The Polarized Image of a Synchrotron－emitting Ring of Gas Orbiting a Black Hole

 The Event Horizon Telescope Collaboration，

Kazunori Akiyamá ${ }^{2,8,9} \oplus$ ，Antxon Alberdi ${ }^{10}$ ，Walter Alef ${ }^{11}$ ，Juan Carlos Algabi² \odot ，Richard Anantu ${ }^{12}{ }^{2} \oplus$ ，Keiichi Asada ${ }^{13}$ ， Rebecca Azulay ${ }^{11,14,15}$ ，Anne－Kathrin Baczko ${ }^{11}$ ，David Ball ${ }^{16}$ ，Mislav Balokovicí${ }^{1,2}{ }^{(1)}$ ，John Barrett，Bradford A．Benson ${ }^{7,18}$ ， Dan Bintley ${ }^{19}$ ，Lindy Blackburn ${ }^{1,2 \oplus}$ ，Raymond Blundell，Wilfred Boland ${ }^{20}$ ，Katherine L．Boumarr ${ }^{2,21}$ ，Geoffrey C．Bowe ${ }^{2}{ }^{2}()^{\circ}$ ， Hope Boyc ${ }^{23,24} \oplus$ ，Michael Breme ${ }^{25}$ ，Christiaan D．Brinkerink ${ }^{26}$ ，Roger Brissende ${ }^{1 n^{2}}$ ，Silke Britzen ${ }^{11}$ ， Avery E．Broderick ${ }^{77,28,29}$ ，Dominique Broguiere ${ }^{55}$ ，Thomas Bronzwaéf（®，Do－Young Byurin ${ }^{30,31}{ }^{(0)}$ ， John E．Carlstrom ${ }^{8,32,33,34}$, Chi－kwan Chan ${ }^{6,35} \oplus$ ，Shami Chatterjeé ${ }^{36}$ © ，Koushik Chatterjeẻ，Ming－Tang Chenh ${ }^{27}$ ，

Thomas M．Crawford ${ }^{18,32}$ ，Geoffrey B．Crew ${ }^{8}$ ，Alejandro Cruz－Osoriti ${ }^{42}$ ，Yuzhu Cu1 ${ }^{43,44}$ ，Jordy Davelaåp，45，46®， Mariafelicia De Laurentis ${ }^{2,47,48}$ ，Roger Deane ${ }^{49,50,51}$ ，Jessica Dempséy，Gregory Desvignés ${ }^{5}(1)$ ，Sheperd SDoelemañ ${ }^{2}$ ，
Ralph P．Eatough ${ }^{1,53}$ ，Heino Falck ${ }^{26} \oplus$ ，Joseph Farah ${ }^{2,54 \oplus}$ ，Vincent L．Fish ${ }^{8} \oplus$ ，Ed Fomalont ${ }^{5} \oplus$ ，H．Alyson Ford ${ }^{56}$ ，

 Dong－Jin Kim^{11} ，Jae－Young Kim ${ }^{1,30} \oplus$ ，Jongsoo $\mathrm{Kim}^{30} \oplus$ ，Junhan $\mathrm{Kim}^{16,21} \oplus$ ，Motoki Kino ${ }^{9,76} \oplus$ ，Jun Yi Koay ${ }^{13}$ ，
 Cheng－Yu Kuo ${ }^{7,13} \oplus$ ，Tod R．Lauer ${ }^{7} \oplus$ ，Sang－Sung Le ${ }^{38 \odot}$ ，Aviad Levis ${ }^{21}$ ，Yan－Rong Li（ 李彦荣 ${ }^{9}$ ，Zhiyuan Li（ 李志远 ${ }^{80,81}$ ， Michael Lindqvist ${ }^{11}$ ，Rocco Lico ${ }^{10,11}$ ，Greg Lindahil，Jun Liu（刘俊）${ }^{11}$ ，Kuo Liu ${ }^{11} \oplus$ ，Elisabetta Liuzz8̊2，Wen－Ping Lo ${ }^{13,83}$ ，
Andrei P．Lobanov ${ }^{11}$ ，Laurent Loinar $8^{4,85}{ }^{\oplus}$ ，Colin Lonsdalê，Ru－Sen Lu（路如菻88，39，11®，Nicholas R．MacDonald ${ }^{1}$ ， Jirong Mao（毛基荣 $9^{9,87,88}$ ，Nicola Marchili ${ }^{11,82}$ ，Sera Markoff ${ }^{77,89} \oplus$ ，Daniel P．Marrone ${ }^{16} \oplus$ ，Alan P．Marsche ${ }^{7}{ }^{2} \oplus$ ，

 Aristeidis Noutso ${ }^{11}$ ，Michael A．Nowak ${ }^{97}$ © ，Hiroki Okino ${ }^{43,68}$ ，Héctor Olivare ${ }^{26}$ ，Gisela N．Ortiz－León ${ }^{10}{ }^{1}$ ，Tomoaki Oyamá ${ }^{43}$ ， Feryal Özel ${ }^{6}$ ，Jongho Park${ }^{3} \oplus$ ，Nimesh Patél，Ue－Li Pent ${ }^{27,98,99,100}{ }^{\circ}$ ，Dominic W．Pescé ${ }^{2} \oplus$ ，Vincent Piét ${ }^{25}$ ，

 Remo P．J．Tilanus ${ }^{16,26,59,112}$ ，Michael Tituss，Kenji Toma ${ }^{1113,146}$ ，Pablo Torne ${ }^{1,107}$ ，Tyler Trent ${ }^{16}$ ，Efthalia Traianou ${ }^{11}$ ， Sascha Trippe ${ }^{15} \oplus$ ，Ilse van Bemme ${ }^{5}$ ，Huib Jan van Langeveld ${ }^{5}{ }^{116}$ ，Daniel R．van Rossu ${ }^{66}{ }^{6} \oplus$ ，Jan Wagner ${ }^{11} \oplus$ ，
 George N．Wong ${ }^{102}$ © ，Qingwen Wu（ 吴庆文 $\left.{ }^{1}\right)^{9}$ ，Doosoo Yoo ${ }^{37}$ © ${ }^{(0)}$ ，André Young ${ }^{26}$ ，Ken Young ${ }^{1}$ ，Ziri Younsi ${ }^{42,120,124,}$

${ }^{1}$ Center for Astrophysicstharvard \＆Smithsonian60 Garden StreelCambridge MA 02138，USA
${ }^{2}$ Black Hole Initiative at Harvard University20 Garden StreelCambridge，MA 02138，USA
${ }^{3}$ Center for the Fundamental Laws of Naturtarvard University，Cambridge，MA 02138，USA
${ }^{4}$ JILA and Department of Astrophysical and Planetary Scientegsiversity of Colorado，Boulder，CO 80309，USA
${ }^{5}$ Department of PhysiçUVniversity of Illinois at Urbana－Champaigri， 110 West Green Streetrbana，IL 61801，USA
${ }^{6}$ Department of Astronomy University of Illinois at Urbana－Champaigri，002 West Green Streetlrbana，IL 61801，USA
${ }^{7}$ Princeton Center for Theoretical Sciendadwin Hall，Princeton UniversityPrinceton，NJ 08544，USA
${ }^{8}$ Massachusetts Institute of Technology Haystack Observa＠8MMillstone Road，Westford，MA 01886，USA
${ }^{9}$ National Astronomical Observatory of Jape2r21－1 OsawaMitaka，Tokyo 181－8588，Japan
${ }^{10}$ Instituto de Astrofisica de Andalucia－CSIGIOrieta de la Astronomia S／nE－18008 Granad\＆\＆pain
${ }^{11}$ Max－Planck－Institut für RadioastronomiAuf dem Hügel 69，D－53121 Bonn，Germany
${ }^{12}$ Department of Physicsf，aculty of ScienceU University of Malaya， 50603 Kuala LumpurMalaysia
${ }^{13}$ Institute of Astronomy and Astrophysics，Academia Sinica， 11 F of Astronomy－Mathematics Building，AS／NTU No．1，Sec．4，Roosevelt Rd．，Taipei 10617，Taiwa

This is an open access article distributed under the terms of the Creative Commons Attribution 4．0 License．
Any further distribution of this work must maintain attribution to the author（s）and the title of the work，journal citation and DOI．

[^0]${ }^{88}$ Key Laboratory for the Structure and Evolution of Celestial Objectwinese Academy of Science $\$ 0011$ Kunming,People's Republic of China
${ }^{89}$ Gravitation Astroparticle Physics Amsterdam (GRAPPA) Institute, versity of Amsterdam,Science Park 9041098 XH Amsterdam,The Netherlands
${ }^{90}$ School of Natural Science\$n,stitute for Advanced Study, Einstein Drive,Princeton,NJ 08540,USA
${ }^{91}$ Tsung-Dao Lee Institute and School of Physics and Astronosblyanghai Jiao Tong Universitshanghai200240,People's Republic of China
${ }^{92}$ Astronomy Departmențniversidad de Concepcióß,_asilla 160-C,Concepción,Chile
${ }^{93}$ National Institute of TechnologyH,Hachinohe College1, 6-1 Uwanotai,Tamonoki,Hachinohe City,Aomori 039-1192,Japan
${ }^{94}$ Department of AstronomyUniversity of Massachusett\&Amherst,MA 01003, USA
${ }^{95}$ South African Radio Astronomy Observator甲,bservatory 7925Cape Town,South Africa
${ }^{96}$ Villanova University,Mendel Science Center Rnฉ.63B, 800 E. Lancaster AvenueVillanova PA 19085,USA
${ }^{97}$ Physics Department,Vashington University CB 1105St Louis, MO 63130, USA
${ }^{98}$ Canadian Institute for Theoretical Astrophysidsniversity of Toronto,60 St. George StreetJoronto, ON M5S 3H8, Canada
${ }^{99}$ Dunlap Institute for Astronomy and Astrophysics, niversity of Toronto, 50 St. George StreetToronto, ON M5S 3H4, Canada
${ }^{100}$ Canadian Institute for Advanced Researtli, 0 Dundas StWest, Toronto, ON M5G 1Z8, Canada
${ }^{101}$ Radio Astronomy LaboratoryUniversity of California,Berkeley,CA 94720, USA
${ }^{102}$ Department of PhysicSJniversity of Illinois, 1110 West Green StreeせUrbana,IL 61801, USA
${ }^{103}$ Department of Physics, , ational Taiwan Normal University,No. 88, Sec.4, Tingzhou Road,Taipei 116,Taiwan,R.O.C.
${ }^{104}$ Frankfurt Institute for Advanced StudieRuth-Moufang-Strasse D-60438 Frankfurt,Germany
${ }^{105}$ School of MathematicsTrinity College, Dublin 2, Ireland
${ }^{106}$ Department of Astrophysical Scienceßeyton Hall,Princeton UniversityPrinceton,NJ 08544,USA
${ }^{107}$ Instituto de Radioastronomía Milimétricta, AM, Avenida Divina Pastora 7,ocal 20, E-18012,Granada,Spain
${ }^{108}$ Hiroshima Astrophysical Science Centetiroshima University,1-3-1 KagamiyamaHigashi-HiroshimaHiroshima 739-8526Japan
${ }^{109}$ Aalto University Department of Electronics and NanoengineerPilg,15500,FI-00076 Aalto,Finland
${ }^{110}$ Aalto University Metsähovi Radio ObservatorMly lsähovintie 114FI-02540 Kylmälä,Finland
${ }^{111}$ Department of AstronomyYonsei University,Yonsei-ro 50,Seodaemun-g@3722 Seoul,Republic of Korea
${ }^{112}$ Netherlands Organisation for Scientific Research (NWRO)stbus 931382509 AC Den Haag,The Netherlands
${ }^{13}$ Frontier Research Institute for Interdisciplinary Sciencessh,oku University,Sendai 980-8578Japan
${ }^{14}$ Astronomical Institute,Tohoku University,Sendai 980-8578Japan
${ }^{115}$ Department of Physics and Astronom§eoul National UniversityGwanak-gu,Seoul 08826,Republic of Korea
${ }^{116}$ Leiden ObservatoryLeiden University,Postbus 23009513 RA Leiden,The Netherlands
117 Jeremiah Horrocks Instituteß/niversity of Central Lancashire,reston PR1 2HEUK
${ }^{118}$ Physics DepartmenBrandeis University, 415 South StreetWaltham,MA 02453, USA
${ }^{119}$ School of PhysicsHuazhong University of Science and Technology,
${ }^{120}$ Mullard Space Science Laboratory/niversity College LondonHolmbury St. Mary, Dorking, Surrey, RH5 6NT, UK
${ }^{121}$ School of Astronomy and Space Sciencebsiversity of Chinese Academy of Sciencelo. 19A Yuquan RoadBeijing 100049,People's Republic of China
${ }^{122}$ Astronomy Departmentuiversity of Science and Technology of Chinlafefei 230026,People's Republic of China Received 2021 January 31; revised 2021 March 18; accepted 2021 March 21; published 2021 May 3

Abstract

Synchrotron radiation from hotgas neara black hole results in a polarized image.The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple modef an axisymmetric,equatorialaccretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker-Penrose constantye provide analytic estimates fothe image polarization.We test this model using currently favored general relativistic magnetohydrodynamic simulations of , Mis Th ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr Awith GRAVITY. With suitably chosen parameters,ur simple modelcan reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of NMaEr the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images. Unified Astronomy Thesaurus concepts: Accretion (14); Black holes (162); Polarimetry (1278); Magnetic fields (994)

1. Introduction

The Event Horizon Telescope (EHT) Collaboration has recently published the first images of a black hole (Event Horizon Telescope Collaboration et al. 2019a, 2019b, 2019c, 2019d, 2019e,2019f, 2021a, 2021b, hereafterEHTC I-VIII, respectively). These images achieve a diffractionlimited angular resolution thatcorresponds to approximately $5 \mathrm{GM} / \mathrm{c}^{2}$, where M is the mass of the black hole. They reveal bright ring of emission with a twisting polarization pattern and a prominent rotationally symmetric mode.

[^1]The polarization structure in the EHT images depends on details of the emitting plasma,principally the magnetic field geometry.However, it is also affected by the strongly curved spacetime nearthe black hole. Over the past few decades, simulated polarimetric images of black holes have been studied as a means to understand astrophysicabroperties of their surrounding accretion flows (e.g., Bromley et al. 2001; Shcherbakov eal. 2012; Mościbrodzka eal. 2017; JiménezRosales \& Dexter 2018; Palumbo et 0020) and to infer the disk inclination and black hole spin through the effects of parallel transport(e.g., Connors et al. 1980; Broderick \&

Loeb 2006; Li et al. 2009; Schnittman \& Krolik 2009; Gold et al. 2017; Marin et al.2018).

While they are becoming increasingly realistic, these simulations are generally difficulto use for broad parameter surveys because ofheir computationalcost, and they often provide little insight into how to decouple astrophysicaland relativistic effects.

In this article, we develop a simple toy model to understand polarimetric images of black holesThis model consists of a ring of magnetized fluid orbiting a Schwarzschild black hole. Our model allows arbitrary emission radius,magnetic field geometry,equatorialfluid velocity, and observerinclination. With a single approximation,described in Section 2,we can analytically compute the resulting polarimetric image and can assess its dependence on the input parameters.

In Section 2, we describe the toy ring modednd work out the relevantrelativistic transformations from the frame ofa radiating fluid element in the ring to the image as seen on the sky by an observer. In Section 3, we present a series of examples to illustrate the primary model features. In Section we provide analytic estimates of image diagnostics-the apparentshape of the ring, the vector polarization, and the coefficient of rotational symmetry ${ }_{2}$ (β Palumbo et al. 2020). In Section 5, we discuss the suitability of our model for comparisons with observation\$ocusing on the EHT images of M87* and polarization "loops" seen during flares of Sagittarius Å (Sgr A*). In Section 6, we summarize our results.

2. The Model

We consider an accretion disk around a Schwarzschild black hole of mass M . We use standard geometrized units: $G=c=1$ The fluid radiates from the equatoriablane within a narrow range of radii centered on a dimensionless radius R, measured in units of M (or $G M / c^{2}$, including the physical constants). With respect to a distant observer, the ring is tilted from a face on orientation by an angle. OWe assume that the tilt is toward the North, so that the line-of-nodes between the ring orbital plane and the observer's sky plane is in the east-west direction. We take the sky angular coordinate x to be oriented toward the West (i.e., to the right), and the coordinate y toward the North (i.e., toward the top). The fluid has radial and tangential components of velocity in the plane of the ring, but no vertical velocity. In the comoving frame of the fluid, the magnetic field has radial,azimuthaland verticalcomponentsFor simplicity, we assume thaboth the velocity field and the magnetic field are axisymmetric, though the equationsdeveloped in this section are valid even without this assumption.

We wish to compute the following primary observables: (1) the shape of the ring as viewed by the distant observer, (2) the variatipea of the polarized intensity around the observed ringd (3) the orientation and pattern of the polarization vectors around the ri An exact calculation requires integrating the geodesic equation which has to be done numerically. However, with one simplifica tion, described belowit is possible to do all the calculations analytically.This simplified model provides a convenient method for investigating polarization properties of idealized models.

2.1. Geometry,Lensing and Special Relativity

In the ring plane, we consider a fluid elemenP located at azimuthalangle f measured from the line-of-nodes. We are interested in a null geodesic, a light ray, that travels from P to

Figure 1. Geometry in the geodesic framer G-frame.In the Schwarzschild metric, each null geodesic is confined to a plane that intersects the black hole. The G-frame, defined for photons emitted apoint P and reaching a distant observerat relative angle ψ, corresponds to Cartesian axes centered on the black hole, withX in the direction of P and the-z ${ }^{\text {p }}$ plane given by the geodesic , plane. We approximate the emission angle α in this frame using Equation (4).
the observer. This geodesic lies in a plane that includes the line from the black hole O to the point P, as well as the line from O to the observer (see Figure 1). We set up Cartesian coordinates in the geodesic plane so that the unit vector along the fiaxis oriented along OP and the observer lies on therplane. We call this the geodesic frame, or G-frame. The angle ψ between X and the unit vecton toward the observer satisfies

$$
\begin{align*}
\cos y & =-\sin q_{5} \sin f \\
\sin y & =\left(1-\cos ^{2} y\right)^{1 / 2} \tag{1}
\end{align*}
$$

We consider a null geodesicwith conserved energy ${ }^{125}$ $k_{t}=-1$ traveling from P to the observer. At the location P, the $d_{\text {orthonormal time componer } k_{\mathrm{G})}^{f} \text { of its } 4 \text {-wavevector is given }}$ by (the redshiftfactor here is calculated using the Schwarzschild metric, as appropriate for the assumed non-spinning black hole)

$$
\begin{equation*}
k_{(\mathrm{G})}^{\hat{t}}=-\frac{k_{t}}{\sqrt{-g_{t t}}}=\frac{1}{\left(1-\frac{2}{R}\right)^{1 / 2}} \tag{2}
\end{equation*}
$$

where the subscript "(G)" indicates that this quantity is measured in the G-frameAlso, since the geodesic lies in the xz-plane, we have $k_{(G)}^{y}=0$. To determine the other two components of k, we need the angle α in Figure 1, in terms of which we can write

$$
\begin{equation*}
k_{(\mathrm{G})}^{\chi}=k_{(\mathrm{G})}^{t} \cos a, \quad k_{(\mathrm{G})}^{2}=k_{(\mathrm{G})}^{t} \sin a . \tag{3}
\end{equation*}
$$

atempting to calculate a precisely, which would require a numerical integration of the geodesic equation, we use tipe following approximate formula obtained by Beloborodov (2002),

$$
\begin{align*}
\cos a & =\cos y+\frac{2}{R}(1-\cos y) \\
\sin a & =\left(1-\cos ^{2} a\right)^{1 / 2} \tag{4}
\end{align*}
$$

This approximation is surprisingly accurate even for values of R of order a few (see Section 3.6 and Appendix A).

[^2]

Figure 2．Geometry in the P－frame．This frame is aligned with the rotating gas at emission radius R and emission azimuth fihe \mathbb{X} direction lies along the radial line from the black hole at O to the emission point P ，and y is the azimuthal direction．The equatorial magnetic fiedqaßd fluid velocity β lie at angles η and x to X in the $x-y$ plane，respectively．Our model allows these angles to be specified independently，but we will later focus on the physically motivated choices of $\eta=x$ and $\eta=x+\pi$（see Section 3 ）．

We now switch to a Cartesian frame that is aligned with the orbiting fluid ring．We take X along OP，$У$ in the azimuthal direction at P parallelto \hat{f} ，and z^{\wedge} perpendicular to the orbital plane．We call this the P－frame（see Figure 2）．The G－frame and P－frame have a common－axis．Therefore，transforming from one to the other involves rotation by some angle ξ around the x_{e} axis．To determine ξ ，we note thatthe unit vectorn from the black hole O toward the observerhas Cartesian components （ $\cos y, 0, \sin y$ ）in the G－frame，and Cartesian components $\left(-\sin q^{\sin } f,-\sin q^{\cos } \cos , \cos q_{0}\right)$ in the P －frame．Since a rotation by angle ξ transforms one sebf components to the other，we obtain

$$
\begin{equation*}
\cos x=\frac{\cos \phi}{\sin y}, \quad \sin x=\frac{\sin \phi_{\cos } f}{\sin y} \tag{5}
\end{equation*}
$$

Applying this rotation to the orthonormal components）ofve obtain the corresponding orthonormal components in the P－fra

$$
\begin{align*}
k_{(\mathrm{P})}^{t}=\frac{1}{\left(1-\frac{2}{R}\right)^{1 / 2}}, & k_{(\mathrm{P})}^{\chi}=\frac{\cos a}{\left(1-\frac{2}{R}\right)^{1 / 2}} \tag{6}\\
k_{(\mathrm{P})}^{y}=-\frac{\sin x \sin a}{\left(1-\frac{2}{R}\right)^{1 / 2}}, & k_{(\mathrm{P})}^{z}=\frac{\cos x \sin a}{\left(1-\frac{2}{R}\right)^{1 / 2}} \tag{7}
\end{align*}
$$

The fluid at the point P moves in the xy－plane of the local P－frame with a velocity β ，which we write in the local Cartesian coordinate frame as（see Figure 2）

$$
\begin{equation*}
\boldsymbol{b}=b(\cos c x+\sin c y) \tag{8}
\end{equation*}
$$

Our sign convention is that radial motion toward the black hole corresponds tocosc＜0，and clockwise rotation on the sky corresponds $\operatorname{tain} c<0$ ．In the case of M87，the rotation is
clockwise．The velocity β describes motion of the fluid through the ring；the ring model itself is not expanding or contracting．

We now transform to the fluid frame－the F－frame－by applying a Lorentz boost with velocity β ．This gives the following orthonormal components of k ，

$$
\begin{align*}
k_{(\mathrm{F})}^{t}= & g k_{(\mathrm{P})}^{t}-g b \cos c k_{(\mathrm{P})}^{又}-g b \sin c k_{(\mathrm{P})}^{y} \\
k_{(\mathrm{F})}^{又}= & -g b \operatorname{cosc} k_{(\mathrm{P})}^{f}+\left(1+(g-1) \cos ^{2} c\right) k_{(\mathrm{P})}^{又} \\
& +(g-1) \cos c \sin c k_{(\mathrm{P})}^{y} \\
k_{(\mathrm{F})}^{y}= & -g b \sin c k_{(\mathrm{P})}^{f}+(g-1) \cos c \sin c k_{(\mathrm{P})}^{又} \\
& \quad+\left(1+(g-1) \sin ^{2} c\right) k_{(\mathrm{P})}^{y} \\
k_{(\mathrm{F})}^{2}= & k_{(\mathrm{P})}^{z} . \tag{9}
\end{align*}
$$

2．2．Transformation of Polarized Intensity

Any radiation emitted along（F）$\underset{(\mathrm{F})}{\hat{m}}$ in the F－frame is Doppler－ shifted by the time it reaches the observeSince $k_{(0)}^{t}$ in the observer frame is equal to unithe Doppler factor δ is

$$
\begin{equation*}
d=\frac{k_{(\mathrm{O})}^{f}}{k_{(\mathrm{F})}^{t}}=\frac{1}{k_{(\mathrm{F})}^{t}} \tag{10}
\end{equation*}
$$

This includes both gravitational redshift and Doppler shift from velocity．

In the fluid frame，there is a magnetic field which we write $a s^{126}$

$$
\begin{align*}
\boldsymbol{B} & =B_{r} x+B_{f} y+B_{z} z \\
& =B_{\mathrm{eq}}(\cos h x+\sin h y)+B_{z} z \\
& \circ B_{\mathrm{eq}}+B_{z} z \tag{11}
\end{align*}
$$

where the second line describes the field components in the xequatorial plane in terms of a magnitudeq and an orientation η（see Figure 2）．The intensity of synchrotron radiation emitted along the 3 －vector $\left.\right|_{(F)}$ depends orsin z ，where ζ is the angle between k_{F} and the magnetic field B ：

$$
\begin{equation*}
\sin z=\frac{\left|\boldsymbol{k}_{(\mathrm{F})}, \boldsymbol{B}\right|}{\left|\boldsymbol{k}_{(\mathrm{F})}\right||\boldsymbol{B}|} \tag{12}
\end{equation*}
$$

In the case of thermal synchrotron emissionthe intensity also depends on the ratio of the emitted photon energy hv to the electron temperature kJ_{d} At low frequencies $\mathrm{hv}=\mathrm{k} T_{\mathrm{e}}$ ，the intensity is proportional to $\sin ^{2 \beta} z$（e．g．，Mahadevan etal． am96），whereas in the opposite limithv？ kT_{e} ，the intensity varies as a very large positive power ofin z ，because of the exponentialcutoff of the particle energy distribution and the correspondingrapid decline of emissivity with increasing frequency．In general，if the emitted intensity varies as $I_{n} \sim n^{a_{n}}$ ，then the angle dependence goes（exin $\left.z\right)^{1+a_{n}}$ ．In models of M87＊，a dependence $\sin ^{2} z$ is often obtained at 230 GHz ．This corresponds tQ a 1 ，which is consistent with the synchrotron emission being close to its peak at this frequency（ $\mathrm{v} \mathrm{F}_{\mathrm{v}}$ roughly constant）．In the analysis below，we

[^3]explicitly retain the α dependence. However, we setol for the numerical calculationsdescribed in Section 3, and also when we series-expand the equations in Appendix D.

The factor $(\sin z)^{1+} a_{n}$ discussed in the previous paragraph is the emission per unit volume. To convert this to the emerging intensity in the fluid frame we need to multiply by the geodesic path length \downarrow through the emitting region. We assume that the medium is optically thin to its own emissiorff we model the emitting fluid as a thin disk of vertical thickness H ,then the path length is

$$
\begin{equation*}
I_{\mathrm{p}}=\frac{k_{(\mathrm{F})}^{f}}{k_{(\mathrm{F})}^{z}} H \tag{13}
\end{equation*}
$$

So far, we have discussed the emitted intensity in the fluid frame. This intensity is Doppler-boosted by a fact $\boldsymbol{\sigma}^{\beta} 0^{\neq \eta}$ by the time it reaches the observer. Thus, the intensity $|\mathrm{P}|$ of linearly polarized synchrotron radiation that reaches the observer from the location P is

$$
\begin{gather*}
|P|=d^{\beta+a_{n}} I_{\mathrm{p}}|B|^{1+a_{n}} \sin ^{1+a_{n}} z \tag{14}\\
\square d^{\boldsymbol{A}} I_{\mathrm{p}}|B|^{2} \sin ^{2} z \text { for } a_{n}=1 \tag{15}
\end{gather*}
$$

where we have omitted a proportionality constant. Since $|B|$ is constantaround the ring, the factors involving $|\mathrm{B}|$ could be eliminated from Equations (14) and (15) and absorbed into the omitted proportionality constant. We retain these factors because keeping track of \mathfrak{F} \& n nd its components is convenient for much of the analysis in Appendix \mathbb{D}^{28}

2.3. Transformation of Polarization Vector

We next work on the polarization vector. In the fluid frame, the E -vector of the radiation is oriented along $\mathrm{K}_{(F)} \times \mathrm{B}$, i.e., perpendicularto both $\mathrm{k}_{(\mathrm{F})}$ and B . Therefore, we write the orthonormal components of the polarization 4-vectBrals

$$
\begin{align*}
& f_{(\mathrm{F})}^{f}=0, \quad f_{(\mathrm{F})}^{x}=\frac{\left(\boldsymbol{k}_{(\mathrm{F})} \cdot \boldsymbol{B}\right)_{x}}{\left|\boldsymbol{k}_{(\mathrm{F})}\right|}, \\
& f_{(\mathrm{F})}^{y}=\frac{\left(\boldsymbol{k}_{(\mathrm{F})}, \boldsymbol{B}_{)_{y}}\right.}{\left|\boldsymbol{k}_{(\mathrm{F})}\right|}, \quad f_{(\mathrm{F})}^{2}=\frac{\left(\boldsymbol{k}_{(\mathrm{F})} \cdot \boldsymbol{B}\right)_{z}}{\left|\boldsymbol{k}_{(\mathrm{F})}\right|} . \tag{16}
\end{align*}
$$

By construction,this 4-vector satisfies

$$
\begin{equation*}
f m k_{m}=0, \quad f m f_{m}=\sin ^{2} z|B|^{2} . \tag{17}
\end{equation*}
$$

[^4]An inverse Lorentz boost transforms the 4-vectfof back to the P-frame:

$$
\begin{align*}
& f_{(\mathrm{P})}^{f}=g f_{(\mathrm{F})}^{f}+g b \operatorname{cosc} f_{(\mathrm{F})}^{\chi}+g b \sin c f_{(\mathrm{F})}^{y}, \\
& f_{(\mathrm{P})}^{x}=g b \operatorname{cosc} f_{(\mathrm{F})}^{f}+\left(1+(g-1) \cos ^{2} c\right) f_{(\mathrm{F})}^{x} \\
& +(g-1) \cos c \sin c f_{(\mathrm{F})}^{y} \text {, } \\
& f_{(\mathrm{P})}^{y}=g b \sin c f_{(\mathrm{F})}^{f}+(g-1) \cos c \sin c f_{(\mathrm{F})}^{\chi} \\
& +\left(1+(g-1) \sin ^{2} c\right)_{(F)}^{y}, \\
& f_{(\mathrm{P})}^{z}=f_{(\mathrm{F})}^{z} . \tag{18}
\end{align*}
$$

Since the Cartesian unit vector's y, z in the P-frame are oriented along the spherical polar unit vector $\hat{\delta},-\hat{q}$ of the Schwarzschild frame, the orthonormal components of k and f in Schwarzschild coordinates are

$$
\begin{array}{ll}
k^{f}=k_{(\mathrm{P})}^{f}, & k^{r}=k_{(\mathrm{P})}^{\chi}, \quad k \hat{q}=-k_{(\mathrm{P})}^{2}, \quad k^{\hat{f}}=k_{(\mathrm{P})}^{y}, \\
f^{f}=f_{(\mathrm{P})}^{\hat{t}}, \quad f^{\rho}=f_{(\mathrm{P})}^{\chi}, \quad f \hat{q}=-f_{(\mathrm{P})}^{2}, \quad f \hat{f}=f_{(\mathrm{P})}^{y} . \tag{20}
\end{array}
$$

The photon geodesic emitted at P has three conserved quantities (see for instance Bardeen 1973): its energy $\mathrm{k}_{\mathrm{t}}=-1$, its angular momentum around thêaxis $k_{f}=R k \hat{f}$, and the Carter (1968) constand, which is the square of the total angular momentum of the photon for the Schwarzschild metric. In the P-frame the Carter constant is

$$
\begin{equation*}
C=R^{2}\left[(k \hat{q})^{2}+(k \hat{f})^{2}\right] \tag{21}
\end{equation*}
$$

Using the conservation of f_{f} kand C, we find the coordinates x and y of the geodesic atthe observersky plane (recall the orientation of the sky coordinates $x y$, described athe top of Section 2) (Bardeen 1973),

$$
\begin{align*}
& x=-\frac{k_{f}}{\sin \phi}=-\frac{R k^{\hat{f}}}{\sin \phi} \\
& y=k_{q}=R\left[k \hat{q}^{2}-\cot ^{2} q_{(}\left(k^{\hat{f}}\right)^{2}\right]^{1 / 2} \operatorname{sgn}(\sin f) \tag{22}
\end{align*}
$$

To compute the polarization vector the observer,we make use of the Walker-Penroseconstant $\mathrm{K}_{1}+\mathrm{iK}_{2}$ (Walker \& Penrose 1970), which takes a simple form for a Schwarzschild spacetime. At the position P , we have (using the sign convention in Himwich et al.2020),

$$
\begin{equation*}
\left.K_{1}=R\left(k^{t f^{r}}-k^{r f t}\right), \quad K_{2}=-R^{3} k f a-k q f\right) \tag{23}
\end{equation*}
$$

Both K_{1} and K_{2} are conserved along the geodesitherefore, knowing their values, we can evaluate the two transverse components of the polarization electric field E at the observer. If we use the normalization used in Himwich et al. (2020), the field components are

$$
\begin{align*}
E_{x, \text { norm }} & =\frac{y K_{2}+x K_{1}}{\left.\left[\left(K_{1}^{2}+K_{2}^{2}\right) x^{2}+y^{2}\right)\right]^{1 / 2}} \\
E_{y, \text { norm }} & =\frac{y K_{1}-x K_{2}}{\left.\left[\left(K_{1}^{2}+K_{2}^{2}\right) x^{2}+y^{2}\right)\right]^{1 / 2}} \\
E_{x, \text { norm }}^{2}+E_{y, \text { norm }}^{2} & =1 \tag{24}
\end{align*}
$$

which is normalized to unity. This normalization is suitable for frame of the fluid, one can calculate the sky coordinates $\downarrow x$, plotting the orientation of polarization vectors in the $x y$-plane.

An alternative normalization is

$$
\begin{align*}
E_{x} & =\frac{y K_{2}+x K_{1}}{x^{2}+y^{2}}, \\
E_{y} & =\frac{y K_{1}-x K_{2}}{x^{2}+y^{2}}, \\
E_{x}^{2}+E_{y}^{2} & =\sin ^{2} z|B|^{2} . \tag{25}
\end{align*}
$$

This retains the original normalization of' fin the fluid frame (Equation (17)), hence the electric field is proportional to $\sin z|B|$.

For computing the observed polarized intensitye need to equivalently ρ,) of the image of this radiating element, and the linearly polarized intensity and position angle of the observed radiation. The mapping from the radiating element to the observer's image plane is written as a sequenceof analytical calculations that do not require numerically integrating the geodesic equation or iteratively solving any equation. The equations are written in sufficient detail for easy incorporation into modeling calculations.

3. Example Models

The simple model considered in the previous section has the following parameterstilt angle of the ring θ_{0}, ring radius R, include the dependence on the Doppler factor δ and path lengthelocity vector of the fluid β, which is parameterized by $\beta=\mathrm{v} /$ I_{p}, and must also ensure the correct powersiofz and $|\mathrm{B}|$ as given in Equations (14) and (15). Since the intensity is proportionalto $|E|^{2}$, we therefore write the observed electric field components as

$$
\begin{align*}
E_{x, \text { obs }}= & \left.d^{\left(3+a_{n}\right) / 2}\right|_{\mathrm{p}} ^{1 / 2}(\sin z)^{\left(1+a_{n}\right) / 2}|B|^{\left(1+a_{n}\right) / 2} E_{x, \text { norm }} \\
= & \left.d^{\left.3+a_{n}\right) / 2}\right|_{\mathrm{p}} ^{1 / 2}(\sin z)^{\left(a_{n}-1\right) / 2}|B|^{\left(a_{n}-1\right) / 2} E_{x,}, \tag{26}\\
E_{y, \text { obs }}= & \left.d^{\left(3+a_{n}\right) / 2}\right|_{\mathrm{p}} ^{1 / 2}(\sin z)^{\left(1+a_{n}\right) / 2}|B|^{\left(1+a_{n}\right) / 2} E_{y, \text { norm }} \\
= & \left.d^{\left.3+a_{n}\right) / 2}\right|_{\mathrm{p}} ^{1 / 2}(\sin z)^{\left(a_{n}-1\right) / 2}|B|^{\left(a_{n}-1\right) / 2} E_{y,} \\
& E_{x, \text { obs }}^{2}+E_{y, \text { obs }}^{2}=|P(f)| \tag{27}
\end{align*}
$$

where $P(f)$ is the observed linear polarized intensity of radiation thatis originally emitted by a fluid elementat ring azimuthal angle f .
We need one more transformation:we must convert the coordinates (R, f) of the emitting region in the fluid to the Cartesian sky coordinates (x), or equivalently the polar sky coordinates (p_{j}), at which the radiation is observed,

$$
\begin{equation*}
x=r \cos j, \quad y=r \sin j \tag{28}
\end{equation*}
$$

The relation between (R, f) and (ρ, j) is worked out in Appendix C. The observed linear polarization $P(f)$ can then be described in image coordinates by the complex function $\mathrm{P}(\mathrm{j})$,

$$
\begin{equation*}
P(j)^{\circ} Q(j)+i U(j) \tag{29}
\end{equation*}
$$

where the Stokes parameters $Q(j)$ and $U(j)$ are obtained from the electric field components, $\mathrm{befs}_{\mathrm{s}} \mathrm{E}_{\mathrm{y}, \text { obs }}$ using Equation (D10). The electric vector position angle (or EVPA) is then

$$
\begin{equation*}
\text { EVPA }^{\circ} \frac{1}{2} \arctan \frac{U}{Q} \tag{30}
\end{equation*}
$$

This completes the calculation of the intensities Q_{Q}, P on the image plane.If one wishes to calculate fluxes in the sky plane corresponding to specific source configurations in ring coordinates (R, f), it would be necessary to apply the Jacobian of the transformation from (R, f) to (ρ, j), as in Figure 10. The Jacobian determinant is evaluated in Appendix C.
To summarize, in this section we showed how, given the position (R, f, Figure 2) and velocity (β, x, Equation (8)) of a synchrotron-emitting fluid element located on a tilted equatoria plane around a Schwarzschild black holand given also the magnetic field configuration ($B_{\mu} \eta, B_{z}$, Equation (11)) in the

C and x (Equation (8)), fluid frame magnetic field B , which is parameterized by either, $\mathbb{B}_{\mathrm{F}}, \mathrm{B}_{z}$ or $\mathrm{B}_{e q} \eta, \mathrm{~B}_{z}$ (Equation (11)), and spectral index α_{v}. Figures $3-5$ show the polarization patternsproduced by this model for selected valuesof the parametersIn all these examples,we choose $\theta_{0}=20^{\circ}$ and $\alpha_{v}=1$.
Before considering the examplese briefly summarize the salient features of the polarized image of M8btained by the EHT (EHTC VII). First, the linear polarized flux shows a pronounced asymmetry around the ringhe polarized flux is strong between PA (measured Eastof North) $\sim 150^{\circ}$ and $\sim 300^{\circ}$; the peak polarized intensity is around PA 200° on April 5 and 240° on April 11. The linear polarized flux is much weaker at other angles. The large scale jet in MB7oriented toward PA 288°. Presumablythe accretion disk is also tilted toward this direction. Such a tilt is consistentwith the EHT total intensity image shown in EHTC IV. Thus, if we measure angles counter-clockwisewith respect to the presumed tilt direction in M87, the polarized flux is strong between angles $\sim+10^{\circ}$ and -140°, with peak at -90° and -50° on April 5 and 11 .
In our analytic model, the tilt and putative jet are toward the North. Thus, for a direct comparison ofthis model with the M87* image, we should rotate the calculated image clockwise by 72°. Alternatively, we could measure angles as offsets from the jet direction North. Thus, for a model to reproduce what is seen in M87*, it should have strong linearly polarized flux between $+10^{\circ}$ from the jet,i.e., just to the left of North, and -140° from the jet, which is located in the lower-right quadrant.That is, the polarized flux should concentrate in the right half of the panels in plots such as Figures 3-5 below, shading toward the upper right quadrant. As we will see, this is a fairly strong constraint.
The second piece of information from the polarized image of M87** is that the polarization vectors show a twisting pattern that wraps around the black hole (EHTC VII, VIII). The twist is described quantitatively by the β_{2} mode of the azimuthal decomposition of polarization described in Palumbo et al. (2020). The amplitude of \oint describes the degree to which the EVPA obeys rotational symmetry and scaleslinearly with fractional polarization, while the phase eqforescribes the twist angle between the EVPA and the local radial unit vector on the image. In the M87image, the twist angle is fairly stable in the regions where the polarized flux is strong/lith respect to the llocal radial direction, the EVPA of the polarization vector is rotated clockwise by $\sim 70^{\circ}$. This too is a strong constrain也n models,as discussed at length in EHTC VIII.

Figure 3. Polarization patterns corresponding to models with a "vertical" magnetic field (non-zęrin the fluid frame). In each casethe directions of the ticks indicate the orientation of the polarization E-vector around the ring as viewed on the sky. The lengths of the ticks are proportional to the polarized intensity. Top lef ring with a very large radius and no orbital velocity, so that neither velocity aberration nor lensing plays a role. Top right: large ring radius (i.e., no lensing), and flui orbiting with a tangential velocity $\beta=0.3$ in the clockwise direction ($x=-90^{\circ}$). Bottom left: large ring radius (no lensing), and fluid flowing with velocity $\beta=0.3$ radially inward $\left(X=-180^{\circ}\right)$. Bottom right: ring with a small radius $R=6 M$ hence strong gravitational lensingut with no fluid velocity, hence no aberration.

3.1. Models with Pure Vertical Field

Gravity Collaboration et al. (2018a) reported observations of polarized flares in Sgr*Ain near-IR, and showed that a model with a dominant vertical magnetic field can reproduce the observations.Motivated by this, we begin by studying the predictions of our toy model for a pure vertical fielळ,riented normal to the plane of the emitting ring.
Figure 3 shows results from the analytical model for the cas when $B_{2}=1, B_{r}=B_{f}=0$. It explores the two primary physical effects otherthan magnetic field direction thatinfluence the observed polarization:(i) Doppler beaming and relativistic aberration caused by motion of the radiating fluid, and (ii)
gravitationallensing caused by the gravity of the black hole. The top left panel in Figure 3 corresponds to a ring with a large radius $\left(R=10^{4}\right)$ such that there is negligible gravitational lensing. We also set $\beta=0$, thereby eliminating Doppler beaming and aberrationThe only remaining effectis the tilt of the ring, which causes the pure ${ }_{z}$ Beld in the ring frame to appear in projection on the sky as a vertically oriented (northesouth) field. The polarized synchrotron emission from the ring has its EVPA perpendicular to the projected fielde., in the east-west direction. The observed polarized intensity, which is indicated by the sizes of the polarization ticks in the plotis uniform around the ring. In this figure and all others shown in

Figure 4. Polarization patterns formodels with magnetic field in the equatorial plane. Top left: azimuthalfield ($\eta=90^{\circ}$) with azimuthal clockwise velocity $\left(x=-90^{\circ}\right)$. Top right: azimuthalfield $\left(\eta=90^{\circ}\right)$ with radial inward velocity $\left(x=-180^{\circ}\right)$. Bottom left: radial field $\left(\eta=0^{\circ}\right)$ with azimuthal clockwise velocity $\left(x=-90^{\circ}\right)$. Bottom right: radial field $\left(\eta=0^{\circ}\right)$ with radial inward velocity $\left(x=-180^{\circ}\right)$.
this section, ticks are shown at 50 equally spaced positions in f.

The top right panel in Figure 3 shows the effect of including an arbitrary relativistic velocity $(\beta=0.3)$ for the fluid in the clockwise tangentiadirection ($\mathrm{X}=-90^{\circ}$), but still keeping a large radius, hence no gravitationaldeflection. In this case, there is a strong asymmetry in the polarized flux around the ring. However, the bright region of the ring is in the left half of the plot, exactly the opposite ofwhat we require to explain M87*. This contrary behavior is actually rather surprising. Given the direction of the tilt and the clockwise sense of rotation, the fluid in the right half of the plot has a component
of its motion toward the observer, while the fluid on the left has a component away from the observer. Doppler beaming ought to favor the right side, yet we see the opposite. This paradoxical behavior is because of aberratioms we explain in Section 4.

The bottom left panel in Figure 3 shows the effect of a pure inward radial velocity $\left(X=-180^{\circ}\right)$, again for a large ring radius. Once again, the bright region of the disk is on the wrong side compared to whails seen in M87*. It is also exactly the opposite of what we would expect from Doppler beaming, since the fluid in the upper half has a velocity component toward the observer, and ought to be bright. Once again, aberration is the explanation.

Figure 5. Polarization patterns forfour models thatinclude both radial and azimuthalcomponents ofvelocity and magnetic field. The models correspond to $X=-120^{\circ}$ (top left), $\quad x=-135^{\circ}$ (top right), $\quad x=-150^{\circ}$ (bottom left), $x=-165^{\circ}$ (bottom right), each with magnetic field trailing opposite to the velocity $\left(\eta=x+180^{\circ}\right)$. The two models in the bottom row come closest to reproducing the polarization pattern seen in. M87

Finally, the bottom right panel considersa ring at small radius ($R=6$) such that gravitational deflection of light rays is important. For simplicity, we assume thatthere is no fluid velocity. In this case,the results are similar to the bottom left panel, and the strongest polarized flux is at the bottow,ich does not match what is seen in M 8.7
We do not discuss the $ß$ phase of the polarization patterns for models with pure verticalfield, exceptto note that in the regions where M87 has its strongestpolarized flux (upper right), the sense of the EVPA twist seen in all the examples in Figure 3 has the wrong sense.
The conclusion from these examples is the following. If the polarized emission thatwe see in M87 at 230 GHz is from
equatorial gas, and if the gas rotates in the clockwise direction, as EHTC V concluded, and/or flows radially inward, as is natural for accretion, then the magnetic field cannot be dominated by a pure vertical component. There must be substantial radial and tangential field components.
Note that the observed ring in the bottom right panel in Figure 3 has a radius slightly larger than the original ring radius $R=6$. The ring is also shifted slightly upward relative to the origin. Both effects are the result of gravitational deflection, as we explain in Section 4. The effect is seen only when R is small (gravity is strong), which is the case in this panel of Figure 3, and in all the panels in Figures 4,5.

3.2. Models with Pure Radial or Tangential Field

We now turn our attention to models with magnetic field entirely in the equatorial plane, i.e. z 0 , non-zero B or B_{f}. We consider a ring with small radius $(R=6)$ and include relativistic fluid motion; thus, lensing, Doppler and aberration are all included. Figure 4 shows four modelst,wo with radial field ($\eta=0^{\circ}$) and two with tangential field ($\eta=90^{\circ}$). For each field configuration, we consider two velocity fields, either pure clockwise rotation $\left(x=-90^{\circ}\right)$ or pure radial infall ($x=$ - 180°).

Three of the four panels in Figure 4 have their strongest polarized flux in the correct region of the ring (top and/or right) to match what is seen in M"Bizen the fourth (top right panel) has slightly stronger polarized flux at the top. The very different behavior of these models, compared to those in Figure 3, is explained in detail in the next section. In brief, for models with magnetic field restricted to the equatoriplane, aberration induces the same sense of flux asymmetry as Doppler beaming and therefore enhances the effect of the latt whereas in the pure B_{z} models, aberration induces flux asymmetry with the opposite sign of that due to Doppler beaming, and in fact overwhelms the latterand reverses the sign of what is observed.In this sense, equatorial fielddominated models are more promising for M87

Considering the twist of the polarization pattern, as discussed in EHTC VIII, a pure tangentialfield is ruled out because the polarization ticks are predicted to be purely radial, is seen in the $\theta_{0}=20^{\circ}$ model. The ring appears increasingly which does not match M87. A pure radial field is also ruled out flattened as θ_{0} increases,but it also acquiresan additional since it predicts polarization ticks entirely in the tangential direction. However, these models come closer to what is seen in M87* . It would appearthat models in which $B_{r}>B_{f}$ are most suitable.

3.3. Models with Both Radial and Tangential Field

Figure 5 shows fourmodels in which both B_{f} and B_{f} are non-zero, and $B=0$. All the models have fluid with clockwise rotation in the sky and radial infall, i.e., the angle X of the vector β is in the lower left quadrant. Since the radial and tangential magnetic field components in the inner regions of an accretion disk are likely oriented paralleb the motion of the fluid-the field is "combed out" by the flow-we simplify matters by assuming that the field is aligned with the velocity. Specifically,we choose

$$
\begin{equation*}
\text { Pure } B_{\mathrm{eq}}: \quad h=c \text { or } h=c+p \tag{31}
\end{equation*}
$$

For the specific case of a purely equatorial field, we can chooseetain the same sign on the two sideset us assumewithout either of the two values of η indicated above. The two choices correspond to oppositely oriented directions dhe magnetic field lines; this ambiguity has no effect on the linear polarized emission.As we discuss in Section 3.5,we need to be more carefulabout the choice of η when we have both verticaind equatorial field components.

In Figure 5, the modelin the top left panelhas tangential velocity larger than radial velocity, and correspondingly $B_{f}>B_{r}$. In the top right panel, the radial and tangential components are equal, while in the lower two panels the radial where "near side" means the side of the disk facing the components of velocity and magnetic field are larger than the observer.
respective tangentiatomponentsAll four models have flux asymmetry thatqualitatively matches M87. All four models
also have polarization patterns with the same sense of twist, or sign of β_{2} phase, as observed in M8Among the four models, the ones in the bottom row come closest to M87

3.4. Models with $\mathrm{R}=4.5 \mathrm{M}$ and Varying Inclination

We round out the discussion of examples by considering models with a smaller emission radius, $R=4.5$, which is better matched to M87*, and exploring the effect of varying the tilt angle θ_{0}. Figure 6 shows models with $x=-150^{\circ}$, $\eta=x+\pi=30^{\circ}$, and four choices of: $\because 20^{\circ}, 40^{\circ}, 60^{\circ}$, and 80°.

The top left panel has $\delta=20^{\circ}$ and is designed to resemble M87* . The polarized intensity asymmetry (relative to the direction of the jet), as well as the twist of the EVPA pattern, are similar to the EHT observations described in EHTC VII and EHTC VIII. This same model is shown again in Figure 9 with the polarization pattern rotated counter-clockwise by 288° to match the jetorientation in M87* , and with the emitting fluid spread out in radius with an exponential profile with scale ewidth 2M (see Section 5.1 for details), instead of the infinitely thin emitting ring assumed here.

The remaining panels in Figure 6 show the effect of increasing the tilt angle θ_{0}. The Doppler asymmetry in the polarized intensity increases rapidly since the fluid motion has a larger component parallel to the line of sight. The orientation of the asymmetry (bright on the right, dim on the left) as well as the twist of the polarization pattern qualitatively resemble what asymmetry such thatby $\theta_{0}=80^{\circ}$ it looks more like a semicircle than an ellipse. This is because ofextreme lensing of radiation emitted from the far side of the ring. As in the previous figuresticks are equally spaced in f; the large gaps on the north side of the $\theta=80^{\circ}$ image indicate the relative stretching between j and f at high inclination.

3.5. Models with All Field Components

We finally discuss models in which all three components of the magnetic field are non-zero. In this general case, we need anto be careful about the geometry of the magnetic field. In a three-dimensionalaccretion flow in which magnetic field lines penetrate the disk from one side to the other, as for instance in a magnetically arrested disk (MAD) field geometry (Igumenshchev et al. 2003; Narayan et al. 2003; Tchekhovskoy et al. 2011; Bisnovatyi-Kogan 2019)one expects a reflection antisymmetry in $B_{e q}$ about the midplane. That is, B_{r} and B_{r} would flip sign when crossing the mid-plane, wheręarsoßld eetain the same sign on the two sidelset us assumewithout loss of generality,that B_{z} is positive, i.e., the z-componendf the magnetic field line is pointed toward the observer, and let us also take B_{q} to be positive. If the magnetic field is dragged and aligned with the flow, as we assumed in the previous two subsectionsthe field angle η and the flow velocity angle x must be related as follows on the two sides of the disk,

$$
\begin{array}{ll}
z>0 \text { (hear side) }: & h=c+p, \\
z<0 \text { (ar side) }: & h=c, \tag{32}
\end{array}
$$ antisymmetry affects emission only by changing the relative

Figure 6. Polarization patterns for four models with equatorial magnetic field and emission radius $R=4.5$, viewed at different inclination angles ${ }_{\circ}$ Fopaeft: θ Top right: $\theta_{8}=40^{\circ}$. Bottom left: $\theta_{8}=60^{\circ}$. Bottom right: $\theta=80^{\circ}$. All the models have velocity angle $X=-150^{\circ}$, and magnetic field trailing opposite to the velocity $\left(\eta=x+180^{\circ}\right)$. The model in the top left, rotated counter-clockwise by 288° and with emission spread over a finite range of radii, is shown in Figure 9 as a toy mod of M87 ${ }^{\text {. }}$.
sign between B_{4} and B_{2}, hence it is not relevant if eithee, ${ }_{8}$ or B_{z} is zero. However, when both $B_{e q}$ and B_{z} are non-zeroone should separately compute the polarized image produced by the near side and far side of the disk and add the resulting Stokes parameters.

If Faraday effects interntd the flow are strong enough to

We do not show examples of models with both vertical and equatorial field since the parameter space is large. If Faraday effects internzo the flow are strong enough to emission angle of photons from equatorialmatter around a by the observer will be dominated by the near side. The simulatipning black hole is notknown. However, it is possible to considered in EHTC VIII, for instance.generally show large internalFaraday depthbn such casesye need compute only a single image from the near side of the disk, setting $\eta=x+\pi$.

3.6. Numerical Geodesics and Effect of Spin

A general Beloborodov-like analytic approximation for the
 photon's arrival coordinates on the image are determined from a numerical solution to the geodesic equation;this relation can be explicitly expressed in terms ofreal elliptic integrals

Figure 7．The effects of spin on the observed polarization pattern．Each of the two main panels displays a different configuration of magnetized fluid．The first pane corresponds to the bottom right panel of Figure 3 and the second panel corresponds to the top left panel of Fighoth panels show an inclination of 20° and negative spin（i．e．，clockwise rotation on the image）．The inner and outer rings of polarization ticks correspond to emission from $R=4.5$ and $R=6$ ，respectively．Th color bar shows increasing spin from $a=0$ to $|a|=1$ ，and the Beloborodov approximation for Schwarzschild is shown in black overlaid dashes．The two small pane display a zoom－in of one set of ticks at $R=4.5$（lower）and $R=6$（upper）．
（Gralla \＆Lupsasca 2020a，2020b，see also Li et al．2005；Gatedensity that affect the emissivity could also vary with position et al． 2020 for a calculation of images of an orbiting emitter in and will need to be accounted for．
this formalism）．For a spinning black hole，we generalize the P－frame to the＂zero－angular－momentum－observer＂（ZAMO） frame，and then consider a boost β as in（8）into the corresponding F－frame．The semi－analytic result for the polarized image of such a boosted fluid orbiting a spinning black hole is presented in Figure 不，which changing spin is plotted by color．The inner and outer ring in the first two panels correspond to emission radii of $R=4.5$ and $R=6$ ，respectively The results of the Beloborodov approximation are overlaid with black dashed lines and coincide with the low spin semianalytic solution from Kerr．The first and second panels ofigure 7 generalize the scenarios from the bottom right panel of Figure and the upper leftpanel of Figure 5，respectively．The small panels zoom in on one set of ticks from the second panel．

Figure 7 illustrates that for the idealized case of purely geometric and relativistic effects thate consider hereblack hole spin has only a smalleffect on the observed EVPA and can be reasonably neglected for the purposes of the toy mode It also shows that the Beloborov approximation is fairly accurate even at radii as small as $R=4.5$ ．The effects of spin observed polarization become more pronouncedeaty small radius and high observer inclination，neither of which are considered in this paper but will be the subject of future work．

3．7．Generalizations

Although the examples presented in this paper are restricted ${ }^{\text {ef }}$ to axisymmetric models with emission limited to a single radius，the underlying model is more general．The primary result of the analysis presented in Section 2 is an analytical method to map emission properties a由 given（ R, f ）in the emitting ring to the properties of the observed radiation in the sky plane．This transformation can be easily applied to models with non－axisymmetricemission，as well as to radially extended sourcesn such models， \mid B｜would be a function of location and this would need to be included in the calculations． Other quantities like the electron temperatureand number

Two other approximations in the modelboth made in the interests of simplicity，deserve discussion：（1）We restricted the emitting gas to lie in a single equatorial plane．YLe took the velocity to lie entirely within the same plane（though we did allow for a general magnetic field）．Both limitations can be eliminated．
The Beloborodov approximation can be applied at any emission location（ R, f, z ），not just at equatorial locations．For non－equatorial locationshe geometry of the Geodesic Frame and the computation of α（Figure 1）will differ．This will modify the result for the components of ${ }_{(P)}^{\hat{m}}$ ．If a given null geodesic has contributions from severæmission regions at different heights z from the equatorial plane，one could compute their individual contributions to the Stokes parameters and add the contributions incoherently．

Similarly，an off－plane velocity componentwill modify the Lorentz transformation coefficients between the P－Frame and the F－Frame，and will alter the geometrical factor that enters the及pth length calculation．The distinction between＂vertical＂and ＂in－plane＂magnetic field components would become less clear， but this is merely a matter of definition．

The model discussed in this papehas been derived fora non－spinning（Schwarzschild）black hollelowever，as shown in Section 3．6，and as discussed also in Gravity Collaboration et al．（2020）and EHTC VIII，black hole spin has very little effect on the polarized imageat leastfor the low inclination angles considered so far．

Finally，the analysis here is focused on optically thin synchrotron emission for which the polarization four－vector f is given by Equation（16）and the electric field is normalized as in Equation（25）．For optically thick emission from a thin accretion disk，other prescriptions willheed to be substituted， e．g．，Li et al．（2009）discuss polarization of X－rays emitted by the scattering atmosphere above a black hole X－ray binary disk． s．Exceptfor this change，the restof the analysis should remain the same．

4. Analytical Understanding of the Results

By Taylor-expanding the expressions given in Section 2 in suitably chosen "small" quantities,and keeping terms up to second orderwe can obtain usefulanalyticalapproximations for various observables. This provides a physical understanding of the results shown in Section 3.
 A^{*}, we have three small quantities, $2 / R \approx 1 / 3$ (lensing), $\beta \approx 1 / 3$ (Doppler and aberration) $\sin q_{\mathrm{p}}$ " $1 / 3$ (ring tilt ${ }^{129}$), where the numerical values correspond to the models shown in Section 3.We treatall three quantities on an equal footing in the series expansions we carry out.he full results, with all terms up to quadratic order, are listed in Appendix D. The reason for going up to quadratic order is explained below. Her we use the series expansion of the equations to interpitele numerical results presented in Section 3.

4.1. Shape of the Observed Ring

We begin with the shape of the ring as observed on the sky. To quadratic orderthe result is

$$
\begin{align*}
x & =(R+1) \cos j \\
& +\left[\frac{1}{2 R} \cos j+\sin q_{p} \sin 2 j-\frac{R}{2} \sin ^{2} q_{b} \sin ^{2} j \cos j\right] \tag{33}
\end{align*}
$$

$$
\begin{align*}
y & =(R+1) \sin j \\
& +\left[\frac{1}{2 R} \sin j+2 \sin q_{0} \sin ^{2} j-\frac{R}{2} \sin ^{2} q_{0} \sin ^{3} j\right] \tag{34}
\end{align*}
$$

The first term in each expression gives the answeap to δ,

4.2. Doppler Factor and $\sin \zeta$

Expanding up to second order, we find for the Doppler factor

$$
\begin{align*}
g_{d}= & \left(1-\frac{1}{R}\right) \\
& -\left[\frac{b^{2}}{2}+\frac{1}{2 R^{2}}-\frac{2 b}{R} \cos c+b \sin q_{\sin } \sin (c+j)\right] \tag{35}
\end{align*}
$$

where the second ordeterms are shown on the second line inside square bracketJ.he linear order term - 1/R describes deboosting of the observed intensity by gravitatiomældshift, and the first three second-ordererms describe various other deboosting effects such as second-order Doppler. ©iaces negative for radial infall, all three terms have a positive magnitude for the inflowing models we have considered, causing uniform dimming all around the ring.

Azimuthal modulation of the intensity from relativistic beaming is described by the final term, $b \sin q_{b} \sin (c+j)$, and this is the only term that varies as a function of j. The fact that this important effect appears only at second orderis a major reason for expanding the equations up to quadratic order rather than stopping atlinear. Why is it second order? Itis because azimuthal modulation from Doppler beaming requires both tilt and fluid velocity, each of which is treated as a small quantity in our analysid. ${ }^{30}$
Doppler beaming causes an increase in the observed polarized intensity when $\sin (c+j)$ is negative, with the maximum boost occurring when $\mathrm{X}+\mathrm{j}=-90^{\circ}$. For pure clockwise rotation $\left(x=-90^{\circ}\right)$, the maximum boost is at linear order, and the remaining terms inside the square brackeis $=0$. This is natural since, for a ring tilted toward the North, correspond to quadratic order. Up to linear order we see that ttfee fluid at $j=0$ has the largest velocity component toward the observed ring is circular, but with an apparent radius larger by observer and hence produces the most Doppler-boosted unity (i.e., $G M / c^{2}$) than the radius of the source ring. The radial radiation. For pure radial infall $\left(X=-180^{\circ}\right)$, the maximum "expansion" of the observed ring is caused by gravitational boost is at $\mathrm{j}=90^{\circ}$, again because the fluid there has the deflection (lensing) of geodesics. As shown in Figure 1, lensingmaximum velocity toward the observer. Since we consider causes the geodesic to curve around the black hole such that the impact parameteris larger than the naive straight-line estimater $\sin y$.

Among the quadratic terms in Equations (33) and (34t)e terms proportionato $1 / R$ are second-order corrections to the ring radius, and thesin ${ }^{2}$ q terms describe the flattening of the observed ring because of tilt.he latter is simple geometry: a tilted circular ring appears elliptical in shape, with a minor axis radius equal to $\cos q^{\prime}$ " $1-(1 / 2) \sin ^{2} q_{0}$ times the original ring radius. The $\sin q_{b}$ terms describe the effect of tilt on
 the ring $(0<f<\pi)$ travel a longer distance near the black hole variation in the path length is small and not very important. We and suffer more deflection (this is the case shown schemaicallygnore it in the discussion below. The angle ζ, however, is in Figure 1), while geodesics from the lower half ($\pi<f<2 \pi$) experience less deflectionhis causes an upward shidf the observed ringi.e., a net positive bias in y.The shift is of the order of $\sin q_{0}$ in units of $\mathrm{GM} / \mathrm{c}^{2}$. The shift is seen in all the models in Section 3 that have a smallish radius ($\mathrm{R}=16 \mathrm{wer}$ right panel in Figure 3,and all panels in Figures 4-6).

[^5]crucial since synchrotron emission is maximum when and B are orthogonal to each other $(\zeta= \pm \pi / 2)$ and vanishes when they are parallel $(\zeta=0 \pi, \pi)$. Appendix D evaluat $\left.\phi B\right|^{2} \sin ^{2} z$ up

[^6]to quadratic order.We consider in the following subsections the effect of various terms in the series expansion.

4.3. Models with Pure Vertical Field

We begin by considering a model with pureabd consider the non-zero terms $i \nmid B \mid \sin ^{2} z$:

$$
\begin{align*}
& B_{z} \text { Finite, } B_{\text {eq }}=0 \\
&|B|^{2} \sin ^{2} z=-\left[\frac{4}{R} \sin \phi_{b} \sin j+\frac{4}{R^{2}}+\sin ^{2} q_{b}-\frac{4 b}{R} \cos c\right. \\
&\left.+2 b \sin \phi_{\sin }(c+j)+b^{2} \square\right] B_{z}^{2} . \tag{36}
\end{align*}
$$

There are severaihteresting effects herefirst, we have only second-orderterms, no zeroth- or first-order terms (this is another reason for going up to second order in the analysis). It suggests that the observed flux should be strongly suppressed This is not surprising since the emission toward the observer goes assin $2 z \sim \sin ^{2} q$, which is small for models with small tilt. The lack of zeroth- and first-order terms also means that th importance of the second-order quantities in Equation (36) is enhanced.

Consider firstthe term- $(4 / R) \sin q_{b} \sin j$, which describes the combined effect of lensing (4/R) and tils(n q). Figure 1 shows the origin of this term. In the absence of lensing, a geodesic travels on a straighline to the observer and hence subtends an angle θ to the (vertical) magnetic field. When gravitational ray deflection is included, the angle at the emission point is modifiedFor a point on the North or upper half of the ring (the case shown in Figure 1the deflection is such that the photon wavevector becomes more nearly parallel to the z-axis, i.e., more parallel to the magnetic field. Thus ζ is reduced, and this causesthe emissivity to go down. The decreaseis largest when $\mathrm{j}=90^{\circ}$, as indeed we find in Equation (36).If we consider instead a poinon the South or lower half of the ring, e.g., $\mathrm{j}=-90^{\circ}$, the gravitational deflection works in the opposite sense and causes ζ to increase, and the emissivity to correspondingly increase. The net result is an asymmetry in the polarized flux around the ring such that th $\overline{\text { hat }}$ is, the electric field is oriented perpendicularto the maximum flux is in the South and the minimum is in the North, projected magnetic fieldas one would expect. precisely as seen in the bottom right panel in Figure 3.

Considernext the term $2 b \sin q_{\sin }(c+j)$, which corresponds to the combined effecbf tilt and relativistic motion. Here the relevant effect is aberration. Because of the motion o the fluid, the orientation of the wavevectork ${ }_{(F)}$ in the fluid frame is different from its orientation ((β) in the P-frame.The aberration effecis such that fluid that is moving toward the observer has $\left(\xi_{)}\right)$rotated closer to the z-axis in the fluid frame, i.e., more nearly parallel to B, while fluid that is moving away from the observer has the tilt $\left.\varphi_{f}\right)^{k} \mathbf{k w i t h}$ respect to B increased. The former fluid element thus emits less and the latter more in is the direction of the observer. This cancels the effect of Doppler beaming.Actually, since the constanjt-independent terms in Equation (36) are of the same orderas the modulation term $\sin (c+j)$ (note that $2 b \sin q$ is almost equal to $4 / R^{2}+$ $\sin ^{2} q^{2}+b^{2}$), the cancellation tends to be quite pronounced when $\mathrm{X}+\mathrm{j} \sim-90^{\circ}$. The net effect is that aberration overwhelms Doppler beaming and gives the patterns seen in the right and bottom left panels in Figure 3.

4.4. Models with Pure Equatorial Field

When we considermodels with pure equatorialfield ($B_{\text {eq }}$ finite, $B_{z}=0$), the situation is quite different. Focusing on $|B| \sin ^{2} Z$, we find

$$
\begin{align*}
& B_{\text {eq }} \text { Finite, } B_{z}=0, \quad h=c+p \\
& \left.|B|^{2} \sin ^{2} z » B_{\text {eq }}^{2}+\mathrm{t} 2 b \sin q_{s} \sin (c+j) \square\right] B_{e q}^{2} \tag{37}
\end{align*}
$$

where we have written only one of the second-order terms. As in Section 3, we have simplified matters by assuming that the magnetic field is oriented anti-parallel with the velocity: $\eta=x+\pi$.

The first thing to note is that in the case of an equatorial field there is a non-vanishing zero-orderterm. For small tilt, a magnetic field in the equatoriablane is almostorthogonalto the photon wavevector,hence synchrotron emissivity in the direction of the observer is nearly maximum. Correspondingly, the second-orderterms are less important. Moreover, the second order term in Equation (37) appears with the same sign as the corresponding term in δ (Equation (35)), and the opposite sign as in Equation (36). The reason is simple. When aberration tilts the wavevector closer to the z-axis, the wavevector fecomes more nearly orthogonal to B, and hence the emissivity increases.Thus in equatorial field models, the second-order terms in $|B| \sin ^{2} z$ cooperate with and enhance the effectf Doppler beaming, as seen in the panels in Figures 4 and 5. As an aside, when both $e^{\text {Ba }}$ and B_{2} are non-zero, and if we assume as before that $\eta=x+\pi$, then there is a first order term - $2 \sin q^{\sin }(h+j) B_{e} \beta_{z}$, which again has the same sign as the corresponding term in δ.

4.5. Twist of the Polarization Pattern

We now briefly discuss the twist of the polarization pattern around the ring. When the field is purely in the equatorial plane, the results are transparento zeroth order,the electric field in the sky plane is given by

$$
E_{x, \text { obs }}=-\sin j B_{r}-\cos j B_{f}=-\sin (h+j) B_{\mathrm{eq}}^{2}
$$

$$
\begin{equation*}
E_{y, \mathrm{obs}}=\cos j B_{r}-\sin j B_{f}=\cos (h+j) B_{\mathrm{eq}}^{2} \tag{38}
\end{equation*}
$$

Instead of considering the electric fieldne could consider the Stokes parametersQ and U and look at their Fourier coefficients β_{m} (Palumbo et al. 2020), as described in ofAppendix D. The most useful coefficient is, pvhose complex phase directly gives the orientation of the twist.the electric field is radial, the phase of 2_{2} is zero, if it is rotated clockwise from radial by 45°, the phase is -90°, and if the electric field is tangential, the phase is -180°. The EHT observations of ${ }^{*} \mathrm{M} 87$ give a phase $\sim-130^{\circ} \equiv+230^{\circ}$. From Appendix D, the leading order term in β in the case of a pure equatorial magnetic field order term in β in the case of a pure equatorial magnetic field

$$
\begin{equation*}
b_{2} \text { » } e^{i(p+2 h)} B_{\mathrm{eq}}^{2} \tag{39}
\end{equation*}
$$

The phase of this quantity will match the phase observed in M87* if $\eta \sim 25^{\circ}$. Hence, the magnetic field mustbe mostly radial.
Random Snapshot Time Average Blurred Time Average Blurred Ring

Figure 8. Comparison of GRMHD simulations to images of the ring model for simulation parameters favored in EHTC VIII. The left three columns show random snapshots, time averaged images, and blurred time averages of each GRMHD simulation; the right column shows the image generated by the simple ring model n evaluated formagnetic field and fluid velocity values taken from the simulations aR $=4.5$ after azimuthaland temporalaveraging. Ticks show polarization magnitude and position angle where total intensity exceeds 5% of the maximum. Grayscale shows total intensity in linear scale (directly proportional to polarization magnitude for the ring model). The total intensity and polarization magnitude are separately normalized in each panel. Panels show the average fractional polariza weighted by total intensity at bottom left; note that the GRMHD images are heavily depolarized, whereas the ring model images are not. The ring model and averas images show the argument of the $e_{2} \mathbb{B W P}$ mode at top left.
entirely of second-order terms:

$$
\begin{equation*}
B_{\mathrm{eq}}=0: \quad b_{2}=\left\lceil\left(\frac{4}{R^{2}}+\frac{4 b}{R} e^{i c}-b^{2} e^{2 i}\right) B_{z}^{2}\right\rceil . \tag{40}
\end{equation*}
$$

If lensing is unimportant, i.e., R is large, thendßminates and the phase of β is determined by the orientation angle x of the fluid velocity. For a radial velocity ($x=\pi$), the phase of 2 बfs π, i.e., the polarization vectors should be tangentially oriented. This is indeed seen in the brightest part of the ring in the bottom left panel in Figure 3. Similarly, for a tangential velocity ($\mathrm{X}=-\pi / 2$), the phase of $\beta=0$ and the polarization
ticks should be radial, as seen in the top right panel of Figure 3. Finally, if there is no velocity butwe consider strong lensing (small R), then Equation (40) shows thatheas phase $=\pi$ and the polarization should be tangentialas in the bottom right panel.

5. Comparison to Observations

Our ring model provides a convenient framework for direct comparison with a variety of polarimetric observations of nearhorizon emission. We now discuss two specific cases of particular interest: polarimetric imaging with the EHT and infrared flares of Sgr A

Figure 9. Comparison of the EHT polarimetric image of M8*7on 2017 April 11 (left) with a representative ring modథright). Ticks show polarization fraction (color), magnitude (length), and position angle (direction); grayscale is identical for the two panels and shows total intensity of the EHT imagrksfalke8̄nly plotted where the M87polarization exceeds 2% of the maximum intensity. All images are shown after convolution with a circular beam of FWHM 23μ as (shown in the left panel). As in Figure 8, the total intensity and polarization are individually normalized for each panel. The ring model has clockwise rotation with radial inflou corresponding to the top left model in Figure 6 after counterclockwise rotation by 288°. For complete model details, see Section 5.1 . The fractional polarization of t resolved ring model is set to 70%; the fractional polarization is reduced only through beam depolarization. Even after blurring, the ring model has significantly high fractional polarization than the M887mage, although the relative variation in fractional polarization is similar across both images.

5.1. Comparison to the M87 Polarized Image

Recent EHT observations produced polarized images ${ }^{*}$ 的 M8 (EHTC VII). As reported in the one-zone modedomparisons performed in EHTC V and EHTC VIIIt,the brightnessangular size, and expectation of significantFaraday effectscoarsely constrain the magnetic field strengthe $\mathrm{B}_{\text {, ctron }}$ number density n_{e} and electron temperatur $\bar{\epsilon}_{\mathrm{e}}$ in the flow imaged by the EHT. The EHTC VIII results suggest that $\square \square 30 \mathrm{G}$, $10^{4}<\mathrm{n}_{\mathrm{e}}<10^{7} \mathrm{~cm}^{-3}$, and $10^{10}<\mathrm{T}_{\mathrm{e}}<1.2 \times 10^{11} \mathrm{~K}$. The reconstructed images in EHTC VII were compared to general relativ magnetohydrodynamic (GRMHD) simulations to identify a spa of favored model parameters (EHTC VIII). We will now explore whether our ring model can reproduce the polarization structur these favored GRMHD simulations and in EHT images ớf M87
For the GRMHD comparison, we first perform an azimuthal and temporalaveraging in the fluid domain to approximate a stationary axisymmetric flown the fluid frame, the magnetic field in each cell is decomposed in Cartesian Kerr-Schild coordinateswhich are then recasito cylindrical coordinates and then azimuthally averaged.These azimuthally averaged magnetic field decompositions are then further averaged over time between $7500 \ldots \mathrm{t} /(\mathrm{GM} \not \overrightarrow{\text { }}$) _ 10000 (the finaquarter of these simulations). We then sample values of the fluid velocity and magnetic field vectors from the averaged simulations and use these values to generate ring modelsot $\theta 7^{\circ}$. To avoid sampling near where the tangentiahd radialfield directions tend to abruptly flip sign, we use $z=1 \mathrm{M}$, just above the midplane. We use $R=4.5 \mathrm{M}$, corresponding to the apparent lensed size of the emission ring in EHT images of M87see
polarization $|\mathrm{m}|$ of 0.7 before blurring in the ring model.
Finally, we convolve both the ring model image and the
GRMHD image with a 20 uas Gaussian kernel.
Using this approach, Figure 8 compares four favored GRMHD models to the corresponding ring modelsIn each case,the ring modelreproduces the sense of EVPA twiand relative polarized intensity of the averaged and blurred GRMHD image, although discrepanciesn $\arg \left(b_{2}\right)$ suggest contributions from emission away from the midplane or from other effects that are not included in the ring model (e.g., black fibfe spin or Faraday effects)Jhe $R_{\text {ow }}$ and $R_{\text {high }}$ parameters cadapted from Mościbrodzka êtl. (2016) for use in EHTC V tune the ratio of electron to ion temperatures depending on the mignnetic energy density of the plasmarge values of $R_{\text {igh }}$ tend to produce significantemission far from the midplane, particularly in SANE models.Also, Faraday effects in MAD models can produce significant coherent rotation of the EVPA and, hence, in $\arg \left(b_{2}\right)$ (EHTC VIII).
Figure 9 comparesa representativering model to the "consensus" EHT polarimetric image for 2017 Aprill 1 (i.e., the method-averaged imageee EHTC VII). The ring model parameters are chosen based on the observed image and a priori expectations for M8*7 For simplicity, we take $z_{z} \mathbb{B}$, although non-zero values of $B_{z} / B_{\text {eq }}$ over a modest range also give similar results. We use $X=-150^{\circ}$, to roughly match the observed β_{2} for M87* (see Section 4.5). We take $R=$ $\mathrm{d} /\left(2 \theta_{\mathrm{g}}\right)-1 \approx 4.5$ (Section 4.1 explains the -1 factor)where $\mathrm{d} \approx 42 \mu \mathrm{as}$ is the observed ring diameter agmel $8 \mu \mathrm{as}$ is the angular gravitational radius (EHTC VI). We use $\beta=0.4$, which is comparableto the equatorial velocity seen in GRMHD the later discussion of the observed image). To create an imagsimulations (see Ricarte et al. 2020). We use 80° to match from the one-dimensional ring model, we adopt a radial profile the jet inclination of M87*. Thus, this model has a modestly that decays symmetrically in R about $\mathrm{R}=4.5$ as an exponentiarelativistic fluid with clockwise rotation and predominantly with a scale width of 2 M (EHT images only constrain this width to be $<5 \mathrm{M}$; EHTC VI). We take a pixel-wise fractional
radial infall. This model corresponds to the top leftpanel of Figure 6 after rotation to match the jet position angle of $\mathrm{M}, 87$
288°. As with the GRMHD comparison, the ring model is evaluated over an exponential profile with a scale width of 2 M centered at $R=4.5 \mathrm{M}$. The resulting ring model image is broadly consistentwith the polarization morphology of the EHT image.
Although the qualitative agreememb Figure 9 is encouraging, our simple ring modelfundamentally fails to reproduce all the features in the M877mage. Namely, our simplest model would produce a high fractional polarization ($\square 60 \%$), while the M87* image has a low resolved fractional polarization $\square 20 \%$. This suggeststhat significant depolarization from internal Faraday effects are essentiahen modeling and interpreting the M87 image. Nevertheless, the success of the ring model in reproducing the structure of some GRMHD images thwive significantFaraday effects is encouraging for the prospects of physical inference from this simple model.
One possibility for using our model for a more complex emission scenario is to combine multiple ring models that correspond to different emission regions. Specifically, the assumption $\eta=x+\pi$ correspondsto emission sourced by entrained magnetic field lines on the near side of the accretion flow (see Section 3.5)The far side of the flow would instead have $\eta=x$, flipping $B_{\text {eq }}$ Ignoring that contribution is equivalentto assuming thatFaraday depolarization effects in the midplane are strongso that the far-side emission is fully depolarized (as indicated in many models consideredin EHTC VIII; see Ricarte etal. 2020). Our ring model could also be adapted to the case ofveak Faraday rotation in the midplane;the resulting image would be the sum of two ring models, one with $\eta=x$ and the other with $\eta=x+\pi$. Both cases would reduce the image polarization substantially and may give better agreement with the MB̄̄age, but we defer a full analysis to a future paper.

5.2. Comparison to Sgr APolarization

The polarization of $\mathrm{Sgr} \AA$ À shows continuous variability in the submillimeter (Marrone etal. 2006; Johnson etal. 2015; Bower et al. 2018) and also shows rapid variability during near infrared (NIR) flares (Eckartet al. 2006; Trippe et al. 2007; Zamaninasab @ll. 2010; Gravity Collaboration et al2018b). The variability often appears as "loops" in Stokes Q-U, and is frequently attributed to localized emission from an orbiting "hotspot" (Broderick \& Loeb 2005, 2006; Fish et al. 2009). For the case of NIR flares, Faraday effects, absorption, and background emission areinsignificant, so we can directly compare observed values of polarization and centroid motion with a simulated hotspot-only model.
Figure 10 shows a representative example. In this figure, we compute the hotspot polarized flux in the (\mathbb{Q},) plane over a full period for a set of orbits with varying emission radius and inclination. We hold the underlying magnetic field structure to be vertical and constant, and adopt a relativistic Keplerian velocity for the hotspot $b=1 / \sqrt{r-2}$. Our results are similar to previous studies with fully numerical calculations (see, e.g., Fish et al. 2009; Gravity Collaboration etal. 2018a, 2020); lensing and aberration compressthe image of azimuthal evolution of polarization on one side of the flow and expand

Figure 10. Polarization signatures foe vertically magnetized hotspobn a circular, relativistic Keplerian orbit. Each curve shows the polarized flux for a full orbit. Different curves correspond to varying the hotspot radius (top) and viewing inclination (bottom). Note that we use radio astronomy conventions for Q and U here,distinct from those in Equation (D10) by an overall sign.

6. Summary

We have developed an analytical method for computing the polarized image of a synchrotron-emitting fluid ring orbiting a Schwarzchild black hole. Given simple assumptions forthe magnetic field geometry and fluid velocityhis modelallows us to generate predictionsof EVPA and relative polarized intensity as a polar function in the observed image at arbitrary viewing inclination. We explored the main features of the model through a numberof representative examples and by further expansion in the inverse emission radius (lensing), fluid velocity (Doppler and aberration), and observer inclination (ring tilt). These reveal how the various physical effects influence the polarized image.
it on the other. In the formalism of azimuthal Fourier modes on In its simplest form, the fractional polarization of our the ring (Palumbo et al. 2020), power is shifted from the $m=2$ model is significantly higher than that seen in EHT images of mode to the $\mathrm{m}=1$ mode.

M87 (EHTC VII). This may indicate significant sub-beam
depolarization, potentially from strong internal Faraday effects the Universities of Bonn and Cologne; Joint Princeton/Flatiron (EHTC VIII). If so, observations alhigher frequencieswhere Faraday effects are suppressechy show significantly higher image polarizations,while observations atlower frequencies are expected to show a heavily depolarized "core."

Our polarized ring model provides intuition and insights about how a black hole's accretion flow and spacetime combine to produce a polarized image. It also provides a pathway to constrain these physic甲lroperties through direct comparisons with data and images from the EHT, GRAVITY, and future X-ray polarimetry studie玉xtensions such as nonaxisymmetric structure and non-equatorial emission will provide an expanded class of geometricalodels to complement the growing library of GRMHD simulations (EHTC V). The inclusion of black hole spin will be necessary for rigorous understanding of M8*7polarization, particularly if emission at small radii is significant. Further studies which examine the capability of the model in matching snapshots ofGRMHD simulations with similar magnetic field and flow conditions will elucidate how readily field geometries may be directly inferred from polarized images.

We thank the NationalScience Foundation (awards OISE-1743747,AST-1816420,AST-1716536,AST-1440254,AST1935980) and the Gordon and Betty Moore Foundation (GBMF-5278) for financial supportof this work. This work was supported in partby the black hole Initiative, which is funded by grants from the John Templeton Foundation and the Gordon and Betty Moore Foundation to Harvard University. Support for this work was also provided by the NASA Hubble Fellowship grant HST-HF2-51431.001-A awardedby the Space Telescope Science Institut $\#$ hich is operated by the Association of Universities forResearch in Astronomylnc., for NASA, under contractNAS5-26555.The Event Horizon Telescope Collaboration thankshe following organizations and programs: the Academy of Finland (projects 274477, 284495, 312496, 315721); the Agencia Nacional de Investigación y Desarrollo (ANID), Chile via NCN19_058 (TITANs) and Fondecyt 3190878, the Alexander von Humboldt Stiftung; in an Alfred P. Sloan Research Fellowship; Allegro, the EuropeanBell Canada GraduateScholarships-DoctoraProgram); the ALMA Regional Centre node in the Netherlands,the NL astronomy research network NOVA and the astronomy institutes of the University of AmsterdamLeiden University and Radboud Universitythe black hole Initiative at Harvard University, through a grant (60477) from the John Templeton Foundation; the China Scholarship Council; Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico, projects U0004-246083, U0004-259839, F0003-272050, M0037-279006,F0003-281692,104497,275201,263356); the Delaney Family via the Delaney Family John AWheeler Chair at Perimeter Institute; Dirección General de Asuntos del Persona Académico-UniversidadNacional Autónoma de México (DGAPA—UNAM, projects IN112417 and IN112820); the European Research Counc\$ynergy Grant"BlackHoleCam: Imaging the EventHorizon of Black Holes" (grant 610058); the Generalitat Valenciana postdoctoral grant APOSTD/2018/ 177 and GenT Program (project CIDEGENT/2018/021); MICINN Research Project PID2019-108995GB-C22;the Gordon and Betty Moore Foundation (grant GBMF-3561; the Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, iniziative specifiche TEONGRAV; the International Max Planck Research Schoofor Astronomy and Astrophysics at and Joint Columbia/Flatiron Postdoctoral Fellowships, research athe Flatiron Institute is supported by the Simons Foundation; the JapaneseGovernment (Monbukagakusho: MEXT) Scholarship; the Japan Society for the Promotion of Science (JSPS)Grant-in-Aid for JSPS Research Fellowship (JP17J08829 and JP19H01943); the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS, grants QYZDJ-SSW-SLH057, QYZDJSSW- SYS008, ZDBS-LYSLH011); the Leverhulme Trust Early Career Research Fellowship; the Max-Planck-GesellschaftMPG); the Max Planck Partner Group of the MPG and the CAshe MEXT/ JSPS KAKENHI (grants 18KK0090, JP18K13594, JP18K03656, JP18H0372118K03709,18H0124525120007)the Malaysian FundamentaResearch Gran\$cheme (FRGSFRGS/1/2019/ STG02/UM/02/6; the MIT InternationaScience and Technology Initiatives (MISTI) Funds; the Ministry of Scienceand Technology (MOST) of Taiwan (105-2112-M-001-025-MY3, 106-2112-M-001-0111,06-2119- M-001-027,07-2119-M-001017, 107-2119-M-001-020,107-2119-M-110-00588-2112-M-001-048, and 109-2124-M-001-005the National Aeronautics and SpaceAdministration (NASA grantNX17AL82G, Fermi Guest Investigator grant 80NSSC20K146FSA Astrophysics Theory Program grant 80NSSC20K0527, NASA NuSTAR award 80NSSC20K0645)the National Institute of Natural Sciences (NINS) of Japanthe NationalKey Research and Development Program of China (grant 2016YFA0400704, 2016YFA0400702); the National Science Foundation (NSFgrantsAST-0096454, AST-0352953,AST-0521233,AST-0705062,AST-0905844, AST-0922984,AST-1126433,AST-1140030,DGE-1144085, AST-1207704,AST-1207730,AST-1207752, MRI-1228509, OPP-1248097,AST-1310896, AST-1555365,AST-1615796, AST-1715061,AST-1716327,AST-1903847,AST-2034306); the Natural ScienceFoundation of China (grants 11573051, 11633006, 11650110427,10625314, 11721303, 11725312, 11933007, 11991052, 11991053); a fellowship of China PostdoctoraScience Foundation (2020M671266hie Natural Sciences and Engineering Research Council of Canada (NSERC, including a Discovery Grant and the NSERC Alexander Graham National ResearchFoundation of Korea (the Global PhD Fellowship Grant: grants NRF-2015H1A2A10337522015R1D1A1A01056807the Korea Research Fellowship Program: NRF-2015H1D3A1066561Basic Research Support Grant 2019R1F1A1059721); the Netherlands Organization for Scientific Research (NWO) VICI award (gra@ib9.043.513) and Spinoza Prize SPI78-409; the New Scientific Frontiers with Precision Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARA@/hich is a facility of the National Research Foundation (NRFqn agency of the IDepartment of Science and Innovation (DSI) of South Africa; the South African Research Chairs Initiative tbe Departmenbf Science and Innovation and Natiorßesearch Foundatiotme Onsala Space Observatory (OSO) national infrastrufotutee, provisioning of its facilities/observational support (OSO receives funding through the Swedish Research Council under grant 201700648) the Perimeter Institute for Theoretical Physics (research at Perimeternstitute is supported by the Governmeont Canada through the Departmendf Innovation,Science and Economic Development and by the Province of Ontario through the Ministry of Research, Innovation and Science); the Spanish Ministerio de Economía y Competitividad (grantథGG2018-098915-B-C21,

AYA2016－80889－P，PID2019－108995GB－C21）；the State Agen＠pain is operated by IRAM and supported by CNRS（Centre for Research ofthe Spanish MCIU through the＂Center of National de la Recherche ScientifiqueFrance），MPG（Max－ Excellence Severo Ochoa＂award for the Instituto de Astrofísic円lanck－GesellschafiGermany）and IGN（Instituto Geográfico de Andalucía（SEV－2017－070丹）e Toray Science Foundation；Nacional，Spain）．The SMT is operated by the Arizona Radio the Consejeríade Economía，Conocimiento，Empresasy Observatory，a part of the Steward Observatory of the University Universidad of the Junta de Andalucía（grant P18－FR－1769），thef Arizona，with financial support of operations from the State of Consejo Superior de Investigaciones Científicas（grant Arizona andfinancialsupportfor instrumentation development 2019AEP112）；the US Department of Energy（USDOE）throughtom the NSF．The SPT is supported by the Nation $\$$ cience the Los Alamos National Laboratory（operated by Triad Nationఖloundation through grant PLR－124809ärtial support is also Security＿LLC，for the National Nuclear Security Administration of the USDOE（Contrac89233218CNA000001the European Union＇s Horizon 2020 research and innovation program under grantagreemenlNo． 730562 RadioNetALMA North America Development Fund；the Academia Sinica；Chandra DD7－18089 and TM6－17006X，the GenT Program（Generalifdalenciana） ProjectCIDEGENT／2018／021．This work used the Extreme Scienceand EngineeringDiscovery Environment（XSEDE）， supported by NSF grant ACI－15485＠2n，d CyVersesupported by NSF grants DBI－073519D，BI－1265383and DBI－1743442． XSEDE Stampede2 resource at TACC was allocated through AST170024 and TG－AST080026NSEDE JetStream resource at PTI and TACC was allocated through AST170028The provided by the NSF Physics Frontier Center grant PHY－1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago，the Kavli Foundation and the Gordon and Betty Moore気oundation granGBMF 947．The SPT hydrogen masewas provided on loan from the GLT，courtesy of ASIAA．The EHTC has received generous donations of FPGA chips from Xilinx Inc．， under the Xilinx University Program．＇he EHTC has benefited from technology shared under open－sourcelicense by the Collaboration for Astronomy Sign\＃lrocessing and Electronics Tresearch（CASPERI）he EHT projecis gratefulto T4Science and Microsemfor their assistance with Hydrogen Mas \ddagger tris research has made use of NASA＇s Astrophysics Data System．We simulations were performed in part on the SuperMUC cluster atratefully acknowledge the support provided by the extended staff the LRZ in Garching，on the LOEWE cluster in CSC in Frankfurff the ALMA，both from the inception of the ALMA Phasing and on the HazelHen clusterat the HLRS in Stuttgart．This Projectthrough the observationedmpaigns of 2017 and 2018. research was enabled in pant supportprovided by Compute We would like to thank A．Deller and W．Brisken for EHT－ Ontario（http：／／computeontario．ca），Calcul Quebec（http：／／www calculquebec．ca）and Compute Canada（http：／／www． computecanada．calV）thank the staff at the participating observatoriescorrelation centers，and institutions for their enthusiastic supporthis papermakesuse of the following ALMA data：ADS／JAO．ALMA\＃2016．1．01154．VALMA is a partnership of the European Southern Observatory（ESO；Europe， specific supportwith the use of DiFX．We acknowledge the significance thaMaunakeawhere the SMA and JCMT EHT stations are located，has for the indigenous Hawaiian people．

Appendix A

 representing its member stat $\$ \mathbb{F}$ ， ，and NationaInstitutes of Natural Sciencesof Japan，togetherwith National Research The model developed in Section 2 relies on the approximate Council（Canada），Ministry of Science and Technology（MOST；formula Equation（4）derived by Beloborodov（2002）．This Taiwan），Academia Sinica Institute ofAstronomy and Astro－ physics（ASIAA；Taiwan），and Korea Astronomy and Space approximation provides an estimate for α（ancequivalently， for ρ ；Equation（C4））for given emission coordinates R and f． Science Institute（KASI；Republic of Korea），in cooperation withWe now quantify the accuracy of this approximation． the Republic of Chile．The Joint ALMA Observatory is operated Emission from the equatorial plane arriving at a given by ESO，Associated Universitie\＄nc．（AUI）／NRAO，and the observerinclination angle $0 \quad 1 \quad 1 \quad \pi / 2$ will sweep through is a facility of the NSF operated under cooperative agreement quation（1））．In particular，all emission from a face－on disk AUI．APEX is a collaboration between the Max－Planck－Institut für Radioastronomie（Germany， SO ，and the Onsala Space Observatory（Sweden）he SMA is a joint projectbetween the SAO and ASIAA and is funded by the Smithsonian Institution and the Academia SinicaThe JCMT is operated by the East Asian Observatory on behalf of the NAOJ，ASIAA，and KASI， well as the Ministry of Finance of China，Chinese Academy of Sciences，and the National Key R\＆D Program（No． 2017YFA0402700bf China．Additional funding supportfor the JCMT is provided by the Science and Technologies Facility Council（UK）and participating universitiesn the UK and has $\psi=\pi / 2$ ，while emission from an edge－on disk samples angles $0 \ldots \Psi \ldots$ As the left panel in Figure 11 shows，the error in the Beloborodov approximation increases with ψn the context of the ring model，the approximation is most accurate at small inclinations．For $\theta_{0}=17^{\circ}$ for example （relevantfor $\mathrm{M} 87^{*}$ ），the approximation for ρ has a fractional error smaller than 2% for all values of R．his error decreases rapidly as ρ grows；e．g．，for $\rho=9$ ，the fractionalerror in ρ is smaller than 0.03% ．In general，for emission on the side of the accretion disk closer to the observer（i．巴．，＜ $\mathrm{f}<2 \pi, \psi<\pi /$ Canada．The LMT is a project operated by the Instituto Nacionall），the approximation for ρ will have fractionalerror smaller de Astrofísica，Óptica，y Electrónica（Mexico）and the Universitthan 0.6% for all $\rho 3$ and any inclination．The error is larger of Massachusetts at Amherst（USA），with financial support fronfor points on the far side of the ring（ $0<f<\pi, \Psi>\pi / 2$ ）． the Consejo Nacional de Ciencia y Tecnología and the NationalHowever，even atan inclination angle of 60° ，the accuracy is Science Foundationhe IRAM 30 m telescope on Pico Veleta，quite adequateas shown by the right panel in Figure 11.

Figure 11. Testing the accuracy of the Beloborodov approximation. The left panel shows fractional error $\sqrt{X^{2}+y^{2}}$ as a function of ψ for $\rho=3,5,7$, and 9 . Yellow ranges denote values of ψ relevant for observer inclinatiof $\not \subset \mathscr{\circ}$ and 60°. The center and right panels show the image coordinates for rings with emission radius $\mathrm{R}=2$ (red), 4 (green), 6 (blue), and 8 (cyan) viewed at inclinations of 20° and 60°, respectively. For each ring, the solid line shows the exact calculation, whi the dotted line shows the Beloborodov approximation (see Equation (σ 开) $)$.black dotted line shows the critical curve, $=r_{\mathrm{c}}{ }^{\circ} \quad \sqrt{27}$.

Appendix B

Transformations of Field Components
In the analysis given in the main text, we assumed that the magnetic field compone $B_{i} \mathbf{s p}_{2} \mathbb{B}_{2}$ are specified in the fluid frame. Under the usual assumptions of ideal MHD, the electric field vanishes in this fram $\mathrm{E}_{\mathrm{f}} \mathrm{E}_{\mathrm{E}} \mathrm{E}_{\mathrm{z}}=0$. Alternatively, we might wish to work with field components in the P-fram $B_{r}^{(P)}, B_{f}^{(P)}, B_{z}^{(P)}, E_{r}^{(P)}, E_{f}^{(P)}, E_{z}^{(P)}$ (the electric field does not vanish in this frame).

The two frames are related by a Lorentz transformation with velocity β (expressed in terms of β aselexEquation (8))The transformation is most transparentwhen we rewrite the radial and tangential field components in terms of "parallel" and "perpendicular" field components relative to the velocity:

$$
\begin{array}{ll}
B_{\square}^{(P)}=\cos c B_{r}^{(P)}+\sin c B_{f}^{(P)}, & B_{i}^{(P)}=-\sin c B_{r}^{(P)}+\cos c B_{f}^{(P)}, \\
B_{r}^{(P)}=\operatorname{cosc} B_{\square}^{(P)}-\sin c B_{r}^{(P)}, & B_{f}^{(P)}=\sin c B_{\square}^{(P)}+\operatorname{cosc} B^{(P)}, \tag{B2}
\end{array}
$$

with similar expressions for $\mathbb{E}^{\mathbb{P})}$ and B. The transformation rules are then

$$
\begin{align*}
B_{\square}=B_{\square}^{(\mathrm{P})}, & E_{\square}=E_{\square}^{(\mathrm{P})}, \tag{B3}\\
B=g B^{(\mathrm{P})}+b g E_{z}^{(\mathrm{P})}, & B_{z}=g B_{z}^{(\mathrm{P})}-b \mathcal{E}^{(\mathrm{P})}, \tag{B4}\\
B^{(\mathrm{P})}=g B-b E_{z}, & B_{z}^{(\mathrm{P})}=g B_{z}+b E^{\prime}, \tag{B5}\\
E=g E^{(\mathrm{P})}-b B_{z}^{(\mathrm{P})}, & E_{z}=g E_{z}^{(\mathrm{P})}+b g^{(\mathrm{P})}, \tag{B6}\\
E^{(\mathrm{P})}=g E+b \mathcal{B}_{z}, & E_{z}^{(\mathrm{P})}=g E_{z}-b g^{B}, \tag{B7}
\end{align*}
$$

where, as usual, $g=\left(1-b^{2}\right)^{-1 / 2}$.
Using the above transformationi§,we are given B, B_{f}, B_{z} in the fluid frame, we can solve for $B^{P)}$ and $E^{(P)}$ in the P-frame:

$$
\begin{gather*}
B_{r}^{(\mathrm{P})}=\left(\cos ^{2} c+g \sin ^{2} c\right) B_{r}-(g-1) \cos c \sin c B_{f} \tag{B8}\\
B_{f}^{(\mathrm{P})}=-(g-1) \cos c \sin c B_{r}+\left(\sin ^{2} c+g \cos ^{2} c\right) B_{f} \tag{B9}\\
B_{z}^{(\mathrm{P})}=g B_{z} \tag{B10}\\
E_{r}^{(\mathrm{P})}=-b g \sin c B_{z} \tag{B11}\\
E_{f}^{(\mathrm{P})}=b g \cos c B_{z} \tag{B12}\\
E_{z}^{(\mathrm{P})}=b g \sin c B_{r}-b g \operatorname{cosc} B_{f} \tag{B13}
\end{gather*}
$$

Similarly, if we are given the magnetic field components in the P-frawe, can solve for the other field components:

$$
\begin{gather*}
B_{r}=\left[\cos ^{2} c+(1 / g) \sin ^{2} c\right] B_{r}^{(P)}+((g-1) / g) \cos c \sin c B_{f}^{(P)} \tag{B14}\\
B_{f}=((g-1) / g) \cos c \sin c B_{r}^{(P)}+\left[\sin ^{2} c+(1 / g) \cos ^{2} c\right] B_{f}^{(P)} \tag{B15}\\
B_{z}=(1 / g) B_{z}^{(P)} \tag{B16}\\
E_{r}^{(P)}=-b \sin c B_{z}^{(\mathrm{P})} \tag{B17}
\end{gather*}
$$

$$
\begin{gather*}
E_{f}^{(\mathrm{P})}=b \cos c B_{z}^{(\mathrm{P})}, \tag{B18}\\
E_{z}^{(\mathrm{P})}=b \sin c B_{r}^{(\mathrm{P})}-b \cos c B_{f}^{(\mathrm{P})} . \tag{B19}
\end{gather*}
$$

These transformations are provided here for the convenience of readers who migeffer to work with field components in the Schwarzschild frame.

Appendix C
 Emission Location versus Observed Coordinates

The radiation emitted by the point P in the ring at (R, f) reaches the observer at sky coordinates (x, y), which we can write in tert of polar coordinates (ρ,) as described in Equation (28)Here we work out the relation between these two coordinates.
The relation between j and f is straightforward. Since the observer frame is tilted with respect to the ring plane by a rotation angl θ_{o} around the line of nodes, and since the geodesic lies entirely on a plane (because we have limited our analysis to the Schwarzs spacetime)we find

$$
\begin{equation*}
\tan j=\tan f \cos q^{2} . \tag{C1}
\end{equation*}
$$

This relation can be used to translate f to j and vice versa. For the analysis in Appendix D, it is useful to express j in terms of f up to quadratic order.The corresponding relations are

$$
\begin{equation*}
\sin f \square \sin j+(1 / 2) \sin ^{2} q^{2} \sin j \cos ^{2} j, \quad \cos f \square \cos j-(1 / 2) \sin ^{2} q \cos j \sin ^{2} j . \tag{C2}
\end{equation*}
$$

To calculate the mapping between R and ;onsider the G -frame (Figure 1)where the geodesic lies in the xz-planAt the emission point $(x, y, z)=(R, 0,0)$, the geodesic makes an angle α with respect to the x-axis, where α is given by the Beloborodov approximation (4)Since the angular momentum around the y-axis in the G-frame is consenvedave

$$
\begin{equation*}
r=k_{f}=R k \hat{f}=\frac{R \operatorname{sina}}{\left(1-\frac{2}{R}\right)^{1 / 2}} . \tag{C3}
\end{equation*}
$$

Squaring both sides,

$$
\begin{equation*}
r^{2}=\frac{R^{2}\left(1-\cos ^{2} a\right)}{\left(1-\frac{2}{R}\right)}=R^{2}\left(1-\sin ^{2} q_{p} \sin ^{2} f\right)+2^{R}\left(1+\sin ^{2} q_{0} \sin ^{2} f+2 \sin q_{b} \sin f\right) . \tag{C4}
\end{equation*}
$$

This directly gives ρ in terms of R and f; conversely,the quadratic equation can be solved to obtain R foa given ρ and f. Equation (C4) is exactexcept for the fact that we used the Beloborodov approximation (4)ctersa.
Since $(\mathbb{T} j / \pi R)_{f}=0$, the Jacobian determinant $|J|$, which describes the transformation of differential area elements between (R, and ($\mathrm{\rho}, \mathrm{j}$), is given by

$$
\begin{equation*}
\left.\left.|J|=\frac{\pi r}{\| R}\right)_{f}\left(\frac{(\mathbb{V})}{(R \| f}\right)_{R}=\frac{1}{R}\left[(R+1)-(R-1) \sin ^{2} q_{0} \sin ^{2} f+2 \sin q \sin f\right] \frac{\left(\sec ^{2} f \cos q\right.}{\left(1+\tan ^{2} f \cos ^{2} \phi\right)}\right) . \tag{C5}
\end{equation*}
$$

Appendix D

Series Expansion to Quadratic Order

The analysis in Section 2 is exact, modulo the Beloborodov approximaton, and is convenient for numerical calculations. Howeve for analyticalstudies, we need simpler relations.or this, we expand allthe equations up to second ordereating the quantities $\sin q, \beta$ and $2 / R$, which describe tilt,relativistic velocity and gravityas being small. ${ }^{31}$ The relevant series expansion results are given below. In each equationthe second-order terms are shown inside square brackets.
The observed coordinates (x) , of the geodesic emitted at location (\mathbb{R}, in the ring are given by

$$
\begin{gather*}
x=(R+1) \cos j+-\left[\frac{1}{2^{R}} \cos j+2 \sin q \sin j \cos j-\frac{R}{2} \sin ^{2} q \sin ^{2} j \cos j\right], \tag{D1}\\
y=(R+1) \sin j+-\left[\frac{1}{2^{R}} \sin j+2 \sin q \sin ^{2} j-\frac{R}{2} \sin ^{2} q \sin ^{3} j\right] . \tag{D2}
\end{gather*}
$$

In deriving these results,we first evaluated Equation (22)and then made the substitutions given in Equation (C2)The latter substitution is made in all the subsequent results presented in this appendix; thus the results are expressed in terms of the observ azimuthal angle j .
To quadratic orderthe Doppler factor δ is

$$
\begin{equation*}
d=1-\frac{1}{R}-\left[\frac{b^{2}}{2}+\frac{1}{2 R^{2}}-\frac{2 b}{R} \cos c+b \sin \varphi_{\phi} \sin (c+j)\right] . \tag{D3}
\end{equation*}
$$

Note that Doppler boost due to azimuthal velocity is described by the last tersin $q_{\sin }^{\sin (c+j) \text {, which appears only at second }}$ order in the small quantitiesin q_{b} and β. This is one of the reasons for expanding the equations to quadratic order.

Assuming that the spectral index, $\in 1$, the intensity of the linear polarized radiation at the observer is given by Equation (15):

$$
\begin{equation*}
|P|=d^{A} I_{\mathrm{p}}|B|^{2} \sin ^{2} z \tag{D4}
\end{equation*}
$$

Expanding to quadratic ordethe term $|B|$ sin $^{2} z$ is given by

$$
\begin{align*}
|B|^{2} \sin ^{2} z= & B_{\mathrm{eq}}^{2}+\left(2 \sin q_{\mathrm{s}} \sin (h+j)-\frac{4}{R} \cos h+2 b \cos (c-h)\right) B_{\mathrm{e} Q} z \\
& +-\left[\left(\sin q_{\mathrm{Q}} \sin (h+j)-\frac{2}{R} \cos h+b \cos (c-h)\right)^{2} B_{\mathrm{eq}}^{2}\right. \\
& +-\left(\frac{4}{R} \sin q_{\mathrm{s}} \sin j+\frac{4}{R^{2}}+\sin ^{2} q_{\mathrm{L}}+2 b \sin q_{\mathrm{p}} \sin (c+j)-\frac{4 b}{R} \cos c+b^{2}\right) B_{z}^{2} \\
& \left.-\frac{4}{R} \sin q_{\mathrm{c}} \cos h \sin j B_{\mathrm{e} q} B_{z}\right] . \tag{D5}
\end{align*}
$$

We have written the result in terms of the parameters 师 B_{z} of the magnetic field in the fluid frame (see Equation (11)). This is helpful for the discussion in Section 4 . Note thath, the absence of any equatorial magnetic field, the only contributions are at the second order (because the only terms wide inse the square brackets). Since the observed intensity is directly proportional to $|B| \sin ^{2} z$, we need to expand to quadratic order to handle models with pure B

To quadratic orderthe path length ${ }_{\beta}$ in Equation (13) is

$$
\begin{equation*}
\frac{I_{\mathrm{p}}}{H}=1+\frac{1}{2}\left[b^{2}+\frac{4}{R^{2}}+\sin ^{2} q_{\mathrm{p}}+2 b \sin q_{\sin }(c+j)-\frac{4 b}{R} \cos c-\frac{4}{R} \sin q_{\mathrm{s}} \sin j\right] . \tag{D6}
\end{equation*}
$$

$$
\begin{align*}
& |P(j)|=\left(1-\frac{4}{R}\right)\left(B_{r}^{2}+B_{f}^{2}\right)+2\left(\sin q_{p} \cos j+b \sin c\right) B_{f} B_{z}+2\left(\frac{2}{R}+b \cos c+\sin q_{b} \sin j\right) B_{z} B_{r} \\
& +\left[\frac{R}{R} \sin q_{p} \sin j+\frac{2}{r^{2}}+\frac{1}{2} \sin ^{2} q_{p} \cos \eta+\frac{10 b}{R} \cos c+b \sin q_{p}(\sin (c-j)-4 \sin (c+j))-\frac{b^{2}}{2}(4+\cos \not \approx)\right) B_{r}^{2} \\
& +-\left(\frac{2}{r} \sin q_{b} \sin j+\frac{6}{R^{2}}-\frac{1}{2} \sin ^{2} q_{b} \cos \varsubsetneqq-b \sin q_{p}(4 \sin (c+j)+\sin (c-j))+\frac{6 b}{R} \cos c-\frac{b^{2}}{2}(4-\cos \npreceq)\right) B_{f}^{2} \\
& +-\left(\frac{4}{R} \sin q_{p} \sin j+\frac{4}{R^{2}}+\sin ^{2} q_{p}+2 b \sin q_{p} \sin (c+j)-\frac{4 b}{R} \cos c+b^{2}\right) B_{z}^{2} \\
& +\left(\frac{A}{R} \sin q_{b} \cos j-\sin ^{2} q_{p} \sin 2-2 b \sin q_{b} \cos (c-j)+\frac{4 b}{R} \sin c-b^{2} \sin 2 c\right) B_{r} B_{f} \\
& \left.+-\left(\frac{8}{R} \sin q_{b} \cos j-\frac{8 b}{R} \sin c\right) B_{f} B_{z}+-\left(\frac{12}{R} \sin q_{s} \sin j+\frac{16}{R^{2}}-\frac{8 b}{R} \cos c\right) B_{z} B_{r}\right\rceil, \tag{D7}
\end{align*}
$$

where we have written the answer in terms of $, \mathbb{B}_{f}, B_{z}$ in the fluid frame.
The electric field components EE_{y}, which are normalized such that they are proportionastoz $\left.{ }^{\boldsymbol{B} \mid}\right|_{\text {(see Equation (25) are }}$

$$
\begin{align*}
& E_{x}=-\sin j B_{r}-\cos j B_{f}-\left(\sin Q_{b}-\frac{2}{R} \sin j+b \sin (c+j)\right) B_{z} \\
& +\left[\left(\frac{2}{R} \sin q_{b} \sin ^{2} j+\frac{2}{R^{2}} \sin j+\frac{1}{2} \sin ^{2} q_{0} \sin ^{3} j+\frac{b}{2} \sin q(\cos c-\cos (c+2 j))\right.\right. \\
& -\frac{2 b}{R} \sin (c+j)+\frac{b^{2}}{4}(\sin j+\sin (2 c+j)), B_{r} \\
& +-\left(\frac{1}{R} \sin q_{\sin }^{2 j}+\frac{1}{8} \sin ^{2} q(5 \cos j-\cos \varsubsetneqq)+\frac{b}{2} \sin q(\sin c+\sin (c+2 j))\right. \\
& +\frac{b^{2}}{4}\left(\cos j-\cos (2 c+j), B_{f}\right. \\
& \left.+\frac{2}{R} \sin q_{S} \sin ^{2} j B_{z}\right], \tag{D8}
\end{align*}
$$

$$
\begin{align*}
E_{y}= & \cos j B_{r}-\sin j B_{f}+-\left(\frac{2}{R} \cos j+b \cos (c+j)\right) B_{z} \\
& +\left[\left(\frac{1}{R} \sin q \sin 2 j-\frac{2}{R^{2}} \cos j-\frac{1}{8} \sin ^{2} q^{\prime}(\cos j-\cos \varsubsetneqq)+\frac{b}{2} \sin q_{(}(\sin c-\sin (c+2 j))\right.\right. \\
& \left.+\frac{2 b}{R} \cos (c+j)-\frac{b^{2}}{4}(\cos j+\cos (2 c+j))\right), B_{r} \\
& +\frac{2}{R} \sin q \cos ^{2} j-\frac{1}{8} \sin ^{2} q(\sin j+\sin 3 j)-\frac{b}{2} \sin q_{b}(\cos c+\cos (c+2 j)) \\
& +\frac{b^{2}}{4}(\sin j-\sin (2 c+j)) B_{f} \\
& \left.-\frac{1}{R} \sin \phi_{\sin } 2 j B_{z}\right] . \tag{D9}
\end{align*}
$$

From $\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}$, we can obtain the observed field componentsiobs $\mathrm{E}_{\mathrm{y}, \mathrm{obs}}$ from Equations (26)(27). We can then compute the Stokes parameters Q and U via

$$
\begin{equation*}
Q=E_{x, \text { obs }}^{2}-E_{y, \text { obs }}^{2}=\left(E_{x}^{2}-E_{y}^{2}\right) d^{q} I_{p}^{1 / 2}, \quad U=2 E_{x, \text { obs }} E_{y, \text { obs }}=2 E_{x} E_{y} d^{q} I_{p}^{1 / 2} . \tag{D10}
\end{equation*}
$$

We can also calculate| $=E_{x, \text { obs }}^{2}+E_{y, \text { obs }}^{2}$, but this will simply reproduce the answer given in Equation (D7). We do not write down the results for Q and U as the expressions are largelnstead we define the complex polarization $P(j)$ in the usual way (see Equation (29)),and expand it in a Fourier series as described in Palumbo e(28020),

$$
\begin{equation*}
P(j)^{\circ} Q(j)+i U(j)=\frac{1}{2 p} \underset{m=\mp}{\stackrel{\circ}{\mathrm{a}}} b_{m} e^{i m j} . \tag{D11}
\end{equation*}
$$

To zeroth and linearorder there are only two non-zero coefficient ξ_{1} and β_{2}, and to quadratic order,there are five non-zero coefficients, $\beta_{0}-\beta_{4}$. The expressions for these coefficients are given below (second-order contributions are shown inside square brackets):

$$
\begin{align*}
& b_{0}=\left[\frac{1}{4} \sin ^{2} q_{q}\left(B_{r}^{2}+3 B_{f}^{2}-4 B_{z}^{2}-2 i B_{r} B_{f}\right)\right] \tag{D12}\\
& =\left[\frac{1}{4} \sin ^{2} q_{p}\left(e^{e^{i h}}-2\right) B_{\text {eq }}^{2}+\sin ^{2} q_{\beta}^{B_{z}^{2}}\right], \tag{D13}\\
& b_{1}=2 \sin q_{p}\left(-i B_{r}+B_{f}\right) B_{z}+\left[\left(\frac{i}{R}+i b \frac{\frac{\beta}{2}}{2} e^{-i c}+e^{i c}\right)\right) \sin q_{b} B_{r}^{2}+-\left(\frac{3 i}{R}+i b\left(-\frac{3}{2} e^{i c}+e^{i c}\right)\right) \sin q_{b} B_{f}^{2} \\
& \left.+\left(\frac{4 i}{R}-2 i b e^{i c}\right) \sin q_{b} B_{z}^{2}-\left(\frac{2}{R}+3 b^{i} c\right) \sin q_{b} B_{r} B_{f}-\frac{10}{R} \sin q_{B} B_{f} B_{z}+\frac{10 i}{R} \sin q_{B} B_{z} B_{r}\right] \tag{D14}\\
& =-2 i \sin q_{B} e^{i h B_{e q} B_{z}}+\left[\left(\frac{i}{R}\left(2-e^{2 i}\right) \sin q_{p}+i b \sin q_{b}\left(e^{i c}+\frac{3}{2} e^{i(2 h-c)}\right)\right)\right)_{\text {eq }}^{2} \\
& +\left(\frac{4^{i}}{R}-2^{i b e^{i} c}\right) \sin q_{B} B_{z}^{2}+\frac{10^{i}}{R} \sin q_{8} e^{i h B_{e} B_{z}} z_{]} \text {, } \tag{D15}\\
& b_{2}=-\left(1-\frac{4}{R}\right)\left(B_{r}+i B_{f}\right)^{2}-2\left(b e^{i c}-\frac{2}{R}\right)\left(B_{r}+i B_{f}\right) B_{z} \\
& +\left[\left(\frac{2}{R^{2}}-\frac{i b}{R}(4 \sin c-10 i \cos c)+\frac{b^{2}}{2}\left(4+e^{2 l c}\right)\right) B_{r}^{2}\right. \\
& +\left(\frac{6}{R^{2}}+\frac{6 b}{R} \cos c+\frac{b^{2}}{2}\left(-4 \quad e^{2 i} c\right)\right), B_{f}^{2} \\
& +-\left(\frac{4}{R^{2}}+\frac{4 b}{R} e^{i c}-b^{2} e^{2 i c}\right) B_{z}^{2}+-\left(\frac{8 i}{R^{2}}+\frac{4 b}{R}(\sin c-4 i \cos c)+4 i b^{2}\right) B_{r} B_{f} \\
& \left.+-\left(\frac{16 i}{R^{2}}+\frac{8 i b}{R} e^{c} c\right) B_{f} B_{z}+-\left(\frac{16}{R^{2}}+\frac{8 b}{R} e^{i c}\right) B_{z} B_{r}\right] \tag{D16}
\end{align*}
$$

$$
\begin{align*}
& =-\left(1-\frac{4}{R}\right) e^{2 i h B_{e q}^{2}}+\left(\frac{4}{R} e^{i h}-2 b^{e^{j}(c+h)}\right) B_{e} B_{z} \\
& +\left[\frac{h^{2}}{R^{2}}\left(1-2^{e^{2 i} \eta}\right)+\frac{b^{2}}{2}\left(e^{2^{i} c}+4 e^{2^{i} \hbar}\right)-\frac{b}{R}\left(e^{2^{i} h}\left(6 \cos c+22^{i c}\right)+2 e^{i c}\right)\right), B_{\text {eq }}^{2} \\
& +-\left(\frac{4}{R^{2}}+\frac{4 b}{R} e^{i c}-b^{2} e^{2 i c}\right) B_{z}^{2}+-\left(\frac{16}{R^{2}} e^{i h}+\frac{8 b}{R} e^{j(c+h)}\right) B_{e q} B_{z} \bar{J}, \tag{D17}\\
& b_{3}=\left[\left(\bar{R}-\frac{5 i b}{2} e^{i c}\right) \sin q_{b}\left(B_{r}+i B_{f}\right)^{2}-\frac{2 i}{R} \sin q_{(}\left(B_{r}+i B_{f}\right) B_{z}\right] \tag{D18}
\end{align*}
$$

$$
\begin{align*}
& b_{4}=\left[\frac{1}{4} \sin ^{2} \phi_{(}\left(B_{r}+i B_{f}\right)^{2}\right] \tag{D20}\\
& =\left[\frac{1}{4} \sin ^{2} q_{e^{2} h}^{e^{i} h B_{e q}^{2}}\right] . \tag{D21}
\end{align*}
$$

For each β_{n} coefficient，we give the result both in terms of B_{B}, B_{z} ，and in terms of $B_{Q q} \eta, B_{z}$ ．

ORCID iDs

Ramesh Narayan https：／／orcid．org／0000－0002－1919－2730
Daniel C．M．Palumbo© https：／／orcid．org／0000－0002－ 7179－3816
Michael D．Johnson® https：／／orcid．org／0000－0002－4120－3029 Zachary Gelles https：／／orcid．org／0000－0001－8053－4392 Angelo Ricarte® https：／／orcid．org／0000－0001－5287－0452 Jason Dexter https：／／orcid．org／0000－0003－3903－0373 Charles F．Gammie® https：／／orcid．org／0000－0001－7451－8935 Andrew A．Chael© https：／／orcid．org／0000－0003－2966－6220 Kazunori Akiyama© https：／／orcid．org／0000－0002－9475－4254 Juan Carlos Algaba https：／／orcid．org／0000－0001－6993－1696 Richard Anantuab https：／／orcid．org／0000－0003－3457－7660 Mislav Baloković© https：／／orcid．org／0000－0003－0476－6647 Lindy Blackburn© https：／／orcid．org／0000－0002－9030－642X Geoffrey C．Bower © https：／／orcid．org／0000－0003－4056－9982 Hope Boyce® https：／／orcid．org／0000－0002－6530－5783
Avery E．Broderick © https：／／orcid．org／0000－0002－3351－760X Thomas BronzwaeD https：／／orcid．org／0000－0003－1151－3971 Do－Young Byun® https：／／orcid．org／0000－0003－1157－4109 Chi－kwan Chan https：／／orcid．org／0000－0001－6337－6126 Shami Chatterjee https：／／orcid．org／0000－0002－2878－1502 Ilje Cho © https：／／orcid．org／0000－0001－6083－7521 Pierre Christian https：／／orcid．org／0000－0001－6820－9941 James M．Cordes® https：／／orcid．org／0000－0002－4049－1882 Jordy Davelaar https：／／orcid．org／0000－0002－2685－2434 Gregory Desvignes https：／／orcid．org／0000－0003－3922－4055 Heino Falcke® https：／／orcid．org／0000－0002－2526－6724 Joseph Farah https：／／orcid．org／0000－0003－4914－5625 Vincent L．Fish © https：／／orcid．org／0000－0002－7128－9345
Ed Fomalonte https：／／orcid．org／0000－0002－9036－2747 Per Friberg® https：／／orcid．org／0000－0002－8010－8454 Antonio Fuentes https：／／orcid．org／0000－0002－8773－4933

[^7]Roberto García https：／／orcid．org／0000－0002－6584－7443
Ciriaco Goddi© https：／／orcid．org／0000－0002－2542－7743
José L．Gómez® https：／／orcid．org／0000－0003－4190－7613
Mark Gurwell © https：／／orcid．org／0000－0003－0685－3621
Kazuhiro Hada https：／／orcid．org／0000－0001－6906－772X
Daryl Haggard https：／／orcid．org／0000－0001－6803－2138
Mareki Honma® https：／／orcid．org／0000－0003－4058－9000
Shiro Ikeda https：／／orcid．org／0000－0002－2462－1448
Sara Issaoun https：／／orcid．org／0000－0002－5297－921X
Britton Jeter® https：／／orcid．org／0000－0003－2847－1712
Svetlana Jorstad https：／／orcid．org／0000－0001－6158－1708
Mansour Karami https：／／orcid．org／0000－0001－7387－9333
Tomohisa Kawashima https：／／orcid．org／0000－0001－ 8527－0496
Garrett K．Keating © https：／／orcid．org／0000－0002－3490－146X Jae－Young Kim® https：／／orcid．org／0000－0001－8229－7183 Jongsoo Kimhttps：／／orcid．org／0000－0002－1229－0426 Junhan Kim® https：／／orcid．org／0000－0002－4274－9373 Motoki Kino © https：／／orcid．org／0000－0002－2709－7338 Patrick M．Koch © https：／／orcid．org／0000－0003－2777－5861
Shoko Koyama https：／／orcid．org／0000－0002－3723－3372
Michael Kramer® https：／／orcid．org／0000－0002－4175－2271
Thomas PKrichbaum© https：／／orcid．org／0000－0002－ 4892－9586
Cheng－Yu Kuo® https：／／orcid．org／0000－0001－6211－5581 Tod R．Lauer® https：／／orcid．org／0000－0003－3234－7247 Sang－Sung Lee https：／／orcid．org／0000－0002－6269－594X Kuo Liu © https：／／orcid．org／0000－0002－2953－7376 Laurent LoinardD https：／／orcid．org／0000－0002－5635－3345 Ru－Sen Lu（路如森 9 https：／／orcid．org／0000－0002－7692－7967
Sera Markoff（ https：／／orcid．org／0000－0001－9564－0876
Daniel P．Marrone© https：／／orcid．org／0000－0002－2367－1080
Alan P．Marschero https：／／orcid．org／0000－0001－7396－3332 Iván Martí－Vidal © https：／／orcid．org／0000－0003－3708－9611 Satoki Matsushita https：／／orcid．org／0000－0002－2127－7880 Lia Medeiros \odot https：／／orcid．org／0000－0003－2342－6728

Yosuke Mizuno(https://orcid.org/0000-0002-8131-6730
Kotaro Moriyama https://orcid.org/0000-0003-1364-3761
Hiroshi Nagai® https://orcid.org/0000-0003-0292-3645
Masanori Nakamura https://orcid.org/0000-0001-6081-2420
Joey Neilsen https://orcid.org/0000-0002-8247-786X
Roberto Neri© https://orcid.org/0000-0002-7176-4046
Michael A. Nowak (1) https://orcid.org/0000-0001-6923-1315
Gisela N. Ortiz-León © https://orcid.org/0000-0002-
2863-676X
Jongho Park https://orcid.org/0000-0001-6558-9053
Ue-Li Pen © https://orcid.org/0000-0003-2155-9578
Dominic W. Pesce https://orcid.org/0000-0002-5278-9221
Richard Plambeck https://orcid.org/0000-0001-6765-9609
Oliver Porth(https://orcid.org/0000-0002-4584-2557
Dimitrios Psaltis© https://orcid.org/0000-0003-4058-2837
Hung-Yi Pu © https://orcid.org/0000-0001-9270-8812
Venkatessh Ramakrishnanhttps://orcid.org/0000-0002-9248-086X
Ramprasad Rao https://orcid.org/0000-0002-1407-7944
Mark G. Rawlings © https://orcid.org/0000-0002-6529-202X
Luciano Rezzolla https://orcid.org/0000-0002-1330-7103
Bart Ripperda https://orcid.org/0000-0002-7301-3908
Freek Roelofs https://orcid.org/0000-0001-5461-3687
Eduardo Ros https://orcid.org/0000-0001-9503-4892
David Sánchez-Arguelles https://orcid.org/0000-0002-7344-9920
Mahito Sasada https://orcid.org/0000-0001-5946-9960
Tuomas Savolainen https://orcid.org/0000-0001-6214-1085
Karl-Friedrich Schuster https://orcid.org/0000-0003-
2890-9454
Lijing Shao © https://orcid.org/0000-0002-1334-8853
Bong Won Sohn© https://orcid.org/0000-0002-4148-8378
Paul Tiede https://orcid.org/0000-0003-3826-5648
Kenji Toma © https://orcid.org/0000-0002-7114-6010
Sascha Trippe https://orcid.org/0000-0003-0465-1559
Daniel R. van Rossum https://orcid.org/0000-0001-7772-6131
Jan Wagnem https://orcid.org/0000-0003-1105-6109
Derek Ward-Thompson https://orcid.org/0000-0003-1140-2761
Robert Wharton https://orcid.org/0000-0002-7416-5209
Maciek Wielgus© https://orcid.org/0000-0002-8635-4242
George N.Wong © https://orcid.org/0000-0001-6952-2147
Doosoo Yoon® https://orcid.org/0000-0001-8694-8166
Guang-Yao Zhao https://orcid.org/0000-0002-4417-1659

References

Bardeen,J. 1973, in Black Holes, ed. C. Dewitt \& B. S. Dewitt (New York: Gordon and Breach), 215
Beloborodov,A. M. 2002,ApJL, 566, L85

Bisnovatyi-Kogan,G. S. 2019,Univ, 5, 146
Blandford,R. D., \& Königl, A. 1979, ApJ, 232, 34
Bower, G. C., Broderick,A., Dexter, J., et al. 2018, ApJ, 868, 101
Broderick,A. E., \& Loeb, A. 2005,MNRAS, 363, 353
Broderick,A. E., \& Loeb, A. 2006,MNRAS, 367, 905
Bromley, B. C., Melia, F., \& Liu, S. 2001,ApJL, 555, L83
Carter,B. 1968,PhRv, 174, 1559
Connors,P. A., Piran,T., \& Stark, R. F. 1980,ApJ, 235, 224
Eckart,A., Schödel,R., Meyer, L., et al. 2006,A\&A, 455, 1
Event Horizon Telescope CollaborationAkiyama, K., Alberdi, A., et al. 2019a,ApJL, 875, L1
Event Horizon Telescope CollaborationAkiyama, K., Alberdi, A., et al. 2019b,ApJL, 875, L2
Event Horizon Telescope CollaborationAkiyama, K., Alberdi, A., et al. 2019c,ApJL, 875, L3
Event Horizon Telescope CollaborationAkiyama, K., Alberdi, A., et al. 2019d,ApJL, 875, L4
Event Horizon Telescope CollaborationAkiyama, K., Alberdi, A., et al 2019e,ApJL, 875, L5
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2019f, ApJL, 875, L6
Event Horizon Telescope CollaborationAkiyama, K., Algaba, J. C., et al. 2021a,ApJL, 910, L12
Event Horizon Telescope CollaborationAkiyama, K., Algaba, J. C., et al. 2021b,ApJL, 910, L13
Fish, V. L., Doeleman,S. S., Broderick,A. E., Loeb, A., \& Rogers, A. E. E. 2009,ApJ, 706, 1353
Gates,D. E. A., Hadar,S., \& Lupsasca,A. 2020,PhRevD,102, 104041
Gold, R., McKinney, J. C., Johnson,M. D., \& Doeleman, S. S. 2017, ApJ, 837, 180
Gralla, S. E., \& Lupsasca,A. 2020a,PhRvD, 101, 044031
Gralla, S. E., \& Lupsasca,A. 2020b,PhRvD, 101, 044032
Gravity CollaborationAbuter, R., Amorim, A., et al. 2018a,A\&A, 618, L10
Gravity CollaborationAbuter, R., Amorim, A., et al. 2018b, A\&A, 615, L15
Gravity Collaboration, Jiménez-RosalesA., Dexter, J., et al. 2020, A\&A, 643, A56
Himwich, E., Johnson, M. D., Lupsasca, A. r., \& Strominger, A. 2020, PhRvD, 101,084020
Igumenshchev, I. V., Narayan, R., \& Abramowicz, M. A. 2003, ApJ, 592, 1042
Jiménez-Rosale\&., \& Dexter, J. 2018, MNRAS, 478, 1875
Johnson,M. D., Fish, V. L., Doeleman,S. S., et al. 2015, Sci, 350, 1242
Li, L.-X., Narayan,R., \& McClintock, J. E. 2009, ApJ, 691, 847
Li, L.-X., Zimmerman,E. R., Narayan,R., \& McClintock, J. E. 2005, ApJS, 157,335
MahadevanR., Narayan,R., \& Yi, I. 1996,ApJ, 465, 327
Marin, F., Dovčiak, M., Muleri, F., Kislat, F. F., \& Krawczynski, H. S. 2018, MNRAS, 473, 1286
Marrone,D. P., Moran, J. M., Zhao, J.-H., \& Rao, R. 2006, JPhCS,54, 354
Mościbrodzka,M., Dexter, J., Davelaar,J., \& Falcke, H. 2017, MNRAS, 468, 2214
Mościbrodzka,M., Falcke,H., \& Shiokawa,H. 2016, A\&A, 586, A38
Narayan, R., Igumenshchev, I. V., \& Abramowicz, M. A. 2003, PASJ, 55, L69
Palumbo,D. C. M., Wong, G. N., \& Prather,B. S. 2020,ApJ, 894, 156
Ricarte,A., Prather,B. S., Wong, G. N., et al. 2020,MNRAS, 498, 5468
Schnittman,J. D., \& Krolik, J. H. 2009, ApJ, 701, 1175
ShcherbakovR. V., Penna,R. F., \& McKinney, J. C. 2012, ApJ, 755, 133
Tchekhovskoy, A., Narayan, R., \& McKinney, J. C. 2011, MNRAS, 418, L79
Trippe, S., Paumard,T., Ott, T., et al. 2007,MNRAS, 375, 764
Walker, M., \& Penrose,R. 1970, CMaPh,18, 265
Walker, R. C., Hardee,P. E., Davies,F. B., Ly, C., \& Junor, W. 2018, ApJ, 855, 128
Zamaninasab\M., Eckart,A., Witzel, G., et al. 2010,A\&A, 510, A3

[^0]: ${ }^{14}$ Departament d＇Astronomia i Astrofísicぬ，${ }^{1}$ niversitat de ValènciaC．Dr．Moliner 50，E－46100 Burjassofl／alència，Spain
 ${ }^{15}$ Observatori Astronòmid，Universitat de ValènciaC．Catedrático José Beltrán E－46980 Paterna／，alència，Spain
 ${ }^{16}$ Steward Obseryatory and Department of Astronordyniversity of Arizona， 933 N．Cherry Avenue，Tucson，AZ 85721，USA
 ${ }^{17}$ Fermi National Accelerator Laboratory／yS209，P．O．Box 500，Batavia，IL 60510，USA
 ${ }^{18}$ Department of Astronomy and Astrophysidsniversity of Chicago，5640 South Ellis AvenueChicago，IL 60637，USA
 ${ }^{19}$ East Asian ObservatoryG60 N．A＇ohoku Place，Hilo，HI 96720，USA
 ${ }^{20}$ Nederlandse Onderzoekschool voor Astronomie（NOVAQ，Box 9513，2300 RA Leiden，The Netherlands
 ${ }^{21}$ California Institute of Technology， 200 East California Boulevard，asadenaC，91125，USA
 ${ }^{22}$ Institute of Astronomy and Astrophysic\＆Academia Sinica645 N．A＇ohoku Place，Hilo，HI 96720，USA
 ${ }_{24}^{23}$ Department of Physics）／McGill University， 3600 rue University，Montréal，QC H3A 2T8，Canada
 ${ }^{24}$ McGill Space InstituteMcGill University， 3550 rue University，Montréal，QC H3A 2A7，Canada
 ${ }^{25}$ Institut de Radioastronomie Millimétriquß，00 rue de la PiscineF，－38406 Saint Martin d＇Hères，＇rance
 ${ }^{26}$ Department of Astrophysics，Institute for Mathematics，Astrophysics and Particle Physics（IMAPP），Radboud University，P．O．Box 9010， 6500 GL Nijmegen，The Netherlands
 ${ }^{27}$ Perimeter Institute for Theoretical Physi $\$ 1$ Caroline Street NorthWaterloo，ON N2L 2Y5，Canada
 ${ }^{28}$ Department of Physics and Astronomy，niversity of Waterloo，200 University Avenue WestWaterloo，ON N2L 3G1，Canada
 ${ }^{29}$ Waterloo Centre for Astrophysic $\$$／niversity of Waterloo，Waterloo，ON N2L 3G1，Canada
 ${ }^{30}$ Korea Astronomy and Space Science Institumedeok－daero 77世，useong－gu，Daejeon 34055Republic of Korea
 ${ }^{31}$ University of Science and TechnologGajeong－ro 217，Yuseong－guDaejeon 34113Republic of Korea
 ${ }^{32}$ Kavli Institute for Cosmological Physics／niversity of Chicago，5640 South Ellis AvenueChicago，IL 60637，USA

 ${ }^{34}$ Enrico Fermi Institute，University of Chicago，5640 South Ellis AvenueChicago，IL 60637，USA
 ${ }^{36}$ Data Science InstitutdJniversity of Arizona， 1230 N．Cherry Avenue，Tucson，AZ 85721，USA
 ${ }^{36}$ Cornell Center for Astrophysics and Planetary Sciencernell University，Ithaca，NY 14853，USA
 ${ }^{37}$ Anton Pannekoek Institute for Astronom\＆／niversity of AmsterdamScience Park 9041098 XH，Amsterdam，The Netherlands
 ${ }^{38}$ Shanghai Astronomical Observatorhinese Academy of Science\＄0 Nandan RoadShanghai 200030，eople＇s Republic of China
 ${ }^{39}$ Key Laboratory of Radio AstronomyChinese Academy of Sciencelsanjing 210008People＇s Republic of China
 ${ }^{40}$ Physics DepartmenFairfield University， 1073 North Benson Road，airfield，CT 06824，USA

 ${ }^{42}$ Institut für Theoretische PhysikGoethe－Universität Frankfurkax－von－Laue－Straße D－60438 Frankfurt am MainGermany
 ${ }^{43}$ Mizusawa VLBI ObservatoryNational Astronomical Observatory of Japəれ，12 HoshigaokaMizusawa，Oshu，Iwate 023－0861，Japan
 ${ }^{44}$ Department of Astronomical Scienc屯he Graduate University for Advanced Studies（SOKENDAA）21－1 OsawaMitaka，Tokyo 181－8588，Japan
 ${ }^{45}$ Center for Computational Astrophysidइjatiron Institute， 162 Fifth Avenue，New York，NY 10010，USA
 ${ }^{46}$ Department of Astronomy and Columbia Astrophysics Laboratđq／umbia University， 550 W．120th Street，New York，NY 10027，USA
 ${ }^{47}$ Dipartimento di Fisica＂E．Pancini，＂Universitá di Napoli＂Federico II，＂ComplUniv．di Monte S．Angelo，Edificio G，Via Cinthia，I－80126，Napoli，Italy
 ${ }^{48}$ INFN Sez．di Napoli，Compl．Univ．di Monte S．Angelo，Edificio G，Via Cinthia，I－80126，Napoli，Italy
 ${ }^{49}$ Wits Centre for Astrophysics，Jniversity of the Witwatersrand， 1 Jan Smuts Avenßeaamfontein，Johannesburg 205\＄；outh Africa ${ }^{50}$ Department of Physics，University of Pretoria，Hatfield，Pretoria 0028，South Africa
 ${ }^{51}$ Centre for Radio Astronomy Techniques and Technologimpartment of Physics and Electronidshodes UniversityMakhanda 6140South Africa
 ${ }^{52}$ LESIA，Observatoire de Pari̊̀／niversité PSL，CNRS，Sorbonne UniversitéلUniversité de Paris 5 place Jules JansseЋ̄－92195 MeudonFrance
 ${ }^{53}$ National Astronomical ObservatorieShinese Academy of Scienceß0A Datun Road，Chaoyang DistrictBeijing 100101，People＇s Republic of China
 ${ }^{54}$ University of Massachusetts Bosto 000 William T．Morrissey BoulevardBoston，MA 02125，USA
 ${ }^{55}$ National Radio Astronomy Observator $\$ 20$ Edgemont Rd．Charlottesville，VA 22903，USA
 ${ }^{56}$ Steward Observatory and Department of Astronddmjyersity of Arizona， 933 NCherry Avenue，Tucson，AZ 85721，USA
 ${ }^{57}$ Department of History of Scienc丹， ，arvard University，Cambridge，MA 02138，USA
 ${ }^{58}$ Department of Physics，Harvard University，Cambridge，MA 02138，USA
 ${ }^{59}$ Leiden Observatory－Allegrd，eiden University，P．O．Box 9513,2300 RA Leiden，The Netherlands
 ${ }^{60}$ CP3－Origins，University of Southern Denmarkampusvej 55DK－5230 Odense MDenmark
 ${ }^{61}$ Instituto de Astrofísica de Andalucía－CíSICalorieta de la Astronomía s／nE－18008 GranadaSpain
 ${ }^{62}$ Instituto Nacional de Astrofísicạ́ptica y ElectrónicaApartado Postal 51 y 216 2000 ．Puebla Pue．Mexico
 ${ }^{63}$ Consejo Nacional de Ciencia y Tecnologiây．Insurgentes Sur 158 23940 ，Ciudad de México，Mexico
 ${ }^{64}$ Key Laboratory for Research in Galaxies and Cosmolo＠hinese Academy of Scienceshanghai 200030，eople＇s Republic of China ${ }^{65}$ NOVA Sub－mm Instrumentation Groupkapteyn Astronomical InstitutdUlniversity of GroningenLandleven 12，9747 AD Groningen，The Netherlands
 ${ }^{66}$ Department of Astronomy chool of PhysicsPeking University，Beijing 100871，People＇s Republic of China
 ${ }^{67}$ Kavli Institute for Astronomy and Astrophysic\＄，eking University，Beijing 100871，People＇s Republic of China
 ${ }^{68}$ Department of AstronomyGraduate School of Sciencॄ̄e University of Tokyo，7－3－1 Hongo，Bunkyo－ku，Tokyo 113－0033，Japan
 ${ }^{69}$ The Institute of Statistical Mathematic $\$ 0$－3 Midori－cho，Tachikawa，Tokyo，190－8562，Japan
 ${ }^{70}$ Department of Statistical Scienc屯he Graduate University for Advanced Studies（SOKENDA10－3 Midori－cho，Tachikawa，Tokyo 190－8562，Japan
 ${ }^{71}$ Kavli Institute for the Physics and Mathematics of the Univer厅ॄృe University of Tokyo，5－1－5 KashiwanohaK，ashiwa，277－8583，Japan
 ${ }^{72}$ Institute for Astrophysical ResearcB，oston University， 725 Commonwealth Avenu＠oston，MA 02215，USA
 ${ }^{73}$ Astronomical InstituteSt．Petersburg UniversityUniversitetskij pr．，28，Petrodvorets， 198504 SP．etersburgRussia
 ${ }^{74}$ Institute for Cosmic Ray Researc历ाhe University of Tokyo，5－1－5 KashiwanohzKashiwa，Chiba 277－8582，Japan
 ${ }^{76}$ Kogakuin University of Technology \＆EngineeringAcademic Support CenteR665－1 NakanoHachioji，Tokyo 192－0015，Japan
 ${ }^{77}$ Physics DepartmenNational Sun Yat－Sen UniversityNo．70，Lien－Hai Rd．，Kaosiung City 80424，Taiwan，R．O．C
 ${ }^{78}$ National Optical Astronomy Observator9，50 N．Cherry Avenue，Tucson，AZ 85719，USA
 ${ }^{79}$ Key Laboratory for Particle Astrophysic\＆nstitute of High Energy PhysicsChinese Academy of Science $\$ 9 \mathrm{~B}$ Yuquan RoadShijingshan DistrictBeijing，
 ${ }^{80}$ School of Astronomy and Space Sciendeanjing University，Nanjing 210023，People＇s Republic of China
 ${ }^{81}$ Key ${ }_{8}$ Laboratory of Modern Astronomy and Astrophysidsanjing University，Nanjing 210023，People＇s Republic of China
 ${ }^{82}$ Italian ALMA Regional Centre，JNAF－Istituto di RadioastronomiaVia P．Gobetti 101，I－40129 Bologna，Jtaly
 ${ }^{83}$ Department of Physics，，ational Taiwan UniversityNo．1，Sect．4，Roosevelt RoadTaipei 10617，Taiwan，R．O．C
 ${ }^{84}$ Instituto de Radioastronomía y Astrofísiclniversidad Nacional Autónoma de MéxicMorelia 58089，Mexico
 ${ }^{85}$ Instituto de AstronomíaUniversidad Nacional Autónoma de Méxic6，dMx 04510，Mexico
 ${ }^{86}$ Yunnan Observatorie§hinese Academy of Science $\$ 50011$ Kunming，Yunnan ProvincePeople＇s Republic of China
 ${ }^{87}$ Center for Astronomical Mega－Scieno＠hinese Academy of Science 30 A Datun Road，Chaoyang DistrictBeijing，100012，People＇s Republic of China

[^1]: ${ }^{123}$ NASA Hubble Fellowship ProgramEinstein Fellow.
 ${ }^{124}$ UKRI Stephen Hawking Fellow.

[^2]: ${ }^{125}$ This is the photon energy measured by an observert infinity, and we normalize it to unity.

[^3]: ${ }^{126}$ Because the emission of synchrotron radiation is best described in the fluid frame，we find it convenient to specify the magnetic field components in this $e^{\text {frame．The }}, y, z^{\wedge}$ axes in the fluid frame are related to the corresponding axes in the P－frame（equivalently，the Schwarzschild frame，e．g．，Equation（19）），via a Lorentz transformation with velocity β ．The transformation of field components between the two frames is worked out in Appendix B．

[^4]: $\overline{127}$ In the context of a continuous relativistic jet, a Doppler boostfactor of $d^{2+a_{n}}$ is generally used (e.gBlandford \& Königl 1979). That corresponds to the combined quantity $I_{p} d^{\beta+a_{n}}$, where for motion parallel to the jet axis, $\mathrm{I}_{\mathrm{p}} \propto \delta^{-1}$. Our formulation, with, handled as a separate factor, is more general. ${ }^{128}$ Alternatively, we could assume $|\mathrm{B}|=1$ as indeed we do in all the plots, eliminate $|\mathrm{B}|$ from Equations (14) and (15), but still keep track of the components of B in Appendix D.

[^5]: 129 In the case of M87*, observations of the radio je\$uggesta tilt $\theta_{0} \sim 17^{\circ}$ (Walker et al. 2018), and in the case of Sgr Â, Gravity Collaboration etal. (2018a) estimate $\theta_{8}<30^{\circ}$ based on the polarization signaturesof infrared flares.

[^6]: ${ }^{130}$ For the models considered in Section 3 where each of the three small quantities is $\approx 1 / 3$, one expects second-order terms to be of order 10% of the leading-orderterms. However, many second-orderterms come with large coefficients,e.g., intensity is proportional to δ^{4} so Doppler boost goes like $-4 b \sin q_{8} \sin (c+j)$. Hence the second-ordecontributionsare often not small. The analysis in this section should thus be used only forqualitative understanding. For accurate results, it is necessary to evaluate numerically the full equations given in Section 2.

[^7]: ${ }^{131}$ Because the solution for the coordinate x involves a divisiositbog，it is necessary to keep terms up $\operatorname{tosin}^{3} q_{0}$ in the expressions leading up to this quantity．

