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Abstract— We propose a neural network approach for solv-
ing high-dimensional optimal control problems. In particular,
we focus on multi-agent control problems with obstacle and
collision avoidance. These problems immediately become high-
dimensional, even for moderate phase-space dimensions per
agent. Our approach fuses the Pontryagin Maximum Principle
and Hamilton-Jacobi-Bellman (HJB) approaches and parame-
terizes the value function with a neural network. Our approach
yields controls in a feedback form for quick calculation and
robustness to moderate disturbances to the system. We train our
model using the objective function and optimality conditions of
the control problem. Therefore, our training algorithm neither
involves a data generation phase nor solutions from another
algorithm. Our model uses empirically effective HJB penalizers
for efficient training. By training on a distribution of initial
states, we ensure the controls’ optimality is achieved on a large
portion of the state-space. Our approach is grid-free and scales
efficiently to dimensions where grids become impractical or
infeasible. We demonstrate our approach’s effectiveness on a
150-dimensional multi-agent problem with obstacles.

I. INTRODUCTION

Optimal control (OC) problems are ubiquitous in pure and
applied mathematics, physics, computer science, engineer-
ing, finance, and elsewhere [1], [2], [3]. Thus, theoretical and
numerical analyses of OC problems have paramount impor-
tance across disciplines. We focus on developing numerical
solution methods for general high-dimensional OC problems.

Two of the most common strategies to solve OC problems
are Pontryagin’s Maximum Principle (PMP) [4] and the
Hamilton-Jacobi-Bellman (HJB) PDE [5] (Sec. II).

PMP is a local solution method because optimal controls
correspond to fixed initial states. Necessary conditions render
an ODE system for the state and adjoint variables and a max-
imum principle relating the adjoint variable with the optimal
control. This approach is grid-free and thus suitable for high-
dimensional problems. However, the aforementioned ODE
system is often challenging to solve due to its forward-
backward structure [6], [7]. Additionally, the OC problem’s
non-convexity renders the possibility of multiple non-optimal
solutions, and additional considerations are necessary, such
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as the differentiability of the value function [3, Theorem
7.3.9]. Unfortunately, these conditions are virtually impos-
sible to enforce or verify numerically. The effects of non-
convexity are especially pronounced in multi-agent collision-
avoidance problems [8, I.A]. For OC problems that are
convex, high-dimensional solvers can be devised via primal-
dual convex optimization methods [9], [10], [11], [12].

Because PMP is a local solution method, shocks or sudden
changes in the system’s initial conditions lead to a new
optimization problem. PMP is unattractive for real-time
applications because the control-search time is vital.

Alternatively, the HJB approach aims at solving the OC
problem for all initial states at once. More precisely, the
value function—also known as the optimal cost-to-go—of
an OC problem is a solution of a suitable HJB PDE. After
computing the value function, we can recover the optimal
control at any state from the value function’s gradient. Such
controls are said to be in feedback form and are especially
useful for real-time applications if calculation-times for the
feedback form are short.

Although effective, HJB equations are challenging to solve
numerically, especially when the state’s dimension d ≥ 4.
First, in a deterministic setup, HJB is a first-order non-linear
equation and generally does not admit smooth solutions.
Second, traditional numerical methods for HJB equations,
such as ENO/WENO [13], rely on grids and therefore suffer
from the curse of dimensionality [5].

We propose a machine learning framework to overcome
the curse of dimensionality by approximating the value
function with a neural network (NN). Our approach is a
fusion of PMP and HJB. Combining the PMP and HJB
approaches, we express the control cost in terms of the value
function and search for an NN approximation that minimizes
this cost on a cloud of initial states. Furthermore, we improve
the NN training by adding HJB residual penalties (Fig. 1),
similar to [14], [15], [16].

Our approach has several advantages. First, it applies
to generic OC problems. Second, we find controls in a
feedback form that is crucial for real-time applications.
Training the NN on a cloud of initial states ensures the
controls’ optimality on a large portion of the state-space.
Consequently, controls are robust to moderate disturbances
or shocks to the system (Fig. 2). Third, our method is grid-
free and suitable for high-dimensional problems. Finally,
our approach incorporates machine learning techniques for
solving large scale optimization problems. As a result, we
are able to solve 150-dimensional OC problems (Sec. V-D).

Applications of deep learning techniques to OC problems
appear in seminal works [17], [18], [19], where the authors
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apply backward stochastic differential equations techniques
to solve high-dimensional stochastic OC problems. In [20],
the authors extend these methods by introducing and analyz-
ing different loss functions. These works consider stochastic
problems with fixed initial states. We focus on finding
solutions to deterministic problems that are robust to shocks.

In [21], the authors first generate optimal controls for a
sample of initial states then train an NN to fit this data. The
data generation phase is performed by a different algorithm
[7]. A similar approach exists in [8] with a different data
generation algorithm [22]. In contrast, our approach directly
minimizes the cost function without a generation phase.

Our work is based on the same framework as [23], which
approximates the feedback control with an NN then opti-
mizes the control cost on a cloud of initial states and provides
a theoretical analysis of OC solutions via NN approxima-
tions. We extend the framework to finite horizon problems
with non-quadratic costs and parameterize the value function
instead of the feedback function. This latter approach en-
ables enforcing HJB conditions, which empirically improves
numerical performance for solving high-dimensional mean-
field games, mean-field control, and normalizing flows [14],
[15], [16]. We demonstrate similar advantages in the OC
problems considered in this work.

We consider deterministic OC problems with a particular
emphasis on centrally controlled multi-agent systems. For n
agents in an q-dimensional space we obtain a d = n · q-
dimensional OC problem. Thus, even moderate n, q yield
problems that are out of reach for traditional HJB solvers.

We demonstrate the effectiveness of our method by solving
a 50-agent control problem in a 3-dimensional space with ob-
stacle and collision avoidance (Fig. 3). The overall dimension
of this problem is d=150. Additionally, we demonstrate our
model’s robustness to shocks and the effect of the penalizers
on a 4-dimensional corridor problem.

II. PRELIMINARIES

Here, we briefly recall relevant OC theory. We refer to [1,
Chapters I, II] for a detailed exposition. We are interested
in deterministic fixed finite time-horizon problems. Consider
the time-horizon [0, T ] and the system’s dynamics given by

∂sz(s) = f(s, z(s),u(s)), t ≤ s ≤ T, z(t) = x. (1)

Here, z ∈ Rd describes the state of the system, and u ∈ U ⊂
Ra describes the controls. Hence, f : [0, T ]×Rd×U → Rd

models the evolution of the state z : [t, T ]→ Rd in response
to the application of a control u : [t, T ]→ U for initial time
t ∈ [0, T ] and initial state x. We assume that f, L,G,U
are sufficiently regular (see [1, Sec. I.3, I.8-9] for a list of
assumptions). Next, assume that the control u yields cost

Jt,x[u] = G
(
z(T )

)
+

∫ T

t

L
(
s, z(s),u(s)

)
ds, (2)

where L : [0, T ] × Rd × U → R is the running cost or
the Lagrangian, and G : Rd → R is the terminal cost. OC
problems seek the control that incurs the minimal cost; i.e.,

Φ(t,x) = inf
u
Jt,x[u], (3)

where Φ is called the value function. A solution u∗ of
(3) is called an optimal control. Accordingly, the z∗ which
corresponds to u∗ is called an optimal trajectory.

Next, the Hamiltonian of the system is given by

H(t,x,p) = sup
u∈U
{−p · f(t,x,u)− L(t,x,u)} , (4)

where p is the adjoint state. The following is a standing
assumption throughout the paper.

Standing Assumption 1: Assume that (4) admits a unique
continuous closed-form solution u∗(t,x,p).
Under this assumption and denoting ∇ as the gradient with
respect to the state variables only, one has that

L(t,x,u∗(t,x,p)) = p · ∇H(t,x,p)−H(t,x,p). (5)

The PMP [4] states that for a solution (z∗,u∗) of (3) there
exist p : [0, T ]→ Rd such that, for t ≤ s ≤ T ,

∂sz
∗(s) = −∇pH

(
s, z∗(s),p(s)

)
,

∂sp(s) = ∇H
(
s, z∗(s),p(s)

)
,

z∗(t) = x, p(T ) = ∇G
(
z∗(T )

)
,

u∗(s) = u∗
(
s, z∗(s),p(s)

)
.

(6)

The HJB PDE, also known as the dynamic programming
equation, corresponding to (3) is given by

− ∂tΦ(t,x) +H
(
t,x,∇Φ(t,x)

)
= 0, Φ(T,x) = G(x),

(7)
for (t,x) ∈ [0, T ]×Rd. The cornerstone of the HJB approach
is that the value function Φ is the unique viscosity solution
of (7). Moreover, p in (6) and Φ are related by

p(s) = ∇Φ
(
s, z∗(s)

)
, t < s ≤ T. (8)

Thus, the optimal control u∗ is given in a feedback form

u∗(s) = u∗
(
s, z∗(s),∇Φ

(
s, z∗(s)

))
, t < s ≤ T, (9)

and z∗ evolves according to{
∂sz
∗(s) = −∇pH

(
s, z∗(s),∇Φ

(
s, z∗(s)

))
,

z∗(t) = x.
(10)

III. MACHINE LEARNING APPROACH

We derive a machine learning formulation of (3) by
leveraging the advantages of both the PMP and the HJB
approaches. In particular, we directly optimize (2) subject
to (1). Rather than solving for the controls, we first postulate
the dependence of (z,u) on Φ according to (9), (10) and
parameterize Φ by an NN. We also add penalizers that punish
deviations from (7), similar to [14], [16].

A. Main formulation

Denote the control variable corresponding to initial posi-
tion x ∈ Rd at time t=0 by ux : [0, T ] → U . And denote
the trajectory corresponding to initial data (0,x) by zx; i.e.,

∂szx(s) = f(s, zx(s),ux(s)), 0 ≤ s ≤ T, zx(0) = x.

Furthermore, fix a ρ0 ∈ P(Rd) and consider the problem

inf
{ux}

∫
Rd

J0,x[ux]ρ0(x) dx = inf
{ux}

Ex∼ρ0J0,x[ux]. (11)



Note that {u∗x} solves (11) if and only if u∗x is an optimal
control for ρ0 almost everywhere x ∈ Rd. Thus, solving
(3) with initial points x in some domain Ω is equivalent
to solving (11) for ρ0 ∈ P(Rd) such that supp(ρ0)=Ω.
Formulation (11) is employed in mean-field game and control
systems [14], [15] and in stabilization problems [23].

Postulating (9), (10), we arrive at our main formulation

inf
Φ

Ex∼ρ0

(
G
(
zx(T )

)
+

∫ T

0

L
(
s, zx(s),ux(s)

)
ds

)

s.t.


ux(s) = u∗

(
s, zx(s),∇Φ

(
s, zx(s)

))
,

∂szx(s) = −∇pH
(
s, zx(s),∇Φ

(
s, zx(s)

))
,

zx(0) = x.

(12)

In each OC problem, we set up and solve (12), where f ,
L, and thus H vary with the problem. The L contains terms
that reflect the features of the problem (Sec. III-D).

We approximate Φ(·) by an NN, Φ(·; θ) (Sec. IV), and turn
(12) into a finite-dimensional optimization over the weights
θ. For brevity, we often omit Φ’s explicit dependence on θ.

B. Adding HJB penalizers

We introduce three penalty terms cHJt,x, cHJfin,x, and
cHJgrad,x derived from the HJB PDE (7) as follows:

cHJt,x(t) =

∫ t

0

∣∣∂sΦ(s, zx(s); θ
)

−H
(
s, zx(s),∇Φ(s, zx(s); θ)

)∣∣ds
cHJfin,x =|Φ(T, zx(T );θ)−G(zx(T ))|

cHJgrad,x =|∇Φ(T, zx(T ); θ)−∇G(zx(T ))|.

(13)

The HJt penalizer arises from the first equation in (7),
whereas HJfin and HJgrad are direct results of the final-
time condition in (7) and its gradient, respectively. Penalizers
prove helpful in training NNs for solving problems similar
to (12) [14], [15], [16], [24]. They improve the training
convergence (Sec. III-C) without altering the solution of (12).

Adding cHJt,x, cHJfin,x, cHJgrad,x to (12) and rewriting the
time-integral in terms of ODE constraints, we obtain

min
θ

Ex∼ρ0
(
`x(T ) +G(zx(T )) + β1cHJt,x(T )

+β2cHJfin,x + β3cHJgrad,x

)
,

(14)

subject to

∂s

 zx(s)

`x(s)

cHJt,x(s)

 =

−∇pH(s, zx(s),∇Φ(s, zx(s); θ))

Lx(s)

Rx(s)

 ,

(15)

initialized with zx(0) = x and `x(0) = cHJt,x(0) = 0, and

Lx(s) =∇Φ
(
s, zx(s); θ

)
· ∇pH

(
s, zx(s),∇Φ(s, zx(s); θ)

)
−H

(
s, zx(s),∇Φ(s, zx(s); θ)

)
Rx(s) =|∂sΦ(s, zx(s); θ)−H

(
s, zx(s),∇Φ(s, zx(s); θ)

)
|.

We note that reformulating the Lagrangian Lx(s) uses (5).
The objective function thus contains the accumulated

running cost `x(T ), the HJB penalty along the trajecto-
ries cHJt,x(T ), the final-time HJB penalty cHJfin,x, and
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Fig. 1: We compare the validation values for models trained
with different penalizers. Using the HJB penalizers leads to
quick convergence and a low G value. Each curve is the
average of three training instances.

the transversality penalty cHJgrad,x. The penalty multipliers
β1, β2, β3 > 0 are hyperparameters of the model (Sec. IV).

C. The effect of the HJB penalizers

We experimentally assess the effectiveness of the penaliz-
ers cHJt, cHJfin, cHJgrad. To this end, we define six models
(various combinations of the three HJB penalizers and one
with weight decay) and train each on the corridor problem
(Sec. V-B). Using the HJB penalizers results in the quicker
model convergence on a hold-out validation set (Fig. 1).

HJt : We enforce the PDE (7) describing the time
derivative of Φ along the trajectories. Including this penalizer
improves regularity and reduces the necessary number of
time steps when solving the dynamics [14], [15], [16], [25].

HJfin : We enforce the final-time condition of the
PDE (7). The inclusion of this penalizer helps the network
achieve the target [14]. Experimentally, using HJfin corre-
lates with a slightly lower G value (Fig. 1).

HJgrad : We enforce the tranversality condition
∇Φ(T, z(T ))=∇G(z(T )), ∀z, a consequence of the
final-time HJB condition (7). Numerically, all conditions
are enforced on a finite sample set. Therefore, higher-order
regularization may help the generalization; i.e., achieving a
better match of Φ(T, ·) and G for samples not used during
training (the hold-out validation set). We observe the latter
experimentally; using HJgrad instead of HJfin results in
lower G (Fig. 1). [21] similarly enforces ∇Φ values.

D. Lagrangian for Obstacle and Collision Avoidance

For multi-agent problems, the Lagrangian consists of three
terms: an energy term E : U → R penalizing how much
the agents travel, an obstacle term Q : Rd → R penalizing
agents at certain spatial locations (i.e., a terrain function), and



an interaction term W : Rd → R penalizing the proximity
among agents (i.e, collision avoidance).

The n agents have initial states x1, . . . , xn ∈ Rq . For
initial joint-state x = (x1, . . . , xn) ∈ Rd with d = q · n, we
represent the joint-state zx ∈ Rd at time t as

zx(t) = (zx1
(t), zx2

(t), . . . , zxn
(t)), (16)

where zxi
∈ Rq is the ith agent’s state. The control follows

ux(t) = (ux1
(t), ux2

(t), . . . , uxn
(t)). (17)

As a result, we define the Lagrangian as

L
(
t, zx,ux

)
= E

(
ux
)

+ α2Q
(
zx
)

+ α3W
(
zx
)

=
n∑
i=1

Ei
(
uxi

)
+ α2

n∑
i=1

Qi
(
zxi

)
+ α3

∑
j 6=i

Wij

(
zxi
, zxj

)
,

(18)

where we omit the dependence on t for brevity. The scalars
α2, α3 calibrate the magnitude (relative to E) of the penal-
ization of the obstacle and interactions, respectively.

IV. IMPLEMENTATION

We parameterize the value function as

Φ(s; θ) = w>N(s; θN ) +
1

2
s>(A>A)s+ b>s+ c,

where θ = (w,θN ,A, b, c).
(19)

The inputs s=(x, t) ∈ Rd+1 correspond to space-time,
N(s; θN ) : Rd+1→Rm is an NN, and θ contains trainable
weights: w ∈ Rm, θN ∈ Rp, A ∈ Rγ×(d+1), b ∈ Rd+1,
c∈R, where rank γ= min(10, d) limits the number of pa-
rameters in A>A. Here, A, b, and c model quadratic poten-
tials, i.e., linear dynamics; N models nonlinear dynamics.

In our experiments, for N , we use a simple two-layer
residual neural network (ResNet) [26]

a0 = σ(K0s+ b0)

N(s; θN ) = a0 + σ(K1a0 + b1),
(20)

for θN=(K0,K1, b0, b1) where K0 ∈ Rm×(d+1), K1 ∈
Rm×m, and b0, b1 ∈ Rm. We use the element-wise nonlin-
earity σ(x)= log(exp(x) + exp(−x)), the antiderivative of
hyperbolic tangent, i.e., σ′(x)= tanh(x) [14], [16].

We solve the ODE-constrained optimization problem (14)
using the discretize-then-optimize approach [27], [28], where
we define a discretization of the ODE, then optimize on
that discretization. The model’s forward pass uses a Runge-
Kutta 4 integrator with nt time steps to approximate the con-
straints (15). The objective function is then computed, and
automatic differentiation [29] calculates the gradient of the
objective function with respect to θ. We use ADAM [30], a
gradient-based stochastic method with momentum, to update
the parameters θ. We iterate this process a selected number of
times. For the learning rate (step size) provided to ADAM,
we follow a piece-wise constant decay schedule, e.g., we
divide the learning rate by 10 every 800 iterations (Fig. 1).

The number of time steps nt is selected a priori as a model
hyperparameter. Large nt leads to high computation and
training time while reducing error; meanwhile, too small nt

leads to overfitting to a refinement of the time discretization
of the trajectories. To avoid overfitting, we use more time
steps for the hold-out validation set. For the corridor problem
(Sec. V-B), we use nt=20 for training and nt=50 for
validation (Fig. 2a). For the swarm problem (Sec. V-D), we
use nt=26 for training and nt=80 for validation (Fig. 3).
Training on a single NVIDIA Quadro RTX 8000 GPU
requires about ten minutes for the corridor problem (d=4)
and less than one hour for the swarm problem (d=150).

Other hyperparameters include the width of the ResNet
m and the multipliers β1, β2, β3. In contrast, some multi-
pliers are inherent to the OC problem—e.g., α1, α2, α3—
and are used for both the baseline and NN. Our Python
implementation with all tuned hyperparameters is available
at https://github.com/donken/NeuralOC.

V. NUMERICAL EXPERIMENTS

We present a comparable baseline approach and solve two
multi-agent OC problems of dimensions 4 and 150.

A. Baseline: Discrete Optimization for a Single Initial State

We provide a comparable local solution method that solves
the OC problem for a fixed initial state z(0) = x0. Applying
forward Euler to the state equation and a midpoint rule to
the integrals, we obtain the discrete optimization problem

min
{u(k)}

G
(
z(nt)

)
+ h

nt−1∑
k=0

L
(
s(k), z(k),u(k)

)
s.t. z(k+1) = z(k) + h f

(
s(k), z(k),u(k)

)
,

(21)

where h=T/nt. We use T=1 and nt=50 and solve (21)
using standard nonlinear programming techniques.

B. Corridor Problem

We design a four-dimensional problem in which two
agents attempt to reach fixed targets on the other side of
two hills. Suppose the agents with radius r=0.5 start at
x1=[−2,−2]> and x2=[2,−2]> with targets y1=[2, 2]> and
y2=[−2, 2]>. Thus, the initial and target joint-states are
x0=[−2,−2, 2,−2]> and y=[2, 2,−2, 2]>, respectively. We
sample from ρ0, which is a Gaussian centered at x0 with an
identity covariance. These sampled initial positions form the
training set X . We sample again to create the validation set.

The obstacles are defined by the spatio-temporal cost
function Qi, which we define in this experiment as the sum
of four Gaussians. The energy terms are given by

Ei
(
uxi

)
=

1

2
‖uxi‖2, (22)

and the dynamics are given by f(t,x,u) = u; the controls
are the velocities. We model interactions via

Wij(zxi
, zxj

) =

exp

(
−‖zxi

−zxj
‖22

2r2

)
, ‖zxi

−zxj
‖2 < 2r,

0, otherwise.
(23)

for agents with radius r. For terminal costs, we choose

G
(
zx(T )

)
=
α1

2
‖zx(T )− y‖2. (24)

https://github.com/donken/NeuralOC
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Fig. 2: Corridor problem. The NN handles a shock ξ at time t=0.1 (depicted with red arrows) along the trajectory.
Accompanying videos are available at https://imgur.com/a/HWqlIot.

We select multipliers α1=100, α2=10, 000, and α3=300.
The baseline and the NN solve the problem with compa-

rable trajectories (Fig. 2a) and accuracy (Table I). The NN
achieves a marginally worse ` value but slightly better G
value (Table I). We attribute the G improvement to the final-
time HJB penalizers (Fig. 1).

C. Shocks

We observe that approximating the value function leads to
a shock-robust model. Since the controls are in the feedback
form ∂sz = −∇pH(s, z,∇Φ(s, z)), the model can quickly
calculate updated trajectories despite shocks to the system.
As an example, we consider a shock ξ ∈ Rd (implemented
as a random shift) to the system at time t=0.1 when solving
the corridor problem for t ∈ [0, T ] (Fig. 2).

Our method is designed to handle minor shocks that stay
within the space of trajectories of the initial cloud about x0.
Our model computes a trajectory to y for many initial points.
Therefore, for point x̃ ∈ X , the model provides dynamics
f(t, zx̃(t),ux̃(t)) before the shock. After the shock, the state
picks up and follows the trajectory of some other point x̂ ∈
X (Fig. 2b). Thus, the total trajectory has two portions

zx̃(0.1) =

∫ 0.1

0

f
(
t, zx̃(t),ux̃(t)

)
dt, zx̃(0) = x̃, and

zx̂(1) =

∫ 1

0.1

f
(
t, zx̂(t),ux̂(t)

)
dt, zx̂(0.1) = zx̃(0.1) + ξ,

before and after the shock, respectively. A minor shock
can thus be categorized as switching from one trajectory to
another. (Fig. 2b). The NN and baseline results of the control
problem along t=[0.1, 1] are similar (Table I).

Interestingly, our model extends outside the training region
(Fig. 2c). Although the vast majority of NNs cannot extrap-
olate, our NN still solves the control problem after a major
shock, demonstrating some extrapolation capabilities. We
note that the NN solves the original problem for x0 to near
optimality. However, after such a large shock, the NN solves
the control problem, but sub-optimally. In our example, we
compare the NN’s solution (Fig. 2c) with the baseline’s

TABLE I: Comparison for single instance x0.

Scenario Method `+G ` G

no shocks NN 62.19 61.98 0.21
t ∈ [0, 1] Baseline 61.33 61.02 0.31

after shock |ξ| = 0.94 NN 60.54 60.34 0.20
t ∈ [0.1, 1] Baseline 59.79 59.46 0.33

after shock |ξ| = 6.2 NN 151.67 150.63 1.03
t ∈ [0.1, 1] Baseline 71.77 71.22 0.55

solution for t=[0.1, 1] (Fig. 2d). The NN learned a solution
where agent 2 passes through the corridor before agent
1. After the major shock, the NN applies these dynamics
(Fig. 2c), while the baseline finds a more optimal solution
(Fig. 2d). The NN is roughly 100% suboptimal (Table I).

We attribute the shock robustness to the NN parameteriza-
tion of the global value function. Experimentally, the shock
robustness of our model (Fig. 2) does not noticeably differ
from a model trained without penalization. Since the NN is
trained prior and offline, it handles shocks in real-time. In
contrast, methods that solve for a single trajectory—e.g., the
baseline—must pause to recompute following a shock.

D. Swarm Trajectory Planning

We demonstrate the high-dimensional capabilities of our
model by solving a swarm trajectory planning problem in
the spirit of [22]. The swarm problem contains 50 three-
dimensional agents that fly from initial to target positions
while avoiding each other and obstacles. We construct Qi
to model rectangular prism obstacles and use (22), (23),
and (24) for energy, interaction, and terminal costs. The NN
guides all agents around the obstacles (Fig. 3). Naturally, if
the time discretization is too coarse (small nt), the model
may simulate collisions solely due to inaccurate integration.
In validation, we see that the agents avoid the obstacles and
each other by observing values for Q and W are exactly 0.

VI. CONCLUSION AND OUTLOOK

We formulate and demonstrate an efficient NN approach
for solving high-dimensional OC problems. Our method

https://imgur.com/a/HWqlIot


Fig. 3: Swarm Trajectory Planning for 50 agents in R3.

aims at computing the optimal control in feedback form in
the relevant subset of the space-time domain. It combines
the high-dimensional scalability from PMP and the global
nature from HJB approaches. Using a numerical example,
we demonstrate that the obtained feedback form generalizes
outside the training space, which allows the agents to react to
unforeseen events such as shocks. Our future endeavors relate
to further experimentation of our method on OC problems
with more involved dynamics and blending our method
(trained prior) with distributed approaches in deployment.

ACKNOWLEDGMENT

We thank Reza Karimi for assisting with figure creation.

REFERENCES

[1] W. H. Fleming and H. M. Soner, Controlled Markov Processes and
Viscosity Solutions, 2nd ed., ser. Stochastic Modelling and Applied
Probability. Springer, New York, 2006, vol. 25.

[2] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solu-
tions of Hamilton-Jacobi-Bellman Equations, ser. Systems & Control:
Foundations & Applications. Boston, MA: Birkhäuser Boston, Inc.,
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