Searching for anisotropic cosmic birefringence with polarization data from SPTpol

```
F. Bianchini, W. L. K. Wu, P. A. R. Ade, A. J. Anderson, J. E. Austermann, J. S. Avva, L. Balkenhol, E. Baxter, J. A. Beall, A. N. Bender, B. A. Benson, L. E. Bleem, J. E. Carlstrom, J. E. Chang, D. Chaubal,
J. A. Beall, A. N. Bender, B. A. Benson, L. E. Bleem, J. E. Caristrom, M. Stark, J. E. Chang, J. E. Caristrom, J. E. Caristrom, J. C. L. Chang, J. P. Chaubal, H. C. Chiang, J. T. L. Chou, R. Citron, C. C. Corbett Moran, T. M. Crawford, A. T. Crites, J. J. T. de Haan, M. A. Dobbs, J. W. Everett, J. Gallicchio, J. E. M. George, A. Gilbert, N. Gupta, N. W. Halversor, J. W. Henning, G. C. Hilton, G. P. Holder, J. L. Holzapfel, J. D. Hrubes, N. Huang, J. Hubmayr, K. D. Irwin, L. Knox, A. T. Lee, J. D. Li, J. A. Lowitz, A. Manzotti, J. D. J. J. McMahon, S. S. Meyer, J. J. M. Millea, L. M. Mocanu, J. Montgomery, A. Nadolski, J. L. Ruhl, B. R. Saliwanchik, N. Novosad, Y. Omori, S. Padirf, J. J. Patil, C. Pryke, C. L. Reichard, J. E. Ruhl, B. R. Saliwanchik, K. K. Schaffer, J. D. Vieira, J. D. Vieira, J. S. Mang, N. Whitehorn, and V. Yefremenko
                               <sup>1</sup>Schoolof Physics, University of Melbourne, Parkville, Victoria 3010, Australia
                        <sup>2</sup>Kavli Institute for CosmologicaPhysics,University of Chicago, 5640 South Ellis Avenue,
                                                               Chicago, Illinois 60637, USA
                                              <sup>3</sup>Cardiff University, Cardiff CF10 3XQ, United Kingdom
                       <sup>4</sup>Fermi National Accelerator Laboratory MS209, P.O. Box 500, Batavia, Illinois 60510, USA
                    <sup>5</sup>NIST Quantum Devices Grouß,25 Broadway Mailcode 817.0\( \)30ulder, Colorado 80305,USA
                               <sup>6</sup>Department ofPhysics,University ofColorado, Boulder, Colorado 80309,USA
                              <sup>7</sup>Departmentof Physics, University of California, Berkeley, California 94720, USA
                 <sup>8</sup>Institute for AstronomyUniversity of Hawai'i, 2680 Woodlawn DriveHonolulu, Hawaii 96822,USA
                                          <sup>9</sup>High Energy Physics DivisionArgonne NationalLaboratory,
                                                 9700 S.Cass AvenueArgonne, Illinois 60439, USA
                                      <sup>10</sup>Departmentof Astronomy and Astrophysics Iniversity of Chicago,
                                               5640 South Ellis AvenueChicago, Illinois 60637, USA
                 <sup>11</sup>Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
                 <sup>12</sup>Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
                 <sup>13</sup>Department of Physics, McGill University, 3600 Rue Universit/pntreal, Quebec H3A 2T8, Canada
                                              <sup>14</sup>Schoolof MathematicsStatistics & Computer Science,
                                                 University of KwaZulu-Natal, Durban, South Africa
                                <sup>15</sup>Departmentof Physics, University of Chicago, Chicago, Illinois 60637, USA
                               <sup>16</sup>University of Chicago, 5640 South Ellis Avenue Chicago, Illinois 60637, USA
                   <sup>17</sup>TAPIR, Walter Burke Institute for Theoretica Physics, California Institute of Technology, 1200 E.
                                                 California Blvd., Pasadena California 91125, USA
                                   <sup>18</sup>California Institute of Technology MS 249-17,1216 E. California Blvd.,
                                                            Pasadena California 91125, USA
                       <sup>19</sup>Physics DivisionLawrence Berkeley Nationalaboratory, Berkeley, California 94720, USA
                  <sup>20</sup>Canadian Institute for Advanced ResearcolFAR Program in Gravity and the Extreme Universe,
                                                          Toronto, Ontario M5G 1Z8, Canada
                                <sup>21</sup>Departmentof Astrophysicaland Planetary Sciences Iniversity of Colorado,
                                                              Boulder, Colorado 80309, USA
                                 <sup>22</sup>Harvey Mudd College301 Platt Blvd., Claremont, California 91711, USA
                                         <sup>23</sup>European Southern Observatork(arl-Schwarzschild-Strasse 2,
                                                        85748 Garching bei MüncherGermany
                                     <sup>24</sup>Astronomy DepartmenUniversity of Illinois at Urbana-Champaign,
                                                 1002 W. Green Street Urbana, Illinois 61801, USA
                                       <sup>25</sup>Departmentof Physics, University of Illinois Urbana-Champaign,
                                                 1110 W. Green Street Urbana, Illinois 61801, USA
                  <sup>26</sup>SLAC NationalAccelerator Laboratory 2575 Sand Hill Road, Menlo Park, California 94025, USA
                  <sup>27</sup>Department ofPhysics,Stanford University,382 Via Pueblo Mall,Stanford,California 94305,USA
                 <sup>28</sup>Departmentof Physics, University of California, One Shields Avenu@avis, California 95616, USA
                              <sup>29</sup>Institut d'Astrophysique de Paris 8 bis boulevard Arago, 75014 Paris, France
                 <sup>30</sup>Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, USA
                                    <sup>31</sup>Dunlap Institute for Astronomy & AstrophysicsIniversity of Toronto,
                                             50 St George Street, Toronto, Ontario M5S 3H4, Canada
```

³²Materials Sciences DivisionArgonne NationalLaboratory, 9700 S.Cass AvenueArgonne, Illinois 60439, USA ³³Kavli Institute for Particle Astrophysics and Cosmologytanford University,452 Lomita Mall, Stanford, California 94305, USA

³⁴Schoolof Physics and AstronomyUniversity of Minnesota,116 Church Stree S.E., Minneapolis, Minnesota 55455 USA

35Physics DepartmentCenter for Education and Research in Cosmology and Astrophysics, Case Western Reserve Universityleveland, Ohio 44106, USA

³⁶Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120, USA ³⁷Liberal Arts DepartmentSchoolof the Art Institute ofChicago,

112 S. Michigan Avenue Chicago, Illinois 60603, USA ³⁸Three-Speed Logidnc., Vancouver British Columbia V6A 2J8 Canada ³⁹Harvard-Smithsonian Center for Astrophysic Garden Street Cambridge, Massachusetts 02138 JSA

⁴⁰Departmentof Astronomy & Astrophysics Iniversity of Toronto, 50 St George Street, Toronto, Ontario M5S 3H4, Canada ⁴¹Departmentof Astronomy, University of Maryland, College Park, Maryland 20742, USA ⁴²Department of Physics and Astronomlyniversity of California,Los AngelesCalifornia 90095,USA

(Received 16 June 2020accepted 17 Augus 2020; published 2 October 2020)

We present search for anisotropic cosmic birefringence in 500 dept southern sky observed at 150 GHz with the SPTpol camera on the South Pole TelescopeWe reconstructa map of cosmic polarization rotation anisotropies using higher-order correlations between the observed cosmic microwave background (CMB) E and B fields. We then measure the angular power spectrum of this map, which is found to be consistent with zero. The nondetection is translated into an upper limit on the amplitude of the scale-invariantcosmic rotation power spectrum, LoL β 1 β 1 β 2 π < 0.10 × 10⁴ rac² (0.033 deg, 95% C.L.). This upper limit can be used to place constraints on the strength of primordial magnetic fields, $B_{1\,\mathrm{Mpc}}$ < 17 nG (95% C.L.), and on the coupling constant of the Chern-Simons electromagnetic term $g_v < 4.0 \times 10^{-2}$ = H₁ (95% C.L.), where His the inflationary Hubble scale. For the first time, we also cross-correlate the CMB temperature fluctuations with the reconstructed rotation angle nassignal expected to be nonvanishing in certain theoretical scenarios, and find no detectable signal. We perform a suite of systematics and consistency checks and find no evidence for contamination.

DOI: 10.1103/PhysRevD.102.083504

I. INTRODUCTION

The exquisite mapping of the cosmic microwave backand upcoming experimental fort in CMB research ([[1], SPT-3G]; [[2], AdvACT]; [[3], BICEP3/Keck Array]; [[4], Simons Array];[[5], CLASS]; [[6], Simons Observatory]; [[7], CMB-S4]). Beyond providing key insights on the physics of the early universe and the large-scale matter distribution, at large (I ≤ 100) and small (I ≥ 100) angular scales, respectively, accurate measurements of the CMB B have been performed in recent/ears using both astrovariety of exotic physics (see, e.g., [8]).

Among the severalphysical processes affecting CMB on the cosmic birefringence (CB), i.e., the in vacuo rotation of 0.3° (e.g., [12]). In the absence of other fore-

fbianchini@unimelb.edu.au

distancesCB naturally arises in differentheoreticalcontexts, which can be roughly broken down into two main ground polarization (CMB) anisotropies, in particular of the classesparity-violating extensions of the standard model odd-parity B modes, is arguably the main driver of the current Depending on the specific details of the physical process sourcing the cosmic polarization rotation, for example, whether the underlying pseudoscalar field is homogenous or not, we can expect a uniform rotation angle α , an anisotropic rotation of across the skyor both.

Measurements of the constant polarization rotation angle modes open new avenues to test fundamental physics and a far, there has been no evidence of a nonzero uniform rotation angle α, with statistical errors of order of 0.2° and photons during their cosmic journey, in this paper we focus ystematic uncertainties dominating the error budget at the of the plane of polarization of photons over cosmological grounds, the isotropic birefringence angle α is completely degenerate with a systematic error in the global orientation of the polarization-sensitive detectors which effectively poses an intrinsic limiting factor in the detection of a

uniform CB. Efforts are currently devoted to devise strategies to improve the calibration forthe polarization angle of CMB experiments, for example, using artificial Crab Nebula, or using the foregrounds themselves as a calibrator (seee.g., [13–16], respectively).

A search for an anisotropic CB effect is complementary as it is not sensitive to a systematic uniform rotation. and well-motivated, as many theoretical models predict fluctuations of the rotation angle over the sky (and many $F_{\mu\nu}\tilde{F}^{\mu\nu}$, through a Chern-Simons interaction models feature a vanishing constantotation). The best upper limits on the amplitude of the scale-invariant anisotropic rotation power spectrum mostly come from measurements of the 4-point correlation functions in the CMB and are currently of the order hð∆ởið=2 ≤ 0.5° [17–21]. Future CMB experiments are projected to improve this limit by orders of magnitude (e.g.[22]).

polarization data taken with the SPTpol camera. We reconstructa map of the rotation angle fluctuations over spectrum. We use this measurement to provide constraint ee Marsh [35] for a review on axionlike fields in cosmology. on the amplitude As of the scale-invariant cosmic rotation beyond previous analyses, we also measure the crosscorrelation between the reconstructed rotation angle map amount of rotation is dictated by the change of the field correlation signal is expected to be nonzero in certain theoretical contexts, including some early dark energy models from the string axiverse that have recently been investigated as a possible solution to the Hubble tension (e.g., [23–25]).

brief overview of the main physicalmechanisms thatere expected to source the cosmic polarization rotationWe then describe the SPTpol datasend simulations used in this analysis in Sec. III, while the details of the cosmic rotation extraction pipeline are provided in Sec.IV. We validate our analysis againstystematic effects in Sed/, while we present our cosmic rotation measurement and discuss its cosmologicalmplications in Sec.VI. Finally, we draw our conclusions in Sed/II.

II. THEORETICAL BACKGROUND

CMB polarization experiments are designed to measure perturbation amplitude [35]. the Q and U Stokes parameters at different locations of the The second main mechanism that might generate cosmic field, αδή P, introduces a phase factor in the observed polarization field ½Q iUð nP, rotating the primordial Q and Ü Stokes parameters according to

$$\frac{1}{2}Q$$
 iUð $\hat{n} \vdash \frac{1}{4} e^{i\alpha\delta} \hat{n} \vdash \frac{1}{4} \hat{Q}$ i $\tilde{U} \circ \hat{n} \vdash : \delta : 1 \vdash \delta : 1$

Equation (2.1) tells us that the rotation of the CMB polarization plane breaks parity and induces an E-to-B

mixing¹ as well as a T-B correlation since acoustic oscillations result in a nonzero C I E. As mentioned in the Introduction, we can broadly split the main physical calibration sources flown on drones or balloons, using themechanisms that could source the cosmic birefringence in two classes: parity-violating extensionsof the standard model and primordial magnetic fields (PMF).

> A general aspect of parity-violating scenariosis the presence of a (nearly) masslessaxionlike pseudoscalar field,² a, that couples to the standard electromagnetic term,

where g, is the coupling constant which has mass-dimension -1 and $\tilde{F}^{\mu\nu}$ is the dual of the electromagnetic tensor. Axionlike particles naturally arise in string theory (e.g., In this paper we search for an anisotropic CB in the CMB6,27]) and have been discussed in the context of inflation (e.g., [28]), quintessence(e.g., [29]), neutrino number asymmetry (e.g.[30]), baryogenesis (e.g[31,32]), early 500 deg of the southern sky and measure its angular powerk energy (e.g., [24,25]), and dark matter (e.g., [33,34]).

The Chern-Simons term in Eq(2.2) affects the propapower spectrum \mathcal{C} (see Sec. II for the definition). Going gation of right- and left-handed photons asymmetrically, giving rise to the phenomenon of birefringence. The integrated over the photon trajectory Δa and is given by

$$\alpha \frac{1}{4} \frac{g_{a\gamma}}{2} \Delta a$$
: $\delta 2:3$

If the pseudoscalafield fluctuates overspace and time, δa $\hat{\sigma}$; tÞ, then anisotropies in the rotation angle α will also The paper is structured as follows. In Sec. II we provide generatedFor example,if a is effectively a massless scalarfield during inflation, the large-scale limit of the expected cosmic rotation power spectrum is [23]

where H is the value of the Hubble parameter during the inflationary era. The inflationary Hubble scale is related to the tensor-to-scalar ratio r through $_lH_4$ $_2\pi M_{bl}$ $_8$ r=8 $^{\sim}$ p filliffilling filling $_4$ r $_8$ r=8 $^{\sim}$ $_4$ r=8 $^{\sim}$ $_4$ r=8 $^{\sim}$ $_4$ r=9 $^{\sim}$ $_4$ Planck mass and A≈ 2.2 × 10⁻⁹ is the primordial scalar

sky, n. The presence of an anisotropic cosmic birefringenoglirefringence is the Faraday rotation that CMB photons can undergo when passing through ionized regions permeated

¹Similarly, a B-to-E mixing also arises butis much smaller because the magnitude of primordia BB is subdominantompared to CE.

²We can think of the axionlike field as a pseudo-Nambu-Goldstone boson (PNGB) of a spontaneously broken global Uč1Þ symmetry.

by a magnetic field [11].A PMF present at and just after This will be used to generate Gaussian realizations of the of-sight n given by (e.g., [36])

$$\alpha$$
 $\frac{Z}{\alpha$ $\frac{3}{16\pi^2 \text{ev}^2}}$ $\frac{Z}{\text{dl} \cdot \underline{\textbf{r}}B};$ $\tilde{\textbf{o}}2:5$

where is the differential optical depth, B is the comoving magnetic field strengthand v is the observed frequency.

observed in stars, low- and high-z galaxies, galaxy clusters, possible scenarios or example, causal PMFs tend to as well as in filaments, and have typical strengths of the dynamo and compression amplification mechanisms are inflation. currently hypothesized to be responsible for the observed magnetic fields, they still require the presence of an initial nonzero magnetic "seed" fieldThe specific details of the generation of such PMFs are still unclear but the main candidates mechanisms include inflationary scenarios, phase transitions, or other physical processes see [39] and referencestherein). An improved constraint on the strength of a PMF would therefore help discriminating among differentearly-universe scenarios.

The simplest proposed inflationary models of magnetoresults in a scale-invariant cosmic rotation power spectrumelescope and camera can be found in [47–50]. [42,43]:

Thanks to its characteristic frequency dependence, Faradeataset and the resulting maps. of birefringence by performing a multifrequency analysis. the 500 deg² field taken between April 30, 2013, and Note that, in addition to the frequency-dependent B mode october 27, 2015. Each observation consistsof timeinduced by Faraday rotation metric perturbations and Lorentz force associated with the PMF also generate vectore filtered and calibrated relative to each other before and tensor B modes with angular spectra whose shape resembles those produced by primordial gravitational waves and lensing (e.g.[44,45]). Considering thatthese [46]), a 4-point function analysis such as the one present (e.g., [52]). TOD are additionally low-pass filtered at a in this paper provides an informative cross-check on the frequency corresponding to an effective multipole of I 1/4 sources of polarized B modes.

above generically predict a scale-invariant power spectrumevel as described in Henning eal. [53]. at large scales (L ≤ 100),and to facilitate a comparison with previous studies, we consider our reference power spectrum to take the following form:

last scattering would induce a rotation angle along the linecosmic birefringence field ôt, as discussed in Sec. III B, and to fit the reconstructed powespectrum in Sec.VI. From Eq. (2.7) it is clear that the ability to map out the largest scales on the sky translates into more stringent constraints on the amplitude of the scale-invariant cosmic rotation power spectrum.

Note that here we only consider the scale-invariant cosmic rotation power spectrum that, despite being the Magnetic fields are ubiquitous in the universe: they are simplest and most widely predicted one, does not cover all have very blue CB power spectra and so do axionlike order of few-to-tens of µG (see [37,38] for reviews). Whilemodels where the symmetry breaking scale is below that of

III. DATA AND SIMULATIONS

In this section we discuss the SPTpodataset, the data processing and the suite of simulated skies used in the analysis.

A. SPTpol 500 deg² data

This work makes use of data at 150 GHz from the genesis predict a scale-invariant PMF (e.g., [40,41]), whic PTpol camera on the South Pole Telescope. Details on the

> The SPTpol survey field is a 500 deg² patch of the southern sky extending from 22to 2h in right ascension (R.A.) and from -65° to -50° in declination. In this analysis we use the same datasemployed in the CMB lensing analysis of Wu et al. [51], and we refer the reader to that work for a detailed description of the data reduction. Here we briefly summarize the main properties of the

rotation can in principle be disentangled from other sources The dataset comprises 3491 independent observations of ordered data (TOD) for each SPTpol bolometer. TOD being binned into maps. For every constant-elevation scan and for every bolometera third- or fifth-order Legendre polynomial (depending on that specific scan observing unaccounted contributions from PMF to B modes can biastrategy) is subtracted from the TOD. This effectively acts future constraints on inflationary gravitational waves (e.g. as a high-pass filter to suppress atmospheric fluctuations 7500 to prevent aliasing at the pixelization scale. Electrical Since the majority of the physical mechanisms discussedoss talk between detectors is also corrected at the TOD

> We calibrate the individual bolometer TOD relative to one another by using a combination of regular observations of the Galactic HII region RCW38 and an internal chopped

We define a scan as a sweep of the telescope from one side of the field to the other.

thermal source [54]. The TOD are finally accumulated into fT; Q; Ug maps using the oblique Lambert azimuthal equal-area projection with square 10 pixels.

A number of corrections are applied to the coadded maps. We deproject the monopole T → P leakage term of the temperature map rescaled by the following leakageWu et al. [51] to create simulations that nclude primary factors, $\varepsilon^Q~1\!\!/_{\!\!4}~0.018$ and $\varepsilon^U~1\!\!/_{\!\!4}~0.008.$ We also apply a global polarization rotation angle of 0.63° 0.04°, calibrated by minimizing the observed TB and EB power spectra [55], to rotate the Q and U maps. Note that by applying this self-calibration technique we lose any sensi-anistropic rotation angle field αμsing HEALPIX [57]. The tivity to a uniform rotation angle α; however, this does notinput cosmology is the best-fit ΛCDM model to the 2015 representan issue for the current analysis since we are interested in the anisotropic component. The final absolutelanck Collaboration etal. [58]. The CMB a_{lm} are then calibration T_{cal} ¼ 0.9088 and polarization efficiency (or polarization calibration factor) $\frac{1}{2}$ 1.06 are obtained by comparing SPTpolmaps to the CMB maps produced by Planck. The polarization efficiency Pcal is further multiplied by a multiplicative factor, 1.01 as determined in Henning et al. [53], to account for potential biases in Planck's polarization efficiency estimate (see [51] for details). The calibrated temperature map is obtained by multiplying the observed map by T while the calibrated polarization maps are obtained by multiplying the Q and maps by $T_{cal} \times P_{cal}$

Three main effects suppress power observed in the maps:

Three main effects suppress power observed in the maps:

processed identically to actual telescope data.

The foreground components are modeled as (or beam), and the pixelization. The two-dimensional (2D)_{realizations of the underlying power spectra. Note that} SPTpol transfer function

is estimated using noise-free maps that have been processed by the mock-observing pipeline while the beam Fibeam is measured using Venus observations as described in Henning et al. 153 pixel window function F₁^{pix} is the 2D Fourier transform of a square I pixel. The total transfer function is thus modeled in Secs. VA and V C, we first investigate potentiaforeas Ftot 1/4 Ftill Fbeam Fpix

edges of the fT; Q; Ug maps. Additionally, we mask bright sources of non-Gaussian foreground emission namely 95 or 150 GHz in the 500 ded field using a 5' radius.

of three coadded and masked maps. Jôn D. Qôn D. Uôn D. at a frequency of 150 GHz. The noise levels calculated in demonstrate the impact of non-Gaussian foregrounds on the 1000 < I < 3000 range are $11.9 \mu K$ -arcmin and 8.5 µK-arcmin for the coadded temperature and polarization maps, respectively.

B. Simulations

This analysis relies heavily on accurate simulations of the microwave sky to calibrate noise biaseso calculate uncertainties, and to place constraints on the amplitude of the scale-invariant cosmic rotation power spectrum (see from the polarization Q and U maps by subtracting a copySec. VI C). We follow the approach of Story et al. [56] and CMB, foregrounds and instrumentahoise.

We start by generating correlated realizationsof the spherical harmonic coefficients, a of the unlensed TE, and B fields, as well as the CMB lensing potential φ and Planck plikHM TT lowTEB lensing dataset transformed to maps and lensed according to the ϕ realizations using Len PIX [59]. After lensing is applied to the CMB maps, the polarization Q and U Stokes parameters are further rotated in reaspace according to Eq. (2.1). The lensed and rotated fT; Q; Ug maps are then transformed back to the harmonic space where the foregrounds are added (see below) and the are multiplied by the instrument beam function Fam. Finally, the beamconvolved an coefficients are evaluated on an equidistant cylindrical projection (ECP) grid before "mock-observing" the realizations using the pointing information from actual observations. The simulated TOD are then filtered and

The foreground components are modeled as Gaussian neglecting the non-Gaussian contribution, especially from polarized Galactic foregroundsnight introduce a bias in the reconstructed cosmicrotation power spectrum. To assesscontaminations induced by non-Gaussian foregrounds we adopt a multifaceted strategy As discussed ground contamination by varying the minimum and maxi-We create a boundary mask that down-weights the noisy E=B-mode multipoles used in the reconstruction. These two tests probe the main expected point sources with flux density greater than 6 mJy at either Galactic dust at low multipoles and polarized point sources at high multipoles. We further test for contamination by The final product of the data processing consists in a set alactic dustusing dedicated non-Gaussian full-sky dust Q=U simulations based on the work by [60]As we will the measured cosmic rotation power spectrum is negligible. Even though the main scope of this work is the analysis of polarization data, we incorporate foreground emissions relevant for both temperature and polarization simulated foregrounds include the thermal and kinematic ⁴Here and throughout the paper we adopt the flat-sky approxogunyaev-Zel'dovich (tSZ and kSZ)effects and emission mation and indicate the wave vector in the 2D Fourier plane without the cosmic infrared background (CIB), radio sources, and Galactic dust. The kSZ and tSZ spectral shapes are 5Atmospheric noise causes a higher noise level in T than in token from the Shaw etal. [61] model, with amplitudes chosen to match the George et al. [62] results,

I while I denotes its magnitude (and is equivalent to the multipole number).

or U.

 $D_{3000}^{kSZbtSZ}$ 1/4 5.66 $\mu\text{K}^2.$ Similarly, the modeling of the clustered and shot-noise CIB components is taken from George_{In} this section we sketch the steps to reconstructhe et al. [62], with D $_{\rm I}^{\rm CIB;cl} \propto 1^{-0.8}$ and corresponding amplitudes of D $_{3000}^{\rm CIB;cl}$ ¼ 3.46 μ K² and D $_{3000}^{\rm CIB;P}$ ¼ 9.16 μ K². The radio source emission is described by D $_{\rm I}^{\rm radio} \propto 1^{-2}$ and for the Poisson-distributed components of the extragalactic polarized emission [63]. The temperature and polarization Galactic dust power is modeled as power laws with D

observed skies through a jackknifing approachWe first take all of the observations, split them in two sets, and thene rotation angle anisotropy field and by properly subtract the coadd of one-half from the coadd of the remaining half. This process is repeated for as many time \$55-68]: as the number of simulations by randomly grouping the observations into two halves.

We generate four sets of simulations:

- (A) 400 lensed simulations:
- (B) 400 lensed and rotated simulations(same lensed primary CMB as set A);
- (C) 100 lensed and rotated simulations with different α as the first 100 simulations in Set B;
- (D) 100 lensed simulations (lensed primary CMB different from set B).

Each of the two sets of 400 skies has the same underlying lensed primary CMB foregrounds and instrumental noise. where φ is the angle of I measured from the Stokes Q Suite A, which we refer to as the "unrotated" simulation sexxis. Note that, at linear order, the cosmic birefringence does not include the effect of cosmic birefringencehile the skies in Suite B, referred to as the "rotated" set are unrotated simulationsconsidered to be our baseline simand estimate its uncertainties. The main source of bias, the rest of the paper. disconnectedN₁^{δ0Þ} bias, is measuredusing the entire unrotated simulation suite. From both the A and B simulation sets, we use 100 skies to estimate the meanfield term $\overline{\alpha}^{MF}$, specifically 50 simulations for each of the two rotation anisotropy estimates α that enter the CB spectrum calculation [see Eq(4.5)]. The remaining 300 simulations are used to calculate the statistical uncertaintiestigate foreground contamination The effect of varying on the measured cosmic rotation power spectrum. An additional set of 100 unrotated skies (setD) is used to estimate the lensing bias term (see Sec. IV B). The as is estimated using a differenset of 100 noiseless rotated skies (set C). These are 100 simulations of primary CMB and are lensed by 100 corresponding differen@aussian realizations of the CMB lensing field. We subsequently split them into two groups and rotate each sky from each group using the same cosmic birefringence fieldiza osee Sec.IV B).

IV. ANALYSIS FRAMEWORK

rotation angle anisotropies from the observed CMB polarization maps and to obtain an unbiased estimate ofheir power spectrum.

A. Anisotropic cosmic birefringence quadratic estimator

Similar to CMB lensing, the cosmic polarization rotation breaks the statistical isotropy of the CMB polarization field, correlating previously independentultipoles across dif-Instrumental noise is then added to the simulated mockferent angular scales on the sky. The induced off-diagonal mode-mode covariance can then be exploited to reconstruct averaging pairs of filtered CMB maps in harmonic space

$$Z$$
 $\overline{\alpha}_L^{EB}$ ¼ $d^2IW_{l;l-L}^{\alpha;EB}$ \overline{E}_l \overline{B}_{l-L} : $\delta 4:1P$

Here, E and B are the inverse variance-filtered E and B fields, I and L are the CMB and cosmic rotation Fourier 100 lensed and rotated simulations with different realizations of the CMB but the same realizations of rotation-induced mode coupling,

$$W_{l:l-l}^{\alpha;EB}$$
 ½ $2C_{l}^{EE}\cos 2\delta \phi - \phi_{l-l}$ Þ; $\delta 4:2$ Þ

weight function $W_{l;l-L}^{\alpha;EB}$ is nearly orthogonal to that of CMB lensing [65]. While in principle other quadratic rotated using Eq. (2.1). The rotated simulations are used toombinations of the CMB fields can be formed to reconvalidate our cosmic rotation quadratic estimator, while the struct the cosmic rotation (see Table 1 from [68] for the full list), here we only use the EB estimator since it provides the ulation set, are used to debias the measured power spectrium estsensitivity. Therefore we drop the EB superscript

The input CMB polarization maps are filtered with an inverse-variance (C) filter to down-weight noisy modes and to increase the sensitivity to the cosmic birefringence. Details about the map filtering can be found in [51,56]. In this analysis we only use CMB modes with it 100 and ilj < 3000, to account for the impact of TOD filtering and the minimum and maximum CMB multipoles on the reconstructed cosmic rotation is discussed in Sea.

The cosmic rotation anisotropies α_I measured with Eq. (4.1) are a biased estimate of the true cosmic rotation anisotropies a and have to be normalized by a response function R_I. This response function is calculated analytically and reads

⁶Note that we ignore the lensing-induced term proportional to C_i^{BB} since its impacthas been shown to be negligible [18,67].

$$Z$$
 $R_L \frac{1}{4} = d^2IW_{I:I-L} W_{I:I-L} F_I^E F_{I-I}^B$; $\delta 4:3 \Rightarrow 0$

where $F_{l}^{X} \% \partial_{t}^{XX} b N_{l}^{XX} b^{1}$ describes the diagonal approximation of the inverse-variance filter applied to the input E and B fields. We estimate the deviations from foregrounds, and noise; hence it is present even in the the ideal responsefunction induced by nonstationary effects such as the survey boundary and anisotropic filter-use the realization-dependentalgorithm introduced in ing by calculating the cross spectrum between the input and mikawa et al. [69] which reduces the sensitivity to birefringence anisotropies reconstructed from the X 1 simulations, R_L^{MC} 1/4 \hat{m}_L^{sim} ð \hat{q}_L^{in} Þ i=hj α_L^{in} j²i. We find that this multiplicative correction is small, № ≤ 5%, and approximately constant across the multipole range considered here. Instead of perturbatively correcting the normalization by applying RMC, we marginalize over a constant rescaling factor of the response function athe likelihood level, as discussed in detailin Sec. VI C. This approach presents some advantages To better see this, consider that the amplitude of the CB power spectrum is degenerate with asimulations with j ¼ i þ 1 (cyclically), multiplicative correction of the estimator's normalization, brackets denote the average over simulations. which we recall is also estimated with a degree of uncertainty itself. While the application of a misestimated a non-negligible correction from the lensing-induced tris-R^{MC} would still yield unbiased results in the null hypothsmall biases on the recovered constraintif there is a non-negligible amount f CB in the data. Therefore by including R_I^{MC} in the likelihood calculation and marginalizing over it we are effectively absorbing our ignorance of the exact R_I^{MC} into the A _{CB} inference, resulting in an unbiased and robustonstraint.

We further subtract small mean-field correction $\overline{\alpha}_{1}^{MF}$, estimated by averaging reconstructed from many input lensed masked CMB simulations,to account for anisotropic features, such as inhomogeneous noise and maskinduced mode coupling, which can mimic the effects of birefringence. The final estimate of the unbiased cosmic rotation map is thus

$$\hat{\alpha}_L \stackrel{1}{\cancel{4}} R_L^{-1} \delta \overline{\alpha}_L - \overline{\alpha}_L^{MF}$$
 $\dot{\Phi}$: $\dot{\Phi}$ 4:4 $\dot{\Phi}$

B. Power spectrum estimation

The raw cosmic rotation powerspectrum $\hat{\mathcal{C}}^{\hat{\alpha}}$ can be measured by correlating the cosmic birefringence map obtained with Eq.(4.4) with itself:

$$C_{L}^{\hat{\alpha}\hat{\alpha}} \equiv f_{\max_{j \in J^{i}} J^{i}}^{-1} h_{L}^{\hat{\alpha}} \hat{\alpha}_{L}^{i}; \qquad \qquad \tilde{o}4:5P$$

rotation power spectrum @ and mustbe corrected for a number of bias terms.

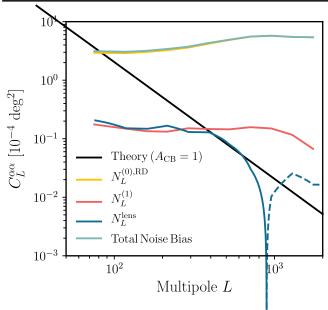
The most significant contribution to the noise budget comes from the disconnected, or Gaussian, blias. This term arises from chance correlations in the primary CMB, absence of CB. To accurately estimate this contribution we the mismatch between the observed and simulated CMB fluctuations and suppresses the covariance between band powers'.

Here \hat{C}_L^{di} denotes a spectrum where one leg^8 of the quadratic estimator is fixed to be the data and the second leg is simulation i, \hat{C}_L^{ij} is the cross spectrum between two and the angle

Even after subtracting the disconnected bias, there exists pectrum [67]. We estimate the lensing bias by subtracting esis case (as is the case here), this could potentially lead to from the power spectrum of a different set of unrotated simulations⁹

$$N_L^{lens} \frac{1}{4} \hat{L}_L^{0i} - N_L^{00b}$$
i: 84:75

From the rotated simulations we further subtract the connected biasknown as Note because its first order in $C_L^{\alpha\alpha}$, which we estimate as follows [56]:


$$N_1^{\delta 1P} \frac{1}{4} h 2\hat{C}_1^{ii} - 2\hat{C}_1^{ij} i;$$
 $\delta 4:8P$

where \hat{C}_L^{ii0} is the power spectrum constructed from two sets of simulations that share the same inputCB field α but different lensed CMB (see Setll B).

The final unbiased estimate of the cosmic rotation power spectrum is thus

We stress once again that $N_L^{\delta 1 P}$ bias term is removed from the rotated simulations butnot from the unrotated ones and, most importantly, not from the data since we are agnostic about the presence of cosmic rotation Figure 1 shows the relative magnitude of the various bias terms in our analysis.

where f_{mask} is the average value of the fourth power of the $\overline{}$ We have omitted the $\alpha\alpha$ superscript clarity. fiducial mask. The cosmic rotation estimator is quadratic in 8 Here "leg" denotes one of the two CMB fields entering the where f_{mask} is the average value of the fourth power of the the CMB fields, and therefore its power spectrum probes quadratic estimator, the four-point correlation function of the CMB anisotro— 9 The standard N_{c}^{00} bias used here can be estimated from

theoreticalscale-invariantosmic rotation power spectrum with unit amplitude (AB 1/4 1) is shown by the black solid lineThe main source of noise, the Gaussian N^D bias, is shown by the approach. The blue solid (dashed) line shows the positive (negative) values of the lensing bias $^{lq}_L\!N^s.$ The sum of $N_l^{\delta 0b;RD}$ and Nens is the total noise bias (cyan solid line) that we subtract from the measured raw power spectrurfiocFor reference, the $N_L^{\delta 1 \text{\tiny IP}} \text{bias}$ (calculated for A $_{\!\!\!\! CB}$ ¼ 1 and not subtracted from the further details.

C. Binned spectrum and amplitude

We measure the cosmic rotation power spectrum in 11 multipole bins in the range $50 \le L \le 2000$. We refer to first estimate the per-bin amplitude by taking the ratio between the debiased cosmic rotation spectrum and the input theory spectrum

$$A_{b} \equiv \frac{\hat{C}_{b}^{\alpha\alpha}}{C_{b}^{\alpha\alpha;theory}}; \qquad \qquad \tilde{0}4:10b$$

where b stands for a binned quantityC_b is the weighted average of Q (either theory or data) within each bin

$$\begin{array}{c} P \\ C_b \frac{1}{4} \frac{P^{L \in b} W_L C_L}{L \in b W_L}; \end{array} \qquad \qquad \mathring{0}4:11P$$

maximize the signalto noise and Varð Ç a b is estimated from unrotated simulations. The overall cosmic rotation amplitude A_{CB} is obtained similarly to the bin-by-bin amplitude but extending the summation overthe whole L range.

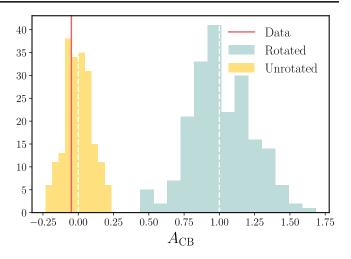
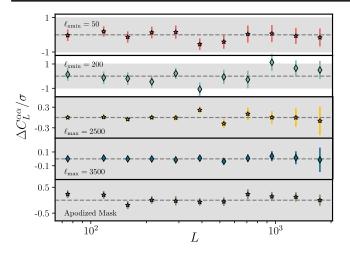


FIG. 2. Distribution of the reconstructed amplitudes Af the scale-invariantosmic rotation power spectrum from unrotated (yellow histogram) and rotated (lightgreen histogram) simula-FIG. 1. Noise biases for the cosmic rotation reconstruction. The is shown by the red verticaline.

Finally, the reported band powers are calculated as the yellow solid line and is estimated with the realization-dependent product of the recovered amplitude and the input theory at the bin center L,

The distribution of the recovered scale-invarianCB observed spectrum) is shown by the red solid line. See the text for spectrum amplitudes from rotated and unrotated simulations is shown in Fig. 2 by the light green and yellow histograms respectively.


V. ANALYSIS VALIDATION

In this section we perform a suite of consistency checks these binned power spectrum values as "band powers." Wand systematic tests to validate the robustness of the results presented here.

A. Consistency checks

For each check we vary one aspect of the analysis and rerun the whole reconstruction pipeline to obtair $\hat{C}_{L_{h}}^{\alpha\alpha;sys}$ from the data and from the set of simulations. To assess the consistency between different nalysis variations we calculate two summary statistics. Specifically, we measure the difference between the band powersobtained from the baseline and modified analyse $\hat{C}_{L_b}^{\alpha\alpha}$ 1/4 $\hat{C}_{L_b}^{\alpha\alpha}$ - $\hat{C}_{L_b}^{\alpha\alpha;sys}$, as well as the corresponding amplitude differenc A_{CB} 1/4 A_{CB} - A_{CB}^{sys}. Both the band power and amplitude differences are then compared to the distributions inferred from the unrotated simulations.

The first metric quantitatively assesses the consistency by calculating the 2xof the data difference spectrum against the mean found in simulations using the variance of the simulation difference spectra $^{2}_{b,sys}$ as the uncertainty:

 $\Delta \hat{C}_{L}^{\alpha\alpha}$ between the baseline/alternate analyses and thencertainties are scaled by the 1σ cosmic rotation uncertainties in that pectations from simulations in these I-cuts tests. specific bin. The grey shaded regions indicate the 1σ uncertaintie Apodization: In the baseline analysis we use boundary shifts are generally only a small fraction of the statistical bandpower uncertainties.

$$\chi^2_{\text{sys}} \frac{1}{4} \frac{\Delta \hat{C}_{\text{L}_b}^{\alpha \alpha} - h \hat{C}_{\text{L}_b}^{\alpha \alpha; \text{sim}} \hat{D}^2}{\sigma^2_{\text{b:sys}}}$$
: ŏ5:1Þ

The probability to exceed (PTE) of the above $\frac{2}{3}$ is then calculated directly from simulations as the percentage of simulations that have a χ^2 larger than that found for the data. In Fig. 3 we provide a visual summary of these bandas well as their respective impact on the second of these bandas well as their respective impact on the second of these bandas well as their respective impact on the second of the sec power-difference tests Note that both the induced shifts and their uncertainties are only a small fraction of the statistical band-power uncertainties.

the analysis variation on the inferred cosmic rotation amplitude ΔA_{CB} to the variance of the simulation difference-amplitudes σδΔΑΡ. In a similar fashion to the band power-difference case PTE is calculated from simuence amplitude with a larger magnitude than ΔA_{CB} for the data.

The χ^2 and PTEs from the differenttests are listed in Table I. As can be seen, the analysis variations produce band powers and cosmic rotation amplitudesconsistent with the ones found in the baseline analysis.

Varying I xmin, I max: By varying the multipole range of the input E- and B-mode maps we can test for the consistency of the band powers as wells for the impact of foregrounds at both large and small scales. We perfore two types of I cuts. On the low-I side, we discard modes with jl $_x$ j < l $_{xmin}$ which are mostly affected by the TOD filtering and Galactic dust. We apply two I xmin cuts, I xmin ¼ 50 and I xmin ¼ 200. The largest shift is observed for the I_{xmin} ½ 200 case where one band power is change

TABLE I. Consistency checks.

Testname	χ^2	PTE	ΔA_{CB} $\sigma \delta \Delta A$ $_{CB}$ Þ	PTE
I _{xmin} ¼ 50	4.1	0.95	0.002 0.033	0.95
I _{xmin} 1/4 200	10.1	0.45	0.001 0.051	0.99
I max 1/4 2500	8.5	0.68	-0.0005 0.006	0.94
I max 1/4 3500	2.5	0.99	-0.0003 0.0013	0.88
Apodization Mask	9.7	0.47	-0.020 0.015	0.23

Results of the consistency checks. For each test we report the χ^2 and PTE of the band-power difference as well as the amplitude difference and the associated PTE.

by ≈1σ, although with an uncertainty of 0.6σ. On the high-I side we adjust the maximum multipole value from 1/4 3000 to 2500 and 3500. This test is sensitive to high-l FIG. 3. Consistency tests summary. The difference band powereground contamination such as from polarized point sources.Overall, we find the data are consistenwith the on the baseline measuremenĈ@f. As can be seen, the induced and point-source masks with a top-hat profile. We test for mask effects by redoing the analysis replacing the baseline mask with one that has been apodized with a cosine profile. Specifically, the cosine taper is set to 10' for the boundary and to 5' for the sources. The induced shiftis consistent with expectations based on simulations.

B. Systematic uncertainties

In this section we estimate the impact of systematic uncertainties on the measured cosmic rotation power spectrum amplitude. The sources of systematic uncertainty, Table II.

Beam uncertainty: To get a sense of the beam-related systematics we perturb the baseline beam profile using the The second metric compares instead the shift induced by certainties Δ peam from Henning et al. [53] and convolve the input data maps by $\delta 1 \not \Delta F_l^{beam} P$ while leaving the simulations untouched. Then, we deconvolve both the data and the simulations with the baseline beam as opposed to F_i^{beam} $\delta 1 \ b \ \Delta F_i^{beam}$ ϵ , effectively testing for a systematic 1σ lations as the percentage of simulations that have a differ underestimation of the beam profile over the entire multipole range. The resulting systematic uncertainty on the CB power spectrum amplitude is 28^m 1/4 0.001, roughly 1% of the statistical uncertainty on A We therefore conclude that the result is robust against beam uncertainty.

Temperature and polarization calibrations: Errors in the temperature and polarization calibrations will propagate to

TABLE II. Systematic uncertainties.

m _{Type}	ΔA _{CB}	ΔA _{CB} =σðÆ _B Þ
Beam uncertainty	0.001	0.01
T=P calibration	-0.003	-0.03
T → P leakage	-0.002	-0.02
Polarization rotation	-0.0003	-0.003

an uncertainty on the CB power spectrum amplituden particular they will affect the reconstructed power spectrum $C_L^{\hat{\alpha}\hat{\alpha}}$ as well as the realization-depende $N_I^{\delta 0D;RD}$ bias. As discussed in Sec. III A, the CMB power measured by SPTpolis calibrated to match the Planck observations to better than 1% accuracyspecifically the 1 σ uncertainties on the temperature and polarization calibration factors are $\overset{\circ}{\circ}$ δT_{cal} $\overset{\circ}{/}$ 0.3% and δP_{cal} $\overset{\circ}{/}$ 0.6%, respectively [53]. To $\delta T_{cal} \frac{1}{4} 0.3\%$ and $\delta P_{cal} \frac{1}{4} 0.6\%$, respectively [53]. To quantify the impact of these uncertainties we scale the Q=U data maps by δ1 þ δΤ_{cal}Þδ1 þ δΡ_{cal}Þ and leave the simulated maps unchanged. The difference in the recovered CB amplitudes is $\Delta \frac{1}{12} \frac{1}{4} = 0.003$, or $= 0.03\sigma$, significantly smaller than the statistical neertainty on A_B.

T → P leakage: A misestimation of the temperature power leaking into the Q and U maps could also cause a the previous systematics we test for this effect by oversubtracting a ^{©=U}-scaled copy of the T map by 1σ (in the and the nominal realization with Gaussian foregrounds. The leakage factors) from the polarization data maps while fixing d-power difference Δ[®] is normalized by the 1σ statistical the rest of the analysis to the baseline caseThe change induced in A_{CB} is negligibly small at $\Delta A_{CB}^{\rightarrow P}$ $\frac{1}{4}$ -0.002.

Polarization angle rotation: As already mentioned in Sec. III A, there is a 6% systematic uncertainty in the global m Planck (we use the GNILC intensity dust map at orientation of the detectors which is measured by minimizing the TB and EB correlations. The anisotropic CB quadratic estimator expected to be insensitive to such case where we apply an extra 6% rotation to the data Q= Wlackbody spectrum for dust with spectral index/\$1.53 maps. We find that A_B shifts by -0.003σ , demonstrating that the bias induced by an offset in the polarization angle baseline simulations introduced in Seltl B. rotation is much smaller than statistical uncertainty on the amplitude of the cosmic rotation power spectrum.

C. Galactic dust contamination

At an observing frequency of 150 GHz,the polarized B-mode signal, especially atlarge angular scaledn this analysis we filter out CMB modes with ili < 100 before we reconstruct the polarization rotation angle anisotropy, and therefore we do notexpectsignificant contamination from Galactic dust, and we checked this in Sec.VA by varying the minimum multipole used in the reconstruction process.

To further validate our analysis, and in particular to address the question about the impact of the non-Gaussian analysis: the cosmic rotation power spectrum, the crossdust signature on the recovered cosmic rotation band powers, we generate full-sky maps of the polarized dust emission following the scheme outlined in Vansyngel et al. llustrative theoretical models. [60]. Briefly, this phenomenological model relates the submillimeter polarized thermal dust emission to the structure of the Galactic magnetic field (GMF) and interstellar matter. The GMF is modeled as the sum of a mean uniform field and a Gaussian random turbulent component 10Our non-Gaussiandust simulations include the E-B with a power-law power spectrum while the structure of

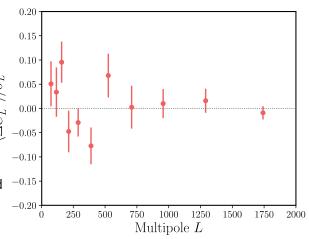


FIG. 4. Impact of non-Gaussian polarized Galactic dust. Mean bias in the estimated power spectrum amplitude. Similar to ifference cosmic rotation power spectrum between simulations that include the non-Gaussian Galactic dust realizations from [60] uncertainty at each multipole bin.

interstellar matter is given by the dust total intensity map 353 GHz from [70]). The dust realizations match the onepoint statistic of the observed polarized fraction over the SPT footprint. The Q=U dust maps produced at 353 GHz uncertainty. We test for this by rerunning the analysis in the subsequently scaled to 150 GHz assuming a modified and temperature of 11/4 19.6 K [71] and then added to our

In Fig. 4 we show the band-power difference between simulations thatinclude non-Gaussian dustmission and the baseline ones, averaged over 70 realizations and normalized to the 1σ statisticaband-power uncertainties. As can be seen, the induced shift at most 0.1σ of the emission from Galactic dust significantly contaminates the statistical uncertainties at each multipole bin while the PTE under the hypothesis of no difference between the Gaussian and non-Gaussianforegrounds cases is about 15%. Therefore we conclude that foreground contamination arising from Galactic dust is not significant.

VI. RESULTS

In this section we present the main results of this correlation with CMB temperature fluctuationshe scaleinvariant CB amplitude as well as the constraints on two

We start by showing in Fig. 5 the map of the reconstructed polarization rotation angle fluctuations α over the SPTpol 500 deg footprint. For visualization purposes the

asymmetry.

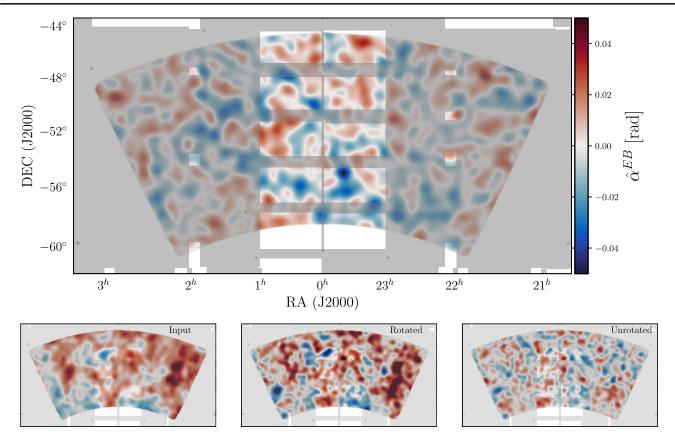
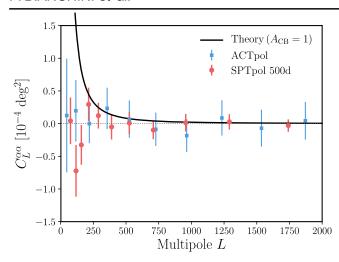


FIG. 5. Top: a map of the reconstructed cosmic birefringence fluctual floors the SPTpol 500 despolarization data using the EB quadratic estimator. The map has been smoothed by a 1 deg FWHM Gaussian beam. Bottom: simulated α maps plotted with the sam color scale as the top panel and smoothed by a 1 deg FWHM Gaussian beam. The left panel shows the input α map generated from a scale-invariant CB power spectrum with A/4 1, the middle panel shows the reconstructed map estimated from the noisy simulation that has been rotated using the input map on the left, and the right panel shows the reconstructed a map obtained from the correspon unrotated simulation. The pattern of the CB fluctuations reconstructed from the data appears similar to what is seen in the unrotated c providing a visual indication that the amplitude of the CB signal n the data must be $A_{\rm CB}\ll 1$.

map has been smoothed with a 1 deg fullwidth at half maximum (FWHM) Gaussian kernel.

A. Power spectrum estimation


SPTpol is presented in Fig. 6. We recover the power spectrum in 11 band powers in the range $50 \le L \le 2000$. The band-power covariance $C_{L_bL_{h^0}}$ is estimated using N_{sim} ¼ 300 simulations of the unrotated skies thathave been fully processed through the reconstruction pipeline (see Sec. III B). The error bars reported are taken from the nondetection. However, we incorporate the effectof diagonal of the covariance matrix. We list in Table III the recovered band powers together with their statistical uncertainties.

Our working hypothesis is that the rotation angle map is zero. We can calculate the chi square under this null hypothesis as $^2_{\text{nVil}}$ $^{1/4}$ $^{-}$ $_{\text{bb}^0}$ $\hat{C}^{\alpha\alpha}_{L_bL_b}$ $\hat{C}^{-1}_{L_bL_b}$ $\hat{C}^{\alpha\alpha}_{L_bL_b}$ \simeq 7.7. The number of simulations with a larger than that of the real data translates to a PTE of 76.5%, and therefore we cannot ruldensity fluctuations for example in the case of a quintesout the no-rotation hypothesis.

Another way to look at this is by measuring the amplitude of the recovered power spectrum with respect to the fiducial model, as discussed in Sec. IV C. We find an amplitude of the scale-invariantCB power spectrum of A_{CB} ¼ -0.049 0.096, where the statistical uncertainty is The cosmic rotation power spectrum measurement from erived from the standard deviation of the CB amplitudes from the unrotated simulations. Finally, note that the results presented in this subsection (as well as in Sec. VI B) do not incorporate the marginalization overthe estimator's normalization correction R^C but, as mentioned in Sec. IVA, this does not bias the power spectrum measurement given $R_{\rm I}^{\rm MC}$ and its uncertainty on the inferred amplitude of the scale-invariant cosmic rotation power spectrum At the likelihood level in Sec. VI C.

B. Cross-correlation with temperature

If the CB-inducing field is correlated with primordial sence field with adiabatic primordial perturbations seeded

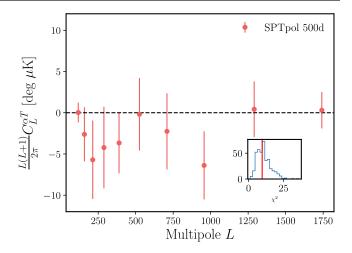


FIG. 6. Anisotropic cosmic rotation power spectrum measured FIG. 7. Cross-powerspectrum between the SPTpol CMB the ACTpol experiment (blue squares) [21]. The black solid line panel shows the distribution of χ^2_{null} from simulations (blue shows the fiducial scale-invariant cosmic rotation powerspectrum assuming A_B ¼ 1 [see Eq. (2.7)]. The PTE under the norotation hypothesis is 76.5% and therefore cannot be rejected. the maps.

from SPTpol500 deg polarization data (red circles) and from temperature fluctuations and the anisotropic CB angle. The inset histogram) and the value from data (red vertical line). The cross power is consistentwith the hypothesis of no signal between

during inflation, then a cross-correlation signal with CMB $C_L^{\alpha T}$ cross-correlation is stillinformative and can provide temperature fluctuations is also expected (e.[23,24]).

rotation angle map α with the CMB temperature fluctuarange $100 \le L \le 2000$. We derive the uncertainties by cross-correlating the simulated temperature and cosmic rotation maps (that have no common cosmological signal) Cosmological and fundamental physics implications and computing the variance for each band power. Similar to the autospectrum case, we compute the junder the nocorrelation hypothesis, finding χ^2_{null} 1/4 9.8. This corresponds to a PTE of 55.8% meaning that, in this case too, we do not reject the null hypothesist addition, the gumber of simulations with an absolute value ofχ_{null} 1/4

 $_{b}$ $C_{L_{b}}^{\alpha T}$ = $\sigma \delta C_{L_{b}}^{T}$ \triangleright larger than that of the data results in a P

Cosmic rotation band powers from SPTpol 500d. TABLE III.

		<u> </u>	
1/2 min	L _{max}	L _b	$\hat{C}_{L_b}^{\alpha\alpha}$ [×10 ⁵ deg ²]
[50	99]	75	0.427 3.569
[100	133]	117	-7.225 3.949
[134	181]	158	-3.253 3.040
[182	244]	213	2.939 2.563
[245	330]	288	1.222 1.972
[331	446]	389	-0.500 1.933
[447	602]	525	0.088 1.690
[603	813]	708	-0.977 1.398
[814	1097]	956	0.140 1.328
[1098	1481]	1290	0.274 1.174
[1482	2000]	1741	-0.293 0.948

tight constraints on the axionlike-photon coupling constant

It is interesting then to cross-correlate the reconstructed in certain models, even tighter than those provided by cosmic rotation spectrum (e.g.[24]). The reason is that tions over the same patch of the sky. In Fig. 7 we show the hile the autospectrum and depends quadratically on the cross spectrum[®] reconstructed in ten band powers in the coupling constant, the cross spectrum scales as gas gd as such, it is more sensitive to small values of the coupling.

The cosmic rotation power spectruΩ reconstructed from SPTpol data is consistent with the null line. In order to turn the nondetection into an upper limit on the amplitude of the scale-invariant CB power spectrum when we follow the approach of Namikawa et al. [21] and constructan approximate likelihood for the recovered CB power spectrum that takes into account small deviations from of 16%. Despite the reported nondetection, we note that the aussianity at the largest scales. This log-likelihood is based itself on the one proposed by Hamimeche and Lewis [72] and reads

$$-2 \text{ In } L_{\alpha} \check{o} A_{CB} \triangleright {}^{1/4}_{_{bb^0}} g \check{o} \hat{A}_{L_b} \triangleright \hat{C}^{\dagger}_{L_b} C^{-1}_{L_b L_{b^0}} C^{\dagger}_{L_b 0} g \check{o} \hat{A}_{L_b 0} \triangleright; \quad \check{o} 6:1 \triangleright$$

where

$$\hat{A}_{L} \frac{\hat{C}_{L}^{\alpha\alpha} \triangleright N_{L}^{0} \triangleright N_{L}^{lens}}{A_{CB} \delta C_{L}^{\alpha\alpha} \triangleright N_{L}^{1} \triangleright P_{L}^{0} \triangleright N_{L}^{lens}} \qquad \delta6:2$$

is the amplitude of the recovered power spectrum relative to that of simulations including the cosmic birefringence signal Caa atta chiyan bilim tim chiqid dix Pridish bilim ti 1 b 2 ox − ln x − 1 for x ≥ 0. The fiducial spectrum \C

and the covariance entering the equation above are mea-can be understood as follows. For an axionlike particle with sured from the unrotated simulations as discussed in Sec. VI A. As mentioned in Sec. IVA, we include the effect of a constant multiplicative bias in the response the noise biases) according $\hat{\mathbf{G}}_{L}^{\alpha\alpha} \rightarrow \hat{\mathbf{C}}_{L}^{\alpha\alpha} = \delta \mathbf{R}^{MC} \mathbf{B}^{2}$.

We sample the posterior distributions using the MCEE package [73] and impose a flat prior on A> 0, whereas for the normalization factor we adopt the Gaussian prior PðR^{MC}Þ ∝ N ð1; 0.⁴Þ.¹¹ The resulting 2σ upper bound on spectrum is A_{CB} < 0.10, which translates to a limit of LðL \not $p 1 \not = C_{\alpha}^{\alpha \alpha} = 2\pi < 1.0 \times 10^5 \text{ rad}^2 (0.033 \text{ deg}^2).^{12}$ This constraint is in line with the 2σ limit reported by the ACTpol Collaboration, $A_{CB} < 0.1$, over the multipole range $20 \le L \le 2048$ [21]. As we mentioned in Sec. II, the largest scales probed by the measurement rive the constraining power; for example, if we discard the first band power between $50 \le L < 100$, we obtain a 2σ upper limit of $A_{CR} < 0.15$. Let us finally point out that, as is frequently the case when dealing with upperlimits, the specific details of the prior imposed on A_{CB} have a substantial effect on the resulting constraint on the amplitude of the scale-invariantCB power spectrum. For instance, adopting the prior pðA_{CB}Þ ∝ log A_{CB} (usually employed when the magnitude of certain parameters unknown) results in a 2σ upper bound of $A_{CB} < 0.026$. However, the posterior for this prior diverges for small values of A_{CB} and artificially shrinks the inferred upper bounds, as also noted elsewhere in literature (e.g.17]). Therefore to be more conservative and to facilitate a comparison with previous similar works, we adopt the uniform prior on A_{CB} as our baseline prior.

We can now turn this upper limit into constraints on specific parametersof different physical mechanisms. Recalling that Eq. (2.4) has been derived under the assumption of an effectively massless pseudoscalized a at the time of inflation, we can translate the constraint osuch as neutrinos)inside the interior of globular cluster the scale-invariantosmic rotation power spectrum to an upper bound on the coupling between axionlike particles and photons,

This constraint is particularly informative for those models where the axionlike particles have smallmasses in the 10^{-33} eV \lesssim m_a $\lesssim 10^{-28}$ eV range. This mass range

mass m, the value of a at early times $(H \gg)$ ris frozen at $a \approx a_0$, while for H $\lesssim m_a$ the field will oscillate around the minimum of its potential, yielding $\Delta a \frac{1}{4} 0$ [see Eq. (2.3)]. function by rescaling the reconstructed spectrum (as well aserefore, the polarization rotation will be sourced only if the fluctuations of the axionlike field are frozen at recombination and oscillations begin afterwards, i.e. ≲nH rec≃ 10⁻²⁸ eV. On the other hand, the mass of the pseudoscalar field has to be large enough for a to be dynamical(i.e., $\underline{a} \neq 0$) between the decoupling and today to produce a the amplitude of the scale-invariant cosmic rotation powerpolarization rotation. Given that the transition of the field a from static to dynamical occurs when H ~ m, the lower bound on the mass then becomes $\mathfrak{m} \gtrsim H_0 \simeq 10^{-33}$ eV. Considering the curren2o upper limit on the tensor-toscalar ratio $r \le 0.07$ [74], the constraint to the coupling becomes $g \le 2.1r^{-1=2} \times 10^{-16} \text{GeV}^{-1} \sim 7.9 \times 10^{-16} \text{GeV}^{-1}$ or $6.6 \times 10^{-15} \text{ GeV}^{-1}$ assuming the forecasted sensitivity $\sigma \delta r P \simeq 10^3$ from next-generation CMB experiments.

The coupling constant $g_{\!a\gamma}$ can also be related to the decay constant (or Peccei-Quinn symmetry-breaking scale) f a through $g_v \frac{1}{4} \delta q_m = 2\pi P_Q = f_a \sim 10^{-3} = f_a$, where g_m is the fine structure constantand C_{av} is a model-dependent dimensionless parameter of Oð1Þ (e. \$35]). Our upper bound on $A_{\rm B}$ then implies a lower bound on the coupling scale $f_a \gtrsim 4.8^\circ$ r × 10^{12} GeV ~ 1.3×10^2 GeV for r ~ 0.07 (or $\sim 1.5 \times 10^{1}$ GeV for r $\sim 10^{-3}$). The typical decay constantvalues predicted in string theory are around the Grand Unification Theory (GUT) scale, f a ~ 10¹⁶ GeV [75], and in general below the Planck scale, although values as low as $f_a \sim 10^{10-12}$ GeV are possible [76].

Current constraints on the coupling between axionlike particles and photons are based on a wide range of observational and experimental techniques, spanning from astrophysics to terrestrial laboratory experiments. For example, the energy loss associated with the production of axions (and other low-mass weakly interacting particles stars provides a 2σ constraint of g 6.6 × 10⁻¹¹ GeV⁻¹ (or $f_a > 1.5 \times 10^7$ GeV) [77]. Similarly, helioscopes such as the CERN Axion Solar Telescope (CAST) search for conversions into x rays of solar axions in a dipole magnet directed toward the Sun and are able to obtain the upper bound of $g_V < 6.6 \times 10^{-11} \text{ GeV}^{-1}$ for $m_a < 0.02 \text{ eV}$ [78]. The absence of rays from the core-collapse supernova SN1987A, which would originate from the conversion of axionlike particles into photons by the Galactic magnetic field, translates to a constraint of ≤ 5.3 × 10⁻¹² GeV⁻¹ (or $f_a \gtrsim 1.9 \times 10^8$ GeV) for $m_a \lesssim 4.4 \times 10^{-10}$ eV [79]. ¹¹Here N ðµ; & denotes a Gaussian distribution with mean µLimits from laboratory searches,such as the light-shining-through-walls or microwave cavity experiments are currently weaker than astrophysical cosmologicalconstraints. For instance, the Optical Search for QED Vacuum

and variance &

²We note that the 2σ upper bound on As fairly insensitive to changes in the mean or the variance of the Gaussian prior, as shifting the mean by 0.05 or increasing/decreasing the variance by a factor of 2. In particular, if we completely neglect Birefringence, Axions, and Photon Regeneration (OSQAR) this correction (i.e.,we fix R MC ½ 1), we find A_{CB} < 0.09. experimentused a 9T transverse magnetic field and an

532 nm to provide a 2σ constraint sn3g5 × 10⁻⁸ GeV⁻¹ (or $f_a \ge 2.9 \times 10^4$ GeV) for $m_a \le 0.3$ meV [80].

We can also turn the upper limit on Ainto a bound on the strength of a scale-invariant PMF. Using Eq. (2.6) and iques have been developed to more optimally extract considering an observing frequency of v 1/4 150 GHze find a 95% upper limit of $B_{1 \text{ Mpc}}$ < 17 nG. While current constraints on PMFs from 4-point function measurements such as the one presented here are not yet competitive will be mapped out over large fractions of the sky those from the B-mode power spectrum (which are of ord with unprecedented sensitivity While the main focus of the near future thanks to the different scalings with Rc [22]. In particular, experiments such as CMB-S4 and PIC6ollected will unlock a wide range of ancillary science. In are projected to obtain bounds on the PMF strength down to a particular, their promise to improve up to 3 orders of ~0.1 nG, which would rule out the purely primeval origin (without any dynamo mechanism) of the observed 1-10 µG magnetic fields [83]. Finally, note that the Faraday rotation caused by a ~0.1 nG PMF would be similar to that induced by the Galactic magnetic field near the poles [42].

VII. CONCLUSIONS

This paper presents a search for anisotropic cosmic birefringence using CMB polarization data from 500 deg² of the sky surveyed with SPTpol.We apply a quadratic estimator to the observed polarized E-and Bmode maps and reconstruat map of the cosmic rotation angle anisotropiesThe amplitude of the recovered power spectrum is consistent with zero. The 95% upper limit on the amplitude of the scale-invariant cosmic rotation powerNo. GBMF 947. This research used resources the spectrum predicted in a wide range of theoretical contexts stional Energy Research Scientific Computing Center LðL þ $1 PC^{\alpha} = 2\pi < 0.10 \times 10^4 \text{ rad} (0.033 \text{ deg}^2)$. This upper bound is then translated into constraints on the strength of scale-invariant primordial magnetic fields, $B_{1 \text{ Mpc}}$ < 17 nG (95% C.L.), and on the coupling between axionlike fields and the electromagnetic sector≤g4.0 × 10⁻²H₁⁻¹ (95% C.L.). We perform a suite of consistency checks and systematic tests to validate the results, finding supported by the Fermi Research Alliance LLC under no evidence for significant contamination.

In addition to the cosmic rotation power autospectrum, we have made the first-ever measurement the crosscorrelation between CMB temperature fluctuations and the UChicago Argonne LLC, Operator of reconstructed rotation angle magand find no detectable cosmological signal.

As the instrumental noise level in polarization falls below $\Delta_P \approx 5 \mu \text{K-arcmin}$, the lensed B modes will start sensitivity to cosmic birefringence. In principle, delensing the use of many PYTHON packages: IPYTHON [91], techniques (e.g., [84,85]) can be applied to the observed MATPLOTLIB [92], and SCIPY [93].

18.5 W continuous wave laser emitting at the wavelength modes to reduce the noise of the estimator to augment the constraining power of the 4-point function estimator [68,86]. More generally, this identical problem arises in CMB lensing, where beyond quadratic estimatortechlensing information from the data, and which could be adapted for cosmic birefringence [87–89].

Over the next few years the CMB polarization anisot-1 nG; see, e.g., [81,82]), they will improve dramatically in proposed experiments such as CMB-S4 [7] and PICO [90] is the detection of primordial tensor perturbations, the data magnitude the constraints on the amplitude of the scaleinvariant cosmic birefringence powerspectrum will significantly advance our understanding of primordial magnetism and parity-violating physics [22].

ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with Dominic Beck, Giulio Fabbian, Toshiya Namikawa, Giuseppe Puglisi, and Caterina UznilS. P. T. is supported by the National Science Foundation through Grants No. PLR-1248097 and No. OPP-1852617. Partial support is also provided by the NSF Physics Frontier Center Grant No. PHY-1125897 to the Kavlilnstitute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation Grant (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Melbourne group acknowledges support from the University of Melbourne and an Australian Research Council's Future Fellowship (FT150100074). B. B. is Contract No. De-AC02-07CH11359 with the U.S. Departmentof Energy. Work at Argonne NationalLab is Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. We also acknowledge support from the dominating the estimator variance, potentially limiting the Argonne Center for Nanoscale Materials. We acknowledge

- [1] A. N. Bender, P. A. R. Ade, Z. Ahmed et al., Proc. SPIE In[33] M. A. Fedderke, P. W. Graham, and S. Rajendran, Phys. Soc. Opt. Eng. 10708, 1070803 (2018).
- [2] S. W.HendersonR. Allison, J. Austermann et al.J. Low Temp.Phys.184,772 (2016).
- [3] J. A. Grayson, P. A. R. Ade, Z. Ahmed et al., Proc SPIE 9914,99140S (2016).
- 805 (2016).
- Soc. Opt. Eng. 9153, 1 (2014).
- [6] Simons Observatory Collaboration, Cosmol. Astropart. Phys.2 (2019) 056.
- [7] CMB-S4 CollaborationarXiv:1907.04473.
- [8] S. Staggs, J. Dunkley, and L. Page, Rep. Prog. Phys. 81, 044901 (2018).
- [9] S. M. Carroll, G. B. Field, and R. Jackiw, Phys. Rev. D 41 1231 (1990).
- [10] M. Pospelov, A. Ritz, and C. Skordis, Phys. Rev. Lett. 103, 051302 (2009).
- [11] A. Kosowsky and A.Loeb, Astrophys. J. 469, 1 (1996).
- [12] N. Aghanim, M. Ashdown et al. (Planck Collaboration), Astron. Astrophys. 596, A110 (2016).
- [13] J. Aumont, A. Ritacco, J. F. Macíæsrez, N. Ponthieu, and A. Mangilli, EPJ Web Conf228, 00003 (2020).
- [14] Y. Minami and E. Komatsu, arXiv:2006.15982.
- [15] Y. Minami, H. Ochi, K. Ichiki, N. Katayama E. Komatsu, and T.Matsumura, Prog. Theor. Exp. Phys. 2019, 083E02 (2019).
- [16] F. Nati, M. J. Devlin, M. Gerbino et al., J. Astron. Instrum. 6, 1740008 (2017).
- [17] P. A. RAde, K. Arnold, M. Atlas et al., Phys.Rev.D 92, 123509 (2015).
- [18] P. A. R.Ade et al. (BICEP2 and Keck Array Collaborations), Phys. Rev. D 96, 102003 (2017).
- [19] D. Contreras, P. Boubel, and D. Scott, J. Cosmol. Astropart. Phys. 12 (2017) 046.
- [20] V. Gluscevic, D. Hanson, M. Kamionkowski, and C. M. Hirata, Phys. Rev. D 86, 103529 (2012).
- [21] T. Namikawa, Y. Guan, O. Darwish et al., Phys. Rev. D 101, J. 852, 97 (2018). 083527 (2020).
- [22] L. Pogosian, M. Shimon, M. Mewes, and B. Keating, Phys. Rev.D 100, 023507 (2019).
- [23] R. R. Caldwell, V. Gluscevic, and M. Kamionkowski, Phys. Rev. D 84, 043504 (2011).
- [24] L. M. Capparelli, R. R. Caldwell, and A. Melchiorri, Phys. Rev.D 101, 123529 (2020).
- [25] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, Phys.Rev.Lett. 122, 221301 (2019).
- [26] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J.March-Russell, Phys. Rev. D 81, 123530 (2010).
- [27] M. Kamionkowski, J. Pradler, and D. G. E. Walker, Phys. Rev. Lett. 113, 251302 (2014).
- [28] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett. 65, 3233 (1990).
- [29] S. M. Carroll, Phys. Rev. Lett. 81, 3067 (1998).
- [30] C. Geng, S. Ho, and J. Ng, J. Cosmol. Astropart. Phys. 09 (2007) 010.
- [31] S. Alexander, Int. J. Mod. Phys. D 25, 1640013 (2016).
- [32] D. Jimenez, K. Kamada, K. Schmitz, and X. J. Xu, J. Cosmol. Astropart. Phys. 12 (2017) 011.

- Rev. D 100, 015040 (2019).
- [34] S. Gardner, Phys. Rev. Lett. 100, 041303 (2008).
- [35] D. J. Marsh, Phys. Rep. 643, 1 (2016).
- [36] D. D. Harari, J. D. Hayward, and M. Zaldarriaga, Phys. Rev. D 55, 1841 (1997).
- [4] A. Suzuki, P. Ade, Y. Akiba et al., J. Low Temp. Phys. 184[37] D. Ryu, D. R. G. Schleicher, R. A. Treumann, C. G. Tsagas, and L. M. Widrow, Space SciRev. 166, 1 (2012).
- [5] T. Essinger-Hileman, A. Ali, M. Amiri et al., Proc. SPIE Int[38] L. M. Widrow, D. Ryu, D. R. G. Schleicher, K. Subramanian, C. G. Tsagas, and R. A. Treumann, Space Sci. Rev. 166, 37
 - [39] R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62 (2013).
 - [40] B. Ratra, Astrophys. J. Lett. 391, L1 (1992).
 - [41] M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743 (1988).
 - [42] S. De, L. Pogosian and T. VachaspatiPhys. Rev. D 88, 063527 (2013).
 - [43] L. Pogosian, Mon. Not. R. Astron. Soc. 438, 2508 (2014).
 - [44] T. R. Seshadriand K. Subramanian Phys. Rev. Lett. 87, 101301 (2001).
 - [45] J. R. Shaw and A. Lewis, Phys. Rev. D 81, 043517 (2010).
 - [46] F. Renzi, G. Cabass, E. D. Valentino, A. Melchiorri, and L. Pagano J. Cosmol. Astropart. Phys. 8 (2018) 038.
 - [47] J. E. Carlstrom, P. A. R. Ade, K. A. Aird et al., Publ. Astron. Soc. Pac. 123, 568 (2011).
 - [48] J. W. Henning, P. Ade, K. A. Aird et al., Proc. SPIE Int. Soc. Opt. Eng. 8452 (2012).
 - [49] S. Padin Z. Staniszewski, RKeisler et al., Appl. Opt. 47, 4418 (2008).
 - [50] J. T.Sayre, P. Ade, K. A. Aird et al., Proc. SPIE Int. Soc. Opt. Eng. 8452 (2012).
 - [51] W. L. K. Wu, L. M. Mocanu, P. A. R. Ade et al., Astrophys. J. 884, 70 (2019).
 - [52] O. P.Lay and N. W. Halverson, Astrophys. J. 543, 787 (2000).
 - [53] J. W. Henning, J. T. Sayre, C. L. Reichardt et al., Astrophys.
 - [54] A. T. Crites, J. W. Henning, P. A. R. Ade et al., Astrophys. J. 805, 36 (2015).
 - [55] B. G. Keating, M. Shimon, and A. P. S. Yadav, Astrophys. J. 762, L23 (2012).
 - [56] K. T. Story, D. Hanson, P. A. R. Ade et al., Astrophys. J. 810, 50 (2015).
 - [57] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann, Astrophys. J. 622, 759 (2005).
 - [58] P. A. R.Ade, N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 594, A13 (2016).
 - [59] A. Lewis, Phys. Rev. D 71, 083008 (2005).
 - [60] F. Vansyngel, F. Boulanger, T. Ghosh, B. Wandelt, J. Aumont, A. Bracco, F. Levrier, P. G. Martin, and L. Montier, Astron. Astrophys. 618, C4 (2018).
 - [61] L. D. Shaw, D. Nagai, S. Bhattacharya, and E. T. Lau, Astrophys.J. 725, 1452 (2010).
 - [62] E. M. George, C. L. Reichardt, K. A. Aird et al., Astrophys. J. 799, 177 (2015).
 - [63] N. Gupta, C. L. Reichardt, P. A. R. Ade et al., Mon. Not. R. Astron. Soc. 490, 5712 (2019).

- [64] R. Keisler, S. Hoover, N. Harrington et al., Astrophys. J. 807, 151 (2015).
- [65] V. Gluscevic, M. Kamionkowski, and A. Cooray, Phys. Re 80] R. Ballou, G. Deferne, M. Finger et al., Phys. Rev. D 92, D 80, 023510 (2009).
- [66] M. Kamionkowski, Phys. Rev. Lett. 102, 111302 (2009).
- [67] T. Namikawa, Phys. Rev. D 95, 043523 (2017).
- [68] A. P. S. Yadav, R. Biswas, M. Su, and M. Zaldarriaga, Ph ₹82] A. Zucca, Y. Li, and L. Pogosia hys. Rev. D 95, 063506 Rev. D 79, 123009 (2009). (2017).
- [69] T. Namikawa, D. Hanson, and R. Takahashi, Mon. Not. R.[83] D. Grasso and H. R. Rubinstein, Phys. Rep. 348, 163 Astron. Soc. 431, 609 (2013).
- [70] Y. Akrami, M. Ashdown et al. (Planck Collaboration), arXiv:1807.06208.
- [71] Y. Akrami, M. Ashdown et al. (Planck Collaboration), arXiv:1801.04945.
- [72] S. Hamimeche and A.Lewis, Phys. Rev. D 77, 103013 (2008).
- [73] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013).
- [74] P. A. R.Ade et al. (BICEP2 and Keck Array Collaborations), Phys. Rev. Lett. 121, 221301 (2018).
- [75] P. Svrcek and E. Witten, J. High Energy Phys. 06 (2006)
- [76] M. Cicoli, M. Goodsell, and A. Ringwald, J. High Energy Phys. 10 (2012) 146.
- [77] A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi, and O. Straniero, Phys. Rev. Lett. 113, 191302 (2014).
- [78] V. Anastassopoulos etl., Nat. Phys. 13, 584 (2017).

- [79] A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi, and A. Ringwald, J. Cosmol. Astropart. Phys. 02 (2015) 006.
- 092002 (2015).
- [81] D. R. Sutton, C. Feng, and C. L. Reichardt, Astrophys. J. 846, 164 (2017).
- (2001).
- [84] S. Adachi, M. A. Fandez, Y. Akiba et al., Phys. Rev. Lett. 124, 131301 (2020).
- [85] A. Manzotti, K. T. Story, W. L. K. Wu et al., Astrophys J. 846, 45 (2017).
- [86] L. Pogosian and AZucca, Classical Quantum Gravity 35, 124004 (2018).
- [87] J. Carron and A.Lewis, Phys.Rev.D 96, 063510 (2017).
- [88] M. Millea, E. Anderes, and B. D. Wandelt, Phys. Rev. D 100, 023509 (2019).
- [89] M. Millea, E. Anderes, and B. D. Wandelt, arXiv: 2002.00965.
- [90] S. Hanany, M. Alvarez, E. Artis et al., arXiv:1902.10541.
- [91] F. Prez and B. E. Granger, Comput. Sci. Eng. 9, 21 (2007).
- [92] J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).
- [93] P. Virtanen, R. Gommers, T. E. Oliphant et al., Nat. Methods 17, 261 (2020).