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I. INTRODUCTION

Understanding HPC application I/O behavior is an important
task for improving performance. To aid in improving this
understanding, we have created a publicly available dataset
of 1/0 traces of 14 HPC applications that includes records
of the layered I/O including HDF5, MPI-IO and POSIX.
We have made our dataset public so that it can be used
repeatedly by researchers to perform different analysis tasks
with the goal of optimizing I/O performance or designing
more efficient I/O libraries and file systems. In this work,
we give background information about our I/O trace dataset
along with some example analysis. Our traces are available at
https://doi.org/10.6075/J0Z899X4.
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Fig. 1. Overlapping Accesses of NWChem

II. DATASET

The first release of our dataset includes I/O traces from
14 HPC applications spanning a variety of domains. Those
applications perform I/O using POSIX, MPI-I/O and other
higher level libraries such as HDFS, NetCDF, Silo and ADIOS.
We utilized the multi-level I/O tracing tool Recorder [1] to
generate the traces from those applications. The trace records
include entry/exit time stamps, function name, and all function
parameters, except the data buffer. The detailed traces enable
I/O researchers to perform useful analysis such as identifying
access patterns, detecting conflicting accesses, etc.

For example, Figure 1 shows the accesses of an in-
ternal database file in NWChem throughout the computa-
tion. The accesses exhibited both read-after-write and write-
after-write patterns, which suggest that local caches maybe
helpful. Figure 2 shows the count of unique write sizes
observed in FLASH with independent I/O. As can been
seen, there are a large number of small writes (e.g., 512
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Fig. 2. Write sizes of FLASH using independent I/O
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Fig. 3. Most expensive functions of FLASH using collective I/O.

bytes) that could potentially hurt the performance. Using
collective I/O significantly reduces the number of small
writes (figure not shown due to space limit) but also intro-
duces additional communication cost as suggested in Fig-
ure 3. In the figure, MPI_File_write_at_all () and
MPI_File_write_at () spend in total of 30 seconds
whereas write () takes only about 7 seconds.

III. FUTURE WORK

The current traces of each application were generated from
one or a few configuration runs. We plan to include more
configurations (especially those used in real scenarios) and
also more applications in our future work.
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