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ABSTRACT

Sound detection and classification are critical in many acoustic-
based applications. Existing works generally focus on discovering
new features and classifiers to improve detection. However, in many
scenarios the presence of other sounds may hinder the performance
of these sound classifiers. In this work, we take a sound filtering
and enhancement approach to improve sound detection for mobile
and embedded applications, regardless of the type of detector used.
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1 INTRODUCTION

Sounds provide a large amount of information and helps us make
informed decisions in daily lives. For instance, hearing your child
crying may be a sign that he needs parental attention or nourish-
ment. Hearing your dog bark may be a sign that an intruder is
stepping onto your property. Sometimes, we just listen to music
for entertainment. Many works based on acoustics have been pro-
posed to solve pressing problems. For instance, [1-3] propose a set
of acoustic wearables to detect, localize, and warn users of poten-
tially dangerous oncoming vehicles in efforts to reduce vehicle and
pedestrian accidents. There have also been numerous works [4] and
smartphone applications [5] developed that use the microphone on
mobile devices to monitor sleep quality.

However, in many real-world scenarios, sounds that are of in-
terest may be overpowered by other sounds in the environment.
For instance, a noisy construction site may obscure the sound of an
approaching vehicle for a pedestrian passing by. In such scenarios,
acoustic detectors may perform worse due to heavy noise.
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Figure 1: System Architecture.

In this poster, we present a general acoustic framework that
combines adaptive beamforming and learned models of specific
sounds to filter or enhance them to improve sound detection.

2 SYSTEM IMPLEMENTATION

2.1 Adaptive Beamforming with
Content-Based Constraints

We propose an adaptive beamforming method that combines content-
based constraints based off of learned models of sounds that users
can select to enhance or filter out depending on the application
requirements. This framework can accommodate a wide range of
mobile and embedded applications that may have varying numbers
of acoustic sensors. These ideas are shown in Equations 1 and 2.

arg min w*Rw 1)
w
wid =1

Pp(W'Rw) < a 2)

Pe(w*Rw) > B

Equation 1 shows the problem set up for the linearly constrained
minimum variance adaptive beamformer (LCMV) [6]. R is defined
as the spatial correlation of the input signal, x (R = E[xx"]). E[]
refers to the expected value, and the * operator refers to the conju-
gate transpose. w refers to the filter coefficients that the adaptive
beamformer learns to enhance signals arriving at the microphone
array from the direction specified by the steering vector d.

Many applications may have information or models of sounds
that they wish to detect or reject. To incorporate this information
into our framework, we introduce the constraints presented in
Equation 2 into the adaptive beamforming framework presented
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in Equation 1. We refer to a sound of class n as a sound the appli-
cation wishes to reject and a sound of class e as a sound that the
application is interested in enhancing or detecting. The idea behind
these constraints is to adapt our filter coefficients w to reduce the
probability that the filtered signal, P, (w*Rw), is of the undesired
class n and to improve the detection rate or probability, Po (w*Rw),
that the filtered signal is recognized as an instance of the desired
class e. The final filter update equations can be obtained by solving
the optimization problem using the method of Lagrange multipliers
similar to what is used in the original LCMV beamformer [6].

Two problems remain that have yet to be addressed. First, beam-
forming requires a direction to "steer" the beam towards. To address
this issue, we integrate the sound source localization scheme pre-
sented in [7] to detect sources present in the environment and
localize them. The steering vector d is then updated to "steer" the
beam to the direction of localized sources.

The second issue is modeling the sounds we wish to filter out or
enhance (P, (w*Rw) and P, (w*Rw)). We model our sound models
using Gaussian Mixture Models (GMM). This is because Gaussians
and mixture models are commonly used to model acoustic sounds
and computing gradients for solving the adaptive beamformer with
content-based constraints presented in Equations 1 and 2 is straight-
forward and relatively computationally inexpensive.

2.2 System Architecture

Figure 1 shows the architecture of our system. The central piece is
the adaptive beamforming block, introduced in Section 2.1. Once
the audio channels pass through the beamforming block, our sys-
tem performs sound source localization. The source locations and
filtered sources are fed back into the beamforming block in an adap-
tive manner to continue the filtering process for the next window.
The library of sounds block, highlighted in blue, contains a set
of sound models that users can choose to enhance or filter out in
the beamforming block, depending on the application at hand.

3 PRELIMINARY RESULTS

We explored two scenarios where our system may be useful. First,
is the case where we wish to detect the crying sounds of a baby in
presence of loud construction sounds. This scenario may be part of
an application that determines when the child needs care, but may
be difficult to detect due loud city sounds. The second scenario is
the case where we wish to detect the sounds of a piano playing in
presence of speech and babble. This scenario may occur in situations
where the music is being played at a large social gathering and
attendees may wish to listen to the background music.

We collected and recorded 10 minutes of clean audio for each
of the four classes mentioned. For both scenarios, we recorded 10
minutes of mixtures. In total, we recorded 60 minutes of audio (40
minutes in total of clean sounds and 20 minutes of mixtures). All
sounds were recorded by playing clips collected from the Google
Audioset dataset [8] through speakers pointed at a 6-microphone
uniform circular array to ensure that the sounds are mixed in the
real-world. We used 20% of our data as testing data to compare the
performance of a sound detector on the raw unfiltered signal vs
the sound signal obtained after processing the raw audio through
our proposed architecture. The other 80% of data was used to train
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Table 1: Performance metrics of two scenarios: 1. crying de-
tection in presence of construction tool sounds and 2. piano
detection in presence of speech. Detection performance af-
ter filtering through our proposed pipeline is in bold.

True Pos. | True Neg. | False Pos. | False Neg. | F-1
Crying Nonfiltered 80% 98% 2% 20% 0.88
Crying Filtered 83% 98% 2% 17% 0.90
Piano Nonfiltered 86% 98% 2% 14% 0.90
Piano Filtered 90% 98% 2% 10% 0.92

our sound models used for filtering and a Random Forest sound
detector to perform detection on the filtered and unfiltered signals.
The confusion matrix results are shown in Table 1.

We see in both scenarios that filtering signals through our pipeline
improves the true positive rate of crying and piano (the target sig-
nals). This in turn also improved the F-1 score in both scenarios,
showing that we can obtain better detection accuracy by prepro-
cessing acoustic signals through our proposed system.

4 CONCLUSION

In this poster, we presented an acoustic filtering framework for
improving sound detection and classification for mobile and embed-
ded platforms. Our system utilizes a novel adaptive beamforming
method that is constrained by sound models of noises and target
sounds a user or application can choose to reduce or enhance.
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