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ABSTRACT

Smartphones and mobile applications have become an integral part
of our daily lives. This is reflected by the increase in mobile de-
vices, applications, and revenue generated each year. However, this
growth is being met with an increasing concern for user privacy,
and there have been many incidents of privacy and data breaches re-
lated to smartphones and mobile applications in recent years. In this
work, we focus on improving privacy for audio-based mobile sys-
tems. These applications will generally listen to all sounds in the en-
vironment and may record privacy-sensitive signals, such as speech,
that may not be needed for the application. We present PAMS, a
software development package for mobile applications. PAMS inte-
grates a novel sound source filtering algorithm called Probabilistic
Template Matching to generate a set of privacy-enhancing filters
that remove extraneous sounds using learned statistical "templates"
of these sounds. We demonstrate the effectiveness of PAMS by inte-
grating it into a sleep monitoring system, with the intent to remove
extraneous speech from breathing, snoring, and other sleep sounds
that the system is monitoring. By comparing our PAMS enhanced
sleep monitoring system with existing mobile systems, we show
that PAMS can reduce speech intelligibility by up to 74.3% while
maintaining similar performance in detecting sleeping sounds.
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« Computer systems organization — Sensor networks; « Se-
curity and privacy — Domain-specific security and privacy ar-
chitectures; « Human-centered computing — Ubiquitous and
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1 INTRODUCTION

Smartphones have greatly impacted our daily lives, providing easy
ways to monitor different aspects of our health, entertain us, and
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much more. In 2019, more than 81% of Americans owned a smart-
phone, which was up from 35% in 2011 [2]. Engagement in mobile
applications has also increased. In 2008, Americans spent only 20
minutes per day on mobile applications, compared to more than 3
hours in 2016 [20]. Additionally, the number of smartphone appli-
cation downloads is expected to increase from 178 billion in 2017
to 258 billion by 2022, and the total revenue generated from these
applications is expected to grow from 88 billion USD in 2016 to
more than 180 billion USD by the end of 2020 [31]. The increase
in smartphones and smartphone usage has also spurred on numer-
ous mobile wearable platforms for various applications such as
safety [3, 7, 8, 35, 36] and health monitoring [15, 21].

As the number of smartphone users and applications increase,
one of the biggest concerns is privacy and security, especially when
it comes to applications that "listen" to our surroundings. In 2019, a
dutch news outlet (VRT NWS) obtained more than 1, 000 recordings
collected through Google Home and Assistant applications and
found that more than 150 of the clips were recorded despite the
lack of the "OK Google" command [22]. In other words, more than
10% of recordings should never have been made, demonstrating a
huge audio privacy and security risk. A recent report from The New
York Times revealed that around 1, 000 smartphone application use
software that is known to listen to TV signals to track viewership
behavior, often without knowledge from the smartphone user [19].

We introduce PAMS, a software development package for en-
hancing privacy and security in audio-based mobile applications.
PAMS allows developers and users to apply a set of privacy filters
on audio recordings in their own applications to filter out sounds
and noises in the environment that are not required, thereby reduc-
ing the amount of additional sensitive signals saved. To accomplish
this, we propose a novel noise filtering algorithm called Proba-
bilistic Template Matching (PTM) that leverages learned statistical
"templates” of a particular noise to filter and remove it from the
recording. The "noises" can be any kind of signal common sound
the developer may expect for his application to observe, but will
ultimately not use.

We demonstrate the effectiveness of PAMS through a mobile
sleep monitoring system. Sleep quality monitoring applications rely
in large part on raw recordings of the microphone to observe and
analyze breathing, snoring, and other sounds during sleep. How-
ever, there could be sensitive sounds in the environment, such as
speech or neighborhood sounds, that the microphone can record
that should not be recorded in the first place. We show that by
applying PAMS to a custom sleep monitoring system, we can re-
duce speech recognition accuracy by up to 74.3% compared to
other sleep monitoring applications that are freely available while
maintaining a similar snoring event detection performance.

We make the following contributions in this paper:

e We propose PAMS, a software development package for en-
hancing privacy and security in audio-based mobile systems.
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PAMS allows developers to filter out sounds from the envi-
ronment that are not needed for the application at hand.

e We propose a novel adaptive noise filtering algorithm called
Probabilistic Template Matching (PTM) that uses learned
statistical models or "templates” of specific noises to filter
them out from recordings.

e To demonstrate the effectiveness of PAMS, we integrate
PAMS into an audio-based mobile sleep monitoring system
and show that we can reduce speech intelligibility by up to
74.3% compared to other existing sleep monitoring mobile
applications while maintaining similar sleep event detection
performance rates.

2 RELATED WORKS

There are a few sleep monitoring works in the literature that pri-
marily use audio as a means to measure sleep quality. In general,
these works extract a set of features from windows of audio, such
as mel-frequency cepstral coefficients (MFCCs), empirical mode
decomposition features (EMD), and autocorrelation. These features
are then passed to an acoustic event classifier, such as a k-nearest
neighbors classifier (KNN), that is trained to determine if snoring
or breathing sounds are present [6, 24-27]. [12] takes a similar ap-
proach in using audio to determine if the patient suffers from sleep
apnea. However, rather than observing breathing sounds while the
person is asleep, they use speech recordings taken from the person
while he is awake. In all these works, raw audio is recorded and
analyzed in strict lab settings. In non-lab settings, recording and
saving raw audio poses a privacy risk, as there may be other sensi-
tive sounds, like speech, in the environment that the microphone
records. These works do not account for this privacy issue.

There are also numerous sleep monitoring smartphone applica-
tions out on the market, meant for in-home and non-lab use. Sleep
as Android [32], SnoreLab [18], and Sleep Cycle [1] are just a few
examples. Though these applications all have the capability of using
more sensors to estimate sleep quality, one of the main sensors most
of these applications use is the microphone. Users start the applica-
tion as they go to sleep, and the application records their acoustic
environment throughout the night. These applications will record
and save all sound segments where the signal power is above a cer-
tain threshold regardless of the content of the signal. These signals
are then used in conjunction with other sensors of the application
that the user enables to provide sleep quality analysis. Since these
applications record all sounds in the environment above a certain
power threshold, they can record speech or other privacy-sensitive
sounds that may be present. To the best of our knowledge, none
of the available commercial and freely available smartphone sleep
monitoring applications have mechanisms to account or filter out
these privacy-sensitive signals.

To help ensure user privacy in sleep monitoring and other audio-
based monitoring applications, we take a sound source separation
approach to filter out privacy-sensitive signals, namely speech, from
the environment. Many techniques have been developed over the
years for separating and isolating distinct audio signals in the envi-
ronment. Sound source separation techniques can be broadly split
into classes: multi-channel methods and single-channel methods.
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Multi-channel methods, such as beamforming, weiner filtering
and independent component analysis (ICA) exploit statistical dis-
similarities observed at multiple microphones placed in different
locations to identify and isolate sounds [10, 16, 17, 23, 33]. These
methods generally perform better with more microphones present.
However, personal smartphones are generally limited to one or two
microphones, making these methods ill-suited for our application.

Single-channel methods, such as non-negative matrix factoriza-
tion (NMF) methods and Markov model methods [4, 13, 29], require
audio from only a single microphone to separate out sources in
the environment. To accomplish this, these methods use trained
statistical models of the types of sounds that are assumed present
in the audio recording to separate sources. For example, to sep-
arate out speech and snoring present in the same audio stream,
single-channel methods fit a trained model for snoring and speech
to the separated stream. However, if either snoring or speech is not
present in the audio stream and the platform attempts to filter out
speech, then the recorded signal can become greatly distorted with
no added privacy benefit. In other words, single-channel methods
can only filter out speech robustly when speech is present, which
may not always be the case in a home setting.

Deep neural network methods, such as [14, 30], have gained a
large amount of traction within the acoustic community for attain-
ing state-of-art performance in sound source and speech separation.
However to create a network that performs and generalizes well
to unseen scenarios, the amount of training data and the size of
the network required is immense, making it difficult to run on a
resource-limited mobile device. One way to address this issue is to
host the neural network on a more powerful external server and
allow the smartphone platform to send audio clips to process to the
server. There are security and privacy issues in taking this approach,
since audio data is sent to another third-party entity (the server).
The approach we take is to develop a robust, single-channel, sound
filtering system that is light-weight and can run on smartphones. In
this way, all of the recording and processing is done locally without
the need for an external compute unit.

3 NOISE FILTERING FOR PRIVACY-AWARE
AUDIO RECORDING

Sound source separation and speech filtering is a difficult problem,
especially with only a single channel of audio. In recent years, deep
learning has become one of the most used tools to perform single-
channel source separation. However sound source separation neural
networks generally require an immense number of parameters and
training data in order to generalize well to many scenarios, making
it difficult to implement and perform robustly in a resource limited
mobile system.

Dictionary learning is another commonly used set of methods to
perform single-channel source separation. The idea is learn a set of
bases or a "dictionary"” that capture most of the important features
of a type. This is commonly accomplished through non-negative
matrix factorization (NMF) and its variants. When a new signal
arrives, another NMF optimization is performed to discover the
coefficients or weights of each basis in the "dictionary" that the
observed signal is comprised of. This is essentially learning which
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"words" in the "dictionary" are present. Once these "words" or bases
and coeflicients are discovered, the source can be filtered out.

We observed while experimenting with dictionary learning meth-
ods that the rate of convergence for a single window of audio can
be very slow and that the separation quality is very poor, judged
mainly through listening to the separated sources. One of the rea-
sons for poor separation quality is that dictionary learning seeks to
precisely deconstruct an entire signal into a sum of weighted bases
or "words". However, our learned "dictionary" may not contain a
learned representation of all sounds currently present in the envi-
ronment. For instance, a sleep monitoring system may attempt to fit
and separate sleep and snoring sounds. However, these two sounds
may not always be present throughout the night. Attempting to
fit speech when no speech is present or attempting to fit snoring
when snoring isn’t present would clearly yield poor results.

To summarize the challenges of noise filtering in a mobile smart-
phone system:

e Training models, especially neural network models, that can
generalize well requires large amounts of training data and
mMemory resources.

e Applying statistical models to filter out speech is only ef-
fective if speech is present in the environment; this is not
always the case throughout the entire night.

We propose Probabilistic Template Matching (PTM) an adaptive
and light-weight source separation algorithm to filter out specific
sound sources from recordings and audio streams. The algorithm
uses "templates” of specific noises (such as speech) to filter it out and
leverages a noise detector to only filter out segments where noise is
detected. We allow users to train PTM with a short training process,
allowing PAMS to generate smaller noise models that are tailored
to the individual. Additionally, PTM has a built-in mechanism that
allows for users and applications to tune the level of suppression.
Higher levels of suppression allows for of the noise signal to be
filtered out at the cost of a higher chance of suppressing sleeping or
non-noise sounds. Conversely, lower levels of suppression reduces
the amount of noise or speech filtered out, while also reducing
the amount of non-noise sounds filtered out. PTM does not require
knowledge of other sources in the environment, such as snoring, in
order to filter out speech, unlike in traditional dictionary-learning
and single-channel methods.

3.1 Probabilistic Template Matching

The main idea behind PTM is to generate a filter, or a set of coeffi-
cients @;(n) given a window of audio, where T()(n) =

[x(w1, n)], [x(@2, n)], ..., |x(wp, n)|]7 is the magnitude of the time-
frequency representation of time window n, such that the proba-

bility of the filtered window 7 A(n) being an instance of a noise
of class cq is minimized. The definitions of our inputs (7()(71)) and

outputs (_Z) A(n) and a;(n)) are summarized below.

X (n) = [Ix(@1, 0], [ (2.0, .. Ix (2, )]

. 1 1
An = dmg (r(n), veey aB(n))

Za(n) = AnX (n)
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Here B refers to the number of frequency bins in our time-
frequency representation.

We first make the assumption that the noise (speech) co can be
described by a "template" represented by a Gaussian distribution:

co ~ N (I’I—C‘()>> ZCO)

From this assumption, our observed signal?(n) is generated by
drawing a sample from cg and adding other unknown signals from
the environment M(n). We can see that if co has high energy over
most other sounds in the environment, then the probability that our
observed signal?(n) is an instance of noise class cp, P (_Z)A(n) |co),
will be very high. Our goal is to generate filter coefficients «;(n)
that will reduce this probability below a detectable threshold.

However, if we minimize this probability without any constraints,
all coefficients will tend to 0, cancelling out all sounds in the envi-
ronment. To avoid this we introduce a novel constraint, yielding
the following optimization problem shown in Equation 1.

alrgmilnP(—Z)A(nﬂco) (1)

s.t.D (7A(n)||7(n)) <p

B

D(ZymIXm) =)

i=1

Za(n);
X (n);

—log iA(n)i - 1) (2)
X (n);

The concept is still to minimize P (7A(n) |co) as much as possi-
ble, removing out as much of noise co from our observation. How-
ever, the divergence constraint D (7 A(n)] IT() (n)) is in place to keep
the amount of change between the filtered signal and the raw signal
within a threshold f so that the filtered coefficients do not com-
pletely remove all sounds from the environment. We use a static
divergence constraint rather than another probabilistic constraint
because we cannot assume that we have models of every possible
sound in the environment. Making the assumption of knowing
every sound in the environment is not feasible as there is a po-
tentially infinite number of potential sounds that could occur in
the environment. Additionally, we chose to use the Itakura-Saito
divergence metric, because of its equal weight on frequency bins
with low and high energy, which is favorable for audio processing
applications [9].

We can optimize over this loss function using Lagrange multipli-
ers, as shown in Equation 3.

L=log (P (_Z’A(n)|c0)) +AD (7A(n)||7<’(n))
= —% (7/\(") - llco)T 2201 (7/\(") - /lco) 3)
& (Zaln; Za(n); _ 1)
X (n); X (n);

Taking the partial derivatives with respect to our filter coeffi-
cients ;(n) yields Equation 4.

—log

i=1
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oL -1
= ——|x(wnn)?27
1 . Cco b
o—Ls 2ei(n)
-1 B 1
+ —|x(wi n)| (z—l L —— (o), n)|)
el 2, Prsr

1 B 1 4
B ai(n) Ty i i
) j—;;ti(aj(n) Ix(wj,n)|) i -Ix(w )|
+lx(n Wi
+A[1-ai(n)]

Finally, the gradient update for each time window is summarized
in Equation 5, where r is the learning rate.

1 1 oL )
= -r
ane D) " @) oL

One subtle point to note is that the A weight term is an appli-
cation tunable parameter that can be used to increase or decrease
noise suppression. Higher levels of suppression will remove more
noise (e.g. speech), but will also leave a higher chance of removing
out non-noise sounds from the environment. Conversely a lower
suppression level will not remove as much noise, but will remove
less non-noise sounds, like snoring, from the environment as well.

3.2 Noise Detection

In order to run any type of single-channel noise filtering algorithm,
the type of sound that is being filtered out must be present or else
performance may suffer. This assumption is not always true in real
and continuous scenarios. Hence, a noise detector is required to
determine whether to apply noise filtering or not. Additionally, PTM
models noise templates as Gaussian distributions, as mentioned in
Section 3.1. The second concern is how to learn and obtain these
templates or models of noise. We incorporate a noise detector to
solve both the requirement of detecting the presence of noise in the
environment and as a method for learning and providing templates
required for PTM, which we introduced in Section 3.1.
In general, sound event detectors operate as follows:

PXec)>p

X is the input representation of the signal (e.g. frequency spec-
trum in many audio applications), and c is the class of sound we
are trying to detect. If the probability that our input observation is
an example of a noise of class c is greater than some threshold S,
then we would detect this sound.

We create our noise detector in a similar fashion and choose to
use a Gaussian mixture model (GMM) to model this probability
distribution for each class of noise. GMMs model a probability
distribution using a linear combination of Gaussian distributions
to model sub-populations within the data. Each Gaussian can be
described with a mean and a covariance matrix. The mean value is
the most probable value that our feature will take on if our signal
is indeed a sound of the specific class we are trying to detect; this
is another way of saying that the mean values of the Gaussian
distributions that make our GMM speech detector can be used as
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Figure 1: PAMS architecture and data pipeline. The filter co-
efficients, a;, are updated based on the templates provided by
the GMM noise model discussed in Section 3.2 and applied
to the next window.

templates for PTM. The covariance is a measure of uncertainty in our
template and will also be used in PTM as described in Section 3.1.
In this way, we not only create a noise detector, necessary for
intelligently applying single-channel source separation, we can also
leverage the way GMMs model data to provide and learn templates
required for our separation algorithm, PTM.

In most applications, only a specific set of signals are useful; all
other sounds can be filtered out. However, there are a large amount
of potential noises and variations in the environment. Creating a
general model for even a single type of noise, for instance speech,
can be difficult and can require a large amount of memory, parame-
ters, and data, even without constraining our system to a mobile
platform. As such, we allow developers and users to use their own
models of sounds to filter out in PAMS. For instance, in sleep moni-
toring applications, where the goal is reduce speech intelligibility,
we allow users to record snippets of their own voice prior to using
PAMS, allowing us to build smaller and tailored models of speech.

3.3 PAMS Pipeline

Figure 1 shows the architecture and pipeline for PAMS. Audio from
the microphone passes to the PAMS module, where the signal is
transformed into the frequency domain. Then, the PTM privacy
filters are applied to the signal to filter out the privacy-sensitive
sounds. The output of the filtering process can then be further
processed or analyzed depending on the application. This cleaned
signal is also fed into the noise detector which is then used to update
PTM privacy filters. The updated filters are then applied to the next
window and process repeats.

4 SLEEP MONITORING MOBILE PLATFORM

In this section, we introduce our custom audio-based sleep mon-
itoring platform is integrated and enhanced with PAMS. We im-
plemented the sleep monitoring platform on a Samsung Galaxy
S8 [28] Android device.

4.1 Sleeping Event Detection

Before we introduce the system architecture for our PAMS en-
hanced sleep monitoring smartphone system, we will first introduce
our sleeping event detector. Most sleep monitoring smartphone
applications will record and analyze sounds using a simple volume-
based detector. If the power-level or volume of the audio that is
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Table 1: Speech recognition accuracy of recorded clips from
PAMS and Sleep as Android [32]. This table lists the propor-
tion of words correctly identified in the recorded clips, the
proportion of words incorrectly identified, and the propor-
tion of words that were not even detected by Google Speech
to Text [5].

Correct Incorrect Not Detected
PAMS 21.3% 5.1% 73.6%
Sleep as Android 95.6% 4.0% 0.4%

observed at the microphone is above a certain threshold, then the
application records and saves the sound. Otherwise, the sound is
discarded. We adopt a similar approach for detecting and saving
sleep recordings.

4.2 Audio-Based Sleep Monitoring Mobile
System Architecture and Design

Figure 2 shows the system architecture and data flow for our PAMS
enhanced sleep monitoring system. PAMS samples 250ms windows
with 50% overlap and computes the magnitude spectrum of the
window. This means, that the pipeline is executed every 125ms. In
this application, we wish to reduce the amount of speech that can
be recorded. As such, we then apply our privacy filters learned from
the adaptive PTM algorithm to filter out speech. As mentioned in
Section 3.3, the cleaned signal is then passed to the noise detector.
The noise detector in this case is a speech detector, which deter-
mines how much speech is left within the signal, as detailed in
Section 3.1, and is used to update the privacy filters to apply to the
next window of audio. The cleaned signal is also processed by the
sleep sound event detector, mentioned in Section 4.1 to determine
whether any heavy breathing, snoring, or other sleep sounds are
present. If the detector detects sleeping sounds, then the window
is saved as a recording. Otherwise, the window is discarded, much
like what is done in existing sleep monitoring smartphone systems.

The entire sleep monitoring pipeline runs in less than 5ms on a
Samsung Galaxy S8, which is less than the pipeline execution period
of 125ms, meaning that the PAMS pipeline alone is also capable of
running in real-time.

The sleep monitoring pipeline shown in Figure 2 is implemented
on an Android device (Samsung Galaxy S8). Users are able to mon-
itor their sleep, listen to recordings, and provide speech samples
to PAMS to generate privacy-preserving speech filters through the
user application.

5 EVALUATION

We evaluate our PAMS enhanced sleep monitoring system based
on two measures: privacy and preservation. In this context, privacy
refers to the idea that if speech is present during sleep, then the
final recordings should contain little to no speech. However, if the
filters remove too much of the signal, it may also remove parts
of the signal that is useful our application. For sleep monitoring,
this would be snoring, breathing, and other sleeping sounds. An
application that has high preservation should still be able to capture
these necessary sounds even if we are processing altering the signal.
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We compare against Sleep as Android [32], a freely available sleep
monitoring smartphone application on the Google Playstore.

We randomly selected 5 clips of snoring sounds from the Google
Audioset dataset [11]. In order for PAMS to learn the voice model
of the speaker, we had each speaker read a randomly chosen article
from Wikipedia [34] and recorded a 20 second segment to use as
training. To generate test recordings, we ran our PAMS enhanced
sleep monitoring system and Sleep as Android while playing one of
the randomly chosen snoring clips and had a speaker read from a
different passage than what was used to generate the voice model.
In this way, both our PAMS enhanced system and Sleep as Android
recorded snoring sounds mixed with speech. In total we repeated
this procedure for 4 speakers, 3 passages, and 5 snoring clips, for a
total of 60 mixed clips, each around 20 seconds long.

To evaluate privacy and speech intelligibility, we ran the recorded
clips from Sleep as Android as well as the filtered clip produced
by PAMS through Google Speech-to-Text [5]. Table 1 shows the
proportion of correctly identified words from both Sleep as Android
and PAMS. The table lists the portion of words correctly transcribed
(correct), the portion of words incorrectly transcribed (incorrect),
and the portion of words that were never even detected by Speech-
to-Text (not detected) out of a total of 3,468 words spoken across
all recordings. Google Speech-to-Text is able to correctly transcribe
95.6% of the words spoken from each user. Speech-to-Text is also
able to decipher most of the spoken words, as shown by the low
"not detected" percentage. On the other hand, PAMS shows a much
lower correctly transcribed rate, at 21.3 percent. This is a huge
difference of 74.3 percent. Additionally, PAMS boasts a much higher
"not detected" rate. This is because of the PTM speech filtering
algorithm that PAMS employs to eliminate speech before the signal
is saved. On the contrary, Sleep as Android has no processing
module to remove privacy-sensitive non-sleep sounds from the
acoustic environment.

To evaluate preservation, we ran the recorded audio windows
through the sleep event detectors in both systems. Figure 3 shows
the confusion matrix metrics for the Sleep as Android and the PAMS
enhanced sleeping event detectors. The percentages refer to the
portion of 250 ms windows where sleep sounds were detected by
Sleep as Android and PAMS. The true positive rate is the percentage
of windows where a breathing or snoring sound was present, and
the system correctly captured and saved that window. A system
that is able to reliably detect and analyze snoring and sleep sounds
should have a high true positive rate. We see that Sleep as Android
(99 percent) and PAMS (93 percent) yielded similar strong perfor-
mances in this metric. This means that even after processing the
audio stream with no knowledge of breathing and snoring sounds
used in the filtering process, PAMS is still able to capture and de-
tect snoring sounds as well as a smartphone system that is freely
available. Related to the true positive rate is the false negative rate,
which is the portion of windows where snoring or breathing is
present, but the detector incorrectly identifies the window as not
containing snoring or breathing sounds. Both Sleep as Android (1
percent) and PAMS (7 percent) show similar performance here.

The false positive rate is the portion of windows that do not
contain breathing or snoring sounds, but the system detects and
records it anyways. This rate should be very low to avoid using
sounds that are not related to sleeping as an estimate of sleep



AlChallengeloT *20, November 16-19, 2020, Virtual Event, Japan

Xia et al.

S;‘g';’% _3'13 Section 4.1
Save Audio Window if
Compute PAMS Sleep Event Detected
Magnitude N Prl_vacy >
Spectrum Filter
(FFT) Pipeline

Figure 2: PAMS enhanced sleep monitoring
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Figure 3: Confusion matrices for the sleep event detectors of
Sleep as Android and PAMS.

quality. Sleep as Android (93 percent) boasts a much higher false
positive rate than PAMS (57). Sleep as Android, like many other
freely available applications uses a simple power-based metric to
determine when to record and analyze audio to measure sleep
quality. Since voice is generally high volume, it will likely record
and analyze voice. On the other hand, PAMS avoids recording many
of the windows that contain speech because of the PTM speech
filtering pipeline that is first employed to filter out speech. Related
to the false positive rate is the true negative, which is the portion
of windows that do not contain breathing or snoring sounds that
is correctly identified as non-sleeping sounds. This metric should
be high in order to avoid using non-sleeping sounds to measure
sleep quality. We see that Sleep as Android (7 percent) has a much
lower true negative rate than PAMS (43 percent) because speech is
present in most of the windows where snoring or breathing is not
present. Due to the simple power-based metric used to generate
recordings, the high-powered speech signal will cause Sleep as
Android to record speech even when no breathing is present. PAMS
is able to reliably filter out speech, allowing its detector to more
reliably reject intervals of speech as non-sleep events.

We note that the true negative rate of 43% for the PAMS en-
hanced sleep detector is by no means intended to represent the
state-of-art performance. We are instead highlighting the notion
that applying PAMS not only improves privacy, but can also signifi-
cantly improve certain performance measures in other areas of the
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application (e.g. the large improvement in true negative rate from
7% to 43%).

6 FUTURE WORK

PAMS is a starting point for building more secure and privacy-
sensitive mobile systems that utilize audio sensing. However, we
acknowledge a few limitations of the work.

e PAMS currently uses a noise model that is tailored to an in-
dividual and requires a training process to obtain this model.
We are currently exploring methods to robustly filter out
sounds using more general models that can still run on mo-
bile systems.

o PAMS currently leverages models of noise to filter out sounds
that developers deem extraneous to the application. However,
many applications, sleep monitoring included, are interested
in very specific types of sounds. In addition to building mod-
els for sounds we wish to remove, we are looking at methods
to incorporate information about sounds that applications
wish to preserve to further improve the filtering process.

e PAMS shows promise in enhancing privacy and security
for sleep monitoring systems. We plan to explore and ap-
ply PAMS to other mobile applications to better show the
universality of our approach and algorithms.

7 CONCLUSION

We present PAMS, a software development package aimed at im-
proving the privacy and security of audio-based mobile systems and
applications. PAMS takes a sound source separation approach and
leverages Probabilistic Template Matching, a novel and light-weight
noise filtering algorithm that leverages statistical "templates" of
noises to generate privacy enhancing filters that eliminate noises
that may contain privacy sensitive sounds. We demonstrate the
effectiveness of PAMS by developing and integrating PAMS into a
sleep monitoring system that detects and records breathing, snor-
ing, and other sleep sounds. We compare this PAMS enhanced sleep
monitoring system with freely available applications on the market
and demonstrate that our PAMS enhanced system is able to reduce
speech intelligibility and improve privacy by up to 74.3 percent.
At the same time, we show that the PAMS enhanced system is still
able to perform similarly compared to existing applications in de-
tecting snoring, breathing, and other sounds that may affect sleep
quality. PAMS is a step in the direction of creating more secure and
privacy-aware mobile applications.
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