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ABSTRACT
Leveraging innovations in Machine Learning (ML) research is of
great current interest to researchers across the sciences, including
networking research. However, using ML for networking poses
challenging new problems that have been responsible for slowing
the pace of innovation and the adoption of ML in the networking
domain. Among the main problems are a well-known lack of data
in general and representative data in particular, an overall inability
to label data at scale, unknown data quality due to differences in
data collection strategies, and data privacy issues that are unique to
network data. Motivated by these challenges, we describe the design
of Emerge1, a novel framework to support efforts to dEmocratize
the use of ML for nEtwoRkinG rEsearch. In particular, Emerge
focuses on the problem of providing a low-cost, scalable, and high-
quality methodology for labeling networking data. To illustrate the
benefits of Emerge, we use publicly available networkmeasurement
datasets from Caida’s Ark project and create and evaluate data
labels for them in a programmable fashion.
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1 INTRODUCTION
Motivated by the recent success of ML in domains such as computer
vision [34] and autonomous driving/vehicles [24], we are witness-
ing enormous interest in applying ML to an ever-wider range of

1To facilitate independent validations of our results and to catalyze community-based
efforts, the source code of Emerge can be found at https://gitlab.com/onrg/emerge.
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problems in the networking domain (e.g., network automation [35],
self-driving networks [20]). However, unlike other domains, the
networking area poses several immediate and serious challenges
that have impeded the rapid adoption of ML and have been re-
sponsible for the slow pace of innovation in ML-based networking
research. Among the key challenges are a commonly-acknowledged
and much-maligned lack of readily available data, questions con-
cerning the representativeness of data, a general inability to label
networking data at scale, and the privacy-sensitive nature of the
data obtained from real-world networks.

At the same time, the networking area is experiencing a growing
“digital divide" where a select few research groups in the industry
can leverage their global-scale production networks as rich data
sources for developing and training their latest ML models while
most academic networking researchers typically lack access to any
type of real-world network data. Motivated in part by the success
that ImageNet [17] has had in fueling and democratizing ML-based
research in computer vision, [23] argues that academic networking
researchers should start leveraging their campus networks and
utilize them as rich data sources for their ML-based research efforts.
Whether or not the envisioned wide-spread use of campus networks
will ensure a more equal playing field for networking researchers
and will, in turn, revolutionize ML-based networking remains to
be seen, though.

However, there is more to democratizing ML-based network-
ing research than overcoming the lack of available rich data. For
example, even if the data problem has been solved (e.g., using cam-
pus networks as data sources), researchers are immediately faced
with another formidable and largely unsolved problem: a general
paucity of labeled networking data. To illustrate, the networking
domain lacks in general well-established and commonly-agreed
upon features for accurately describing different events of inter-
est (e.g., an onset of volumetric DDoS attack). This “fuzzy" nature
of network data is further aggravated by the fact that the data is
generally collected and curated in a highly piecemeal manner; i.e.,
at different granularities (e.g., packets vs. flows vs. logs) and loca-
tions (e.g., edge vs. core), under different conditions (e.g., congested
vs. uncongested links), or with varying semantic information (e.g.,
payloads vs. headers).

Unlike ImageNet where crowd-sourcing has been effectively
leveraged to create a large database of hand-annotated images,
network data is, in general, more complex than typical dog or cat
pictures. That is, its correct interpretation or labeling often requires
substantial domain knowledge (e.g., protocols, configurations, poli-
cies) which in turn rules out the use of popular crowd-sourcing
methods (as in the case of ImageNet) or more recently pursued
out-sourcing efforts (as in the case of data used for autonomous
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driving) as low-cost, scalable and high-quality labeling approaches.
Further, the networking area is unique with respect to the difficul-
ties caused by privacy aspects associated with most network data.
This aspect by and large rules out the sharing of raw or labeled data
with third-party researchers and also limits the sharing of other ML
research artifacts such as learning models due to possible privacy
leaks [22, 40, 51]. In short, while attempts to democratize the use
of ML in other areas have been wildly successful, they have been
largely futile in the networking domain. To ensure that networking
can similarly benefit from efforts where its use of ML becomes a
collaborative and community-driven activity, new ideas are needed
to specifically address the unique nature of network data (§ 2).

In this paper, we take a pro-active perspective. Assuming that re-
searchers have ready access to rich network data (e.g., from campus
networks), we focus on the problem of how to provide them with a
low-cost, scalable, and high-quality methodology for labeling their
data. In particular, we describe the design of a framework called
Emerge (§ 3) that seeks to extend the idea of the weak supervision-
based data labeling technique proposed in prior work [32] and
supports collaborative efforts by creating data labels at scale, of
good quality (e.g., dealing with bias in the data), at low cost (e.g.,
supporting a community-based effort), and, if necessary, in ways
that respect prevailing data privacy concerns.

We demonstrate the efficacy of Emerge using traceroute
data from Caida’s Ark project and creating data labels in a pro-
grammable fashion (§ 3.2). We start by performing exploratory
analysis of the data to establish a threshold by which we distin-
guish good data from noise. We then split the data into training,
validation, and test sets, and label ∼20% of the overall data points
for our validation and test sets. For feature extractions, we use the
tsfresh module [16] and then generate feature combinations to
train the automatic heuristic generation component of Emerge to
produce probabilistic training labels. Subsequently, we train dis-
criminative models (e.g., Long Short Term Memory (LSTM)) using
these probabilistic labels. Furthermore, in an effort to turn data
labeling at scale into a genuine community-based effort, we con-
sider steps to facilitate collaboration among third-party researchers
working at the intersection of ML and networking by creating
mechanisms to share relevant information (i.e., metadata rather
than raw data or ML models) in a privacy-preserving fashion. We
also outline concrete design steps for dealing with bias in the data.

2 MOTIVATION AND RELATEDWORK
In this section, we motivate our work with use cases and outline
the prior efforts and their limitations.

2.1 Motivating Use cases
Our work is motivated by three concrete use cases that illustrate
the range of problems that the pursuit of efforts to democratize the
use of ML for networking entails.

2.1.1 Addressing the Paucity of Labels. Assuming a sce-
nario where networking researchers have ready access to rich data,
much of ML relies critically on the availability of large quantities
of ground truth and/or high-quality labeled data to ensure that the
developed learning models perform well “in the wild". This crucial
role of labeled data is perhaps best illustrated by the following
recent quote (slightly paraphrasing) in [5]:

If data is “the new oil", then you don’t want to be in the crude oil
business but in the refinery business (e.g., labeling).

While significant progress has been made in the recent past in
creating “benchmarks" in computer vision (e.g., Imagenet [17])
and autonomous driving (e.g., Argoverse [2], nuScenes [6]), we
posit that the data in these domains is significantly different from
network data characteristics and properties. Some initial “bench-
marking" attempts in the networking domain notwithstanding (see,
for e.g., [49]), a main reason why network data is unique and defies
direct comparisons with data from other domains is its fuzzy nature.
That is, objects in, say, the ImageNet database have key features
that are specific to those objects. For example, to differentiate a
cat from a dog using ML, a classifier can be trained by (a) using
1000s of labeled pictures of cats and dogs and (b) leveraging cat-
and dog-specific features (e.g., length of the animal’s snout, shape
of the animal’s pupils).

Unfortunately, network data, by and large, lacks such specificity
which in turn severely limits the researchers’ ability to develop
suitable learning models. For example, there are no standard or
commonly agreed upon “k-best" features from NetFlow (or other
types of network) data for accurately describing network events of
interest such as a volumetric DDoS attack. While as a community,
networking researchers have spent significant efforts on collect-
ing and curating datasets [3, 4, 8], they have in general paid little
to no attention to generating associated relevant metadata [41]
or augmenting their data with high-quality data labels [32]. Im-
portantly, the networking community as a whole currently lacks
well-established and widely agreed-upon approaches for identify-
ing or computing relevant feature sets for different network events
of interest and including this or similar information in the datasets
collected.

Complicating matters further is the largely uncoordinated na-
ture of much of networking research and the already mentioned
predominantly piecemeal approach to data collection. As a result,
in the case of, say, network traffic measurements, the types of ques-
tions that can be answered using commonly-collected traffic data
differ significantly based on the where (e.g., vantage points), how
(e.g., granularity), when (e.g., network conditions), or what (e.g.,
semantics) of the data collection. Moreover, a number of real-world
constraints (e.g., competitive reasons, privacy concerns, business
incentives) obviate most forms of data and/or label sharing.

Requirement 1. The networking domain is in dire need of solu-
tions that (a) can identify and establish a standard set of relevant
features for different events of interest, and (b) provide a framework
for affordable and high-quality labeling of different types of net-
work data at scale. Due to the fuzzy nature of network data, a key
prerequisite to succeed in these efforts is to tap into and effectively
leverage the networking community’s vast amount of available
domain knowledge.

2.1.2 Supporting Privacy-preservingCollaborations. The
combination of a mostly piecemeal approach to solving network-
ing problems, a growing chasm between the “haves" and “have-
nots" [23] among networking researchers, and increasingly strin-
gent policies for ensuring data privacy means that sharing of raw
data among researchers in different universities or companies as
the most straightforward approach to democratizing the use of
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ML for networking is largely off-limits and not feasible in practice.
While there has been great progress in privacy-preserving data
sharing (e.g., see [12, 18] and references), it is unclear how widely
adopted the proposed solutions are and how they perform when
faced with data from real-world production networks.

An obvious alternative to sharing of raw data is sharing of ML
models. To illustrate, consider two researchers (A and B) working
on two versions of the same network data. Assume A’s version
is more detailed (e.g., proprietary version of the company’s data)
than B’s version which was collected from a third-party perspective
(e.g., has fewer details and can be shared). Note that the propriety
nature of A’s data means that it cannot be shared with B “as is". In
theory, this data sharing constraint notwithstanding, A and B can
still collaborate; they both can train their own models with the data
available to them, share the resulting models, and independently
validate each other’s model as well as try to explain observed differ-
ences between the two models. The problem is succinctly captured
by the following quote extracted from [7]:

The increasing utility of data frommachine learning has a negative
effect on privacy too. Disparate pieces of information – although
individually of limited utility – become significant when combined
with other types of information.

Unfortunately, there are several reasons why ML models cannot
preserve data privacy in collaborations. First, several state-of-the-
art ML techniques (e.g., deep learning) are “black box" in nature.
That is, while the input and the output (e.g., decisions) from the
ML model are known, it is unclear how the complex functions
entrenched in the different layers arrive at the final mapping of
the model’s input to its output. Second, since the models are black
box in nature, adversaries can craft model inversion attacks to leak
private information [22, 40, 51] or launch re-identification attacks
to de-anonymize sensitive data [19]. Third, most of the currently
considered approaches to explain “black box" ML models are not
applicable because they not only strive to explain the unknown
mapping but also tend to produce explanations that are either not
reliable or can be misleading [39].

We are thus left with one last alternative for enabling privacy-
preserving collaborations among networking researchers using ML,
namely sharing of learning algorithms via a “glass box" framework.
That is, sharing only the developed learning algorithm but neither
the available (labeled) data nor the resulting learning model, which
makes this approach both feasible in practice and safe in theory
(e.g., no leak of private information). In fact, this approach promises
that in the previously described setting, researchers A and B can
be required to understand the impact of the quality of their data
(and labels) on the accuracy of their respective predictions and
incrementally improve the quality of their labels using the informa-
tion (e.g., metadata but no raw data) that they share. We argue that
only a “glass box" mechanism can solve such unique collaboration
requirements.

Requirement 2. To facilitate low-cost label creation, en-
able privacy-preserving collaborations among the third-party re-
searchers, and support independent validation of separate research
endeavors, the networking community is in need for a “glass box"
framework so that learning algorithms and decision heuristics can

be broadly shared without requiring any sharing of raw data or ML
models.

2.1.3 Dealing with Hidden Biases in the Data. The follow-
ing quote from [1] articulates the crux of the problem:

Machine learning can actually amplify bias, and you can never be
done checking for bias.

The combination of a lack of training labels—with both posi-
tive and negative examples—and the fuzzy nature of network data
also results in non-representative data with known and unknown
bias. For example, different network datasets collected by prior
efforts are known to exhibit location-specific and sampling bias
(e.g., see [46, 50]), but quantifying these or other hidden biases is
an open problem. Moreover, the piecemeal approach followed by
the different research groups in collecting network data means that
training data is in general created with a siloed perspective and
does not accommodate diverse (positive and negative) examples.

Complicating the situation is the real-world nature of opera-
tional networks with their own outage and failure dynamics, an
ever-increasing number of old and new attacks, and constantly-
changing bandwidth needs of their users. These challenges posed
by real-world production networks rarely align with the complex
functions of the proposed “black box" models and often result in
biased models [1]. It is not that researchers knowingly create biased
ML models, but their models typically work only as intended when
evaluated in the controlled settings (e.g., in the lab) in which these
models were developed in the first place.

Requirement 3. To create high-quality data labels at scale so
as to ensure the development of new ML models that perform
well in practice, the networking community has to design new
mechanisms for dealing with (i.e., identifying, quantifying, and
correcting) hidden data biases and watching out for the emergence
of novel types of biases in their data.

2.2 Prior Efforts and their Limitations
Applying supervised learning to networking problems has been of
interest to the networking community for more than a decade (see
surveys [33, 47] and references therein). These techniques construct
predictive models by learning from a large number of training ex-
amples (i.e., labeled data) but as discussed earlier, the networking
domain lacks in general access to the necessary training data. Simi-
larly, several efforts use unsupervised learning [43] to e.g., detect
anomalies in BGP [25], perform network traffic prediction and di-
agnosis [14, 26–28], or carry out event detection [42]. However,
the problem with unsupervised learning is that not all types of
clustering techniques are suitable for identifying events of interest
in networking data. Among the main reasons for this shortcoming
is the lack of a rigid mathematical definition for outliers and the
data’s fuzzy nature.

NoMoNoise [32], a recently proposed framework for denoising
latency measurements, is most closely related to our work. It relies
on two key ideas to tackle both the data labeling and data fuzziness
problems. The first idea is to use weak supervision to combine
and learn noisy labels from many weak sources to build a pre-
dictive model. Popular forms of weak supervision include distant
supervision [13, 31] and crowd-sourcing with non-expert annota-
tors [38, 48]. NoMoNoise models the joint distribution 𝑃 (𝑥, 𝑙) of
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features from the Internet measurement data 𝑥 and labels 𝑙 (i.e.,
generative modeling) to describe the noise of the labeling functions
and increase the accuracies of the labels, without access to the true
labels. The second idea is that NoMoNoise opens up new possibili-
ties in enhancing the utility of networking data by leveraging the
benefits of both Snorkel [36, 37] and a data programming paradigm
where users can programmatically create lower-quality training
data via simple labeling functions or heuristics (e.g., latencies above
𝜇 + 2𝜎 denotes an outage) to address the data fuzziness problem.

While NoMoNoise is a first step towards democratizing the use
of ML for Internet measurements, it is limited in terms of scale (i.e.,
number of measurements) and is focused only on delay measure-
ments. Further, NoMoNoise lacks capabilities to (a) process and
label diverse networking data at scale, (b) identify and remove bias
lurking in the data, and (c) facilitate collaboration among third-
party researchers via sharing of privacy-preserved metadata and
learning algorithms.

3 EMERGE: A FRAMEWORK TO SUPPORT ML
FOR NETWORKING

To tackle the challenges outlined in § 2, we describe in this section
the design of Emerge that seeks to support efforts to dEmocratize
the use of ML for nEtwoRkinG rEsearch.

3.1 Design of EMERGE
At its core, the Emerge framework is an assembly of existing sys-
tems and consists of three main modules: (a) a module to create
data labels at scale, extending ideas from the NoMoNoise frame-
work [32]; (b) a module to ensure good quality labels (e.g., dealing
with bias in the data); and (c) a module to facilitate low cost (e.g.,
community-based) labeling and sharing effort (in ways that respect
prevailing data privacy concerns, if needed). In this work, we build
an initial prototype of the first module and outline the design steps
for the other two modules, leaving their implementation and evalu-
ation as future work. In particular, assuming that users of Emerge
(e.g., researchers) have ready access to rich network data, we focus
in the following on the problem of how to provide them with a
low-cost, scalable and high-quality methodology for labeling their
data.

The Emerge pipeline shown in Figure 1 includes Snuba [45], a
component for automatic heuristics generation based on a set of
unlabeled data, a set of labeled data, and extracted features from
both sets. It then generates feature combinations and fits a simple
classifier model (e.g., logistic regressor, nearest neighbors, or deci-
sion tree) to each feature combination. Each classifier model will
then assign probabilistic labels to different portions of the unlabeled
data. With this approach, the simple classifiers are able to exploit
different characteristics of the data and assign labels accordingly,
thus alleviating the burden on users to have to write their own la-
beling functions. This approach also addresses the scalability issue
in NoMoNoise, since writing labeling functions requires searching
for the patterns that describe events of interest, and these patterns
are different for different events of interest and different network-
ing data types. As the quantity and diversity of the data increase,
the task of studying the data to find the pattern could become a
labor-intensive endeavor. The simple classifiers in Snuba substitute

the human reasoning involved in searching for these patterns and
assign labels based on these learned patterns.

The Snuba component is implemented without modification
and is independent of NoMoNoise as Snuba can generate its own
probabilistic labels. However, users can opt to connect Snuba to
NoMoNoise’s generative model to produce labels. Also, note that
since Snuba requires its classifiers to learn from feature combi-
nation matrices, we employed tsfresh [16], a time series feature
calculation tool, to obtain the features needed for Snuba. With the
obtained probabilistic labels, Emerge users can train a classifier
model such as LSTM to detect events of interest (e.g., noise, anomaly,
etc.).

Figure 1: EMERGE pipeline.

3.2 Early Promise of EMERGE
Dataset.We use one day’s worth of traceroute measurements from
Caida’s Ark project [10]. The data consists of 1,248,858 traceroutes.
We use scamper’s warts2csv tool [9, 30] to convert the data into
CSV format and extract the round-trip time (RTT) values between
28 source-destination (SD) pairs, amounting to 75,359 total RTT
measurements. Each SD pair contains between 2,000 and 4,000 data
points.

3.2.1 Labeling Data at Scale. We present our preliminary re-
sults on labeling data at scale using Emerge.
Experiment. Our goal is to compare the accuracy of Emerge
against the accuracy achieved by using different naïve methods
that we describe in more detail below. More precisely, for each SD
pair dataset, we perform a manual exploratory analysis to establish
a threshold value with which we label the RTTs as noise (-1) or
good (+1). Since the number of noisy data is almost always smaller
than the good data, we over-sample the minority (noisy) class to
balance the number of samples by generating random values that
are greater than the threshold and adding them to the original data.
This way we ensure that our classifier component has abundant
good and bad examples to learn from.

To prepare the input for Snuba, we use tsfresh to calculate the
statistical features of the data. We choose eight features: length,
maximum, minimum, mean, median, standard deviation, sum, and
variance. Next, for each SD pair dataset, we partition the data into
training, validation, and test sets. We take 500 data points to be our
test set and then take 20% of the remaining data to be our validation
set. The rest becomes our training set. The validation and test sets
become our labeled data while the train set becomes our unlabeled
data. Our generative model component will produce probabilistic
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training labels and these are the labels we use in our discriminative
model component. Since the temporal order of the RTT values in
our data matters, we choose LSTM as our discriminative model.

When we compare the discriminative model accuracy of Emerge
against the accuracy of the different considered naïve methods, we
use the same training set to learn the LSTMmodel and test it on the
validation and test sets. We fine-tuned our LSTM hyperparameters
by trying out various numbers of epochs, batch sizes, number of
LSTM units, and learning rates. We apply L2, dropout, and early
stopping regularization to avoid overfitting (see Appendix B). While
Emerge uses our generated probabilistic training labels, the consid-
ered naïve methods employ a variety of different heuristics (e.g., 𝜇,
𝜇 + 1𝜎 , 𝜇 + 2𝜎 , 𝜇 + 3𝜎 , KMeans, local outlier factor (LOF), elliptic
envelope (EE), overly robust covariance estimation (ORCE), and
isolation forest (IF)) to assign labels to the training set. That is, our
naïve method 1 uses 𝜇 as threshold to label data, naïve method 2
uses KMeans to label data, etc. Note that we establish the threshold
value for each considered naïve method beforewe augment the data.
We do so because adding synthetic noise will alter the statistical
characteristics of the dataset that the naïve methods depend on.

We use F1 scores as our evaluation metrics. The reason for using
this metric is that we are mainly interested in measuring how well
Emerge performs in (a) identifying actual good measurement data
(low false positives, thus high precision), and (b) recognizing as
many good measurement data as possible (low false negative, thus
high recall). Finally, for each SD pair, we compare the performance
of our method against nine different naïve methods and average
the obtained F1 scores across the 28 SD pair datasets.

Figure 2: Average F1 scores of discriminativemodels trained
using Emerge and naive methods.

Results. Figure 2 depicts the average F1 scores produced by the
LSTM models trained using the different naïve labeling methods
and the probabilistic labels generated by Emerge. With an F1 score
of 0.996, Emerge outperforms all the considered naïve methods and
is successful in distinguishing good and noisy measurement data.

Among the naïve labeling methods, 𝜇 results in the lowest F1
score of 0.929, while LOF achieves the highest score with 0.972.
The 𝜇 method’s lowest F1 score comes as no surprise. Given that
the recall score captures the number of false negatives, which in
our case corresponds to the number of RTT values that are falsely
considered as noise, using 𝜇 as threshold to determine noisy mea-
surements leads to a high number of (falsely) predicted noisy data.
As the value of false negative increases, the recall score decreases,

leading to a lower F1 score. On the other hand, LOF proves to be
the best naïve technique to separate good data from noisy data.
By considering the local density of data points and comparing this
density to that of their neighbors, LOF can detect data points that
are “obviously different", which may fit the characteristics of ac-
tual noisy data points. Emerge, however, still outperforms LOF. By
employing different classifiers to learn from the various feature
combinations of the data, Emerge is able to learn from different
segments of the data that may have different noise characteristics.
With this approach, Emerge avoids making the mistake of applying
a heuristic that may have been based on previous assumptions or
bias in the data.

3.2.2 Supporting Privacy-preservingCollaborations. The
twin goals of this experiment are to (a) facilitate sharing of infor-
mation among researchers in a privacy-preserving fashion and (b)
reduce the cost of labeling by pooling available resources. Impor-
tantly, Emerge guarantees privacy: only the metadata that provide
sufficiently detailed descriptions of the data (e.g., labeling functions
and heuristics) but no raw data, and no ML models are shared in
the process of enhancing the accuracy of labeling.
Experiment.Weuse the same 28 SD pairs considered earlier to con-
duct our experiment. Using the NoMoNoise component in Emerge,
we write labeling functions using different heuristics and combine
the heuristics to see if combining them will boost the F1 score.
The goal is to show the possible benefits of combining labeling
functions written by different research groups. To illustrate, we
write labeling functions using some of the familiar heuristics listed
in the previous experiment to generate probabilistic labels, train
an LSTM model using these labels, and average the F1 scores. Our
LSTM hyperparameter settings are: 0.001 learning rate, 100 units,
20 epochs, 0.25 dropout rate, and a batch size of 128.
Results. Tables 1, 2, and 3 show the average F1 scores of several
labeling functions and their combinations. From Tables 1 and 2, we
see that combining EE with LOF and 𝜇 + 2𝜎 with EE increases the
score compared to using the different naïve methods individually.
However, combining 𝜇 with EE or with LOF results in scores that
are lower than those obtained when using EE and LOF individually.
Similarly, when combining 𝜇 + 2𝜎 with LOF, the score is 0.810
compared to 0.836 which is the score from using only LOF. Also,
combining 𝜇 + 2𝜎 and EE & LOF is shown to decrease EE & LOF’s
score by 0.052. Interestingly, when we combine 𝜇 + 2𝜎 and EE, we
see an increase of their respective F1 scores, and combining 𝜇, 𝜇+2𝜎 ,
EE, and LOF boosts the F1 score to 0.914.

𝜇 EE LOF 𝜇 + 2𝜎
0.637 0.759 0.836 0.721

Table 1: Average F1 scores (one labeling function).
The fact that one labeling function’s involvement in a combina-

tion of different labeling functions decreases the F1 score of the
combination may indicate certain assumptions that may not fit
the characteristics of the data and can lead to an increase in either
false positives or false negatives. As discussed earlier, using only 𝜇

to distinguish good from noisy data can lead to a high number of
falsely identified noisy data, which negatively affect the F1 score.
This is also accentuated in the results shown in Table 3. There, 𝜇’s
involvement in the EE & LOF combination also drags down EE &
LOF’s combined F1 score of 0.890 to 0.733.
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Another possible reason for F1 score decreases when combining
labeling functions is the number of overlapping labeling functions
in different segments of the data. In such overlapping segments,
multiple labeling functions may disagree with each other. Although
learning from the agreement/disagreement of these labeling func-
tions has been shown to be critical in NoMoNoise [32], it is impor-
tant to note that the number of labeling functions involved plays an
important role. In many machine learning settings, a classifier bene-
fits from a large number of features as these features provide ample
opportunities for learning. Correspondingly, since Emerge learns
from the agreement and disagreement of the labeling functions, the
larger the number of labeling functions, the more learning opportu-
nities exist. This can also explain the increase of the F1 score when
four labeling functions are combined (see Table 3). In this example,
Emerge may have learned from more labeling functions and was
able to correct the mistakes it made when it is only provided with
only three labeling functions.

𝜇 & EE 𝜇 & LOF EE & LOF 𝜇 + 2𝜎 & EE 𝜇 + 2𝜎 & LOF
0.720 0.821 0.890 0.826 0.810

Table 2: Average F1 scores (two labeling functions).

Additionally, labeling function combinations that boost the func-
tions’ individual scores may indicate better coverage of the possibly
diverse noise characteristics in the data. A dataset may contain
subsets that exhibit noise characteristics that are unique to those
subsets and thus require a different approach for separating good
data from noise. The increasingly higher F1 scores we obtain as
we add more labeling functions demonstrate a promising scenario
where collaborative efforts between different research groups, each
contributing with its own set of labeling functions, will (a) improve
the quality of data labeling, (b) reduce the cost of labeling, and (c)
ensure data privacy.

𝜇 & EE & LOF 𝜇 + 2𝜎 & EE & LOF 𝜇 & 𝜇 + 2𝜎 & EE & LOF
0.733 0.838 0.914

Table 3: Average F1 scores (3+ labeling functions).

3.3 Dealing with Hidden Bias in the Data
Motivated by [44], we propose to extend Emerge with multi-task
learning (MTL) to tackle hidden bias in the data via information
sharing between several tasks [15]. Key to MTL is the idea of im-
plicit data augmentation which increases sample size for better
model generalization, which in turn improves bias reduction [11].
While single-task models typically perform well when applied to
the specific problem for which they were designed for (e.g., outage
detection), they often discard information that is not relevant for
the problem at hand but may be potentially useful for other models
(e.g., anomaly detection, noise detection) that are trained on the
same dataset. This drawback of single-task models suggests that
MTL can better generalize than several models, each trained to
perform its own task independently from the other tasks/models.
Further, the single-task modeling approach requires the training
process to be repeated for each task. Since this results in the multi-
plication of training overhead by the number of tasks [29], MTL has
the potential to greatly reduce training time (unless training can
be done in parallel) while maintaining or even improving overall
accuracy. We leave the implementation of MTL for future work.

4 DISCUSSION
This paper barely scratches the surface of the challenges that arise
from the use of ML for networking. For example, creating an end-to-
end pipeline of Emerge and turning it into an effective collaborative
tool (e.g., in the spirit of Binder [21]) requires innovative new ideas
about describing network events in terms of commonly agreed-
upon features or quantifying the “strength" of different data labeling
heuristics. However, the future success of ML for networking will
depend onmore than just ensuring ubiquitous access to voluminous
amounts of labeled data. In particular, to be relevant in practice,
ML for networking will have to develop solutions that are unbiased
(e.g., “fairness") and robust (i.e., “safety") and that network operators
can trust (e.g., “explainability"). Frameworks such as Emerge that
enable the reproducibility of relevant ML research artifacts will be
key to succeeding in this endeavor.
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A RESEARCH REPRODUCIBILITY
The source code of Emerge can be found at https://gitlab.com/onrg/
emerge.

B OVERFITTING AND PERFORMANCE
To avoid the issue of overfitting, we take the following steps.

In the first experiment where we compare the performance of the
naïve methods and our Emerge models, we fine-tune the following
hyperparameters: batch size (16, 32, 64, 128, or 256), number of
epochs (5, 10, 20, 25, or 30), number of LSTM units (32, 64, 128),
and learning rate that we apply on Adam optimizer. To prevent
overfitting, we apply L2 regularization, dropout, and early stopping.
We set our early stopping regularization to monitor the validation
loss. When the model finds that the decrease of validation loss is
less than 0.01, it considers the change as no improvement and waits
for another 5 epochs before stopping. Note that we fine-tune our
models for each naïvely labeled train set and Emerge labeled train
set per each SD pair. We note that the hyperparameter values are
the same in some SD pairs while different in others.

We train our models and test their performance on the validation
set. After fine-tuning the model to avoid overfitting, we select the
hyperparameters used for the models that generate the best F1 score
on the validation set to be the hyperparameters for our models that
will be tested on the test set. On i5-8279U CPU, the execution time
for the training and testing (either on validation or test set) is about
45-60 seconds depending on the number of epochs, batch size for
each heuristic per one SD pair dataset, and thus about 9-10 minutes
for all nine naïve models and our Emerge model for each SD pair
dataset.

In summary, these results demonstrate the fact that Emerge—in
addition to facilitating privacy-preserving collaborations—can provide
good-quality labels at scale (for tens or hundreds of thousands of data
points) within a reasonable period of time.

https://gitlab.com/onrg/emerge
https://gitlab.com/onrg/emerge
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