is no general rule for choosing an “op-
timal” regularization parameter especially for nonlin-
ear inverse problems, however, several criteria such as

generalized cross validation [9,10], L-curve [11], or dis-
crepancy principle [32] are commonly used. In this pa-
per, we assume that « is chosen by the user. Following
the guidelines in [20] we first discretize the variational
problem, see Section 3, and then discuss a numerical
method for solving the discrete optimization problem
in Section 4.

3 Discretization

In this section, we derive a novel face-staggered dis-
cretization of the variational problem (6) that renders
the discrete version of the distance functional (3) sep-
arable and, thus, amendable for efficient numerical op-
timization.

Our notation follows the general guidelines in [20].
For ease of presentation, we consider a rectangular do-
main 2 = (0,1) x (0,1) x (0,1) C R3 and assume that
the phase-encoding direction and thus the direction of
the distortion is aligned with the first coordinate axis.
In other words, we assume v = ej, where ey is the
first unit vector. In our experience, this is not a prac-
tical limitation since image data can be rearranged ac-
cordingly. To simplify our notation, we assume that (2
is divided into m3 voxels with edge length h = 1/m
in all three coordinate directions although our imple-
mentation supports arbitrary numbers of voxels and
anisotropic voxel sizes. The images Z,, and Z_, are
assumed to be compactly supported and continuously
differentiable functions. In practice, a continuous image
model is built from discrete data by using interpolation;
see [20, Sec. 3] for details.

To obtain a separable structure of the discrete dis-
tance term, we discretize the field inhomogeneity, b, by
a vector b € R™D™* on the zi-faces of a regular
grid as visualized in Figure 1. For brevity, we denote
the number of x;-faces by n = (m + 1)m?2. Clearly, the
elements of the vector b can be accessed using linear
indices or sub indices

bije = b ((i — 1)h, (j — 0.5)h, (k — 0.5)h),

fori=1,...,m+1and j,k = 1,...,m. The restric-
tion of the field inhomogeneities b to the L£°-ball B
is discretized by restricting b to a symmetric closed
box X C R™ with edge length 2 - diam(§2) around the
origin. In our numerical experiments, it was not nec-
essary to enforce this constraint. The distance func-
tional (3) is approximated by a midpoint rule. To this
end, the geometric transformation and the intensity
modulation in (1) are approximated in the cell-centers
by simple averaging and short finite differences, respec-
tively. To compute the field inhomogeneity in the cell-
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Fig. 1 Left: Cell-centered grid (circles), nodal grid (squares),
and e;-staggered grid (triangles) on a 2-dimensional box-
domain with 4 x 4 pixels. Middle and right: Example of a
reversed-gradient EPI-MRI pair provided by the Human Con-
nectome Project [30]; see also Section 5.

centers given an ej-staggered discretization, we use the
averaging matrix
Al =1 (m2) ®;&1,

with

c Rmx(m—i—l)
0 11
where ® denotes the Kronecker product of two matri-
ces and I(k) denotes the identity matrix of size k x k.

From that we obtain the discretized displacement in
e1-direction using

Ay

A=10
0

c R3m3><n’ (7)

where 0 € R™* X" is a matrix of all zeroes.
Similarly, we discretize the first partial differential
operator using short finite differences matrices

D, =1I(m?) @ D(m +1,h), (8)
where
-11 0
~ 1
D(m, h) = + _ | e RUm=Dxm,
0 -11

Combining (7) and (8) the distance functional (3) is
approximated by

D(b) = %Sy|z+v(x + Ab) ® (e + D;b)
~7_,(x— Ab)® (e — D), (9)

where x are the cell-centers of a uniform grid, Z4,(x +
Ab) denote vectors containing the image intensities at
the shifted grid points, ® denotes the component-wise
Hadamard product, and e € R™” is a vector of all ones.

Similarly, we approximate the regularization func-
tional (4) by

S(b) = 2 (IDibl? + [Dab] + [Dabl?).  (10)
where the discrete partial derivative operators are

D, = I(m) @ D(m, h) @ I(m + 1) (11)
and

D3 = D(m, k) @ I(m - (m + 1)). (12)

Using (8) to discretize the constraint and combin-
ing (9) and (10), we obtain the finite-dimensional opti-
mization problem

min J(b) = D(b) + aS(b)

subject to —1<D;b < 1. (13)

All components of (13) are smooth, the regularizer is
a convex quadratic, the constraints are convex, how-
ever, the distance function is in general non-convex. The
non-convexity is addressed using a multilevel strategy;
see Section 4.3. We exploit the separable structure of
the distance term and the constraints in (13) and derive
an efficient implementation of a Sequential Quadratic
Programming (SQP) method within the framework of
ADMM. The approach is described in more detail in
Section 4.

In preparation for efficient, Hessian-based optimiza-
tion, we quickly derive the gradients and approximate
Hessians of the discretized distance term (9) and reg-
ularizer term (10). Let us denote the residual of the
distance term (9) by

r(b) =Z4,(x+ Ab) ® (e + D;b)
—7_,(x— Ab) ® (e — Dyb).

Then, denoting the Jacobian matrix of the residual for
3

a fixed b by J.(b) € R™ %" we obtain the gradient

and Gauss-Newton approximation to the Hessian as

VD(b) = h® J.(b) "r(b)

and

V2D(b) ~ Hp(b) = h* J.(b) " J.(b).
The Jacobian of the residual, is given by

J:(b) = diag (01Z+,(x + Ab) ©® (e + D1b)) A4
+ diag (Z4,(x + Ab)) D,
+ diag (01Z_,(x — Ab) © (e — D1b)) A4
+ diag (Z_,(x — Ab)) Dy,

where 0171, (x £ Ab) denote vectors of the first partial
derivatives of the images evaluated at the shifted grid
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Fig. 2 Sparsity patterns of the (approximated) Hessians of
the distance function, smoothness regularizer, and its first
and second term (from left to right) for the ei-staggered dis-
cretization (top row) and the nodal discretization used in [26,
24] (bottom row) for the 4 x 4 example shown in Figure 1.
Note that the Hessian of the distance term and the first term
of the regularizer are block diagonal and therefore separa-
ble with respect to image columns for the face-staggered dis-
cretization. Coupling is only introduced by the second term
of the Hessian of the smoothness regularizer.

points and diag(v) € R™"*" is a diagonal matrix with
diagonal entries given by the vector v € R™.

Unlike the distance function, the regularizer intro-
duces coupling along all dimensions. The Hessian and
the gradient of the regularization function (10) are

V?S =h* (D{D; + D, D, + D; D3)
and
VS(b) = V2S b.

In view of efficient numerical methods, we note that
V25 is of Block-Toeplitz-Toeplitz-Block (BTTB) struc-
ture; see, e.g., [12]. Combining the above derivations,
the gradient and approximated Hessian of the discrete
objective functions are

V.J(b) = VD(b) + aVS(b) (14)
and
H;(b) = Hp(b) + aV3S. (15)

A key idea of the optimization method presented in
the following section is to exploit the separability of the
distance function that can also be seen in the sparsity
structure of the Hessian matrix. Due to the choice of
the average operator A and the short finite difference
operator D1, the Hessian of the distance function has a
block-diagonal structure with tridiagonal blocks of size
(m+1) x (m+ 1); see also Figure 2. Thus, minimizing
the distance term would decouple into several smaller
optimization problems. The Hessian of the regularizer,
V28, is a discrete version of the negative Laplacian on
2 with homogeneous Neumann boundary conditions
and has a banded structure. The term D] D; has the

same block-diagonal structure with tridiagonal blocks
of size (m+1) x (m+1) as V2D. So the coupling intro-
duced by the regularizer comes from the terms D, Dy
and Dj D3 only. Figure 2 shows a comparison of the
proposed face-staggered discretization and the nodal
discretization used in [26,24].

4 Numerical Optimization

In this section, we propose an efficient iterative method
for solving the discretized constrained non-convex op-
timization problem (13) using the Alternating Direc-
tion Method of Multipliers (ADMM). Our method ex-
ploits the separability of the discrete distance function
achieved by the face-staggered discretization while en-
forcing the smoothness of the regularizer. We obtain a
scalable method in the sense that its complexity grows
essentially linearly with the number of unknowns in
the discrete optimization problem. In section 4.1 we use
ADMM to decouple the optimization into two subprob-
lems that can be solved efficiently and in parallel. Due
to the non-convexity of the objective function J(b) tra-
ditional convergence results for ADMM such as in [2]
do not hold here. Therefore, we prove convergence of
ADMM for our problem (13) in Section 4.2. Finally,
in Section 4.3 we describe the coarse-to-fine multilevel
strategy used in our experiments. Throughout this sec-
tion, we denote the iteration counter by superscripts.

4.1 ADMM

We aim at exploiting the partial separability of the dis-
crete distance function (9) by applying the Alternating
Direction Method of Multipliers (ADMM). Originally
developed in the mid 1970s, ADMM recently received
a lot of attention in many data science and imaging ap-
plications; see, e.g., [7] and the recent surveys [2,5,8].
The key idea in our case is to split the terms of the ob-
jective function (13) into parts that are separable with
respect to image columns and terms that couple across
image columns. To this end, let z € R™ be a new ar-
tificial variable and split the objective function J into

Oéh3 2
£(b) = D(b) + “1- Db (16)
and
ah? 2 2
() = “2 (Do) + D2l ). a7)

Then problem (13) is equivalent to
bmi% tc(b) 4+ f(b)+g(z) subjectto b=z, (18)
,ZER™
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where we encode the linear inequality and box con-
straints into the objective function, by using the in-
dicator function tc(b) of the compact and convex set
C={beX: -1<D;b <1}, taking the value 0,
whenever b € C, and oo otherwise. For an augmenta-
tion parameter p > 0, whose choice is discussed below,
we aim at finding a stationary point of the augmented
Lagrangian of (18)

£y(b.2,y) = tc(b) + (b) + g(2)
3
+y b2+ Db s, (9)

where y € R™ is the Lagrange multiplier associated
with the equality constraint in (18). The idea of ADMM
is to update b, z, and y in an alternating fashion

b* ! = argmin £,(b, 2", y"*), (20)
beR"

ZFtl = argminﬁp(b]Hl, z,yk)7 (21)
zER™

yk+1 _ yk + phS(bk+1 _ Zk+1). (22>

Introducing the scaled dual variable u = y/(ph?), we
obtain the following iteration

3
b1 = argminc(b) + £(b) + 2 b2t 4wt

beRn
(23)
k ph? k12
zZ H:argming(z)—FTHb oz, (24)
zER®
uFt = b 4 phtL R (25)

The first subproblem, updating b, is a non-convex con-
strained optimization problem and can be solved ap-
proximately using Sequential Quadratic Programming
(SQP) as described below. For the discretization de-
rived in the previous section, this problem is separa-
ble with respect to the columns in the image and thus
can be further broken down into m? separate steps. In
each iteration of the SQP method, we form a quadratic
approximation of the objective function and solve the
resulting quadratic program (QP) using the active set
method with Schur complement solver described in [22,
Ch. 16]. The general form of the QP is

1
min §XTGX +c'x subject to Ax>d, (26)

where, in our case, G is the respective Hessian approxi-
mation, c is the gradient, D; and —D; are stacked into
A, and d is a vector of all negative ones. Let x* be the
current iterate in this QP and I C {1,2,...,n} be a
subset of component-indices describing the active set.
Further, let A; be the matrix containing the rows of
A associated with active constraints and let d; be the

corresponding right-hand-side. Then we obtain an up-
date direction p for x* and the Lagrange multiplier A
of the active constraints by solving

G A p\ [-c— GxF (s (27)
A[ 0 —-A o d[*A]Xk o h
using the Schur complement, i.e., by setting
A=—(A,G'A]) " (A,G g —h)
and
p=G ' (A/X+g).

Now three cases can occur: First, if p=0and A > 0
component-wise, then x* is the global solution to (26).
Second, if p = 0 but some components of A are neg-
ative, we remove up to one constraint with negative
Lagrange multiplier per block in A from the active set
and repeat the above computations. Third, if p # 0,
compute a step length A\* such that x* 4+ \¥p is feasi-
ble but at least one additional constraint has become
active. Then all of these constraints are added to the
active set. Linear independence of the active constraints
is guaranteed since the partial derivative at an active
voxel can be either 1 or —1. Note that the Schur com-
plement involves G~! and thus an efficient method to
solve linear systems with matrix G is needed. In our
application, the chosen discretization allows for fast in-
versions.
More precisely, for the update of b, we have

c = VD(b") + ah®Db" + ph3(b* — z¥ 4+ u*)
and
G =Hp (b*) + ah®D| Dy + ph*I(n),

which has the before mentioned block-diagonal struc-
ture with tridiagonal blocks of size m + 1. Therefore,
linear systems involving G can be solved in parallel by
a direct method with a linear complexity of O (n).
The second subproblem, updating z, is an uncon-
strained strictly convex quadratic optimization problem
with a structured, symmetric positive definite Hessian

G = ah® (D; Dy + D] D3) + ph’I(n)
and has the closed form solution
2"l =G (ph®(BF T +ub)).

The matrix G can be reordered into a block-diagonal
matrix with m + 1 blocks, whose blocks are matrices
of size m? x m?. Each block is a discretization of the
negative two-dimensional Laplacian with homogeneous
Neumann boundary conditions on a regular mesh and
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thus is a Block-Toeplitz-Toeplitz-Block (BTTB) ma-
trix. Hence, G can be diagonalized using two-dimen-
sional Discrete Cosine Transforms (DCT); see [12, Ch.
4]. More specifically, denote by C(m) € R™*™ the one-
dimensional DCT of size m. Then we have

D(m, h) ' D(m,h) = C(m)" A(m, h)C(m) (28)

for some diagonal matrix A(m, h). Combining (11), (12)
and (28), we immediately obtain

D, D, +DJ D3 =C'" AC,
where
C=C(m)®C(m)®I(m+1)

is the two-dimensional DCT along es- and e3-direction,
and

A=I(m)® A(m,h) @ I(m +1)
+A(m,h) @I(m) @ I(m + 1)

is a diagonal matrix that only needs to be computed
once for every fixed discretization (m, k). Finally, since
C is orthogonal, we obtain

G =C" (ah®A+ ph®I(n)) C.

Thus, the second ADMM step, updating z, requires
m + 1 two-dimensional DCTs, which is of complexity
O ((m +1)(m?logm?)), followed by a diagonal solve,
and finally m+ 1 inverse two-dimensional DCTs. Again
this is a direct solve and does not require the use of
iterative methods.

For the ADMM algorithm (23) to (25), we use the
stopping criteria proposed in [2, Sec. 3], which are also
justified by our convergence analysis in Section 4.2. We
stop when the norm of the primal and dual residual
satisfy

R — 25| < e (29)
and
ph?||z" — 2" || < equal, (30)

where €, and €quar are computed exactly as (3.12) in [2]
using a combination of an absolute and a relative tol-
erance

s = V7 {54 2]}
€dual = \/ﬁ €abs T €relph3 HukH .

In our numerical experiments in Section 5, we choose
_ _ -1
€abs — €rel — 2-10 .

4.2 Convergence of ADMM

It is important to stress that the first subproblem in
our ADMM algorithm, (23), is non-convex and thus
the traditional convergence results for ADMM do not
hold. However, ADMM can be considered a local opti-
mization method and has been successfully applied to
non-convex problems in other applications; see [2, Ch.9]
for some examples. Recently, convergence results have
been established under some modest conditions on the
functions involved; see, e.g., [33]. In the following, we
show convergence of ADMM for the specific problem
at hand. Using the smoothness of our problem we ob-
tain a simplified, but less general, convergence proof
as compared to [33]. We first recall that the functions
f and g in (16) and (17) are twice continuously dif-
ferentiable by construction. Further, V f is Lipschitz
continuous over C' and Vg is Lipschitz continuous over
R™. We denote the corresponding Lipschitz constants
by Ly and L, respectively. The relation between these
Lipschitz constants and the augmentation parameter,
p, is crucial in the convergence analysis. Throughout
this section we use both the unscaled ADMM formula-
tion (20) to (22) as well as the equivalent scaled formu-
lation (23) to (25), whichever is more convenient. Recall
that u* = y*/(ph3) is the scaled Lagrange multiplier.
The main result of this section is the following.

Theorem 1. For p > %max{Lf,Lg}, the sequence
of iterates {b¥ z* y*¥1i. generated by the ADMM algo-
rithm (20) to (22) converges subsequentially and each
limit point {b*,z*,y*} is a stationary point of the aug-
mented Lagrangian L, in (19).

As in [33], our proof is based on the following three
properties.

Theorem 2. For p > %maX{L‘f,Lg}, the sequence
of iterates {b¥ z* y*1,. generated by the ADMM algo-
rithm (20) to (22) has the following properties:

(P1) The iterates {b*,z* y*}, are well-defined, bound-
ed, and {L,(b*,z* y*)}). is bounded below.

(P2) The value of the Lagrangian decreases sufficiently
fast, meaning there is a constant C7 > 0 such that

L,(bF, 2%, y*) — £,(bF+1 Zh+1 k1)
>0 (ku _ bk+1H2 + sz _ Zk+1H2) .
(P3) There exists a constant Co > 0 and subgradients
d*tl € 9L, (bR ZF L Ykt such that
[ < Co (|[b* = BEH| + 2% — 2"
We split the proof of Theorem 2 into several lemmas.

Lemma 3. For p > 0 the subproblems (23) and (24)
have at least one solution for all k € N.
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Proof. For arbitrary but fixed k, the first subproblem,
the update b* — bF*1, consists of minimizing the func-
tion

3
F(b) + 22 o~ o

over the compact and convex set C. On this set f is
twice continuously differentiable, so the problem is well-
defined, i.e., there exists a global solution. The second
subproblem, the update z* — z**!
mizing

, consists of mini-

3
g(Z)-&-% ku+1 —Z+ukH2

over z € R™. This problem is well defined, since g is a
convex quadratic function and p > 0, which renders the
overall objective function strictly convex. Thus, there
exists a unique global minimizer. O

We denote the changes in the value of the aug-
mented Lagrangian for the three consecutive ADMM
steps by

Abﬁp = Ep(bka Zka yk) - Ep(bk+17 Zkayk)a

Azﬁp _ Lp(bk+1, Zk, yk) _ Ep(bk+1, Zk+1, yk))

Ayﬁp _ Ep(bk+1, Zk+17 yk) . L:p(bk+1, Zk+1, yk+1),
respectively. Next we show that the augmented La-

grangian decreases sufficiently after the first ADMM
step (20).

Lemma 4. If p > 7Ly, then the update b* — bF+1
does not increase the augmented Lagrangian. More pre-
cisely,

3
Aty = (O 1) o = b1

Proof. Denote d**1 = y**1 4 ph3(z*+1 — z*) and for
brevity Vf**1 = Vf(b**1). From the optimality con-
dition for (20) we conclude that b**1 satisfies

0 € V" 4+ 0uc(bF) + y* + ph3(bF L — 2%)
o 0c ka+1 + abc(bk—&-l) + yk+1 + phS(Zk+1 _ zk)
o= (kaﬂ +dk+1) c 8Lc(bk+1)
& (VAT 4 (w-b) >0 Ywed
(31)

Here, we used that the subgradient of an indicator func-
tion of a convex set C' is

dc(® ) ={deR":d"(w-DbF") <0,vweC},

see also [23, Ch. 8]. Then we get
AL, = f(b*) = F(B5HY) + (v¥) | (b* — bH*)
ph? 2 2
R (e ey
= f(B¥) = F(B*1) + (@) (B — BH )
PRk k2
2 e
_ f(bk) _ f(bk+1) o (vkarl)T(bk _ bk+1)
4 (vfk+1 + dk+1)T (bk — pk+1)
ph? E+1)2
— (|b" —Db
Ny l
3
> (ph _ Lf) ku _ bk+1H2’
2
where we used (31) and the Lipschitz continuity of V f

in the last step. O

A similar result holds for the second ADMM step (21).

Lemma 5. For any p > 0, the update z* — z**! does

not increase the value of the augmented Lagrangian.
More precisely,

3
AzL‘p > % sz _ Zk-‘rlHQ .

Proof. From the optimality condition for (21) we con-
clude that z**! satisfies

0= vg(szrl) _ yk _ phS(karl _ Zk+1)
— Vg(zk—H) _ ph3yk+1
and therefore y*+! = Vg(z**1). Hence, we get
T
ALy = g(2") — g(2") — (v*) (2" — 2"
3
i % (kuﬂ _ zlc||2 —|pFtt - zk+1||2)
T
= g(z") —g(2"*") — (") (2" -2
3
+ Ot -2
2
= g(2")

ph? 2
Ty |2 — 2+

_ g(zk+l) _ vg(zk-l-l)'l'(zk o zk+1)

>

ph? 2
=5 ||Zk - zk+1||

where we used the convexity of g in the last step. [

We now show an analogous result for the third ADMM
step (22).

Lemma 6. For any p > 0, the update y* — y**+1 does
not increase the value of the augmented Lagrangian, i.e.
we have Ay L, > 0.
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Proof. This directly follows from
Ay, = (y" — yH )T - b
= ph3 ku+1 _ Zk+1H2 > 0. 0

Having established the above results, we can now
verify that our problem satisfies the three properties
in Theorem 2.

Proof of Theorem 2. We note that (P2), the sufficient

decrease, follows immediately from Lemmas 4 to 6 with
3

the constant Cy = % — L > 0. For brevity we denote

Lh=L,(bF, 2" y*) and LT = L£,(bFFT, 21 yktt),

(P1) The well-definedness of the updates b* — b*+!
and z¥ — z**! and thus also the update y* — y**!
follows from Lemma 3. We next show that the se-
quence {L£(b*, z*, y*)}; is bounded below. First, note
that for each iteration k we have

f(®F) + g(b*) > 0.

Using that y* = Vg(z*) for all £ and the Lipschitz
continuity of Vg we note that

Hyk-l-l _ ka < Lg sz—i-l _ ZkH . (32>

Combining this with ph® > 2L, we obtain

£ = f(b%) + g(z") + (v*) " (b* — )
Oy o =
= F(bY) + g(b¥) + g(z") — g(b*)

3
— Vg(z*) T (2" — bF) + % ku - zkH2

> f(b*) + g(b*) + ('OZB - Lg) [ — =

>0, (33)

which shows that {Ep(b’“, z", y’“)}]C is lower bounded
by zero. Finally, we need to show the boundedness of
{b* z* y*};. For {b*}; this directly follows from the
boundedness of C. From property (P2) we know that
L,(b*, z*, y*) is monotonically decreasing and there-
fore bounded above by £,(b°,z°,y°). Using this, the
boundedness of {b*};, (33), and the lower bounded-
ness of {f(b*) 4+ g(b*)}x, we conclude the bounded-
ness of {z"},. Finally, again using y* = Vg(z*) and
the Lipschitz continuity of Vg, we have

[y*[| = [ Vg(z")]|
< [|Vg(z") - Vg(0)[| + [Vg(0)|
< Ly 2" + [Vg(0)],

which shows the boundedness of {y*}4.

(P3) We need to bound the derivatives of £,. First, we
note that

LT = VF(b* ) + O (b)
FyRtL g pp3 (bR gkt
= V(B + duc (M)
+ yk + phS(bk+1 _ Zk)
+ yk—i-l _ yk + ph?)(zk _ zk—i—l).
The optimality condition of the first ADMM step (20)

implies 0 € f(b5+1)+9uc(bF1) +yk + ph3 (bF+1 - zk)
and thus

yk—i-l o yk +ph3 (zk _ Zk+1) c 8b£p(bk+1, Zk+1, yk-i-l)7

which has a norm bounded by (Lg 4 ph®) ||zF — 2F+1||
due to (32). Second, we note that

az£k+l — vg(zk+l) o yk+1 . ph3(bk+l o Zk:+1)
p

= [ly" =¥+

<1I, sz _ Zk+1|| '
Finally, we note that

loy 57| = [|B* — 2"

k1 hy

1
|7
L
<l -2

Therefore, with constant C, = max{3,3Ly} there ex-
ists a subgradient d**! € 9L, (bF 1 zF 1 yk+l) as
claimed. O

Finally, we conclude by proving the main result,
which is done exactly as in [33] by using the proper-
ties (P1)-(P3).

Proof of Theorem 1. In Theorem 2 we have established
that the properties (P1)—(P3) hold for the iterates gen-
erated by (20) to (22), provided that the augmentation
parameter satisfies p > % max{Ly, Ly}. From (P1) we
know that the set of iterates {b*,z* y*}; is bounded,
so it has a convergent subsequence. We denote a limit
point by {b*,z*,y*}. Also from (P1) we know that the
sequence {E,,(bk,zk,yk)}]c is bounded below. By (P2)
it is also monotonically and sufficiently decreasing and
this implies |[b* — b*"|| — 0 and [|z* — ") — 0.
Finally, by (P3), we get that there exists a subgradient
d* € 9L, (b*, z*, y*) with HdkH — 0, which shows that
0 € 0L,(b*,z*,y*), and thus {b*,z*,y*} is a station-
ary point. O
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The lower bound for p depends on the Lipschitz con-
stants Ly and L, of the distance and regularization
function, respectively, as well as the voxel size h. The
Lipschitz constants are commonly not available in prac-
tice. In our numerical experiments in Section 5 we use
a modified version of the adaptive augmentation pa-
rameter choice described in [2], which ensures that the
augmentation parameter p remains larger than an ex-
perimentally defined lower bound pp,i,, which we chose
equal for all steps in the multilevel optimization. We
compare this parameter choice method with a constant
choice of the augmentation parameter and the unmod-
ified adaptive scheme proposed for convex problems
in [2].

4.3 Multilevel Strategy

As common in image registration and also suggested
in [24], we employ a multilevel approach for solving (6);
see [20] for details. In a nutshell, we start by solving
a discrete version of (6) on a relatively coarse grid.
Then, we prolongate the estimated field inhomogene-
ity to a finer grid to serve as a starting guess for the
next discrete optimization problem. On each level, the
resolution of the image data is increased as well and
the procedure is repeated until the desired resolution is
achieved. Apart from reducing computational costs on
a coarse grid and obtaining excellent starting guesses,
multilevel approaches have been observed to be more
robust against local minima, which are less likely to oc-
cur in the coarse grid discretization; see Figure 3 for
an example.

For ADMM there are several options how to ini-
tialize the optimization on a finer grid discretization,
given the results on the coarser grid. We have tested
and compared three strategies:

1. Prolongate all three coarse mesh vectors bE*1 zk+1,

and u¥*! and use the resulting fine mesh vectors by,
zs, and uy as initial guesses for the next level.

2. Restart ADMM using the fine mesh variable by for
both z° and b® and set the dual variable to zero,
ie,u’=0.

3. Restart ADMM on the fine level using an average
b’ =z = L(bs +z¢) and u’ = 0 as initial guesses.

In our examples, we obtained comparable results for all

three strategies, however, the third strategy performed

best and is used in the subsequent experiments.

5 Numerical Experiments

In this section, we perform numerical experiments to
demonstrate the effectiveness and the performance of

the proposed ADMM method using high-resolution 3D
data acquired using a state-of-the-art MRI scanner. We
conclude the section by comparing the novel method
to two existing state-of-the-art methods for suscepti-
bility artifact correction. A MacBook Pro laptop with
2.8 GHz Intel Core i7 processor and 16 GB 1600 MHz
DD3 memory running MATLAB 2016B is used for all

numerical experiments.

Test Data. The 3D data sets are provided by the Hu-
man Connectome Project [30]. We use several pairs
of unprocessed b = 0 diffusion-weighted images of fe-
male and male subjects aged 26-35 (cf. Table 1 for
subject IDs) acquired using reversed phase-encoding di-
rections on a 7T scanner. The image data is obtained
using a commonly used single-shot spin-echo EPI se-
quence. In all cases the rectangular field of view is
210 mm x 210 mm x 138.5 mm and the voxel size
is 1.05 mm in all spatial directions. We use a three-
level multilevel strategy using grid sizes of 50 x 50 x 33,
100 x 100 x 66, and 200 x 200 x 132.

Performance of ADMM. We study the performance of
the proposed ADMM scheme and its dependence on the
choice of the augmentation parameter p using one of the
3D data sets described above (subject ID 111312). The
convergence of the primal residual, dual residual, and p
for the adaptive method, the fixed parameter method,
and the adaptive method with lower bound, are visu-
alized in Figure 4. In the fixed case we use p = 102
which is also the lower bound in the bounded adaptive
method. For both adaptive schemes the initial parame-
ter is p° = 105. As discussed in Section 4.3, we average b
and z after prolongation to start the next level. Clearly,
larger values for p result in a smaller primal residual,
whereas smaller values for p result in a smaller dual
residual. The benefit of the adaptive method with lower
bound is, that it forces the primal residual to converge
fast during the first iterations and afterwards keeps the
primal residual small while the dual residual converges
as well. This way the equality constraint in (18) is al-
most satisfied during most iterations, meaning that we
indeed solve the problem (18).

Note, that even though p changes dramatically on
the coarsest level, it remains constant on the finer levels,
where computations are more costly. The separability
of the first — and in our experience most expensive —
ADMM subproblem (20) provides a way for substantial
speed up by using parallel computing. In principle, the
data of each image column can be processed completely
in parallel. To strike a balance between communication
overhead and computations, in our current MATLAB
implementation we correct all image slices in parallel.
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50 x 50

inhomogeneity initial data

corrected

100 x 100

200 x 200

Fig. 3 Multilevel susceptibility artifact correction for EPI-MRI brain data provided by the Human Connectome Project [30]
(subject ID 111312); see also Section 5. Deformed measurements Z,, and Z_,, (top row), estimated field inhomogeneity (middle
row) and corrected images (bottom row) are visualized for three different discretization levels (coarse to fine, left to right).
Image data is shown in pairs corresponding to the different phase-encoding directions. Left plots for the field inhomogeneity
visualize the starting guesses and right plots the refined solutions on each level.

T, proposed method

sed method

(cubic)

Fig. 5 3D correction results for high-resolution EPI-MRI brain data provided by the Human Connectome Project [30] (subject
ID 111312); see also Section 5. Initial data (left) and results of the two for this data set most accurate reversed-gradient based
correction methods are visualized using orthogonal slice views. The color axis are chosen identically in each row. First and
second rows show initial data and corrected images for both phase-encoding directions. Third row shows the absolute difference
between both images using an inverted color scale for improved visualization. A considerable improvement of image similarity
can be observed for both correction methods, however the proposed method leads to a slightly smaller residual. The bottom
row shows the estimated field inhomogeneity that is comparable among the correction techniques.

Comparison. We compare the quality of the proposed
correction method to two established state-of-the-art
methods for susceptibility artifact correction for thir-
teen 3D data sets provided by the Human Connectome
Project [30]. Exemplarily, we consider HySCO [26] since
it is based on the same variational formulation and uses
the same three-level approach as our proposed method,
and Topup [1] as implemented in the FMRIB Software

Library (FSL) [28] since it is part of the standard pro-
cessing pipeline for diffusion-weighted images used by
the Human Connectome Project. In contrast to the
proposed method, HySCO uses a nodal discretization,
which leads to coupling across slices and image columns
(see second row in Figure 2). HySCO uses a penalty
term P(b) scaled by a parameter 8 to enforce the in-
vertibility constraints and a Gauss-Newton-PCG itera-
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adaptive with p° = 10% and pmin = 107 Table 1 Comparison of improvements in image similar-
- min — . . . .
adaptive with 0 — 106 ity and runtime for different reversed-gradient methods
ve w = . . . . . .
a P 5 r (HySCO [26] with cubic interpolation (c) and linear interpo-
xed p =10 lation (1), Topup [1], and the novel ADMM method) applied
to several 3D-MRI data provided by the Human Connectome
4 Project [30] with @ = 50 and S = 10 (HySCO only). Im-
= 10 T T \ T I J Y Y
E 50x50x33 - age improvement is assessed using the reduction in the sum
:,f . oo of squared differences (SSD) distance [20] between the initial
ol (e - n and transformed blip-up and blip-down data. The speedup
>
g XX*XXXX‘ L00X100x66 200%200x153 factors of the novel ADMM method over both HySCO vari-
R | | i ! i \ ants and Topup are shown in brackets next to the correspond-
10 . .
1 20 40 1 20 1 10 ing runtimes.
— 10%; \ T \ T T T
g - :M”Wx“ 100X100X66 200%200x132 subject SSD reduction & runtime (ADMM speedup factor)
2 sl eseececes | ID [ HySCO (1) [ HySCO (c) | Topup 1] [ ADMM
= ™ 102816 71.3% 75.5% 82.4% 95.4%
2 g2 [P0 | 114s (2.1x) | 926s (16.8x) | 3617s (65.8x) | 55s (1.0x)
! ! I ! I !
78.9% 87.1% 83.0% 93.1%
1 20 40 1 20 1 10
Lo : ‘ : : E— L3121 1985 (4.6x) | 2059s (47.9x) | 3810s (88.6x) | 43s (1.0x)
S xx&»‘xx&& 100xX100x66 200x200x132 156334 908% 927% 853% 968%
g 10t Ry . 118s (2.2x) | 1648s (31.1x) | 3573s (67.4x) | 53s (1.0x)
i
CRp oo i 176542 89.9% 91.7% 85.6% 97.0%
i 5050533 142s (2.7x) | 3023s (57.0x) | 3705s (69.9x) | 53s (1.0x)
10° ‘ ‘ ‘ ‘ — 79.0% 82.9% 87.1% 97.8%
1 20 40 1 20 1 10 199655 ) ) . | |
ADMM iteration 137s (2.4x) | 900s (15.8x) | 3703s (65.0x) | 57s (1.0x)
291319 88.6% 90.3% 83.8% 95.1%
Fig. 4 Convergence of ADMM for a multilevel 3D EPI sus- 148s (2.9x) | 1859s (36.5x) | 3703s (72.6x) | 51s (1.0x)
ceptibility artifact correction. Two adaptive and one fixed 246133 88.5% 90.8% 83.9% 96.1%
strategies for choosing the augmentation parameter p in (19) 118s (2.2x) | 2504s (46.4x) | 3708s (68.7x) | 54s (1.0x)
are compared. First row shows the norm of the primal resid- 051833 92.2% 93.7% 85.5% 98.0%
ual (cf. (29)) for each iteration of ADMM and each level in 115s (2.0x) | 1979s (34.7x) | 3700s (64.9x) | 57s (1.0x)
the coarse to fine hierarchy. Second row shows the norm of the 167351 86.5% 89.7% 83.4% 95.9%
dual residual (cf. (30)) and the bottom row shows the aug- 187s (2.7x) | 1804s (26.1x) | 3706s (53.7x) | 69s (1.0x)
mentation parameter for each iteration. The regularization 541943 86.1% 88.1% 82.4% 93.4%
parameter for the smoothing term is a = 50. 117s (1.6x) | 4911s (67.3x) | 3693s (50.6x) | 73s (1.0x)
630057 81.2% 84.5% 84.9% 91.1%
100s (1.2x) | 3532s (43.1x) | 3649s (44.5x) | 82s (1.0x)
899885 90.7% 92.5% 87.4% 96.3%
104s (1.8x) | 1697s (29.8x) | 3804s (66.7x) | 57s (1.0x)
tion to solve the discrete optimization problem. In our 951457 | | 1o 88}? 7658 (172';’;7‘)7 36888 (%?Z; 17 ?fgf))
numerical experiments we use the default penalty pa- Y o W T
rameter of 8 = 10. We provide results for two variants average 350) " 650) ) " 05)
p 134s (2.3x) | 2124s (31.6x) | 3697s (63.7x) | 58s (1.0x)

of HySCO. First, we report results using the default in-
terpolation settings in HySCO. By default, HySCO uses
a smoothed cubic spline based approximation of the
data described in [20], which aims at adding robustness
to image noise. Since this comes at additional computa-
tional costs, results for a second variant using the same
linear interpolation model also used in the proposed
ADMM method are provided. For Topup we choose the
same settings as used in the processing pipeline of the
Human Connectome Project. Quantitative results are
summarized in Table 1. All three methods effectively
correct for susceptibility artifacts improving the simi-
larity of the corrected image pairs. However, in all cases
the proposed method outperforms the other methods
in terms of improvement in the measure of image simi-
larity and runtime. The parallelized implementation of
ADMM yields an average speedup factor of around 30x
as compared to the default settings of HySCO, and an
average speedup factor of around 60x as compared to

FSL Topup. For one data set (subject ID 111312) the
3D correction results are also visualized in Figure 5.

A notable difference is observed comparing the per-
formance of HySCO with cubic B-spline and linear in-
terpolation of the image data. While the former achieves
a higher quality correction, the average time-to-solution
is around 35 minutes. With an average runtime of less
than 3 minutes, the linear interpolation model is consid-
erably faster, but it achieves considerably inferior cor-
rection results. Changing from the nodal discretization
employed in HySCO to the face-staggered discretiza-
tion proposed here, leads to a highly accurate correc-
tion (see improvement in image similarity), even with
a linear interpolation model.

Anatomical Reference. Finally, for a 3D data set (sub-
ject ID 102816) we compare the correction results of
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T4+, input data Z_, input data T4+, corrected T1 weighted

Fig. 6 Visualization of the image improvement obtained with the novel ADMM method. The initial and corrected blip-up and
blip-down data (first four, left to right) for one 3D-MRI data set provided by the Human Connectome Project [30] (subject
ID 102816) are independently registered to a corresponding T1 weighted image (right) using only rigid-body transforms. A
zoomed in frontal brain region in one axial slice with an overlay of the white matter contours obtained from a segmentation

of the T'1 weighted image is shown for improved visibility.

the proposed method with an anatomical T1 weighted
reference images of the same subject. To this end we
register the uncorrected and corrected reversed gradi-
ent image pairs to the T1 weighted image by rigid-body
transforms using the Statistical Parametric Mapping
Toolbox (SPM) [6]. The results can be seen in Figure 6.
For improved visualization we add an overlay of the
white matter contours, which are obtained from a SPM
segmentation of the T1 weighted image, and show only
the frontal brain region of a single axial slice.

6 Summary And Conclusion

In this paper, we present an efficient method for sus-
ceptibility artifact correction of EPI-MRI. We consider
a variational formulation of a reversed gradient based
correction scheme similar to [24,26,13]. Our method re-
quires one additional EPI-MRI acquisition with oppo-
site phase-encoding direction and, thus, opposite dis-
tortion.

We follow a discretize-then-optimize paradigm and
propose a face-staggered discretization of the field in-
homogeneity. This choice leads to a separable discrete
distance function and constraints. While the overall op-
timization problem is, due to the smoothness regular-
izer, not separable we consider an optimization scheme
that exploit the partially separable structure. We split
the separable and non-separable parts of the objec-
tive function by adding an artificial variable and apply
ADMM to compute a saddle-point of the associated
augmented Lagrangian. The resulting subproblems can
be solved efficiently. The first subproblem, albeit be-
ing non-convex, is separable and can be broken down
into several smaller problems with only a few hundreds
of unknowns that can be solved in parallel using se-
quential quadratic programming. The second subprob-
lem consists of minimizing a convex quadratic with a
block-diagonal Hessian with BTTB structure and, thus,
can be solved efficiently and in parallel using DCTs.

We provide a detailed convergence result that is sim-
ilar to [33] but exploits the smoothness of our problem.
We also derive a theoretical lower bound for the aug-
mentation parameter in ADMM. Using a numerical ex-
periment, we compare different adaption strategies for
the augmentation parameter in Figure 4. In our experi-
ence, adaptive choice of the parameter is possible, how-
ever, in view of the presented convergence result, we
recommend using at least an empirically tuned lower
bound to ensure convergence. We found that choos-
ing a sufficiently large lower bound is critical to ensure
smoothness of the solution.

Both the correction quality and the time-to-solution
of the novel method are superior to state-of-the-art
methods as shown for high-resolution EPI-MRI exam-
ples in Figure 5 and Table 1. Average speedup factors
of around 30x and 60x over HySCO [26] and Topup [1],
respectively, are achieved in our experiments using thir-
teen high-resolution EPI-MRI datasets. Even further
improvements of the efficiency of our method are possi-
ble using more advanced parallelization schemes. Here,
the separable structure of the computationally first, and
most challenging, subproblem in ADMM is used by par-
allelizing over all image slices. Given our promising re-
sults, the ADMM method is an ideal candidate for im-
plementation on massively parallel hardware such as
Graphics Processing Units (GPU) and can be attrac-
tive for real-time applications such as [4].
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