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Abstract

The Fourier algebra of the affine group of the real line has a natural identification,
as a Banach space, with the space of trace-class operators on L?(R*,dt/|t]). In this
paper we study the “dual convolution product” of trace-class operators that corresponds
to pointwise product in the Fourier algebra. Answering a question raised in work of
Eymard and Terp, we provide an intrinsic description of this operation which does not
rely on the identification with the Fourier algebra, and obtain a similar result for the
connected component of this affine group. In both cases we construct explicit derivations
on the corresponding Banach algebras, verifying the derivation identity directly without
requiring the inverse Fourier transform. We also initiate the study of the analogous Banach
algebra structure for trace-class operators on LP(R*,dt/|t|) for p € (1,2) U (2, 00).
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1 Introduction

1.1 Background and motivation

Given a bounded and SOT-continuous representation 7 of a topological group G on a Banach
space F, one may associate to each £ € E and ¢ € E* the coefficient function ¢(m(_)E) €
Cy(G). The vector space generated by all coefficient functions of 7 admits a natural norm,
stronger than the uniform norm of Cy(G), and its completion in this norm is called the
coefficient space of .

If G is locally compact, we denote by A(G) the coefficient space of the left regular rep-
resentation A\ : G — U(L*(G)). Eymard [Eym64] showed that A(G) is actually a Banach
algebra with respect to pointwise product, now called the Fourier algebra of G. When G is
abelian, the Fourier transform gives an isometric isomorphism between A(G) and the con-
volution algebra Ll(@). Even when G is non-abelian, a well-established theme in abstract
harmonic analysis has been to view A(G) as some kind of convolution algebra on a “quantum
group” that is dual to G. However, in most cases this “dual convolution” is only defined in a
formal or abstract sense.

This article studies a particular case where this notion of dual convolution can be made
precise and described explicitly. Consider the group of affine transformations of R, given the
natural topology, which we denote by R x R*. This group has an unusual property that
never occurs for non-trivial compact or abelian groups: writing H = L?(R*, dt/|t|), there is
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an rreducible unitary representation 7 : R x R* — ¢/(H) such that A(R x R*) coincides with
the coefficient space of m, which we denote by A.(R x R*). Associated to 7 is a surjective
norm-decreasing map ¥ : H®@ H — A (R x R*), which is isometric since 7 is irreducible.

Since A;(R xR*) = A(R x R*), and since A(R x R*) is a Banach algebra with respect
to pointwise product, we can use the surjective isometry ¥ : H® H — A (R xRR*) to equip
S1(H) = H®H with a commutative Banach algebra structure. In [ET79, Probleme 2.7], after
making this observation, Eymard and Terp pose the following challenge:

“Interpréter cette multiplication en terme des opérateurs!”

The present paper answers their challenge by providing an explicit formula for the new mul-
tiplication on Sj(H) — this is what we refer to as “dual convolution” for R x R*. To our
knowledge, such a formula has not been recorded before in the literature.

Having established this explicit formula, the rest of our article investigates some applica-
tions and variations, described in more detail in Section 1.2. These applications and variations
are intended to demonstrate that the resulting Banach algebra A can be studied directly, with-
out any prior knowledge of the isomorphism ¥ : A — A(R x R*), and to argue that A is an
object of intrinsic interest. A loose but instructive parallel is with certain naturally occuring
Banach function algebras, such as AC([0, 1]), that can be modelled as L!-convolution algebras
of certain semigroups.

Informally: by introducing dual convolution on Sj(H), we are swapping an object where
the algebra structure is easy to describe but the norm is complicated, for one where norm
estimates are straightforward but the algebra structure is more complicated. This offers an
alternative point of view on A(R x R*), which could shed new light on its known properties
as a Banach algebra. Moreover, analogous constructions for higher-dimensional semidirect
product groups may yield new results for their Fourier algebras.

1.2 OQOutline of our paper

Section 2 sets up the basic notation and definitions that will be used throughout the paper.
We give an explicit definition/description of the group R x R* and the key representation
m: R xR* — U(H), and collect some known facts from the literature for ease of reference.

In Section 3 we give an explicit formula for dual convolution as a bilinear map X : S (H) x
S1(H) — Si(H). The formula is motivated by showing how one expresses the product of two
coefficient functions of 7 as a continuous average of other coefficient functions (a so-called
“fusion formula”). We show by explicit calculations, without invoking the representation 7,
that X is commutative and associative. We also show that if trace-class operators on H are
given as integral kernel functions, then X can be described on that level also.

Writing A for the Banach algebra (S;j(H),X): in Section 4 we construct a derivation
D : A — A" which has interesting operator-theoretic properties as a linear map between
Banach spaces (it is cyclic, weakly compact, and “co-completely bounded” in the terminology
of [Cho20]). Usually, in constructing derivations on function algebras, it is easy to see that
the derivation identity holds on a dense subalgebra, but hard to show that one has a well-
defined and bounded map on the whole algebra. By working with dual convolution on A,
the situation is reversed: it is easy to check that D is a bounded linear map with the extra

properties mentioned above, and the hard part is to verify the derivation identity.



The group R x R* is not connected, but has an index 2 subgroup isomorphic to the
semidirect product R x R;‘, which is a fundamental example of a non-unimodular connected
Lie group. (The notation will be explained in Section 2.) Since A(R x R{*) cannot be identified
with the coefficient space of a single irreducible representation, a direct description of dual
convolution for R x Ry is less straightforward. In Section 5 we identify an explicit subalgebra
of A that corresponds to A(R x R‘), and hence obtain an analogue of dual convolution
for R x R*. We then show how the construction in Section 4 yields a derivation on the
Fourier algebra of A(R x R{*), which offers a new perspective on some resuts in [CG14].

In Section 6 we consider AL, the coefficient space of the LP-analogue of 7, from the
viewpoint of dual convolution. We sketch how our explicit formula for X may be extended
from S;(H) to Sy(LP(RX)) for 1 < p < oo, making S;(LP(RX)) = LP(R*) @ LI(R*) into a
commutative Banach algebra A,. We then show that A% is a Banach algebra in its natural
norm and is isomorphic to A, (Theorem 6.2). Perhaps surprisingly, for p # 2 there is a crucial
difference from the p = 2 case: AL is not the same as the LP-version of the Fourier algebra
(Theorem 6.6), and it appears to be a new Banach function algebra about which we know
little at this stage.

Finally, in Section 7, we make some remarks about possible directions for future work,
and pose some explicit questions about the algebra AZ. In the appendix we show how the
tensor product of two induced representations may be expressed as a direct integral of a family
of induced representations, and use it to give an alternative proof of the fusion formula for
coefficient functions of .

2 Preliminaries

2.1 Notation and some general background

If H, and Ho are Hilbert spaces then H; ®2 Ho denotes their Hilbert-space tensor product.

Given a complex vector space V, the conjugate vector space V is defined to have the same
underlying additive group as V, equipped with the new C-action ¢ ® & = ¢£. Note that if H
is a Hilbert space then the function H x H — C defined by (£,7) +— (£,n) is bilinear rather
than sesquilinear.

The symbol @ denotes the projective tensor product of Banach spaces. If A is a Hilbert
space then there is a standard identification of H ® H with the space Si(H) of trace-class
operators on H, defined by viewing the elementary tensor £ ® n as the rank-one operator
a — {a,n)&; this correspondence is an isometric, C-linear isomorphism of Banach spaces.

Coefficient functions associated to continuous bounded group representations were already
defined in the introduction, but we did not give a precise definition of the corresponding
coefficient spaces. Most of this article concerns unitary representations on Hilbert spaces, so
we review some standard material here in order to fix our notation.

If o : G — U(H) is a continuous unitary representation and &,n7 € H, we denote the
associated coefficient function x — (o(x)&,n) by %, n € Cp(G). There is a contractive, linear
map U, : H & H — Cy(G) defined by U, (¢ @) = £ %, 7. We denote the range of ¥, by
A, (G), or simply A, if the group G is clear from context; this is the coefficient space of o,
and we equip it with the quotient norm pushed forward from H & H/ ker(U,).

Two special cases should be singled out:



1. If X denotes the left regular representation G — U(L?*(G)), then A)(G) coincides with
the Fourier algebra of G, and is usually denoted by A(G). (This is not Eymard’s
original definition of A(G) but the equivalence is proved in [Eym64, Ch. 3]; see also
[KL18, Prop. 2.3.3].) With our definition, the fact that A(G) is closed under pointwise
product follows from Fell’s absorption principle.

2. If 0 : G — U(H) is irreducible, then ¥, : H ® H — A,(G) is injective, hence is
an isometric isomorphism of Banach spaces. This result is due to Arsac; the proof
combines a duality argument (see e.g. [KL18, Lemma 2.8.2]) with Schur’s lemma for
irreducible unitary representations.

Moreover, if ¢’ is a direct sum of countably many copies of o, then A,/(G) = A,(G). (See
e.g. [KL18, Prop. 2.8.8].)

REMARK 2.1. The space A, (G) was originally introduced by Arsac but defined in a different
way, as the closed linear span of {{ *, n: &, € H} inside the Fourier—Stieltjes algebra B(G).
We will not discuss B(G) in this paper; the equivalence of this original definition with our one
can be found in e.g. [KL18, Theorem 2.8.4].

2.2 The affine group of R

R* denotes the multiplicative group of R, equipped with the subspace topology; it has a Haar
measure dt/|t| where dt denotes usual Lebesgue measure on R. We write Ry for the subgroup
of R* consisting of strictly positive real numbers; the notation is consistent with using G, to
denote the connected component of a locally compact group G.

When dealing with LP-spaces on R*, we will usually omit mention of the Haar measure
and merely write LP(R*); this should not be confused with LP(R) which always means the
LP-space for the Lebesgue measure on R.

We define R x R* to be the set {(b,a): b € R,a € R*} equipped with the product topology
of R x R* and the following multiplication:

(b,a) - (V,d") = (abl + b,aa’) (2.1)

With this choice, the map (b, a) — [g

11)] is a homomorphism R x R* — GLy(R). Inversion

in R x R* is given by
(b,a)"! = (=b/a,1/a) (2.2)
Note that R embeds as a normal closed subgroup of R x R* via b+ (b,1), while R* embeds
as a closed subgroup via a — (0,a).
In harmonic analysis it is more common to work with the subgroup {(b,a): b € R,a € R{'}.
This is a connected Lie group, often referred to in the literature as “the real ax + b group”;
we shall return to it in Section 5.

2.3 The key representation and its coefficient space

As in the introduction, we let H denote L?(R*). There is a continuous unitary representation

IT: R x R* — U(H), defined by

(b, a)£(t) =™ '¢(a™t) (bR, a € R; £ €H, t € RX). (2.3)



This is a special case of a more general construction: if we consider the character xy; on R
given by x1(t) = exp(2mit), the previous formula may be written as

I = Ind®® y, | (2.4)

where we use the explicit realization of an induced representation for a semidirect product
group, as described in “Realization III” of [KT13, section 2.4] (see Appendix A for details).
Mackey theory tells us that II is irreducible, and is the only infinite dimensional irreducible
representation of R x R*.

In this article we work not with IT but with a unitarily equivalent form (which matches
the representation defined in [ET79, Equation (1.3)]). For a C-valued function on a group G,
define f : G — C by f(z) = f(z™'). Since Haar measure on R is invariant under the change
of variables t <+ t~!, the map & — & defines an isometric involution J : H — H. We now
define 7 = JII(-)J : R x R* — U(H). Explicitly, given £ € H and b € R, a € R*, we have

m(b,a)E(t) := > (ta) (t e R™). (2.5)

We claimed in the introduction that Az(R xR*) = A(R xR*). This can be seen as
follows. The left regular representation A of R x R* can be obtained by inducing the left
regular representation of R, which we denote by Ag. Note that Ag is unitarily equivalent to
a direct integral (over R*) of all nontrivial characters of R. Moreover, each such character is
induced to a representation of R x R* equivalent to 7. Since induction and direct integration
commute, it follows that A is equivalent to m ® I for some separable Hilbert space H. Hence
7 is weakly equivalent with A\, and A;(R x R*) = A\(R x R*) = A(R x R*) by the results
mentioned in Section 2.1.

REMARK 2.2. The equality A (R x R*) = A(R x R*) implies that A;(R x R*) is closed
under pointwise product. In Section 3 we will give an alternative proof of this fact, using
dual convolution on H® H. In Section 6 we will see that this alternative proof carries over
to the LP-analogue of A;(R x R*), but that this space is not equal to the LP-analogue of
AR xRX).

We shall write ¥ rather than W, for the canonical quotient map H® H — AL (R x R*),
E®@n — & *,m. Since 7 is irreducible, ¥ is injective by the remarks in Section 2.1, although
we shall not use this fact when defining dual convolution in Section 3.

REMARK 2.3. (i) In [ET79], the map ¥ is denoted by F and called “la co-transformation de
Fourier” for the group R x R*. Note that because R x R* is non-unimodular, compos-
ing U with the operator-valued Fourier transform F : f — w(f) = [p px [(z)7(x)dz
does not yield the map f — f, and so (as observed in [ET79]) ¥ should not be called an
“inverse Fourier transform”. However, the philosophy of Fourier inversion guides much
of what we do in this article.

(ii) For most of our article, the fact that A (R x R*) = A(R x R*) does not play a big
role in our calculations, since we are not relying on the modified Plancherel formula for
this group. The exceptions are in Section 5, where we use general facts about Fourier
algebras of open subgroups, and in the proof of Theorem 6.6, where we use results of
Herz on Figa-Talamanca—Herz algebras.



2.4 Bochner integrals and related measure theory

Our explicit formula for dual convolution is expressed as a Bochner integral, which requires
attention to questions of strong measurability (also referred to in the literature as Bochner
measurability). A very thorough treatment of strong measurability and the Bochner integral
can be found in [HYNVW16, Section 1.2.b].

It is usually impractical to verify directly that a given Banach-space valued function is
strongly measurable. For functions with values in an LP-space an alternative approach is
provided by the following result: given two sigma-finite measure spaces (€21, 1) and (Q9, p2),
and 1 < p < oo, there is a natural embedding

LP(Qu, 1) ® LP(Qa, pr2) — LP(Qq, pu1; LP(Q2, p2))

where f ® g is sent to the function w; — f(wy)g. This embedding extends to an isomet-
ric isomorphism of Banach spaces LP(£21 X Qo, py X pa) = LP(Qq, p1; LP(Q2, p2)) (see e.g.
[HYNVW16, Prop. 1.2.24] for the proof of a more general statement). In particular, elements
of LP(2y X Q9,1 X p2) define strongly pi-measurable functions Qp — LP(Qa, p2).

3 Fusion and dual convolution

Notation. For r € R*, let A(r) : H — H denote the usual “left translation” by r (multi-
plicative in this context), i.e. A(r)é(t) = &(r~'t). Similarly p(r) : H — H denotes “right
translation” by r—1, i.e. p(r)é(t) = &(tr).

We use both A\ and p, even though R* is abelian, because we have in mind possible
extensions of the following calculations to semidirect products of the form R™ x D where
D c GL,(R) need not be abelian.

3.1 An explicit formula for fusion of coefficients

To avoid any doubt we shall pay close attention to issues of convergence and integrability.
Let &1,11,&,m2 € H. For each (b,a) € R x R,

(b, )€1, ) (b, @)n, ) = /R em&(m)m—w% /R em@(sa)m—(s)dﬁ

(where as usual we treat a measurable function defined on R* as a measurable function defined
on R, by prescribing some arbitrary value at 0).
Let d(t,s) denote the Haar measure on R?. Observe that the function

27ibt

W& (ta)m ()€™ & (sa)nz(s)

(t,s) —

is integrable on R?, since by Tonelli’s theorem for R? followed by Cauchy-Schwarz for H,

2= [at@inol g [ latalne

< llp(@)éallnlim lnllip(a)€allyllnelly < oo

/ &1 (ta)] I ()] [€2(50) [2(5)
RQ



Therefore, the following changes of variable and order of integration are valid:

<7T(b’ a)gl, 771><7T(b’ a)£2’ 772>

[Fubin] = /R e (ta)m (1) e 8a(sa)ma (s) déﬂ j)
o= = [ I a9 e 0 % 31)
[s = tu] = /}R2 2™ (1 — u)ta)éa(uta) ny (1 — u)t)na (ut) %
. _ >~ 2mibt _ dt L
[Fubini] = /_OO </]RX e §1((1 = w)ta)éa(uta) ni ((1 — w)t)n2(ut) M) 11— ulfu|

One can now show that for fixed u € R\ {0,1}, the inner integral in the last line of
Equation (3.1) can be written as (7 (b, a)ay, f,) for suitable oy, 8, € H, and that

du
/R llevullpll Bullp =77 T € nli€allnlim ln 2l

so that (&1 #5 m1) - (§2 % 12) is a weighted average of explicit coefficient functions av, *, 3, as

)

u varies; this is what we mean by a “fusion formula” for coefficient functions.
For technical reasons, we first make a further change of variables u + 1 — (1+h)~!. Then
|1 — u| =Y u|"*du = |h|~'dh, and so the last line of Equation (3.1) is equal to

o oribt t t dt\ dh
— | == 3.2
[ (L epeimmpets= i) 5 @
LEMMA 3.1. Given X € H®?H = L?(R* x R*), define V(X) : RX x R* — C by

V(X)(ht) = X (HL}L #) .

Then V(X) € L?>(R* x R*), and V : L>(R* x R*) — L?(R* x R*) is an isometry.

Proof. Clearly V(X) is measurable. Then

2 d(h’t)
Lo O |h||t|

= X
/RXX]RX <1+h L+h~ 1)

Itllhl

= / </ X(t,th)|? dt) dh [Tonelli, then ¢ — t(1 + h) |
rx \JRx [t/ |l
dh\ dt
= / </ 2 ) — [Tonelli, then h st~ 'h ]
RX RX |h| t
h,t) .
= Tonelli
e PP S onel
Thus V(X) € L2(R* x RX) and V is an isometry, as required. O

Note that if X € C.(R* x R*) then so is V(X). However, if X € C.(R*) ®@ C.(R*), we
see no reason to expect that V(X) € C.(R*) ® C.(R*).

If f and g are measurable functions R* — C, let f-¢g denote their pointwise product (with
the usual identifications of functions that agree a.e.).



COROLLARY 3.2. Let &,& € H. For h € R\ {0,—1} let F(h) = M1+ h)& - M1+ h™ 1.
Then F' is equal a.e. to a strongly measurable, (Bochner-)square integrable function R* — H,
and

dh
/Hﬂwm—zmmmm-
. )

Proof. We apply Lemma 3.1 with X =& ® &. As re;narked in Section 2.4, we may identify
V(X) with a function F € L*(R*;H), satisfying | F|~ = || X||* = ||&]|5]&]|F and F(h)(t) =
V(X)(h,t) for a.e. (h,t) € R* x R*. The rest follows from the definition of V. O

Note that a priori, one only expects the pointwise product of two functions in H to lie in
LY(R*). The corollary shows that in fact, F(h) € H for a.e. h € R*. In general one cannot
expect F'(h) € H for all h € R*, since

5 dt 5 dt

PO = [ ataears - [ aoeori-la el 63

and so taking e.g. £1(t) = &x(t) = 141 (t — 1)~1/3 one sees that the RHS can be infinite.

PropoSITION 3.3 (Explicit fusion for coefficient functions of 7). Let &.,n; € H fori = 1,2.
Then

(§1%xm) - (§2 % m2) = /Rx AL+ R)E - AL+ h™HEo] % [A(L+B)mr - AL+ ™ )] %

defined as the Bochner integral of an A;(R x R*)-valued function.

Proof. Let F(h) = A1+ h)& - M1+ h )& and G(h) = A1+ h)p - A(1 + A~ Y)m. By
Corollary 3.2, F' and G are (after modification on a null subset of R*) strongly measurable
as functions R* — H, and square integrable (with respect to Haar measure on R*).

Therefore, the function h — F(h) x; G(h) is strongly measurable and a.e. A, (R x R*)-
valued; it is Bochner integrable (with respect to Haar measure on R*), since

dh dh
L E® 5 Gl G < [ IE@Ie®I G

< ([ w2 ( ] e )"

= & llull€llnllmllllmalln -

where the final equality follows by using Corollary 3.2 again. Unpacking the definitions of F
and G, and comparing them with (3.2), we see that

(&1 %7 m)(b,a) (&2 *x m2)(b,a) = /RX [F(h) *x G(h)](b,a) % for all (b,a) € R x R*

as claimed. O

REMARK 3.4. Our direct route to the key formula (3.2) relied on ad hoc manipulations of
integrals. There is a more conceptual approach, based on constructing an explicit intertwining
map between 7 ® m and Iy ®@ 7. This intertwining map emerges naturally from considering the
representation IT defined in (2.3) and its description as an induced representation; details are
given in Appendix A. In fact, this approach was originally how we came up with the formula
(3.2), and it motivates the technique used in Lemma 3.1.



3.2 Defining dual convolution

The formula in Proposition 3.3 immediately suggests how to define the dual convolution of
two rank-one tensors in S;(H) = H ® H: given &,& € H and 1,7/ € H,
EenRE o)
dh (3.4)
::/ (AT +h)E- A1+ RHE) @ (ML+h)n- AL+h"H)n) Tk
RX

where the right-hand side is defined as a Bochner integral of a function R* — H ® H. The
proof that this function is Bochner integrable is essentially the same as the argument used in
proving Proposition 3.3, so we shall not repeat it here; we record for reference that the same
calculation yields the upper bound

dh
/RX INL A+ R)E - A +h™HE N INL + R)n - AL+ B || Th]

< €N lE nlimlllln T -

REMARK 3.5 (Technical caveats). Strictly speaking, the integrand in (3.4) is only a.e. H® H-
valued (c.f. Equation 3.3), and the null set of “bad values” of h might depend on all four

(3.5)

of the vectors &,&,n, . However, one can ignore such technicalities if £,&,n,n € C.(R*).
For, under this assumption, A(a)¢ - £’ vanishes identically whenever |a| is sufficiently small
or sufficiently large. It follows (using continuity of translation in H and in Cy(R*)) that the
integrand in (3.4) is a continuous, compactly supported function R* \ {-1} — H & H, with
no need to worry about various formulas holding only a.e.

We can now extend the operation X by linearity and continuity to a contractive bilinear
map Si(H) x Si(H) — Si(H), by representing elements of S;j(H) as absolutely convergent
sums of rank-one tensors. To see that this extension is well-defined and independent of how
we represent elements of S1(H), note that (§,7,£',1) — (£@n)XK (' @n') defines a contractive
multilinear map from Hx Hx Hx H to H&H, and so by the universal property of ®, it extends
uniquely to a contractive linear map

SIH @S (H=HXH®H®H — H®H=S8;(H).

An alternative integral formula. One can rewrite the defining formula (3.4) as

du

1 — ulful

EeonREern)= /R(A(l —u) M) ) @ (A1 —u) - AMu) ) (3.6)
after a change of variables! 1 —u = (1 +h)~!.  Similar comments as in Remark 3.5 also
apply here: for instance, if £,£', 1,7 € C.(R*), then the integrand in (3.6) is continuous from
R\ {0,1} to H® H with compact support.

Equation (3.6) should be compared with the initial calculations in (3.1). In fact, many
of the preceding results could have been formulated without the change of variables in (3.2).
Both formulations of dual convolution seem to be natural and useful: the formula (3.4) is
more closely related to the underlying general principles concerning tensor products of induced
representations; but (3.2) is more enlightening for certain calculations, such as (3.8) below.

! Changes of variables for Bochner integrals can be easily justified by verifying first for simple functions, and
then passing to the limit.



An abstract definition of X. An alternative way to think of our construction of X, viewed

as a bounded linear map from S; (H)®S; (H) to Si(H), is by constructing it as the composition

of the maps shown in Figure 1.

(HEH) S (H® H) S (H®H)® (H® H)
embed (H ®2 H) @ (H ®2 ﬁ)
=5 (H®?H)® (He?H)
identify L2(RX7 H) @ LQ(RX, H)
diagonal LI(RX’ H @ ﬁ)

Figure 1: Dual convolution as a composition of simpler operations

We now explain briefly what each of these maps is.

The “shuffle” map interchanges the second and third factors in the tensor product, i.e. it
sends ERNRE @7 to R @ne7.

The “embed” map is self-explanatory, and V is from Lemma 3.1. The map “identify”
is the same identification described in Section 2.4 and used in Corollary 3.2.

The “diagonal” map is given as follows: for Banach spaces Fq and Es there is a canonical
contraction

LY(R*; E1) ® L2(R*; Ey) — LY(R*; E; ® Es)
which sends F' ® G to h— F(h) @ G(h).
The “trace” map is given as follows: for a Banach space E there is a canonical contraction
L'(R*;E) — E which sends a function F € LY(R*;E) to [px F. (If we identify

L'(R*; E) with L'(R*) & E, then the trace map is the same as slicing in the first
variable against the constant function 1 € L>*(R*).)

The advantage of this approach is that all issues concerning strong measurability, or show-

ing that various maps are well-defined and do not depend on how an element of H® H is

represented as an infinite sum of tensors, are automatically taken care of by the formal iden-

tifications between various Banach spaces. Moreover, this approach also generalizes easily to

the LP-setting, or to settings with additional operator space structure. The disadvantage is

that this definition of X is rather abstract, and is less suited to concrete calculations.

3.3

Basic properties of dual convolution

Clearly X is commutative: this follows directly from a change of variable h — h~! in (3.4).

Proving that X is associative requires more work. (Recall that even when considering the

usual convolution of two L'-functions on a locally compact group G, checking associativity

directly by attempting to interchange integrals requires careful use of Fubini’s theorem to

justify treating identities that only hold a.e. as if they hold everywhere.)
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To show that X is associative, it suffices by linearity and continuity to show that (77 X
To) X Ty =Ty X (T, K T3) when T; = & ®@n; for &,m; € C.(R*) (i = 1,2,3). In the following
calculations, we shall adopt the following notational convention to make our formulas more
manageable. Given a function in C.(R*) which is obtained from &1, £, and &3 by some explicit
formula T, &2, &3], we shall write T[£1, &2, 3] ® repeat for  to mean

T[gl’ 52’ 53] ® T[Ul, 12, 773] € CC(RX) ® CC(RX)

Since (&, ® 11) K (_) is a bounded linear map H ® H — H & H, it commutes with the
Bochner integral. In particular,

(G @m) R ((& @m) K (& @)

= /R(fl ®@m) X < M1 —u)71e - Mu) 713 @ repeat for )

du

11— ulful

= —v) 7 A(w) —u) My AMu) ! repeat for dv du
= [ ([ 2ot 2 (- 0 Aw) ] o epest for )

1= wlfo] ) [1 = ul[ul

= / (/ M1 —v) 71 Mo —uw) 1 - Muw) ¢ @ repeat for dv ) du
R \J/R

1= ollo[ ] [1 = ulful

(3.7)

The expression in the inner integral is measurable and Bochner integrable as a function
RZ > H®H (since it is continuous with compact support and vanishes in a neighbourhood
of {0,1} x {0,1}). So by Fubini’s theorem for Bochner integrals (see e.g. [Wil07, Theorem
B.41]), we may rewrite (3.7) as a double integral and perform succesive changes of variables
u+— u/v, v 1—wv to obtain

(§1®@m) K <(§2 ®12) B (&3 @ 773))
d(v,u)
1 —oljv —ullu|
d(v,u)
[ol[1 = v —ul|u|

(3.8)

= / M1 —0)7t - Mo —u) 1 - M(u) 713 @ repeat for i
R2

= / A0)7He M1 — v —u) s - Mu) Tl E ® repeat for n
R2

One can use similar arguments to expand ((fl ®@mn1) K (&2 ®772)) X (£3®m3) as a double integral

with values in H ® H, and show by appropriate changes of variable that this is equal to the
right-hand side of (3.8). Alternatively, observe that since X is commutative,

(EomBE@omn)R(&Gon) = (Eomn R (@omn) BEomn);

then observe that the value of the last integral in Equation (3.8) is unchanged if one swaps
&1 ®m with 3 ® i3 (since this corresponds to interchanging the variables u and v in the
integral).

Note that Proposition 3.3 can be rephrased as

T((EenRE o) =v(E2n¥(E @), (3.9)

and so by linearity and continuity, it follows that ¥(TXT") = U(T)W(T") for all T, 7" € S;(H).
This gives an independent proof that A (R x R*) is closed under pointwise product. It could
also have been used to prove associativity of X, by transferring it from associativity of point-
wise product in A;(R x R*). We believe that the direct proof given above has independent
interest, especially in light of the symmetry displayed by the formula in Equation (3.8).
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Summary. We sum up the results of this section in the following theorem.

THEOREM 3.6 (Dual convolution on S;(H)). The operation X, defined on pairs of elementary
tensors by the formula (3.4), extends to a contractive bilinear map Si(H) x S1(H) — S1(H),
which makes S1(H) into a commutative Banach algebra. If we denote this Banach algebra by
A, then ¥ : A — A (R xR*) is an isometric isomorphism of Banach algebras.

3.4 Dual convolution at the level of functions

Trace-class operators on H = L?(R*) are often given not as explicit sums of rank-one tensors,
but as integral operators defined by certain kernel functions R* x R* — C. In this section
we provide a description of dual convolution that may be easier to apply in such cases.

We may view elements of Sj(H) as measurable functions on R* x R*| as follows. First
note that complex conjugation of functions defines a C-linear isometric isomorphism of vector
spaces from L2(R*) onto L?(R*), which extends to an isometric isomorphism

[ L2R*)® L2(RX) —» L2(R*) ® L*(R*)  ;  £@n— EQT. (3.10)

Furthermore, the natural map L?(R*) ® L*(R*) — L?>(R*) ®2 L*(R*) is linear and norm-
decreasing, and it is injective since Hilbert spaces have the approximation property. Finally,
note that we may identify L?(R*) ®2 L?(R*) with L*(R* x R*).

Thus, up to a.e. equivalence?

we can view any 7" € S;(H) as a measurable function on
R* x R* which is square-integrable (with respect to the measure |s|~|t|~! d(s,t)). For ease
of notation, we shall denote this function also by 7', suppressing mention of the embedding ¢.

With this convention,

To.p) = [ B0 (0, € H),

which is the usual form in which an integral operator is given. Warning: with this convention,
if T is a rank-one tensor £ ® n € H® H then T'(s,t) = £(s)n(t) for s,t € R*.

PROPOSITION 3.7 (Pointwise formulas for dual convolution). Let Ty, Ty € Si(H) = H® H.
Then for a.e. (s,t) € R* x R*

o s t hs ht dh
(T RTo)(s8) = /OOTl (1 Fh 1+h> 2 <1+h’ 1 +h> 7] (3:11a)
> du
= Ti((1 —w)s, (1 — u)t)To(us, ut) ————— (3.11b)
[ = ul

where both of the integrals above are absolutely convergent for a.e. (s,t) € R* x R*.

Proof. When T} and T5 are rank-one tensors, this follows from the definition of X. Hence it
is true when T} and T are finite rank operators. Every trace class operator is the limit in
trace-norm of finite rank operators, and by going down to a subsequence we can assume that
the convergence holds pointwise a.e.

2There is a subtler notion available when viewing elements of S1(L?*(Q2)) as functions on Q x Q; rather
than quotienting out by the equivalence relation “agree except on a null subset of 2 x 7, one uses the finer
equivalence relation “agree except on a marginally null subset”. This notion, which orginates in pioneering
work of Arveson on operator synthesis, is not needed for our paper.
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Now observe that if T = Y 07| f, ® g where Y 7 || fullyllgnlly < oo, the trace-class
operator R = > > | fn] @ |gn| satisfies R(s,t) > |T'(s,t)| a.e. The result now follows using
the Lebesgue dominated convergence theorem, replacing 77 and Tb in (3.11a) or (3.11b) with
“dominating operators” R; and Rs. U

4 An explicit derivation from A to its dual

In this section we construct an explicit derivation D : A — A* and study some of its operator-
theoretic properties. We will relate D to constructions in [CG14] in the next section.

We briefly review some general definitions. For a Banach algebra A, each ® € (A ® A)*
corresponds to a bounded linear map A — A* defined by a — ®(a ® —). This map A — A*
is a derivation if the following identity holds:

®(aras ® ag) = P(az ® apay) + P(a; ® azayp) for all ag,a;,as € A. (4.1)
The derivation is said to be cyclic if ®(a ® b) = —®(b® a) for all a,b € A.

DEFINITION 4.1. Given & € H, let S&(t) = sign(¢)&(t) and RE(t) = £(—t), where sign is the

sign function R* — {£1}, t > &

ik Clearly S and R are isometric, linear involutions on H.

Although we do not consider coefficient functions in this section, note that for every
£,m € H we have € % n = RE %, R7.

Constructing our derivation. Define a multilinear map ® : H®@H® H&® H — C by

P& @m © & @) = (S, REo) (RMg, ). (4.2)

We view ® as a bilinear form on 4, and define D to be the corresponding operator A — A*.

For i = 0,1, if we write T; = & ® n; and use the convention T;(s,t) = &(s)n;(t) as in
Section 3.4, then we can rewrite (4.2) as:

BT} ® Ty) = / sign(s)T (s, )T (—s, —t) W0 (4.3)

RX xRX ’SHt‘ .
ProrosiTION 4.2. D : A — A* is cyclic and weakly compact.

Proof. The identity (4.3) shows that (71 ® Tp) = —® (T ® T1) when Tj and T} are rank-one
tensors; by linearity and continuity it holds for all Ty, T € A.

It also follows from (4.3), using the Cauchy-Schwarz inequality, that ® extends to a
bounded bilinear form on L?(R* x R*). Hence the operator D : A — A* factors through the
embedding of A into L?(R* x R*); in particular D is weakly compact. O

Next, we show that D is a derivation by showing that ® satisfies the identity (4.1).

THEOREM 4.3 (Derivation identity). For every Ty1,T5, Ty € A, we have

(X T)@Th) = 2(Tr® (To X Th)) + (Th @ (T KW Tp)). (4.4)
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Proof. By linearity and continuity, it suffices® to verify (4.4) in the special case where Ty, Ty
and Ty are rank-one tensors in C.(R*) ® C.(R*).
We now consider the three terms in (4.4), using (4.3) and Fubini’s theorem. In each case

the integral is taken over (R*)3:

O(T) X T) ®Tp)

: s t hs  ht d(h, s,¢)
_ T T. Tol=s, =) Tmer -
[ s B ) Bl 1) B G

Also,
(T ® (To W T1))
. —hs —ht —-s =t d(h,s,t)
:/SIgn(S)Tl(H—h7H—h)TQ(S’t)TO(Hh’1+h) |R|s][Z|
:/ sign((1+ h)s) Ti (~hs, =ht) To((1+ h)s, (1 + h)t) TO”"”%’

where the last equality used the change of variables s — (1 + h)s, t — (1 + h)t. A similar

calculation yields

(T @ (Tr X Ty))

= [sten((+ 31 T3+ s, 0 1)) T~ —40) To(-s.—0) G

For every s,t € R*, define

. S t hs hit dh
I(s,t) := /RX Slgn(S)T1(1+h, 1+h)T2(1+h’ 1+h) m
(s t) = /R sign((1+ h)s)Ty (—hs, —ht)Ts((1 + h)s, (1 + h)t) TZT
(s, t) := /RX sign((1+ 1)s) 71 (1 + L)s, (1 + 1)) Ty (—Ls,—Lt) ‘dhﬁ

To prove that (4.4) holds, it suffices to show that I(s, t) = II(s,t) + III(S t) for (almost) every

s,t € R*. For II(s,t): the change of variables h — — 1+h sends ﬁﬁ to | ‘ and sends 1+ h to
1—1J+h 1Jrh,sothat
hs |h s t hs ht | dh
I(s,t) = i T T: —
(,2) /R Slgn<1+h> 11+ Al ) 2 o) 7] ()
hs 5 t hs ht | dh

1
g —_ T —_—
/RX Is|1+h 1(1+h’1+h) 2(1+h’1+h) ]h\
For ITI(s,t): the change of variables h — —(1+ 1) sends & Tt ‘ to \1+h|\h| and sends 1+ 7 to

1—#:1j%h,sothat
S 1 S t hs ht | dh
III(s,t) = i T T —
(,%) /RXSIgn<1+h> 1+ 7] ) 2o s 7] (v )
_/isT(s t)T(hS ht)@
T Jre s TR T TR TR P I+ R T+ R
Adding (%) and (* * *) and recalling that ﬁ = sign(s), we obtain I(s,t) as required. O

3Strictly speaking, this reduction step is not necessary, but it removes any need to consider technicalities
about interchanging the order of various integrals that now follow.
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Finally, we show that D : A — A* is completely bounded after composing with the
transpose map on A* = B(H).

DEFINITION 4.4 (Transpose operator on B(H)). Define a linear isometry T,: H®H - H®H
by T.(6®@n) =7®¢E and let T = (T,)* : (H® H)* = (H® H)*. We call T the transpose
operator, since if we identify (H ® H)* with B(H) we have

T =0b"(€)  (beB(H),§€H).

To verify complete boundedness of TD : A — A* we use the following characterization.

Recall that we have natural injective maps

HEF S HOF) 20 HAH) S FH) =% (HeH)@ e )

where “shuffle” swaps the second and third factors in the tensor product. Now define
s = embed o shuffle : S (H) ® S;(H) — Si(H®? H).

Then, for a given A € (S;(H)®S;(H))*, the corresponding map Sy (H) — Sy(H)* is completely
bounded (with respect to the natural operator space structure on S;(H)) if and only if Aos™!
extends continuously to a bounded linear functional on S;(H ®2 H). (This may be taken as a
working definition of complete boundedness in this special case; it can also be derived from
facts about row and column Hilbert spaces and operator space tensor products, see e.g. [ER00,
Corollary 7.1.5 and Proposition 7.2.1].)

Proof that T D is completely bounded. By (4.2), TD : A — A* corresponds to the linear
functional ¥ : A ® A — C defined by

V(Eene@n)=20¢@nen @)= (S Ry)(RE,n). (4.5)

We have
(Tos g @nary)=((SaR)(E®), (Roid)(n @mn); (4.6)
since S ® R and R ® id are unitary operators on H ®2 H, it follows that W o s~! extends
continuously to an element of (S;(H @2 H))*. O

REMARK 4.5. In the language of [Cho20], D : A — A* is co-completely bounded, since T
“reverses the operator space structure” on B(H).

5 Dual convolution for R x Ry

The semidirect product R x R} may be viewed as an open subgroup of R x R*, by identifying
it with {(b,a): b € R,a € R{'}. General results on Fourier algebras of open subgroups then
allow us to identify A(R x R{") with a closed subalgebra of A(R x R*). More precisely, let us
introduce the non-standard notation:

AR xR*):={f € A(RxR”): f vanishes outside R x R }. (5.1)
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Given f € A(R x R*), define P.(f)(b,a) = f(b,a) for a > 0 and P.(f)(b,a) = 0 for a < 0.
Then P, is a (completely) contractive projection from A(R x R*) onto A.(R x R*), and the
composition of the maps

Ao(R x RX) 2% A(R x RX) 222 A(R % RY)

is a completely isometric bijection. (See e.g. [KL18, Prop. 2.4.1] for a summary of the necessary
facts about Fourier algebras of open subgroups.)

We now proceed to identify the subalgebra of A that corresponds to A.(R x R*) and
hence models A(R x R{*). Recall the operator S : H — H given by (S¢)(t) = sign(¢)&(¢). S is
an isometric involution, so it has eigenvalues +1, and H decomposes as an orthogonal direct
sum of the corresponding eigenspaces, H = HT @5 H™. The spaces HT have the following

explicit description:
Ht = {¢ cH: £(t) =0forae t <0} , H ={¢€H:£1t)=0forae t>0} (52)
Let P* be the orthogonal projection of H onto H*, and define Pyiag : H @H—->H®H by
Paiag(E®n) = PTE@ PTn+ P €@ Py (5.3)
LEMMA 5.1. Pgiag 95 a norm-one projection.

Proof. Since P and P~ are complementary projections, a direct calculation yields (Pdiag)2 =
Piiag. Therefore, it suffices to show that Pgjae is contractive:

1 Piag (€ @ Mllyam < IPTENMIP lly + [P~ €l P70l
2 AR 2 _ 2\ M2 :
< (IP*eli +1P¢l) " (IP*uliy +IPnll}) " [Cauchy-Schwarz in %]
= 1€ lulinll - [Pythagoras in H]
By the definition of the projective tensor norm, it follows that ||Pyiag(T)| < [|T']] for all
TcH®H. O

REMARK 5.2. The decomposition H = HT @9 H™ gives a decomposition of T' € S;(H) as a
2 x 2 block matrix

7 [PiTPy PLTP.
~ \P_.TP, P_.TP.

If we identify H ® H with Si(H), then Pyjag corresponds to “compression to the diagonal”.
PROPOSITION 5.3. Pgjag 95 a homomorphism.

Proof. 1t suffices to prove that Pyiag(71) X Pyiag(T2) = Paiag(T1 X T) for Ty = & @ m1 and
Ty = & ®@ n2. To simplify our formulas slightly, we write GL = PT¢,, etc., and for functions

f g defined on the set {+,~} we write Y3, f()g(F) for f(+)g(=) + F(~)g(+).
We have

(& @ )R (&G @)+ (& @) B(E @)

+HE @) B (&G @ny) + (& @0y ) B (& ®13)

To analyze each of these four terms, we consider the effect of A(1 + h) and A(1+ h™!) on

vectors in HT or H™, as h varies over R*. Note that if & € H* and 8 € HT (i.e. @ and 8 have

“different parity”) then o - 3 = 0 as elements of H. Also: if @ > 0 then A(a)(H*) = H*; and
if @ < 0 then A(a)(H*) = HT. Using these facts,

Piiag(T1) B Paiag(T2) = { (5.4)
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e if h <0 and h # —1, then precisely one of 1 + h or 1 4+ h~! is negative, and so
AL+ R)E - AL +AE = AL +h)r - AL +h™ny =0;
e if >0, then 1 + h and 1 + h~! are both positive, and so
M1+h)EE - NI +r e = A +R)E- X1 +h Y =0.
Therefore, considering the four terms in (5.4), we obtain

51 ®771) (52 ®772) (£f®nf)®(££®n£)

= Z / A1+ h) §1 A1+ h_l)ggi) ® repeat for n % (5-52)
and
(& @) B @ny)+ (& @0 ) R(& ®@n3)
.5b
_Z / AL+ )& - A1+ A HET) @ repeat fornrlhh| (5.50)

where we have used the same notational convention as in Section 3.3 to simplify the formulas.
Now we consider Pyiag (711 X75); since the Bochner integral commutes with bounded linear
maps, this equals

/ Piiag [()\(1 + Rh)é - A1+ h1)E) ® repeat for n % (5.6)
RX

For —oo < h < —1, we have 1 + h < 0 < 14 h~!; hence

PEA(L+ h)gr - M1+ D&] = A1+ )EF - A1+ 7785
For —1 < h <0, we have 1 +h >0 > 14 h™!; hence

PEA+R)& AL +hE] = A1+ )& A1 +h7e]
For 0 < h < 0o, we have 1 +h > 0 and 1 + A~! > 0; hence

PEA(L+R)gr - AL+ R 6] = ML+ h)&E - A1+ gy

Therefore, splitting the integral in (5.6) into three pieces, and recalling that Pgi.s = > Pt
P*, we obtain

dh
/ Z A1+ h)& - )\(1—|—h*1)£2) ® repeat for n — 7]

dh
Paiag(T1 K T3) = / Z AL+ R)ES - A1 +hHET) @ repeat for n T

dh
/ Z M1+ h)EE - M1 +h &) @ repeat for n T

dh
/ Z A1+ h)&f .)\(1—|—h*1)£2) ® repeat for n — ]

/ Z A1+ h) 51 A1+ h_l)géc) ® repeat for n %

Comparing this with the combination of (5.4), (5.5a) and (5.5b), we have shown that Pgiag (77 )X
Pyiag(T2) = Paiag(T1 X T3) as required. n
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DEFINITION 5.4 (The diagonal subalgebra). We define Agiag := Paiag(A). Note that by Propo-
sition 5.3, Agiag is a subalgebra.

We now examine the image of Agjag under the map ¥ : 4 — A(R x RX).
LEMMA 5.5. (i) m(0,—1)&(t) = &(—t). In particular, w(0,—1) interchanges HT and H™.
(ii) If (b,a) € R x Ry then m(b,a)(HF) C HE.
(iii) If &,n € HE (i.e. both have the same “parity”) then & . 1 vanishes outside R x R
(iv) If € € HE and n € HT (i.e. they have different “parity”) then &*,n vanishes on R x Ry.

The claims in the lemma follow easily from the definitions of 7 and H*, so we leave the
details to the reader.

PROPOSITION 5.6 (Intertwining projections). WPy.e = Po¥ as maps H@ H — A(R x R*).

Proof. By linearity and continuity, it suffices to verify this identity on rank-one tensors in
H® H. Let &, 1 € H; then

V(E@n) =V (PYE@ P+ PTE@P n+ P EQP n+P (@ P )
= (PTE) #x (P0) + (PTE) 4z (P7) + (P7E) %2 (PT0) + (P7E) %2 (P71).

Hence by Lemma 5.5(iv), for every (b,a) € R x Ry,
PU(E@n)(b,a) = (PTE) #r (PT0)(b,a) + (PE) #r (P70) (b, a) = ¥ Paing(§ ® 1) (b, a).

Thus, P.¥ (¢ @ n) and W Pgi,e(§ @ 1) agree on R x R
By definition, P,¥(¢ ® n) vanishes outside R x R{; and by Lemma 5.5(iv), so does
U Piiag(§ @ 1). We conclude that PV (§ @ n) = U Pyjae(§ ® 1) as required. O

Since P, : A(RxR*) — A(R x R*) is a homomorphism with range A.(R x R*) and
U:A— AR xRX) is an algebra isomorphism, this provides an alternative proof that Pgiae
is a homomorphism and Agj,g is a subalgebra of A. Moreover, by the remarks at the start of
this section, we may identify Ac(R x R*) with A(R x R]). Thus (Agiag, X¥) may be viewed
as a realization of dual convolution for R x R}.

REMARK 5.7. Lemma 5.5(ii) shows that the restriction of 7 to R x R} splits as 74 @ 7_
where 7y : R xR — U(HF). Up to unitary equivalence, 7, and 7_ are the only two
infinite-dimensional unitary representations of R x R{‘; they can also be constructed directly
as induced representations. Attempting to construct dual convolution for R x Ry directly
requires consideration of 7, @ T, 7L @ 7_, 7_ ® 74 and 71— ® w_, and the fusion rules for
the “mixed parity” cases are not so straightforward. Indeed, 7+ ® m_ is not quasi-equivalent

to an irreducible representation of R x R{.

Finally, we consider derivations on Agiag and hence on A(R x R{). Let D : A — A* be
the derivation constructed in Section 4. Composing with the inclusion ¢ : Agjse — A and
the restriction * : A* — (Agiag)®, We obtain a derivation Di = t* Dt : Agiag — (Adiag)™-
Cyclicity and weak compactness of D are inherited by D1, just from the definition. Now let T
be the transpose operator from Definition 4.4. Since ¢ is a complete isometry and T, = ¢ T,
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complete boundedness of TD : A — A* implies complete boundedness of TDy = t*TDy :
-Adiag — (-Adiag)*-
It remains to check that D is not identically zero. Recall that by definition

D(&1 @ m1)(6o ®m0) = (S&1, Réo)(Rmo, m1)

where (S€)(t) = sign(t)&(t) and RE(t) = &(—t). Fix some non-zero vector a € H' and put
B =Ra € H™, so that a ® a and 3 ® 3 belong to Adiag. Since Sa = a and R? = id we have

D(a®a)(B® B) = (Sa, RB)(RB, ) = (a, a){a, ) # 0.

Intertwining D7 with ¥ yields a non-zero derivation D : AR xR*) — A (R x R*)*.
This derivation turns out to coincide, up to a scaling factor, with the derivation constructed
in [CG14]; the proof requires the orthogonality relations for 74 or the Plancherel theorem for
R x R{". Since VU is a completely isometric algebra isomorphism, D inherits the properties
of Dy. In particular D is weakly compact and “co-completely bounded” (using the terminology
of [Cho20]), properties which were less obvious from the original construction in [CG14].

6 A new Banach algebra structure on LP(R*) ® L(R>)

Throughout this section, we assume 1 < p < oo and denote by g the conjugate index to p. We
denote the usual pairing between LP(R*) and LY(R*) by ( , ), ;; note that (£,7), 5 = (£, 7).
For sake of precision, recall that there is an isometric, C-linear isomorphism of Banach

spaces

[ LA(RY)® LXRX) = LPR*)®LARY) 5 fe@n—EaT
By intertwining with 7, we may transfer the Banach algebra structure defined on L?(R*) &
L2(RX) over to L?(R*) & L?*(R*). Moreover, one can use the natural analogue of the formula
(3.4) to equip LP(R*) & LI(R*) with a Banach algebra structure, in a way that extends the
p = q = 2 case.
That is: for ,& € LP(R*) and 1,7 € LY(R*), we claim that
dh
(EemnnE )= /R AQ+RE- AL+ R @ AL+ Ry AL+ 2 )
is a well-defined Bochner integral taking values in LP(R*) ® L(R*), and that X extends to

a bounded bilinear map
(LP(R*) ® LY(RX)) x (LP(R*) ® LI(R*)) — LP(R*) ® LI(R)
which is commutative and associative. We denote the resulting commutative Banach algebra
(LP(R¥) ® LI(R*), ) by A,.
Most of the steps needed to justify this claim consist of routine modifications of the

arguments in Section 3.2, so we shall not give full details here. We highlight some of the
relevant technical points.

(S1) There is an LP-analogue of Lemma 3.1, with an isometry V), : LP(R* x R*) — LP(R* x
R*) defined by the formula
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As before, this shows that for &,&" € LP(R*) the function
F:he= A1+h)E-N1+nhHe

is a.e. equal to a strongly measurable LP(R*)-valued function, with

dh\ /" ,
([ irmgs) ™ =tele,

One then performs the same construction with p replaced by q.

(S2) However, one has to be careful taking pointwise products of two functions in LP(R*)
or LY(R*). The expression defining F(h) a priori only takes values in LP/2(R*), which
for 1 < p < 2 is not a Banach space (it is complete and quasi-normed, but not locally
convex).

(S3) Once one has shown that X is well-defined and contractive as a bilinear map (LP(R*) &
LI(R*)) x (LP(R*)& LI(R*)) x (LP(R*)&® LI(R*)), one can prove it is commutative and
associative by repeating the arguments of Section 3.3 almost verbatim; the key point is
that C.(R*) is still norm-dense in both LP(R*) and LI(R*).

(S4) The abstract description of X for H ® H, shown in Figure 1, has a natural and straight-
forward generalization to the LP-setting, which is sketched in Figure 2.

(LP(R*) & LUR®)) & (LP(R*) & LI(R™))
sufle, (LP(R*) & LP(R¥)) & (LYR”) ® LI(R¥))
embed LP(R* x R*) ® LYR* x R*)
Ve@Va, LP(R* x R*) ® LI(R* x RX)
identity, LP(R*; LP(RX)) & LI(R™; LY(RX))
diagonal Ll(RX;Lp(RX) ® LY(RX))
trace, LP(R*) ® LY(RX)

Figure 2: The LP-analogue of Figure 1

For p =2,7: A — Ay is an isometric isomorphism of Banach algebras. Since ¥ : A4 —
Co(R x R*) is an injective homomorphism, it follows that As = A is semisimple, and that we
can identify A, with a Banach function algebra on R x R*. We now show that the same is
true for A,

The formula 7(b, a)&(t) := >t (ta) still defines an isometric, SOT-continuous representa-
tion of R x R* on LP(R*). Hence, for each { € LP(R*) and n € L4(R*) there is an associated
coefficient function:

(€ @ n)(b,a) = (n(b,a)E ), , = / 2R (1) () O

((b,a) eRxR*).  (6.1)
RX |t]

This formula defines a contractive linear map ¥, : LP(R*) @ LI(R*) — Cy(R x R*). (Note
that Wy o7 = U.) We define AL to be the space ¥,(A,) C Cp(R x R*) equipped with the
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quotient norm pushed forwards from A,/ ker ¥,,. One can show that ¥, : A, — Cp(R x R*)
is an algebra homomorphism, by a direct calculation using the LP-analogue of Proposition 3.3.
Hence A% is a Banach function algebra, which in the case p = 2 is just A (R x R*).

PROPOSITION 6.1. AL C Cp(R x R*).

Proof. By linearity and continuity it suffices to prove that for each £, € C.(R*) the coefficient
function f:= ¥,(¢ ® n) belongs to Co(R x R*). This now follows because £, € L?(R*) and
A2 = A (R xR*) = A(R x R¥) C Cy(R x RX).

An alternative argument, which does not rely on the equality A;(R x R*) = A(R x R*),
goes as follows. Since &, € C.(R*), there is a compact K C R* such that f is supported
inside R x K. Also, for each a € K we have f(__,a) € Co(R), since t > [t|~1&(ta)n(t)
is integrable (use the Riemann-Lebesgue lemma for the Fourier transform on R). By a
standard compactness argument, whose details we omit, we conclude that f € Co(R x K) C
Co(R x RX). O

So far everything has been a straightforward translation of what was done for the p = 2
case. In contrast, the next result seems to require extra work.

THEOREM 6.2. ¥, : LP(RX) ® LY(R*) — Co(R x R*) is injective. Consequently, ¥, : A, —
AL is an isometric isomorphism of Banach algebras.

For p = 2 this is a special case of general results already mentioned in Section 2. For
general p, we make use of results from [ET79] that are particular to 7 and R x R*. Consider
the following space:

Vo :={& € A(R): supp¢ is compact and disjoint from {0} }. (6.2)

Vj is a linear subspace of A(R); standard properties of A(R) imply that Vj is norm-dense in
LP(R*) for every p € (1,00). The following lemma is a special case* of a result from [ET79)],
restated in a more direct form to avoid possible clashes of notational conventions.

LEMMA 6.3 (Eymard-Terp). Let &,m € Vo. Then there exists f € L'(R x R*) such that, for
every a, § € C.(R*),

/]MRX f(b,a) </R [7(b,a)a] .ﬁ> db’Z—TQ = /R an | B (6.3)

where the integrals over R* are taken with respect to the Haar measure of this group.

Since we only need a subset of Eymard and Terp’s result, we include a proof of the lemma
for the reader’s convenience.

Proof (following [ET79, Prop. 1.15]). Let {,n € V. The right-hand side of Equation (6.3) is
equal, after a change of variables a — ta, to

da di
lal [t -

/ £(tyn(ta) alta)B(t) ()
RX RX

“The lemma implies that for £ and 7 in Vo, the corresponding rank-one operator belongs to (L' (R x R*)) C
B(L*(R*)), and this is the form in which Eymard and Terp state their result. In fact, they obtained a sharper
result, which characterizes those f € L*(R x R*) such that 7(f) is a rank-one operator on L?(R*).
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If we can find f € L' (R x R*) such that |a| ™' [5 f(b, a)e*™™ db = £(t)n(ta) for ae. t,a € RX,
then substituting this into (%) and using Fubini would give the left-hand side of Equation (6.3).

Let g(t,a) = &(t)n(ta) viewed as a function R x R* — C. The assumptions on £ and 7
ensure that a — ¢g(__,a) is a continuous function R* — A(R) which has compact support.
(C.f. [ET79, Exemple 1.17]). Applying the inverse Fourier transform for R to g in the first
variable, we obtain f; € L'(R x R*,|a|~'d(t, a)) which satisfies

[ A= as = g(t.a) = ().
R
Thus the function f(b,a) = |a|fi(—b,a) has the required properties. O

Proof of Theorem 6.2. Tt suffices to prove that ¥, : LP(RX) ® LI(R*) — Co(R x RX) is
injective; the rest of the theorem follows from earlier observations.

Let £, € Vg and let f € L'(G) be as provided by Lemma 6.3. Let j, : LP(R*)&LI(R*) —
B(LP(R*)) be the map which sends an elementary tensor o ® 5 to the rank-one operator
v = (7, ﬁ)nqa. Then we may rewrite Equation 6.3 as:

/ f(b,a)¥,(a® B)(b,a)db d_a2 = (Jpla® B)E,n) for all a, 8 € C.(R).
RxRx |al e

Hence, by linearity and continuity of j, and ¥,

/R . f(b,a)W,(w)(b,a)db IEZL—TL? = (p(w)é,m),,  forall we LP(R*) & LIYRX).

In particular, suppose w € ker(¥,). Then (j,(w)&,n) = 0. Since this holds for all £, € Vy,
and since V is norm-dense in LP(R*) and in L9(R*), it follows that j,(w) = 0. Since LP(R*)
has the approximation property, j, is injective, and we conclude that w = 0 as required. [

REMARK 6.4. Define ®, : M(R x R*) — B(LP(R*)) defined as follows: for p € M(R x R*),
¢ € LP(R*), and n € LI(R*), let

@)= [ (b)), , duts.a) (6.4

RxRX

®,, is a contractive, weak*-weak® continuous algebra homomorphism, and it can be iden-
tified with the adjoint of ¥,. Hence injectivity of W, is equivalent to weak*-density of
O, (M(R x R*)) in B(LP(R*)). In effect, our proof of Theorem 6.2 works by showing that
®,(LY(R x R*)) contains a norm-dense subspace of K(LP(R*)) and hence is weak*-dense in
B(LP(R*)). While this formulation of the proof is more intuitive, it does not seem to make
the argument significantly simpler. Note that for p = 2 the weak*-density result would follow
from general facts about unitary representations of locally compact groups, but the proofs
of those facts use C*-algebraic tools which are not available for general representations on
LP-spaces.

For any locally compact group G, the Figa- Talamanca—Herz algebra A,(G) is defined to be
the coefficient space of the left regular representation of G on LP(G). Note that Ay(G) = A(G).
We have seen above that A2 = Ay(R x R*); we now show that this fails for all other p.

PROPOSITION 6.5. Let p € (1,2) U (2,00). There exists a sequence (f,) in AR N A, (R x R*)
such that each f, has norm 1 in AL but f, — 0 in Ay(R x RX).
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Proof. For this proof, we denote the norm in A,(R 3 R*) by || - ||, -

Since R x R* is amenable, a result of Herz® implies that Ao(R x R*) C A,(R x RX),
and that the inclusion is norm-decreasing. Therefore, if we take ¢ € (L? N LP)(R*) and
n e (LN LY)(R*) and set f = U,(£ ®n) = Ua(£ @ 1), we have

1fllaz = € @ nll 4, = €l 7l and [|f[lx, < 1Flla, = [1fllaz = € @nll 4, = [€ll2lI7ll5 -
It therefore suffices to find functions ¢, and 7, that lie in every LP(R*) and satisfy

[€nll2 7l
1€nll, Il

—0 asn— oo,

since we may then take f, = ||£n\|;1||77n||;1\11p(£n®77n). Consider 7, : R* — {0,1} defined by
Yn = ljg=nen]. Then 4, € LP(RX) for all p € (1,00) with [y, ][) = 2n. For 1 < p < 2, taking
&n = Y and 1, = 71 yields

&nllz nlly _ (9,15 -593-5 — 3% 0,
1€nll, lI7nllg
while for 2 < p < oo, taking &, = v, and 7, = v, yields
nllz Inllz _ o33 9054 = nd=4 - 0
1€nll, 7l
So in both cases we have the desired sequences. ]

THEOREM 6.6. Ifp € (1,2) U (2,00), then Ap(R x R*) Z AT.

Proof. Suppose that A,(R x R*) C AL, Since both Banach spaces embed continuously in
Co(R x R*), the closed graph theorem would then imply that the inclusion map A, (R x R*) —
AP is continuous. But this contradicts Proposition 6.5. U

REMARK 6.7. Since AL is the coefficient space of an isometric group representation on an
LP-space, it is contained in the multiplier algebra of A,(R x R*). This follows from an LP-
version of Fell’s absorption principle (valid for any locally compact group), which appears to
be folklore and goes back to the 1960s/70s. It would be interesting to study the relationship
between AR and A, (R x R*) in greater detail.

7 Concluding remarks

We finish by suggesting some avenues for further exploration.

Affine groups of other local fields. Much of [ET79] works in the general setting of a field k
which is locally compact, second-countable and non-discrete, together with the corresponding
affine group k x k*. All the calculations of Section 3 and Section 6 should remain true for
such a k, provided that one replaces the exponential function in the definition of © with a
nontrivial character of (k,+). However, Sections 4 and 5 use certain special features of R*
that are not shared by k*, and we do not expect them to generalize to Q,, for instance.

5For a guide to the relevant parts of Herz’s papers, see the appendix of [Chol5]. For a direct approach, see
the proof of Theorem 8.3.9 in [Derl1] and the historical notes which follow it.
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Constructing explicit derivations on Fourier algebras. The question of which groups G
allow non-zero derivations A(G) — A(G)* has been intensively studied in recent years. The
calculations in Section 4 may give new ideas or techniques for constructing derivations on
Fourier algebras of other (Lie) groups.

A concrete model for LCQG questions. By enhancing the decomposition in Figure 1 with
operator-space structure, using row and column Hilbert spaces in the appropriate places, one
can show that X extends to a completely contractive map S;(H) @op S1(H) — Si(H), where
<§>op denotes the projective tensor product of operator spaces. The adjoint of this map is a
*-homomorphism Ay : B(H) — B(H®%H), which is coassociative since X is associative. More-
over, the adjoint of ¥ : S;(H) — A(R x R*) coincides with the canonical *-homomorphism
VN(R x R*) — B(H) obtained by sending A(b,a) to (b, a). Because ¥ is a homomorphism,
U* intertwines Ax with the canonical comultiplication A on VN(R x R*).

It might be interesting to study various general constructions for Hopf von Neumann
algebras, using (B(H), Ax) as our concrete model of (VN(R x R*), A). In particular, to our
knowledge it remains an open question if the operator systems WAP(G) and LUC(G) are
subalgebras of VN(G) for non-abelian G; our concrete model may provide a new angle of
attack when G = R x R*.

One note of warning: the transpose operator T : B(H) — B(H) is not intertwined with
the canonical involution on VN(R x R*), because T(w(b,a)) # w(b,a)*. If we wish to also
introduce Kac algebra structure on (B(H),Ag), the antipode is given not by T but by a

unitarily similar operator.

Questions regarding A, and A%, Let p € (1,2) U (2, 00).
Q1. Does A, have a bounded approximate identity?

Q2. Is A, weakly amenable? In Section 4 we wrote down an explicit ® € (A ® A)* which
defines a non-zero derivation A — A*. However, ® does not extend to a bounded

bilinear functional on A, ® A,

Q3. Is AL natural as a Banach function algebra on R x R*? Equivalently: are all characters
on A, of the form w — ¥,(w)(b,a) for some (b,a) € R x R*?

Q4. Assuming a positive answer to the previous question: which other function-algebra prop-
erties of A(R x R*) are shared by AR? For example: is this algebra regular? Tauberian?
It is not clear to the authors if AL contains any non-zero compactly supported functions.
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A Tensor products of induced representations

Consider a semidirect product G = N x H. The left action of H on N is denoted by h - n; if
o € N then the corresponding left action of H on N is defined by h - o : n o(h=t-n).

Given a (continuous, unitary) representation o : N — U(H,) we define the induced
representation Ind§ o : G — U(L?(H,H,)) by the formula

Ind§ o(n, h)é(k) = (k- o) ()€ k)] = o (k™ - n)[E(h k)], (A1)

for ¢ € L?>(H,H,), n € N, h,k € H. Combining Proposition 2.41 and Theorem 2.58 of
[KT13], we get the following theorem:

THEOREM A.1. Let G = N x H and let my and 7y be representations of N. For i = 1,2 let
II; = Ind,, be the induced representation of G on L*(H,Hy,). Then

52
I @Iy ~ / Ind$(h - 71 @ 7o) dh
H
via the unitary map W : L>(H, Hr,) @2 L?(H, H,) — f]? L*(H, Hr, @ Hr,) defined by

[S5]
W(f®g)= /H Do(h)(f)2g A

where p is the right regular representation (p(h)f(k) = f(kh)), and ¢fey € L*(H, Hr, @* Hr,)
is defined by ¢req(h) = f(h) ® g(h).

Proof. A direct calculation shows that W preserves the inner product:
W(fog),W(fed) = /H<¢p(h)f®g7¢p(h)f’®g’>L2(H,’H,r1®27-l7r2)dh
:/H/H<€Z5p(h)f<g>g(k‘),qbp(h)f'(zag'(1€)>71(,r1®27{ﬁ2 dk dh
= [ [ 010 @ g1, p W () o (), ., A
oJu
= [ [ 010007 0 1), f (1)
oJu
-/ / (F (kb (k1)) (1), f (1))
HJH

Using (A.1), it is easy to verify that p(h) Ind$ 71 (2) f = Ind$ (k- m1)(x)(p(h) f). Thus,
WL @ 1) (z)(f @ g) = W(IL(z) f @ Ta(x)g)

®
= /H ¢p(h)(H1(x)f)®H2($)9 dh

D
= /H PInd$ (hemy) (@) (p(h) £)@TTa (2)g P

@
/ IndN(h T & 7T2)(90)¢p(h Vf®Rg dh

@
(/ IndN h 7T1®7T2 dh) / gbp h)f®gdh)

H

@
/ Ind$ (h - 771®772)dh>( YW (f @ g)).

H

25



O

As an application, we now derive an alternative proof of Proposition 3.3. We use the same
notation as defined in Section 2. For r € R, define y, : R — C by x,(t) = exp(2wirt), so that
7+ X, IS a group isomorphism R — R.

COROLLARY A.2 (Explicit fusion relation for 7). Let &, &, n, ' € H. Then

(r(b,a)6, ) (b, @) o)
—1\ ¢! 1y dr (A.2)
= [ b )33+ +r7DE) L M+ M) T

]
where X is the left reqular representation of R* on H.

Proof. As in Equation (2.3), we denote II = Ind%mRX Xx1- Recall that 7 = JII(-).J, where
Jf = f. By Theorem A.1,

@ x d
W (I & I1) (b, )W~ :/ Ind®*® Xlﬂ(b,a)ﬁ
RX T T
via the unitary map
2M X\ 2 T2 X @ 2mxy 4T N dr
W L7(R*) @ LY(R") — L*R*) —, W(f®g) = (p(r)flg
L2(RX) i RX i

where p is the right regular representation of R*, i.e. p(r)f(s) = f(sr). Here, we have used
the fact that r- x1 ® x1 >~ x1,,. Hence

(m(b,a)€,m) (mw(b,a)’ ) = ((b, a)J&, ) (11(b,a)JE, .Tn)
= (e I)(ba)(E ) ner)

which expands out to

@ x d . .
/RX Indg ™" x14(b, a) ﬁ) W) Whne 77’)>

= [ (0.0 (098 )

—
=
|

= / / eXp(w)g(ﬁ)é(f)ﬁ(sr)ﬁ’( )ﬁdr
R SR ST o> el s ]
= [ e Ly S B
RX JRX ST ST s ST s |S| |7“|
. sa , sa S } S @ ﬁ
- /R /R exp(2mibs)E ()¢ (T M T D T
— /RX (m(b, @) A1 + 7)€ - ML +771)¢) , AL +7)n- A1+ D)) %

as required. O
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