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1. Introduction

Various data sets have become rapidly available thanks to the proliferation of information technology. These data
sets, when combined, provide unprecedented opportunities to enhance the quality of inference and accelerate scientific
discovery. For instance, reliable analysis on rare scientific phenomena (e.g. rare genetic disease) can be achieved by
increasing sample size through incorporating small data sets each of which contains a little information on rare
phenomena. If public health data are collected from heterogeneous sources (e.g. clinical trials, disease registries, insurance
claims), merging data will significantly reduce selection bias and ensure the generalizability of scientific findings to the
broader population. Despite these potential benefits, statistical methodology for data integration has not yet been fully
developed in many areas of statistical research.

In this paper, we study semiparametric inference for merged data from multiple sources. A semiparametric model
P ={Py, : 0 € O,n € H} is a collection of probability measures P, , dominated by some measure u and indexed by
a finite dimensional parameter & € ® C RP and an infinite-dimensional parameter n € H C (B, || - ||) where (B, | - |
is a Banach space. When data are independent and identically distributed (i.i.d.), various semiparametric models have
been studied including censored regression models (Huang, 1996; Murphy, 1995; Murphy et al., 1997; Parner, 1998), the
missing data models (Nan et al., 2009), and the measurement error model (Murphy and van der Vaart, 1996) to name a
few (see Bickel et al., 1998; Kosorok, 2008 for more applications). Large sample theory for these models heavily counts
on the i.i.d. @assumption but merged data treated in this paper is characterized by (1) heterogeneous data sources, (2)
unidentified duplicated records across data sets and (3) dependence due to sampling without replacement. The purpose
of this paper is to provide a general inferential procedure to give a basis for studying important semiparametric models
in the context of data integration.
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Fig. 1. Sampling scheme for merged data from multiple sources with | = 2.

The basic setting considered in this paper is as follows (see also Fig. 1).

e The variables of interest for data integration are a random vector X taking values in a probability space (X, A, Py).
The probability measure Py = Py, 70 belongs to a statistical model P with a true parameter (6, o).

eletV = (X,U) € V where X is a coarsening of X and U is a vector of auxiliary variables. The variables U do not
involve the model P but help to create data sources. The space V is composed of | overlapping population data sources
v v with v = Uyl and w0 N VK £ ¢ for some (j, k). Values of V determine membership of data sources.

e Data collection is carried out in a two-stage framework. First, a large i.i.d. sample of Vi, ..., Vy is collected from
a population. The unit i is assigned to data source j if V; € V. Because data sources overlap, the unit i may belong to
multiple sources. The sample size of data source VU is denoted as NV

e Next, a random sample of size nY is selected without replacement from data source V). The selection probability
for this data source is 7(V;) = (n® /NO)I{V; € YV} where I is the indicator function. For selected items, variables X are
observed.

e The procedure described above is repeated for all data sources. Data sets from each data source are combined and
statistical analysis is conducted. If the unit i is selected multiple times, its duplication is not identified.

This two-stage formulation for data collection serves for describing duplicated records in multiple data sets. Duplication
naturally occurs in many applications such as public health data research. Clinical and epidemiological studies identify
target populations by the inclusion and exclusion criteria. When national disease registries are combined with these
studies, diseased subjects must be in a national database as well. Duplicated records are difficult to identify in practice
because key identifiers such as names and addresses are often not disclosed for privacy protection in public health data.

Examples covered by our framework include opinion polls (Brick et al., 2006), public health surveillance (Hu et al.,
2011), health interview surveys (Cervantes et al., 2006), and the synthesis of existing clinical and epidemiological studies
with surveys, disease registries, and healthcare databases (Chatterjee et al., 2016; Keiding and Louis, 2016; Metcalf and
Scott, 2009). For the ease of better understanding of our mathematical setting, consider combining a cohort study and a
disease registry as a hypothetical example. Variables of interest are disease status D, age A, and a biomarker Z which form
X = (D, A, Z). The statistical model P of interest is the logistic regression model with outcome D and covariates A and Z.
The cohort study targets a high risk group defined by age older than 40 and a positive test result Z € {0, 1} of an error-
prone inexpensive medical test to measure Z in the state in the United States. Let S € {0, 1} be an indicator of living in the
target state. The national disease registry collects information on diseased subjects in the United States. Because disease
status, the age category, and potentially mismeasured biomarker are partial information needed for logistic regression,
we can write X = (D, I{A > 40}, Z). Since a living address is not considered as a risk factor the auxiliary variable is U = S.
Based on V = (X U), data sources for the cohort study and the disease registry are V() = {V : A > 40, Z=1,5=1}and
V) = (V : D = 1}, respectively. The cohort study collects n') by sampling without replacement and then ascertain the
disease status D and measure biomarker Z with a more precise medical test. At the diagnosis of disease, information on
risk factors such as a biomarker is sent to the disease registry for all diseased subjects.

Merged data is considered to be a biased and dependent sample with duplication. Bias in merged data arises in two
ways. Certain data sources are over/under-represented due to biased sampling with different selection probabilities 7z
which yields heterogeneity in integrated data. Duplicated records enter the final merged data without identification. There
are two types of dependence in merged data. Dependence between data sources is induced through duplicated records
from overlapping data sources. Dependence within data sources is generated from sampling without replacement from
each data source. These characteristics grossly differentiate our data integration problem from the analysis of an i.i.d.
sample. Estimation and the corresponding asymptotic theory require different theory and methods that specialize in data
integration in order to address challenging issues of bias, dependence, and duplication.

Data integration problems described above were first studied by our previous work (Saegusa, 2019). We developed
a weighting procedure to study the infinite-dimensional M-estimator. The estimator is computable without identifying
duplicated records but corrects bias due to duplication and biased sampling. For its asymptotic theory, several specialized
probabilistic tools were developed including the uniform law of large numbers and uniform central limit theorem for
data integration. Semiparametric estimation was briefly mentioned as an example (Example 5.2 of Saegusa (2019)) but
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its asymptotic properties were presented without proof. For asymptotic variance of the M-estimator, a plug-in estimator
was proposed and examined in simulation studies.

In this paper, we study weighted semiparametric likelihood estimators proposed by our previous work (Saegusa, 2019).
We provide a rigorous large sample theory to establish asymptotic distributions of our semiparametric estimators. The
main contribution of this paper is a novel computational procedure to estimate asymptotic variance. The previously
proposed plug-in variance estimator has limited uses because asymptotic variance in many semiparametric models do
not have a closed form or contain expectations of unknown functions even in the i.i.d. setting (Murphy and van der Vaart,
1999). A popular alternative is resampling methods such as bootstrap (Efron, 1979) and jackknife (Quenouille, 1949;
Tukey, 1958). Various kinds of resampling methods cover different data generating mechanisms (see e.g. Shao and Tu,
1995) but existing methods do not address heterogeneity of data sets and duplicated selection. Another approach in the
i.i.d. setting is to estimate an efficient information matrix (Murphy and van der Vaart, 1999; Zhang et al., 2010). This
approach focuses on an efficient estimator whose asymptotic variance is the inverse of the efficient information. In our
setting, the loss in efficiency is expected compared to the i.i.d. setting, and hence estimation of the efficient information
does not lead to consistent variance estimation.

Applications of semiparametric inference to data integration problems are largely hampered by the lack of valid
variance estimators. Our proposed method is the first to address the challenging issue of estimating complicated
asymptotic variance due to heterogeneity and duplicated selection arising from data integration problems. To address the
lack of a simple asymptotic variance formula, we adopt two computational methods to estimate different parts of variance.
The proposed methodology covers many semiparametric models and is easy to apply without computing complicated
asymptotic variance.

The rest of the paper is organized as follows. In Section 2, we introduce our estimator and present its asymptotic
properties. Section 3 concerns a novel variance estimation method. Consistency of the proposed estimator is provided.
The finite sample performance of our estimator is presented in Section 4. Data example from the national Wilms tumor
study is discussed in Section 4. All proofs for theorems in Section 3 and auxiliary results are collected in Section 6. Section 7
concludes with discussion on the future research.

2. Sampling and estimator

We introduce additional notation. Let Rl@ € {0, 1} be the selection indicator from data source VY for the item i. The
selection indicators for the itemiis R; = (Rgl), cees Rl@”) where R,g) = 0 if the item i does not belongs to source VU). Selection
indicators R”s with items i in data source V0 follow the distribution of sampling without replacement where n® items
are selected out of NV items. Since data collection are carried out independently, selection indicators (RU), ceey R%)) and

(R(lk), R R%‘)) for different selection processes are conditionally independent given Vi, ..., Vy if j # k. For V e V9, we
assume the selection probability 7%(V) = n%/NU converges to p; > 0 as N — oc. Since nY is at the disposal of a study
investigator for the jth data source, this convergence is deterministic. We write the membership probability in source V)
as v(g) = P(V € VY)) and the conditional expectation and conditional variance given membership in source V0) as E¥) and
Var%.

The important assumption we make is that additional membership in data sources can be identified for selected items.
In other words, if the item is selected from some data source, we assume that we can obtain information on the other
data sources the item belongs to. We do not assume the knowledge of data source membership for non-selected items
nor knowledge of actual selections for items selected from at least one data source. This assumption is not too restrictive
because a target population of each data collection process is clearly specified in general. For public health data integration,
one can compare different inclusion and exclusion criteria to identify additional data source membership without seeking
information on multiple selection. If necessary, one can ask additional question on characteristics of the selected items.
For telephone surveys using landline and cell-phone lists, one can always ask a cell phone user if she has a landline phone
as well in order to identify her membership in data source of landline users.

The desirable properties that our estimator holds are that (1) correction of bias due to biased sampling and duplication,
and that (2) computability without identification of duplicated records. To describe our estimator, we begin with ] = 2
data sources. The important component of our estimator is

(1,0) if vev®andv¢v®?,
p() = (pMw), pP) =1 (0,1) if ve¢vandvev?,
(cM, ¢y if v ey np@),

for positive constants ¢, ¢® with ¢ 4 ¢(®) = 1. The evaluation of this function only requires the membership in the
mutually exclusive subsets of V based on data sources V(") and V?). We can compute the value of p for selected items
because information on data source membership is available for selected items. The choice of p is at the disposal of a
data analyst but different choice yields different asymptotic variance. We follow the optimal choice of p considered by
Proposition 3.1 of Saegusa (2019) in simulation and data analysis below. Let py , = dPy ,/du be a density of Py, and
Ly, = logps . The weighted log likelihood is then computed by

N

(1) _(1)y/. (2) _(2)v/.
1 R: Vi R: Vi
IP’%E@,,; = — E ( 1 P (V) + - Pt J) Lo (Xi).

NS\ 20w T R 0w)

i=
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Here we use the convention 0/0 = 0 for RY/7U)(V). This weighted average of the log likelihood is unbiased for the
expectation of the log density because the inverse probability weights R¥/7Y(V) have expectation 1 and p(v)+p@(v) =
1 for any v by definition. Moreover, it is computable without identifying duplication because two terms in P ¢, , denoted
as

N N R @y,
1 R pD(v;) 1 R p”(Vi)
H — 4 - — 4 - .
Pylo,, = N E 7'[(])( ) Lo n(Xi) + N 21 ZD(V) Lo (Xi)
i=

can be computed separately for different data collection processes.
The extension to more than two data sources is easily obtained by introducing p(v) = (pV(v), ..., p¥(v)) given by

1, v e VN (UpgV™)°,
PP =4 ) ke v V00 (V) 0 (Ungiy g V™)

0, v ¢ VI,

with j, kq, ..., k; all different and ZL] pY(v) = 1. The weighted likelihood is

N I RD 0y

1 R’ pV(V))
Pley, = — E E ="l ,(Xi).
TN i=1 j=1 n (Vi) 0

The weighting by both inverse probability weights and p was originally proposed by Hartley (1962) and Hartley (1974) in
survey sampling and then applied to data integration problems by Saegusa (2019). Throughout we denote the weighted
average of f(X) by Pﬁf for different functions f as follows. Let

T RY iy

_ R’ p¥ (Vi)

Whi=> =R
=1

be the weight for the ith item. For the function f defined on X, the weighted average Pif is formally defined as
J

1< RY pli)(
Pif = 5 ) Wil (X) = ZZ ﬂg(v X).
i=1

11]1

Here we follow the convention that the variable X is suppressed in IPIf,’f . We write the weighted empirical process by
GH = V/N(PY — Py). This stochastic process evaluated at f is Giif = +/N(Pif — Pof) where Pyf is the expectation of f(X)
with respect to Py.
The proposed estimator is the maximizer of the weighted likelihood:
(O, fin) = argmax PR ey . (1)
6e®,neH
In the i.i.d. setting, the maximum likelihood estimators (MLE) obtained as the maximizer of the likelihood often solves

the semiparametric likelihood equations, exactly or approximately. Thus, we assume the proposed estimator solves the
weighted semiparametric likelihood equations given by

Wy .1(0, n) = Phey , = op(N~1/2),
Wy 2(0, 1) = PH(By.,h — Py By yh) = 0p(N~1/2), "

for every h € H. This assumption can be verified as in the i.i.d. setting (see e.g. Huang, 1996). Here Eg,n is the score
function for 6 obtained as the derivative of log pg , with respect to 6 and the score operator By , is the bounded linear
operator mapping a direction h in some Hilbert space # of one-dimensional submodels along which n passes through
no to a square integrable random variable with respect to Py ,. The score operator is motivated by the observation that
a semiparametric model is an infinitely many collection of one-dimensional parametric submodels such that score can
be computed for each submodel that corresponds to h. We denote the adjoint operator of By , as B; ,. For more details,
see van der Vaart (1998).
We assume the following regularity conditions.

Condition 1 (Asymptotic Equicontinuity). Let
F1(8) = {Lo.y : 16 — 60| + Iln — noll < 3},
F2(8) = {Bpyh — PoyBoyh = h € H, 10 — 6ol + |In — noll < 8}

There exists a 8o > 0 such that (a) Fi(So), k = 1, 2, are Po-Donsker classes and supyc4 Polf; —fo,jl2 — 0,as |0 — 6| + |In —
noll — O, for every f; € Fi(80),j = 1, 2, where fo1 = Log,,n, and fo.2 = By, — PoBgy, o1, and that (b) Fi (o), k = 1, 2, have
integrable envelopes.
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Condition 2 (Partition of the Estimating Function). The map ¥ = (W1, ¥,) : @ x H — RP x {£>°(#H) with components
wi(6, n) = PoW¥n 160, n) = Poly.,,
Wy(0, n)h = PoWn 2(0, n)h = PoBy,,h — Py By ,;h,

with h € # has a continuously invertible Fréchet derivative map Wy = (W11, W12, W1, Way) at (6o, 1o) given by l1/11(00, no)h =
Po(w,, 00.n0,h ) 1, J € {1, 2} in terms of Ly(Po)-derivatives of Y191 = 60 pand Yra 9. nn = Bg nh — Py nBg »h; that is,

SUP[Po{Vi.6.n0.h — Virbg.moh — Vit bg.n0.0(0 — 00)}2 12 = 0(]|0 — 6o l),
heH

:UP[PO{Wi,HO,n,h — Yib.moh — Viz.09.00.0(1 — 10)}*]
eH

2 = o(lln — noll).

Furthermore, ¥, admits a partition
‘i’ll l1"12 6 — bt
0 — 6y, n— — . . ,
( 0.1 = o) (‘1/21 sz)(’?—ﬂo

lj/]](e - 90) = _PGO,nOlZQO,ﬂOé(gO,nO(Q - 90)7
Up(n —mo) = — / B} o Loo.nod(n — o),
W1(6 — 6o)h = —Pgy 1o Baty.no €y, o (6 — 6o),

s = o = = [ B Bl = 1),

where

and B By, is continuously invertible.
The efficient score for 6 in the i.i.d. setting is denoted as

7] P
ES =(- Beo,flo(BZo,noB@o,no) BZO,nO )&90,710'

The corresponding efficient information and efficient influence function for 6 are denoted as Iy = Po[ﬁg(ﬂg)T] and £ = 70’ 163
respectively.

Now we present the result of asymptotic normality of the proposed estimator. The following theorem is an extension
of the semiparametric Z-theorem of van der Vaart (1998) (Theorem 25.90, pages 420-421) in the i.i.d. setting to data
integration.

Theorem 2.1. Suppose (9,\,, 1n ) solves semiparametric likelihood equations (2) and is consistent for (6, no). Under Conditions 1
and 2,

\/ﬁ(él\] —6y) = GZZO 4+ 0p(1) ~¢Z ~N (0, X)

where

=1+ Z v ]Var(’ (09%0). (3)

If we would obtain the i.i.d. sample of size N, the MLE achieves the information bound fo‘ ! Additional sampling from
each data source results in the increase of asymptotic variance for our weighted likelihood estimator. If all items are
selected from data sources (i.e., the limit of selection probabilities p?) = 1,j = 1,...,J), then asymptotic variance is
the same as I; ! . Large data sources (i.e., large v ) contribute more to asymptotic variance. Recall that information on
duplication is contalned in the variable p(V) = (p"(V), ..., pY)(V)) in the proposed estimation procedure. The effect of
duplication appears through pU in the conditional variance.

3. Variance estimation

In Section 2, we derived the asymptotic variance X' of the proposed estimator (6w, nin) in (3). As discussed before, the
efficient information bound I; ~1 = Var(£,) may not be of closed form or contains the expectation of unknown functions in
many semiparametric rnodels so that plug-in variance estimators are not available in the i.i.d. setting. This issue remains in
our data integration setting both through I I — and through Var0 {,00 (V)Eo( )} in the asymptotic variance X'. To address
this challenging issue, we adopt two computatlonal methods to separately estimate different parts of X.

5
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To motivate our proposed variance estimation methodology, we decompose the asymptotic variance ¥ = X + X,
into population variance ¥y and design variance X, given by

J
2]:?0_1, Ez:ZVO)
j=1

Recall the two-stage formulation of data integration. If we have hypothetically access to the complete information on X
instead of V at the first stage of sampling from the infinite population, the analysis of the i.i.d. sample Xi, ..., Xy with
maximum likelihood estimation yields asymptotic variance X'; only. Because we only observe V at the first stage, sampling
from the finite population Vi, ..., Vy from data sources and merging overlapping data sets yield the additional variance
at the second stage. This observation suggests the following approach. For the estimation of X', some existing method
(or its modification) developed for the i.i.d. sample is potentially useful. Because randomness in X is captured by X, a
promising method to estimate X, is a method developed in survey sampling that targets randomness in R arising from
selections from the finite population.

1— p(i) . . -
5 varg {pO(V)Eo(X)).

3.1. Efficient information

Estimating population variance X; = io‘ ! reduces to the estimation of the efficient information matrix Io. As the Fisher
information matrix is computed as the expectation of the score multiplied by its transpose, the efficient information is
obtained as the expectation of the efficient score multiplied by its transpose. That is, Iy = PO[E’(;(ZS)T]. As seen from the
form of the efficient score £j in Condition 2, a derivative Zé 5, Of the log likelihood with respect to 6 at (éN, ) does not
estimate £;. Estimating £; directly by a plug-in estimator is also difficult in general since B;ﬁ,,7 in £§ involves the expectation
with respect to an unknown probability measure.

Our approach is to directly estimate Iy without estimating the efficient score £§. Recall that a semiparametric model
is the infinitely many collection of finite dimensional parametric submodels for which the Fisher information can be
computed. The efficient information is defined as the infimum of the Fisher information over all finite dimensional
submodels. The efficient score thus corresponds to the score for an unknown finite dimensional submodel with the
smallest Fisher information, or the least favorable submodel (Murphy and van der Vaart, 1999, 2000) under regularity
conditions. If we knew the least favorable submodel, the efficient information can be estimated from the negative average
of the second derivative of the corresponding log likelihood. The least favorable submodel is, unfortunately, unknown and
difficult to estimate. Instead, Murphy and van der Vaart (1999) found the likelihood based on the least favorable submodel
can be approximated by the profile likelihood that profiles out the infinite-dimensional nuisance parameter. Because we
do not know how the least favorable submodel is parametrized, we cannot take a derivative of the profile likelihood with
respect to unknown parameters in the submodel. Instead, Murphy and van der Vaart (1999) proposed a numerical second
derivative of the profile likelihood to estimate the efficient information in the i.i.d. setting. We extend this methodology
to merged data from overlapping sources.

Let Miy(6) be the weighted profile likelihood

My (6) = sup Pﬁ@eqn,
neH

obtained by maximizing the weighted likelihood with respect to the infinite-dimensional parameter n for a fixed 6.
The profile likelihood may not have a closed form in general because its computation involves an infinite-dimensional
optimization problem for 7. Theoretical properties of the semiparametric profile likelihood were established by Murphy
and van der Vaart (2000) in the i.i.d. setting but its stochastic behavior has not been studied in our context. In this paper,
we focus on the claim that the weighted profile likelihood My well approximates the weighted log likelihood based on the
least favorable submodel as in the i.i.d. setting. We assume similar conditions considered by Murphy and van der Vaart
(1999). These conditions were verified by Murphy and van der Vaart (1999, 2000) in several semiparametric models in
the i.i.d. setting. The same proof techniques continue to work for our setting with the help of empirical process results
by Saegusa (2019) for data integration.

Condition 3 (Least Favorable Submodel). (a) Denote y = (0,n), and, for a fixed 6, yon = (0, g.n) With jgn =
arg max, .y Py £s ;. For every Oy —p Oo, ﬁéN,N —>p No.

(b) For each y = (6, n) there exists a map t — n.(y) from a neighborhood of 0 to the parameter set H for n such that (i)
the map t — £(t, y)(x) defined by

£t y)(X) = Leg ()

is twice continuously differentiable for every x € X where the first and second derivatives are denoted by ot, y)(x), and
£(t, y)(x), respectively, and such that (ii) a submodel with parameters (t, 5,(y)) passes through y = (0, n) att = 6;

n(0.n)=mn, every (6,n). (4)
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(c) For any random sequences 6 and 7 such that § —p 6y and ¥ —p ys,

GO, 7) = GyLs + op(1), (5)
PRED,7) —p —Io, (6)
Po(0, 75.) = —1o(6 — 60) + 0 (1|6 — boll +N~"2). (7)

Under the above condition, numerical second derivative of the profile likelihood My is consistent for elements of the
efficient information matrix I.

Theorem 3.1. Suppose that the same conditions in Theorem 2.1 and Condition 3 hold. Then

Mp(by + h — Mn(6
_9 N(On thzN) N(ON) “p volovo, 8)
N

for every random sequence hy —p 0 such that (v/Nhy)~! = 0p(1) and for every sequence vy —p vo.

It is straightforward to estimate I, using the numerical second derivatives of My. For example, (i, j)-elements Ti,j,O of
Io with i,j = 1,2, can be obtained by setting vy = (1,0,...,0), vy = (0,1,0,...,0), and vy = (1,1,0,0,...,0) to
estimate I 1.0, 2.0, and I1 1.0 + 21 2.0 + .20 respectively. In practice one can set hy = N~'/2 so that +/Nhy = 1. Once
we obtain the estimate of Iy, we estimate the population variance by computing its inverse.

3.2. Sampling from data sources

For the estimation of design variance X, we apply Gross’ bootstrap (Gross, 1980; Bickel and Freedman, 1984) to each
data set selected from the same sampling procedure (i.e., the jth data set consisting of all items i in V% with R = 1)
This bootstrap method was originally proposed for the analysis of stratified samples in survey sampling. Because the main
focus of survey sampling is finite population, this method reproduces the randomness in R due to sampling from the finite
population where collected variables X are treated as non-random. This feature is suitable for our setting because design
variance X, represents randomness due to sampling from data sources given the finite population V1, ..., Vy.

To adjust the bootstrap method for stratified samples to merged data with duplication, we consider applying Gross’
bootstrap to sampling from each data source separately. The following procedure mimics sampling from data source j.
Because unselected observations with R = 0 are generally not available, the bootstrap population must be created
from selected observations with RY) = 1. Recall that from the data source V&) of size N¥, n0) items are selected
without replacement. Let k¥ € N and r) € N be divisor and remainder such that N = nWk0 + 0, For items
with R0) = 1, their k¥ copies or k) 4 1 copies are created to form the bootstrap population j with probability s’
and 1 — sU where s = (1 — r9/n){1 — rV/(ND — 1)}. Then nY items are selected from the bootstrap population
without replacement into the bootstrap sample j. As a simple example, suppose we select 5 items out of 10. In this case,
n=5N=10,k = 2,r = 0,s = 1. We create copies of 5 selected items to create a bootstrap population of size 10.
Then we sample 5 items without replacement. If n = 4 and N = 10, then r = 2 and s = 7/18. We choose a bootstrap
population of size 8 created by 2 copies of selected items with probability s = 7/18 or a bootstrap population of size 12
created by 3 copies of selected items with probability 1 — s. Then we sample 4 items without replacement

This bootstrap procedure is repeated for all data sets sampled from each data source. Let B ) be the count that the ith
1tems are selected in the bootstrap sample j. Because the bootstrap population contains multlple copies of selected items,
B can be 0,1, ..., or max{k®, (k& + 1)I{r®) > 0}}. The bootstrap weighted likelihood is now defined as

PHy ]B(’Rupu X;
Moy = — ZZ NOV) 0.0 (X):

i=1 j=1
The bootstrap estimator is the maximizer of the bootstrap weighted likelihood:

* Ak HH
03, %) = argmax Pl e, .
6e®,neH

This bootstrap estimator is assumed to solve (exactly or approximately) the bootstrap semiparametric likelihood equations
given by

I@ZEG,U = OP(N_l/z)s

sup [P (By.,h — Py ,Bs yh)| = 0p(N~'/2). 9)
heH
For the estlmatlon of X,, we generate B bootstrap samples to compute the B bootstrap weighted likelihood estimators
9,3 15+ -+ Oy g of 6 as described above. The proposed bootstrap estimator of X is their sample variance.

Independent applications of Gross’ bootstrap to each data set change the number of duplications from one bootstrap
sample to another. This issue may raise a concern about consistent estimation of X, by our bootstrap procedure, but

7
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our method is based on the careful examination of the uniform central limit theorem for data integration (Theorem 3.2
of Saegusa (2019)). As seen in Theorem 2.1, asymptotic normality of 6y reduces to the central limit theorem applied to
GZ(O. When applying Theorem 3.2 of Saegusa (2019), the weighted average GZZO is decomposed into | + 1 terms (see the
last display of page 8 of Saegusa (2019)). The first term corresponds to X';. The last J terms which correspond to X, are
weighted averages defined on each data source. Although these | weighted averages have duplications, they are shown to
be uncorrelated so that central limit theorem applied to each average yields independent normal random variables in the
limit (see the proof of Theorem 3.2 of Saegusa (2019)). This observation provides a heuristic justification of independent
applications of Gross’ bootstrap to each data source. For a rigorous proof, see Section 6. Now, we obtain the following
bootstrap Z-theorem.

Theorem 3.2. Suppose (6, i1x ) solves bootstrap semiparametric likelihood equations (9) and is consistent for (6o, 1o). Under
Conditions 1 and 2,

VNG = On) ~a  Za~N(0, ),

conditionally on data.
4. Numerical example

We evaluate the finite sample property of the proposed weighted likelihood estimator through simulation studies using
the Cox proportional hazards model with right censoring. Let T be a time to event from the Cox model with the hazard
function given a vector of covariate Z = z

AMt|z) = A(t) exp(z"0)

where A(t) is a baseline hazard function and 6 is a regression parameter. Under right censoring, the censored failure time
Y = min{T, C} and the censoring indicator A = I{T < C} are observed where C is a censoring variable. The conditional
independence of T and C given Z is assumed. The weighted log likelihood is given by

P A(Y, A, Z) = PH{AZT0 + log A{Y} — exp(ZT0)A(Y)}

where A(t) = f A(t)dt is the cumulative baseline hazard function, and A{y} is a jump at y. The score for 6 and the score
operator By 4 : H > Ly(Py 4) are

EQ,/\(yv 67 Z) = 2{5 - eQTZA(y)}v

By ah(y. 8,2) = Sh(y) — ¢’ 2 / hdA,
[0,y]
where # is the unit ball in the space BV|[0, 7] of functions of bounded variation on [0, t]. The weighted likelihood
estimator (6y, Ay) solves semiparametric likelihood equations IP’%ZM =0and P%BQ’A(h) = 0. As in other sampling cases,
Oy is the solution to the weighted partial likelihood equation and Ay is the weighted Breslow estimator (see e.g. Breslow
and Wellner, 2007). Conditions for Theorem 2.1 can be verified along the same line as in Saegusa and Wellner (2013) by
replacing their empirical process by our weighted empirical process with the help of results in Saegusa (2019). Asymptotic
normality of Oy follows from Theorem 2.1 with asymptotic variance based on the efficient score given by

L5y, 8,2) = 8(z — (My/Mo)(y)) — eﬁgz/ (z — (Mq/Mp)(t)) dAo(t),
[0,y]

and the efficient information given by
o= E[(65)] = 5% [ @ (o /Mo)y)®? Y = yiZ)d 20l
0

for & where M(s) = PQO,AO[Z"eegZI(Y > s)], k = 0, 1. Estimating I, ' by the plug-in estimator is generally impossible
unless covariate vector Z is discrete since it involves the estimation of conditional probability of Y given Z.

For simulation, failure time T was generated from the Cox model with two independent covariates Z; ~ Bernoulli(.5)
and Z, ~ N(0, 1) and the hazard function from Weibull(e, 8), « = .2, 8 € {0.5, 1, 5} at the baseline. The failure time is
subject to censoring by C. The conditional distribution of C given Z = (Z1, Z,) is the exponential distribution with rate
parameter c|Z; + Z,| where ¢ was chosen to yield approximately 40% and 85% censoring. The regression coefficients are
0 = (61, 6,) with 6; = 6, = log(2). For data integration, we consider the situation of combining a disease registry with
survey data. At the time of sampling, observed variables V = (X, U) are failure status X = A and mailing address U.
Data sources are V() = {V : A = 1} (disease registry) and V?) = v (survey) with sampling fractions 100% and 20%. For
selected subjects, information on X = (Y, A, Z) is available. We generated 2000 data sets with sample sizes N = 500, 1000
respectively, and for each data set we generated 2000 bootstrap samples to estimate design variance. The average sample
sizes and duplications are shown in Table 1.
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Table 1
Sample sizes and the number of duplications based on 1000 simulated data sets. “Censoring” in the first column
indicates the censoring proportions and “Dup” in the last column indicates the number of duplications in the final

sample.
Censoring (a, B) N N N® nM n@ Dup
40% (.2,.5) 500 306 500 306 100 61
1000 611 1000 611 200 122
(.2,1) 500 308 500 308 100 62
1000 613 1000 613 200 122
(.2,5) 500 300 500 300 100 60
1000 602 1000 602 200 120
85% (.2,.5) 500 76 500 76 100 16
1000 152 1000 152 200 30
(.2,1) 500 75 500 75 100 15
1000 150 1000 150 200 30
(.2,5) 500 75 500 75 100 15
1000 152 1000 152 200 31
Table 2

Results of Monte Carlo simulations for the proposed estimator in data integration and the MLE in the i.i.d. @ setting
when the censoring proportion is approximately 40%. SD stands for a Monte Carlo standard deviation, and SEE stands
for an average of estimators of standard error, SEE1 stands for an average of estimators of standard error 211/2, and
SEE2 stands for an average of estimators of standard error 221/2 over simulated data sets.

(a, B) (:2,.5) (2,1) (.2,5)

N 500 1000 500 1000 500 1000

Complete data (MLE)

04 Bias .001 .002 .006 .005 .002 .003
SD 119 .081 127 .086 122 .089

6, Bias .002 .003 .001 .000 .004 .003
SD .067 .051 .075 .049 .078 .057

Data integration

0, Bias .001 .003 .010 .013 .002 .003
SD .199 144 196 138 .145 .105
SEE .196 142 178 129 .140 .100
SEE1 120 .085 121 .085 124 .087
SEE2 155 114 130 .097 .060 .047

6, Bias .016 .003 .016 .005 .005 .003
SD 113 .079 111 .077 .097 .071
SEE .103 .076 .104 .075 .091 .065
SEE1 .069 .049 .073 .051 .079 .055
SEE2 077 .058 .073 .055 .041 .033

The Monte Carlo sample bias and standard deviation of the proposed estimator are reported in Table 2 (40% censoring)
and Table 3 (85% censoring). The results show that bias in our estimator is small. The proposed variance estimator yielded
estimates of the standard errors close to Monte Carlo sample standard deviations of the weighted likelihood estimators
in all scenarios. The estimates of 211 2 by numerical differentiation of the weighted likelihood are close to the Monte
Carlo sample standard deviations of the MLE, which justifies the validity of separate variance estimation based on the
decomposition of X'. The MLE based on the full cohort is more efficient than our proposed estimator as expected. Note
that when the MLE was computed based on N = 1000 observations, our proposed estimator used information only from
selected items of size about 320 on average when the censoring proportion is about 85%. As expected, efficiency of variance
estimation is better under moderate censoring than under heavy censoring.

5. Data analysis

We illustrate our methodology with the national Wilms tumor study (NWTS) (D’Angio et al., 1989). Wilms tumor is a
rare kidney cancer for children. The NWTS cohort consisted of 3915 patients with Wilms tumor diagnosed during 1980-
1994. The patients were followed until the disease progression or death. Baseline covariates are age, stage of cancer, tumor
diameter, and histology. The event of interest is disease progression. This data set contains information of all subjects,
and was used to compare different hypothetical designs in Breslow and Chatterjee (1999). We compare the proposed
weighted likelihood estimator in a data integration setting described below with the MLE based on the entire cohort in
the i.i.d. setting. Because of the efficiency of the MLE (see Theorem 2.1 and discussion on X that follows), the result of

9
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Table 3
Results of Monte Carlo simulations for the proposed estimator in data integration and the MLE in the i.i.d. @ setting
when the censoring proportion is approximately 85%. SD stands for a Monte Carlo standard deviation, SEE stands for

an average of estimators of standard error, SEE1 stands for an average of estimators of standard error 211/2. and SEE2

stands for an average of estimators of standard error 221/ ? over simulated data sets.

(a, B) (.2,.5) (.2, 1) (.2,5)
N 500 1000 500 1000 500 1000
Complete data (MLE)
61 Bias .009 .008 .006 .006 .014 .003
SD .246 172 251 179 414 273
6, Bias .003 .003 .003 .001 .001 .000
SD .138 .098 170 121 379 236
Data integration
61 Bias .009 .004 .040 .004 .051 .032
SD 335 234 .386 252 526 370
SEE 334 233 .356 250 490 .346
SEE1 .248 173 .266 .184 407 276
SEE2 222 155 234 .168 254 201
(2 Bias .024 .019 .032 .010 .031 .037
SD .182 137 241 155 A77 342
SEE .190 133 228 .159 444 312
SEE1 141 .099 176 122 364 245
SEE2 126 .089 144 .101 238 185
Table 4
Point estimates, estimated standard errors, and P-value in the analysis of the NWTS study.
Full cohort Data integration
6 SE P-value 6 SE P-value
Histology 1.357 0.087 <0.001 1.378 0.201 <0.001
Age 0.061 0.015 <0.001 0.104 0.030 <0.001
Stage (III/IV) 1.433 0.257 <0.001 1.542 0.559 0.006
Tumor 0.060 0.015 <0.001 0.041 0.029 0.157
Stage x Tumor —0.080 0.021 <0.001 —0.075 0.044 0.088

the MLE is considered to be a gold standard. The purpose of data analysis in this section is to illustrate how reasonable
the result from our proposed variance estimation is in relation to the gold standard.

We consider the following data integration setting. Two data sources are deceased subjects and the entire cohort with
sampling fractions 100%, and 10% respectively resulting in selecting 444 and 392 subjects with 45 duplications. Our goal
is to identify predictors of the relapse of Wilms tumor using the Cox proportional hazards model. Table 4 summarizes
the result of the proposed method. Our proposed estimator was all close to the MLE. All coefficients were significantly
different from O in the analysis of the full cohort but analyses of merged data failed to report significance for tumor
diameter and its interaction with the stage of cancer due to smaller sample size and complexity of sampling design. This
difference reflects the efficiency of the MLE over the proposed weighted likelihood estimator in the sense that the efficient
estimator can detect a small effect of covariates on the cancer relapse. On the other hand, the proposed estimator did not
find any significant result that the efficient MLE failed to find. These results suggest that our proposed variance estimation
method correctly quantifies uncertainty in the analysis of merged data from overlapping sources.

6. Proofs

In this section, we collect proofs of Theorems 2.1-3.2 and auxiliary results. For a function f;(x) at a fixed x parametrized
by h € H, we write ||f ||y = suppey Ifn(x)]. We first prove the following theorem. Theorem 2.1 is its immediate corollary
(see proof of Theorem 2.1 for more details). The result is the extension of Theorem 25.90 of van der Vaart (1998) in the
i.i.d. setting to data integration.

Theorem 6.1. For each 0 in a subset of (®, || - ||) of a normed space and every h in an arbitrary set H, let x — 5 n(x) be
a measurable function such that the class {yrp., : ||0 — 6p]| < 8, h € H} is Po-Donsker for some § > 0 with a finite envelope
function. Assume that as a map into ¢°°(H), the map 6 + Py . is Fréchet differentiable at a zero 6y, with a derivative
V : lin® + (>(H) that has a continuous inverse on its range. Furthermore, assume that ||Po(W¥en — Yoon)*lln — 0 as
6 — 6o. If 1P, ln = 0p(N~"/2) and Oy —p o, then

VNV(By — o) = —GHg, + 0p(1).

10
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Proof. We prove «/NH@N — 6|l = Op(1) assuming
GN(¥g, 1 — Weo.n) = 0p(1). (10)

Because P, , = 0p(N~"/?) and Py, = 0, it follows that

VN(Poyrs, 1, — Povagn) = VN(Powy, — PR, )+ 0p(1)
= —V NP, n — Povo ) + 0p(1). (11)
In the last step we used the assumption (10). Since the continuous invertibility of V at 6, implies that there is some
constant ¢ > 0 such that (¢ + 0p(1))||Ony — 6| < ||P01/féN‘h — Porgy nllo, we have

(c + op(WWN 1Oy — boll < IVN(Powy, — Povag)llze < IGH sy lla¢ + 0p(1).

Since ||Gﬁg/fgo Il = Op(1) by assumption and Theorem 3.2 of Saegusa (2019), the claim \/NH@N — 0]l = Op(1) follows.
Now, the desired result follows from the differentiability of & — Py, and +/N-consistency of 8y that (11) becomes

VNV(Oy — 6o) = —Gnrg, + 0p(1).

Now we prove GZ(%”, n — Ve,.n) = 0p(1). Since Oy —p 6o, we can assume without loss of generality that Oy takes its
values in ®s = {6 € ® : |6 — Gy|| < §}. For an element of £*°(®s x H), we write z with a value z(6, h) evaluated at
(6, h) € ®s x H. Now define the map g : £*°(®s x H) x &5 — {>*(H) by

g(z,0)(h) — z(8, h) — z(6, h).

This map is continuous at every point (z, 8y) such that [|z(6, h) — z(6y, h)||y — 0 at all sample paths z of the limit process
Z of the stochastic process Z,(0, h) = Gﬁ Y. n indexed by @; x H. Because the index set for Gﬁ as a process is P-Donsker
by assumption, Theorem 3.2 of Saegusa (2019) implies that Z, weakly converges to a tight Gaussian process Z which is
a linear combination of independent Brownian bridge processes. Because the covariance function of the limit process G
of G is bounded above by the covariance function of the limit process of the standard empirical process Gy, the limit
process Z has continuous sample paths with respect to the semimetric d given by

d* (61, h1), (82, h2)) = Po(Way ny — Yoy, )

Since sup,, d((6, h), (60, h)) — 0 as & — 6y by assumption, we can conclude that g is continuous at almost all sample
paths z of Z. . R
By Slutsky's theorem, (Z,, 6,) = (Gh s, 6,) converges in distribution to (G, 6p). By the continuous mapping theorem,

GH(W3. 1 — Voo.n) = &(Zn. 0n) >4 8(Z,60) =0. O

Now we apply Theorem 6.1 to the proposed semiparametric weighted likelihood estimator. In Theorem 6.1, the
parameter of interest is ¢ and the derivative V of the map 6 > Py is abstract. In Theorem 2.1, the parameter of
interest is (6, n) and the derivative map ¥, can be partitioned and has explicit expressions.

Proof of Theorem 2.1. Theorem 2.1 is a corollary to Theorem 6.1. To see this, replace 6, ¥y, and V in Theorem 6.1 by
(8,n), (£o,y, Bo,y—Po 4Bs, 5), and ¥, respectively. The corresponding conditions regarding the set {1y : |6 —6o|| < 8, h € H}
and the quantity [|Po(vs.n — ¥s,.n)* |l can be found in Condition 1. The condition |[Pf v [l1 = 0p(N~"/?) corresponds to
the semiparametric likelihood equations (2). The corresponding condition regarding V can be found in Condition 2. The
conclusion of Theorem 6.1 in the context of Theorem 2.1 is that

l1./0\/ﬁ(éN - 90! ﬁN - ’70) = Gﬁ(éeo,nov BGQ,I’]Q) + OP(I)'

Write ffdn = nf for a measure n and Iy = POI'ZQO,,]OW . Using the expression of ¥ in Condition 2 the above expression

A 60,10
can be written as
_IOW(éN - 90) - m(ﬁN - 770)320,7]0&90,770 = _GZZOO,WO + OP(I)v
— Po{(Bgy noh)2}  }/N(Oy — 60) — ~/N(fin — n0)B%. , Boy.noh
0,710 6,10 N 0 NN No 00.1m0 0,10
= —GNBgy.oh + 0p(1).
Choose h = (B nOBgoy,,o)‘lB;*O’%Zgoq,,o in the second equation to obtain
_PO(BGO~WO(Bzo,noBQOsn0 )_1B;0,770k907'70é£0,n0 )\/ﬁ(é[\l - 90)
— /N(iiy — 10)B}, o Lo0.1m0
= _GxBOano(Bzo,noBGO,no)_1320,7704290,'7001’(1)'

11
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Recall the definitions of the efficient information Io for 6 and the efficient influence function ¢, for 6. Subtract the second
equation from the first and matrix inversion of I yield

\/N(éN - 90) = GZZO + Op(1).
Apply Theorem 3.2 of Saegusa (2019) to obtain the desired result that GZZO converges in distribution to a zero mean
normal random vector with covariance ¥. O
Proof of Theorem 3.1. Let Oy = éN + hyvy. We compute lower and upper bounds of
5 5y mHp_ H,y.
Mpy(On) — My(On) = PNKQNV%N‘N — PNZON’%N,N.
For the lower bound, we have by the definitions of 7, and t — 5,(y) and (4) that
_ N - .
Mn(On) — My(6y) = HDZE@NvﬂgN(%N,N) - PNE@NW@N()A/@N'N)
= LOn. Vi) = €ON. T n)-
Since £(t, y) is differentiable with respect to t, we expand the lower bound around 6y to obtain
th,(,IPZé(éN, Vayn) T 27" vl PR (6N, Vay NJUN

is maximized

where fy is some convex combination of &y and fy. The first term is zero because the map t > Pﬁﬁt,m% W)
N+

at t = fy. The second term becomes —2~'h% (vl Iovy + 0p(1)) by (6).
For the upper bound, we have by (4) that

My (@n) — My(dy) < IPZE?N‘"@,V(%N‘N) - PZK@N’%N(%N’N)
= LOn. Pgyn) — LOn. Py n)-
We expand the upper bound around 8y to obtain
hvoyPNEON, P, ) — 27 HR N PRE(BN . 5, N )VN
Wherle 6y is some convex combination of fy and fy. The second term is 2‘1h,2\,(v,f,iov,v + op(1)) by (6). The first term is
equal to

h L S

T%vﬁGZE(QN, Payn) + hvoyPol(On. 75, )
h y .

= \/—%(U,—{,ION/N(QN — 6p) +0p(1))

—hy {vﬁfo(@v —6g) + op([16Nn — ol + Nq/z)} ’

by the proof of Theorem 2.1, (5) and (7). This is equal to —h,z\,(v,f,iovN + 0p(1)) by the assumption of hy and the definition
of §N .
Combining the upper and lower bounds, we have
M (0y) — My(6n)
h2
N

Taking N — oo, we obtain the desired result. O

vhloun + 0p(1) < —2 < vllouy + 0p(1).

Proof of Theorem 3.2. We prove that the limiting process is the same as the limiting process of G except the process
due to sampling from population. Once we establish this claim, the rest is similar to the proof of Theorem 2.1 by replacing
GH and P by Gl and P¥. Define the bootstrap empirical process by Gif = +/N(P{ — PX). Then we have

J \/7 p N
NGO /NGO 1 ()¢ pli) j
_ — —=——= Y RVYBY —1)pP(V;)sx.
2: 0 U)Z' i ‘
j=1 N n i=1

J - -

= INO IND 7

- N n(i) N
=1

12
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Conditionally on (X;R;, R;, V;), the bootstrap process @Z’U) for data source j can be viewed as the sampling-without-
replacement bootstrap process with sample size n/) with the index set {g(x, v) = pY(v)f(x) : f € F} for some index
set 70) = F for the original weighted empirical process GZ (see Saegusa, 2015 for more details). It follows by the
exchangeably weighted bootstrap empirical process theory (Prastgaard and Wellner, 1993) that GZ’(’) weakly converges
to /1 — pWGY in £>°(F9) conditionally on data where GV is the Brownian bridge process with respect to the conditional
probability measure given the membership in source j. Thus,

J
-3 v

j=1

conditionally on data. Note that GU) are all independent because BE” and B?l) are independent given data. The limiting
process of GZ above is exactly the same as the limiting process Gﬁ except the process due to sampling from population. O

7. Discussion and future work

In this paper, we study semiparametric inference for merged data from multiple sources. We derive the asymptotic
distribution of the semiparametric weighted likelihood estimator of the finite dimensional parameter. As in the i.i.d. set-
ting, the asymptotic variance in the proposed estimator may not have a closed form or contains expectations of unknown
functions in many semiparametric models. We developed a consistent computational method to estimate asymptotic
variance by the numerical derivative of the profile likelihood and the sampling-without-replacement bootstrap. This is
the first variance estimation method for data integration when a plug-in variance estimator is not available.

To illustrate our methodology, we studied the Cox proportional hazards model with right censoring for simulation and
data analysis. As mentioned in Introduction, there are many other important semiparametric models which finds potential
applications in data integration problems. Estimators in these models solve infinite-dimensional optimization problems
and the forms of asymptotic variance are expected to be complicated as in the i.i.d. setting. Our proposed variance
estimator will continue to be useful for these estimators because our method only requires computation of estimators and
weighted likelihood. In addition to methods research, we will develop software to implement our methodology for major
semiparametric models to encourage semiparametric data integration in practice. These work will appear elsewhere.

The proposed variance estimation methodology focuses on weighted semiparametric likelihood estimators. Other
estimation procedures such as the estimating equations approach and the sieve weighted likelihood approach (Geman and
Hwang, 1982; Shen, 1997) are also possible in data integration problems with the help of inverse probability weighting
and p. For these estimators, our proposed method of estimating the efficient information may not be valid. First, those
estimators have asymptotic variance which does not involve the efficient information. Second, variance estimation may
not be consistent due to unmet regularity conditions. The sieve weighted likelihood estimator, for example, maximizes
the weighted likelihood over smaller parameter spaces. The least favorable submodel is not necessarily contained in the
corresponding smaller model space and hence the sieve profile likelihood may not approximate the likelihood based
on the least favorable submodel. For estimators other than what we considered in this paper, further methodological
development is desired.
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