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Summary

We consider the Mann-Whitney test for two-phase stratified sampling. In this design, the

i.i.d. sample is obtained at the first phase and then stratified based on auxiliary variables.

At the second phase, stratified subsamples are obtained without replacement to collect

variables of interest. The resultant data are biased and dependent sample due to stratifica-

tion and sampling without replacement. This setting is different from the one considered

by the existing method called the van Elteren test that considers multiple i.i.d. samples

from non-overlapping subsets of the infinite population. We propose the inverse probability

weighted Mann-Whitney statistic and study its asymptotic properties. The proposed test

is shown to have a correct size and power 1 in the limit. Simulation study is presented to

illustrate the finite sample performance of our test.
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1 INTRODUCTION

We consider nonparametric testing of the hypothesis

H0 : F(x) = G(x), for all x ∈ R,

for two-phase stratified sampling (Breslow & Chatterjee 1999; Breslow, Lumley, Ballantyne, Chambless, & Kulich 2009b; Breslow, McNeney, &
Wellner 2003) where F andG are cumulative distribution functions of the continuous random variableX in the first and second groups respectively.
In this sampling design, an independent and identically distributed (i.i.d.) sample is obtained from the infinite population at the first phase. At the
second phase, this sample is stratified and then subsamples are collectedwithout replacement. Stratification is expected to correlate with the target
variable X for effective sampling. The final sample is a biased and dependent sample due to stratification and sampling without replacement. This
property of the sample poses a serious statistical challenge for our two-sample hypothesis testing. Although all Xi are independent and generated
from either F or G, two groups in our setting are dependent and do not properly represent the populations from F and G. Hence we need a novel
approach to the choice of a test statistic, the derivation of its limiting distribution, and the construction of the rejection region of a test.

In this paper, we extend the Mann-Whitney two-sample test to two-phase stratified sampling. The Mann-Whitney test, equivalent to the
Wilcoxon rank sum test, is one of the most popular nonparametric testing procedures for comparing two independent samples. This test was
extended by van Elteren (1960) to stratified samples by computing the sum of the Mann-Whitney statistics within strata. The primary setting of
this test known as the van Elteren test is an experimental setting such as clinical trials where treatment assignments and stratification defined by
experimental conditions are under the control of a study investigator. This is formalized as the stratification of the infinite population and the i.i.d.
sampling from each stratum. Its null hypothesis is that two groups are distributionally equivalent in all of strata. This null hypothesis is not suitable
in our setting because our stratification is allowed to depend on the partial information of the target variable X. In this case, the null hypothesis of
the van Elteren test may not hold even if our null hypothesis holds. Moreover, theoretical derivations of the van Elteren test is no longer valid in
our setting because of the lack of the i.i.d. structure within stratum in the two-phase stratified sample.
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The main contribution of this paper is two-fold. First, we propose a new inverse probability weighted statistic and derive its asymptotic prop-
erties in the null and alternative hypotheses. The proposed modified Mann-Whitney test statistic is the inverse probability weighted U-statistic
whose inverse probability weights must be based on the simultaneous selection of two observations. Instead, we write the proposed statistic as
the function of two empirical distributions which can be inverse probability weighted based on each observation. Because the limiting distribution
depends on random functions, we apply the special empirical process theory for a biased and dependent sample developed by Breslow and Well-
ner (2007) and Saegusa and Wellner (2013). The second contribution is the novel method to construct the rejection region of the proposed test.
Unlike the i.i.d. setting, the limiting distribution of the proposed test statistic depends on unknown parameters even under the null hypothesis,
which prevents analytical computation of the rejection region. Our approach is to separate sources of randomness into sampling from the infinite
population and subsequent stratified sampling. The former randomness is parameter-free. The latter is estimated by the bootstrap method spe-
cialized in the finite population sampling (Bickel & Freedman 1984; Gross 1980). We show that the proposed test achieves the correct size and its
power converges to 1 in the limit. The finite sample performance is shown in the simulation study and data example.

2 SETTING AND TEST STATISTIC

We first give the formal description of two-phase stratified sampling. Let X be a target continuous random variable and S ∈ {1, 2} be an indicator
of group assignment with P(S = 1) = q ∈ (0, 1). Let F(t) = P(X ≤ t|S = 1) and G(t) = P(X ≤ t|S = 2) be the cumulative distribution functions
for the group 1 and group 2, respectively. Let (Xi, Si), i = 1, . . . ,N, be the i.i.d. copy of (X, S). Sample sizes for each group are denoted as N(1)

and N(2). Unlike the i.i.d. setting, we do not observe all of Xi. Instead, we observe a random vector V for all subjects. The component of V ∈ V
includes random variables correlated with X such as S as well as auxiliary variables. The variable V helps stratification of the sample. We divide
the sample space V into a partition {Vj}Jj=1. We say the subject belongs to stratum j if V ∈ Vj. The stratum membership probability is denoted as
νj = P(V ∈ Vj).

Two-phase stratified sampling is carried out as follows. At the first phase, we obtain the i.i.d. sample of V1, . . . ,VN. The values of Vi determines
stratum membership. Denote Nj = #{i : Vi ∈ Vj} as the sample size of stratum j. At the second phase, a subsample of size nj is collected without
replacement from stratum j. The sampling probability is πi =

∑J
j=1(nj/Nj)I{Vi ∈ Vj}. The sampling indicator Ri ∈ {0, 1} is 1 if the ith subject is

selected at the second phase and 0 otherwise. For the selected subjects, information on Xi is collected. Because nj is under the control of the study
investigator, we assume that the sampling fraction nj/Nj converges almost surely to pj > 0. The above mathematical formulation of two-phase
stratified sampling is standard in the literature (Breslow, Lumley, Ballantyne, Chambless, & Kulich 2009a; Breslow & Wellner 2007; Saegusa &
Wellner 2013).

Next, we propose the weighted Mann-Whitney test statistic. To this end, we first describe the Mann-Whitney test statistic in the i.i.d. setting.
For simplicity, we assume observations i = 1, . . . ,N(1) are in group 1 and observations i = N(1)+1, . . . ,N are in group 2. This statistic counts how
many observations in the second group exceed observations in the first group. With our notation, the statistic is written as the U-statistic given by

UN =

N(1)∑
i=1

N∑
j=N(1)+1

I{Xi ≤ Xj}.

This representation is not suitable for the extension to two-phase stratified sampling aswell as othermissing data problems. The standard technique
to address missing data is inverse probability weighting of individual observations. Asymptotic theory for inverse probability weighted averages is
available for our setting. For this statistic, however, inverse probability weights must be computed for the pair of observations. Theory to address
this type of inverse probability weights does not exist in our setting.

Another representation of the Mann-Whitney statistic is based on the empirical distributions for two groups given by

FN(1) (x) =
1

N(1)

N(1)∑
i=1

I{Xi ≤ t}, GN(2) (x) =
1

N(2)

N∑
j=N(1)+1

I{Xj ≤ t}.

We write UN as the function of two empirical distributions given by

UN

N(1)N(2)
=

∞∫
−∞

FN(1) (x)dGN(2) (x).

An advantage of this presentation is that UN is now computed by sums of individual observations, which admits inverse probability weighting. Let

Fπ
N(1) (x) =

1

N(1)

N(1)∑
i=1

Ri

πi
I{Xi ≤ t}, Gπ

N(2) (x) =
1

N(2)

N∑
j=N(1)+1

Ri

πi
I{Xj ≤ t}.
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be inverse probability weighted empirical distributions. The proposed test statistic UπN is

UπN ≡ N(1)N(2)

∞∫
−∞

Fπ
N(1) (x)dGπN(2) (x).

Note that the computation of UπN does require the knowledge on N(1) and N(2) due to cancelation with Fπ
N(1) (x) and Gπ

N(1) (x). This property is
useful because N(1) and N(2) are unknown when Si is not included in Vi collected at the first phase.

The derivation of the asymptotic distribution of the proposed statistic is challenging because it consists of the random functions and because
our dependent biased sample does not admit the standard central limit theorem. Our approach is to use the functional delta method and empirical
process theory for two-phase stratified sampling. In the i.i.d. setting, the map of the two empirical distributions to the Mann-Whitney statistic is
shown to be Hadamard differentiable so that its asymptotic distribution reduces to the weak convergence of two empirical distribution functions
to Brownian bridge processes through the functional delta method. Because the map of Fπ

N(1) and Gπ
N(2) to UπN is also Hadamard differentiable

with an appropriate domain, we can apply the functional delta method to our setting.
To complete the application of the functional delta method, we need to develop the weak convergence of Fπ

N(1) andGπ
N(2) . We carry out this task

with the help of empirical process theory for two-phase stratified sampling. Note that one cannot simply apply the empirical process result because
we divide sums by random sample sizesN(1) andN(2), which require the conditional argument with additional care. Proofs for the following lemma
as well as other results are deferred to Appendix.

Lemma 1. Let Pj be the conditional probability measure given the membership in stratum j. As N→∞,√
N(1)(Fπ

N(1) − F) GF,0 +

J∑
j=1

√
νj

q

√
1− pj

pj
GF,j,

√
N(1)(Fπ

N(1) − FN(1) ) 
J∑

j=1

√
νj

q

√
1− pj

pj
GF,j,

√
N(2)(Gπ

N(2) − G) GF,0 +

J∑
j=1

√
νj

1− q

√
1− pj

pj
GG,j,

√
N(2)(Gπ

N(2) − GN(1) ) 
J∑

j=1

√
νj

1− q

√
1− pj

pj
GG,j,

where GF,j,GG,j, j = 0, 1, . . . , J are independent zero-mean Gaussian processes with covariance functions given by

ρF,0(x, y) = P(X ≤ x ∧ y|S = 1)− P(X ≤ x|S = 1)P(X ≤ y|S = 1),

ρF,j(x, y) = Pj(X ≤ x ∧ y, S = 1)− Pj(X ≤ x, S = 1)Pj(X ≤ y, S = 1),

ρG,0(x, y) = P(X ≤ x ∧ y|S = 2)− P(X ≤ x|S = 2)P(X ≤ y|S = 2),

ρG,j(x, y) = Pj(X ≤ x ∧ y, S = 2)− Pj(X ≤ x, S = 2)Pj(X ≤ y, S = 2).

The functional delta method now yields the following theorem.

Theorem 1. Let Varj be the conditional variance given membership in stratum j. Under H0,√
N(1)N(2)

N

(
UπN

N(1)N(2)
−

1

2

)
→d Z0 ∼ N

(
0, σ2

0

)
where

σ2
0 =

1

12
+

J∑
j=1

νj
1− pj

pj

{
q

1− q
Varj

(∫
FdGF,j

)
+

1− q

q
Varj

(∫
GF,jdF

)}
.

In the i.i.d. setting, the Mann-Whitney statistic UN has asymptotic variance σ2
0,1 = 1/12 under H0. Additional stratified sampling increases the

randomness to the weighted Mann-Whitney statistic in our setting. We call this additional variance the phase II variance σ2
0,2 = σ2

0 − σ2
0,1. This

phase II variance contains unknown parameters such as F, νj, pj, q, and Pj. Among them, the conditional probability measure Pj given stratum
membership is the greatest obstacle to constructing the rejection region based on UπN . This conditional distribution involves conditional variance
Varj for the stochastic integrals and the covariance function of the Gaussian process GF,j in the integral. To propose a valid hypothesis testing
procedure, we need to address the unknown phase II variance under the null hypothesis.
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3 METHODOLOGY

We propose the test with the rejection region of the form√
N(1)N(2)

N

∣∣∣∣ UπN
N(1)N(2)

−
1

2

∣∣∣∣ ≥ qN.

Because the statistic UπN is a consistent estimator of the probability that the random variable from the group 1 is larger than the random variable
from the second group, the deviation from 1/2 indicates F 6= G. The valid hypothesis testing should have the probability of the rejection region is
the prescribed significance levelα ∈ (0, 1) at least asymptotically. As seen in Theorem 1, the limiting null distribution ofUπN has asymptotic variance
which contains unknown parameters. In general, the presence of the unknown asymptotic variance does not cause a serious obstacle to hypothesis
testing, because a consistent estimator of the asymptotic variance (e.g. the plug-in estimator or bootstrap estimator) is easily accommodated into
qN. In our setting, however, the asymptotic variance involves the variance of stochastic integrals with the unknownGaussian processes with respect
to the unknown distribution. It may not be tractable to simplify this variance for obtaining a plug-in estimator. Bootstrap is not available either for
two-phase stratified sample that correctly quantify randomness due to sampling from the infinite population and subsequent sampling from strata
without replacement at the same time.

The proposed approach is simple and easy to implement. First, we observe that the asymptotic variance can be decomposed into the phase I
variance and phase II variance. The phase I variance is 1/12 which coincides with the asymptotic variance of theMann-Whitney statistic in the i.i.d.
setting. This indicates that 1/12 corresponds to sampling from the infinite population at the first phase. Thus, the phase II variance which contains
unknown parameters corresponds to randomness from the subsequent stratified sampling without replacement. This suggests that estimation
of the asymptotic variance reduces to estimating a data generating mechanism of stratified sampling conditionally on sampling from the infinite
population. The main idea of our approach is to carry out this task by adopting the bootstrap method specialized in the finite population proposed
by Gross (1980) and Bickel and Freedman (1984). Originally aimed for survey sampling, this bootstrap method quantifies randomness in R only
from stratified sampling, not randomness in X.

This bootstrap method mimics sampling without replacement based on selected observations. For an illustrative example, consider selecting 5
observations from 10 people. In this case, each sampled observation corresponds to 2 (=10/5) observations in the original sample of size 10. Thus,
the bootstrap population of size 10 is constructed by creating two copies of sampled observations. Sampling 5 observations from this bootstrap
population nowyields a bootstrap sample of size 5. Amathematically formal definition of this procedure is as follows. There are two cases depending
on whether or not Nj/nj is an integer. For stratum j, suppose kj = Nj/nj is an integer. The bootstrap population is then created as the kj copies of
selected observations at the second phase. That is, an observation iwithVi ∈ Vj and Ri = 1 is duplicated kj times. This bootstrap population of size
Nj consists only of selected observations at the second phase. From this bootstrap population, a bootstrap sample of size nj is collected without
replacement. If Nj = njkj + rj and rj is a remainder for division of Nj by nj, we construct two bootstrap populations, one containing kj copies of
selected observations and the other containing kj + 1 copies. We choose the first population with probability sj = (1− rj/Nj){1− rj/(nj − 1)} or
the second with probability 1− sj. Then sample of size nj is collected without replacement as above. We perform this procedure for all strata and
then compute the corresponding weighted Mann-Whitney statistic ÛπN based on the bootstrap stratified samples.

For the estimation of the phase II variance, we compute the bootstrap weighted Mann-Whitney statistics ÛπN,1, . . . , Û
π
N,B for each bootstrap

sample. We use the sample variance of bootstrap weighted Mann-Whitney statistics as the estimator of phase II variance denoted by σ̂2
N,2,B. The

variance estimator of the entire asymptotic variance is then σ̂2
N,B = 1/12+ σ̂2

N,2,B. Now we determine the rejection by setting

qN,B = q1−α/2σ̂N,B

where q1−α/2 is the 100(1− α/2) percentile of the standard normal random variable.
In our setting described in Section 2, information on group assignment S is collected at the first phase so that stratification may depend on S.

In practice, information on group assignment may not be available so that group sizes N(1) and N(2) are unknown quantities. Our proposed test is
also valid when S is only available at the second phase. In this case, one can estimate N(1) and N(2) by

N̂(1) =

N∑
i=1

Ri

πi
I{Si = 1}, N̂(2) =

N∑
i=1

Ri

πi
I{Si = 2}.

These are consistent estimators in the sense that N̂(1)/N(1) →p 1 and N̂(2)/N(2) →p 1. Then the rejection region becomes√
N̂(1)N̂(2)

N

∣∣∣∣ UπN
N̂(1)N̂(2)

−
1

2

∣∣∣∣ ≥ q1−α/2σ̂N,B.

We omit proofs for this case due to their similarity to the case where N(1) and N(2) are known.
The following theorem shows that the proposed test has correct size and asymptotic power of 1 in the limit.
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Theorem 2. Under the null hypothesis H0, as N,B→∞,

P

√N(1)N(2)

N

∣∣∣∣ UπN
N(1)N(2)

−
1

2

∣∣∣∣ ≥ qN,B.

→ α.

Under the alternative hypothesis that F 6= G with
∫∞
−∞ F(x)dG(x) 6= 1/2, as N,B→∞,

P

√N(1)N(2)

N

∣∣∣∣ UπN
N(1)N(2)

−
1

2

∣∣∣∣ ≥ qN,B.

→ 1.

Note that for independent random variables Y and Ỹ with cumulative distribution functions F and G respectively, we have P(Y ≤ Ỹ) =∫∞
−∞ F(x)dG(x).

4 SIMULATION

To evaluate the finite sample performance of the proposed Mann-Whitney test for two-phase stratified sampling, we conducted a simulation
study for exponential and normal random variables respectively. For both cases, we consider three strata Vj, j = 1, 2, 3, with stratum membership
probability ν1 = ν2 = ν3 = 1/3 characterized by conditional distributions Fj(x) = P(X ≤ x|V ∈ V(j), S = 1) and Gj(x) = P(X ≤ x|V ∈
V(j), S = 2). Sampling probabilities are .5, .3, .2 in the first setting and .1, .1, .1 in the second setting for each stratum. The final sample size is
n = n1 + n2 + n3 = 333 for N = 1000 and n = 666 for N = 2000 in the first setting and n = 100 for N = 1000 and n = 200 for N = 2000

in the second setting on average. The treatment assignment is a Bernoulli distribution with parameter 1/2. For the exponential case, we consider
the mixture of exponential distributions where F = (F1 + F2 + F3)/3 and G = (G1 + G2 + G3)/3. Under the null hypothesis H0 : F = G, the
parameters λj,1 and λj,2 for Fj and Gj are

(λ1,1, λ2,1, λ3,1) = (e1/2, e, e2), (λ1,2, λ2,2, λ3,2) = (e2, e, e1/2).

Under the alternative hypothesis Ha : F 6= G,

(λ1,1, λ2,1, λ3,1) = (e1/2, e, e2), (λ1,2, λ2,2, λ3,2) = (e1/2, e3/2, e3/2).

For the normal case, we consider the mixture of normal distributions with the same variance 1 and stratum mean

(µ1,1, µ2,1, µ3,1) = (1,−1, 0), (µ1,2, µ2,2, µ3,2) = (0,−1, 1),

under H0 and

(µ1,1, µ2,1, µ3,1) = (1,−1, 0), (µ1,2, µ2,2, µ3,2) = (1, 0, 0),

under Ha.
Table 1 summarizes the simulation results. We conducted the computation of the proposed rejection region based on 1000 bootstrap samples

in each case. The proposed test shows superior performance over the van Elteren test in all settings. Our test achieved the empirical type I error
close to the nominal level of 5 percent especially for large sample size. Because the difference between the settings 1 and 2 lies only in the sampling
probability, we see the better empirical type I error in the first setting where sampling probabilities are large. The van Elteren test, on the other
hand, is sensitive to sampling probabilities. This test rejected the null hypothesis very frequently in the first setting, and almost never rejected
the null hypothesis in the second setting. This finite sample performance may be explained by the difference in the null hypotheses between two
tests. The null hypothesis for the van Elteren test is the equivalence of two samples in all of strata but the null hypothesis in this simulation allows
difference in each stratumwhile F = G. The results on the empirical power show the same tendency in empirical type I error. Our test increases the
empirical power when the final sample sizes increase by changing N = 1000 to N = 2000 and/or by changing the setting from the second to the
first. Moreover, the proposed test showed higher empirical power than the van Elteren test. Unlike the null hypothesis, the alternative hypothesis
in this simulation is also the alternative hypothesis for the van Elteren test. Thus, this result indicates the better performance of the proposed test
in the setting of consideration. One possible reason is that our proposed test statistic accounts for sampling design well by inverse probability
weighting while the van Elteren test simply combines the stratum-wise Mann-Whitney statistics.

5 DATA ANALYSIS

Weapplied the proposed testing procedure to the nationalWilms tumor study (D’Angio et al. 1989).Wilms tumor is a rare kidney cancer for children.
Our interest lies in the prediction of relapse. We conducted two-phase stratified sampling based on strata with deceased patients (N1 = 444),
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H0 Ha

Setting Method N = 1000 N = 2000 N = 1000 N = 2000

Exponential 1 Ours 0.044 0.050 0.611 0.892
van Elteren 0.920 0.999 0.544 0.868

2 Ours 0.044 0.044 0.298 0.501
van Elteren 0.003 0.001 0.248 0.428

Normal 1 Ours 0.044 0.050 0.756 0.946
van Elteren 0.628 0.926 0.688 0.932

2 Ours 0.037 0.060 0.348 0.597
van Elteren 0.012 0.012 0.260 0.536

TABLE 1 Empirical type I error and power of the proposed test.

living patients with unfavorable histology measured at the hospital (N2 = 235), and the all the rest (N3 = 3236) with sampling probabilities 100%,
50%, and 10%, respectively. We collected 886 subjects without replacement from the entire cohort of size N = 3915. For selected patients, tumor
diameter was measured. We applied our method to test the null hypothesis that tumor diameters are equally distributed between patients with
and without relapse We generated 1000 bootstrap in our procedure to obtain q̂N = 1.21. Because the proposed test statistic is 1.71, we reject the
null hypothesis. The van Elteren test, on the other hand, failed to reject the null hypothesis for this data set.
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APPENDIX

A PROOFS

Proof of Lemma 1. Rewrite the inverse probability weighted empirical distribution functions by

Fπ
N(1) (x) =

1

N(1)

N∑
i=1

Ri

πi
I{Xi ≤ x, Si = 0},

Gπ
N(2) (x) =

1

N(2)

N∑
i=1

Ri

πi
I{Xi ≤ x, Si = 1}.

We use the double subscript to denote e.g. a random variable X for the ith observation in stratum j by Xji. Let Yi(x) ≡ I{Xi ≤ x, Si = 0}. Then
for a fixed x ∈ R, the decomposition of Fπ

N(1) (x)− F(x) yields√
N(1)(Fπ

N(1) (x)− F(x))

=
√

N(1)(FN(1) (x)− F(x)) +
√

N(1)(Fπ
N(1) (x)− FN(1) (x))

=
√

N(1)

(
1

N(1)

N∑
i=1

I{Xi ≤ x, Si = 1} − F(x)

)

+

J∑
j=1

√
N

N(1)

√
Nj

N

Nj

nj

√
Nj

 1

Nj

Nj∑
i=1

RjiYji(x)−
nj

Nj

1

Nj

Nj∑
i=1

Yji(x)

 .

Note that the first term concerns the group specific average of Yi. Since N(1) →∞ almost surely as N→∞, it follows that conditionally on Si the
standard central limit theorem yields

√
N1

(
1

N(1)

N∑
i=1

I{Xi ≤ x, Si = 1} − F(x)

)
→d ZF,0 ∼ N (0,F(x){1− F(x)})

from which we obtain the unconditional convergence to the same limiting variable. Viewing this term as the stochastic process indexed by R, the
Donsker theorem yields

√
N1

(
1

N(1)

N∑
i=1

I{Xi ≤ ·, Si = 1} − F(·)

)
 GF,0(·)

where  means the weak convergence in the class of cadlag functions on R. Because the first term and the second term are uncorrelated and
Gaussian, the limiting process GF,0 is independent of the limiting process for the second term. The second term consists of stratum-wise sums of
Yi which are uncorrelated. As in Breslow and Wellner (2007), we apply the bootstrap Donsker theorem conditionally to obtain the unconditional
weak convergence √

Nj

N

Nj

nj

√
Nj

 1

Nj

Nj∑
i=1

RjiYji(·)−
nj

Nj

1

Nj

Nj∑
i=1

Yji(·)

 √νj
√

1− pj

pj
GF,j(·).

Because N(1)/N→ q by the law of large numbers, combining above results yields the first result. The second result also follows from the second
term in the decomposition.

Theorem 3. As N→∞, √
N(1)N(2)

N

 UπN
N(1)N(2)

−
∞∫
−∞

F(x)dG(x)

→d Z ∼ N
(
0, σ2

)
where σ2 = σ2

1 + σ2 with

σ2
1 ≡ qVar(F(X)|S = 1) + (1− q)Var(G(X)|S = 2),

σ2
2 ≡

J∑
j=1

1− pj

pj
νj

{
q

1− q
Varj

(∫
FdGG,j

)
+

1− q

q
Varj

(∫
GF,jdG

)}
.

Proof of Theorems 1 and 3. In the i.i.d. setting, the limiting distribution of the Mann-Whitney statistic UN can be obtained by the application of
the functional delta method based on the weak convergence of FN(1) and GN(2) (see e.g. 3.9.4.1 of van der Vaart and Wellner (1996)). The same
argument applies to UπN when replacing FN(1) and GN(2) by Fπ

N(1) and Gπ
N(2) with the help of the weak convergence result in Lemma 1. The map

considered for UN in the i.i.d. setting is (A,B) 7→
∫
AdB where A is a cadlag function and B is a function of bounded variation. Because Fπ

N(1) and



8 Takumi Saegusa

Gπ
N(2) are a cadlag function and a function of bounded variation, respectively, the functional delta method is valid in our setting. Now, it follows

from the functional delta method and Lemma 1 that√
N(1)N(2)

N
{UN/(N

(1)N(2))−
∫

FdG} =

√
N(1)N(2)

N

(∫
FN(1)dGN(2) −

∫
FdG

)
 
√
q

∫
FdGG,0 +

√
1− q

∫
GF,0dG

+

J∑
j=1

(√
νjq

1− q

√
1− pj

pj

∫
FdGG,j +

√
νj(1− q)

q

√
1− pj

pj

∫
GF,jdG

)

∼ N
(
0, σ2

)
.

Note that the first and second terms √q
∫
FdGG,0 +

√
1− q

∫
GF,0dG in the limiting variable are exactly the same as the limiting variable itself

for UN in the i.i.d. setting. This asymptotically normal random variable has mean zero and variance qVar(F(X)|S = 2) + (1− q)Var(G(X)|S = 1)

which is 1/12 when F = G.

Proof of Theorem 2. The weak convergence of the corresponding bootstrap empirical process was established in Lemma 4.1 of Saegusa (2015).
Applying the functional delta method for bootstrap (Theorem 3.9.13 of van der Vaart and Wellner (1996)) yields that under the null hypothesis H0√

N(1)N(2)

N

(
ÛπN

N(1)N(2)
−

UN

N(1)N(2)

)
→d Z0,2 ∼ N

(
0, σ2

0,2

)
.

Because the bootstrap estimate σ̂2
N,2,B of σ2

2 is consistent as N,B → ∞, the estimator σ̂2
N,B is consistent for σ2

0 . The desired result follows from
Theorem 1 and this observation under H0. Under the alternative hypothesis Ha, the same reasoning applies to obtain√

N(1)N(2)

N

(
ÛπN

N(1)N(2)
−

UN

N(1)N(2)

)
→d Z2 ∼ N

(
0, σ2

2

)
.

As N,B→∞ σ2
N,B converges in probability to a finite number 1/12+ σ2

2 . Suppose 1/2 >
∫
FdG. It follows from Theorem 3 that

P

√N(1)N(2)

N
|UN/(N

(1)N(2))− 1/2| ≥ qN,B


≥ P

√N(1)N(2)

N

{
1/2−

∫
FdG

}
≥ qN,B +

√
N(1)N(2)

N

{
UN/(N

(1)N(2))−
∫

FdG

}→ 1.

The other case 1/2 <
∫
FdG is similar.
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