I/O Traces of HPC Applications

Chen Wang!
chenw5 @illinois.edu

I. INTRODUCTION

Understanding HPC application I/O behavior is an important
task for improving performance. To aid in improving this
understanding, we have created a publicly available dataset
of 1/0 traces of 14 HPC applications that includes records
of the layered I/O including HDF5, MPI-IO and POSIX.
We have made our dataset public so that it can be used
repeatedly by researchers to perform different analysis tasks
with the goal of optimizing I/O performance or designing
more efficient I/O libraries and file systems. In this work,
we give background information about our I/O trace dataset
along with some example analysis. Our traces are available at
https://doi.org/10.6075/J0Z899X4.

h2o_scf.db
1.500e+6 |
N — read
] — write
1.000e+6 |
s
8 |
& |
S |
5.000e+5 -
0.000e+0 i ~
—t Tt
2 4]]

Time
Fig. 1. Overlapping Accesses of NWChem

II. DATASET

The first release of our dataset includes I/O traces from
14 HPC applications spanning a variety of domains. Those
applications perform I/O using POSIX, MPI-I/O and other
higher level libraries such as HDFS, NetCDF, Silo and ADIOS.
We utilized the multi-level I/O tracing tool Recorder [1] to
generate the traces from those applications. The trace records
include entry/exit time stamps, function name, and all function
parameters, except the data buffer. The detailed traces enable
I/O researchers to perform useful analysis such as identifying
access patterns, detecting conflicting accesses, etc.

For example, Figure 1 shows the accesses of an in-
ternal database file in NWChem throughout the computa-
tion. The accesses exhibited both read-after-write and write-
after-write patterns, which suggest that local caches maybe
helpful. Figure 2 shows the count of unique write sizes
observed in FLASH with independent I/O. As can been
seen, there are a large number of small writes (e.g., 512

!University of Illinois at Urbana-Champaign
2Lawrence Livermore National Laboratory

Kathryn Mohror?
kathryn@IInl.gov

Marc Snir!
snir@illinois.edu

270336
10%
3 24576
1004 —

10°3 4

Count

10%2 4 81 1

104 4

1040 <

10 Size
Fig. 2. Write sizes of FLASH using independent I/O

H5Pset_fapl_mpic — |1_|2
MPI_File_set_view | .23
MPI_File_write_at — [li6.54
write — [Hl6.84
H5Fclose — [ll11.91
MPI_File_write_at_all - |G 28
fsync - 2333
MPI_Fie_sync - 3 35
MPI_File_set_size — -M 69
WP|_Bcast — [N 0. 24
HsFiush -+ I 3 .7 4
MPI_File_open — [¢ . 1
HsFereate — I 7 . 1 4
H5Dwaite — I | 2267

MPI_Barrier —

OO @@
MPI_Allreduce — [08.38

Spent Time (Seconds)
Fig. 3. Most expensive functions of FLASH using collective I/O.

bytes) that could potentially hurt the performance. Using
collective I/O significantly reduces the number of small
writes (figure not shown due to space limit) but also intro-
duces additional communication cost as suggested in Fig-
ure 3. In the figure, MPI_File_write_at_all () and
MPI_File_write_at () spend in total of 30 seconds
whereas write () takes only about 7 seconds.

III. FUTURE WORK

The current traces of each application were generated from
one or a few configuration runs. We plan to include more
configurations (especially those used in real scenarios) and
also more applications in our future work.

REFERENCES

[1] C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, “Recorder
2.0: Efficient parallel I/O tracing and analysis,” in 2020 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 1-8, IEEE, 2020.

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344. LLNL-ABS-815154.

