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ABSTRACT

Emission from the interstellar medium can be a significant contaminant of measurements of the intensity and polarization of the

cosmic microwave background (CMB). For planning CMB observations, and for optimizing foreground-cleaning algorithms,

a description of the statistical properties of such emission can be helpful. Here, we examine a machine learning approach to

inferring the statistical properties of dust from observational data. In particular, we apply a type of neural network called a

variational autoencoder (VAE) to maps of the intensity of emission from interstellar dust as inferred from  Planck sky maps and

demonstrate its ability to (i) simulate new samples with similar summary statistics as the training set, (ii) provide fits to emission

maps withheld from the training set, and (iii) produce constrained realizations. We find VAEs are easier to train than another

popular architecture: that of generative adversarial networks, and are better suited for use in Bayesian inference.

Key words: methods: statistical – ISM: general – cosmic background radiation.

1 INTRODUCTION

Among the many research enterprises stimulated by the detection of
large-scale anisotropies in the cosmic microwave background (CMB)
by the COsmic Background Explorer (COBE) with its differential
microwave radiometer (Smoot et al. 1992), is the hunt for signatures
of primordial gravitational waves (PGWs). To date, only upper limits
have been set, most commonly expressed as limits on the ratio of
primordial tensor perturbation power to scalar perturbation power, r.
Soon after the COBE detection, it was realized that reliably detecting
levels below r 0.1 could not be done with temperature anisotropies
alone (Knox & Turner 1994), and that proceeding further would
require highly sensitive measurements of the polarization of the
CMB on angular scales of about a degree, or larger (Kamionkowski,
Kosowsky & Stebbins 1997; Seljak & Zaldarriaga 1997).

Polarized emission from the interstellar medium (ISM) of the
Milky Way, in the cleanest parts of the sky at the cleanest observing
frequencies, is comparable to the CMB signal generated by PGWs, if
the PGW signal is near the current 95 per cent confidence upper limit
of r < 0.06 (BICEP2 Collaboration 2018). So-called Stage III CMB
experiments, such as the Simons Observatory (Ade et al. 2019), and
BICEP Array (Hui et al. 2018) combined with SPT-3G (Benson et al.
2014) are designed to have sufficient sensitivity and systematic error
control to tighten the 95 per cent confidence upper limits by a factor
of about 20. The Stage IV experiments LiteBIRD and CMB-S4 are
targeting upper limit factors of 2 and 5 times more stringent still,
respectively. Thus, we are rapidly moving into a regime where the
foreground contamination is up to two orders of magnitude larger 1

than the signal of interest.

E-mail: bn.thorne@gmail.com
1This is for fluctuation power. The rms level of contamination in the map is

up to one order of magnitude larger than the signal of interest.

The most exciting possibility is that there will be a detection
of PGWs, as opposed to improved upper limits. A detection claim
would essentially be a claim that there is power remaining in the
map that cannot be explained as a residual instrumental systematic or
residual foreground emission. Detection therefore requires not only
foreground cleaning, but the capability to quantify the probability
distribution of residual foreground power. Such capability is ham-
pered by our lack of prior knowledge of the probability distribution
of the non-Gaussian and non-isotropic Galactic foreground emission.

The state of the art in analysis of such observations either implicitly
or explicitly has the Galactic emission, or their residuals, modelled
as Gaussian isotropic fields (BICEP2 Collaboration 2018; Aiola
et al. 2020; Planck Collaboration VI 2020). They are modelled
as such not because they are, but strictly for convenience. The
most appropriate underlying statistical description of the Galactic
emission is unknown. Progress has been made in simulating ob-
servations of synthetic galaxies with properties similar to ours using
magnetohydrodynamic codes (Kim, Choi & Flauger 2019), however,
it is unclear how best to apply these simulations to simulate or
analyse our particular galaxy. Other recent efforts have focused on
defining new summary statistics that go beyond the assumption of
Gaussianity, and which can be used to generate novel samples, or
de-noise observations (Regaldo-Saint Blancard et al. 2021). Other
work has utilized machine learning techniques to extrapolate the
non-Gaussian structure from high signal-to-noise observations of
dust intensity to inform the noisier small-scale structure of dust
polarization (Krachmalnicoff & Puglisi 2021), however, this method
is entirely deterministic.

In this paper, we propose the use of a variational autoencoder
(VAE) to learn the underlying distribution of dust images, and
use this as a prior on the spatial distribution of interstellar dust
emission. This distribution could then be used in any downstream
Bayesian analysis task. For example, sampling from such a prior
to create maps of Galactic emission with the appropriate statistical
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properties for testing analysis algorithms to be used on real data, or
in reconstructing incomplete observations of foreground images by
conditioning the prior on the partial data. An ambitious goal would
be to perform a complete Bayesian analysis of the CMB observations
with incorporation of this prior for the spatial distribution of inter-
stellar emission. Groundbreaking progress towards such a Bayesian
analysis has been made recently, with the development of analysis
methodologies by Millea, Anderes & Wandelt (2020a), and the recent
application to real data (Millea et al. 2020b).

The analysis framework in Millea et al. (2020a) was developed
for ‘de-lensing’ of the CMB; i.e. taking into account the impact of
gravitational lensing on the statistical properties of CMB polariza-
tion. Although it has not been applied to multifrequency data, or used
for foreground cleaning, at a conceptual level the framework can be
straightforwardly extended to analysis of foreground-contaminated
multifrequency data. Although this extension could be implemented
with isotropic Gaussian priors for foreground emission, it also
presents the opportunity to incorporate more realistic priors – priors
that more accurately reflect what we know about such emission from
other data, or from physics-based simulations.

Here, we report on progress towards accomplishing these tasks
with the use of neural networks. Aylor et al. (2021) studied the use of
generative adversarial networks (GANs) for learning how to simulate
new emission maps with statistical properties similar to those from
a training set. Here, we present a similar study, this time using a
different neural network architecture and training program, that of
VAEs.

VAEs and GANs are examples of deep generative models. These
models have had recent success in accurately modelling complicated,
high-dimensional, data sets, and generating realistic novel samples
(van den Oord et al. 2016b; Brock, Donahue & Simonyan 2018;
Razavi, van den Oord & Vinyals 2019). Generative models can be
divided into two main categories: likelihood-based models that seek
to optimize the log likelihood of the data, these include the VAE
(Kingma & Welling 2013; Jimenez Rezende, Mohamed & Wierstra
2014), flow based methods (Dinh, Krueger & Bengio 2014; Jimenez
Rezende & Mohamed 2015; Dinh, Sohl-Dickstein & Bengio 2016;
Kingma & Dhariwal 2018), and autoregressive models (van den
Oord, Kalchbrenner & Kavukcuoglu 2016a); and implicit models,
such as GANs (Goodfellow et al. 2014), which train a generator
and discriminator in an adversarial game scenario. There are many
trade-offs to consider when selecting a likelihood-based approach
(Kingma & Dhariwal 2018), but here we choose to explore the use
of VAEs due to their explicit likelihood interpretation compared to
GANs, and their computational efficieny on high-dimensional data
sets compared to normalizing flows.

We find some advantages of VAEs over GANs trained in previous
works. The adversarial training process does not produce an explicit
inference model, and it is hard to consistently compare model
performance against some test set. Furthermore, it is also a common
problem that samples from GANs do not represent the full diversity
of the underlying distribution (Grover, Dhar & Ermon 2017). In
contrast, VAEs optimize the log likelihood of the data. This means
both that it is possible to directly compare models, and trained models
should support the entire data set, which is crucial when applying a
trained model to real data. VAEs also tend to be easier to train in that
training success is more stable to variation of hyperparameters. As a
downside, VAEs are well known for loss of resolution. We see this
in our results and discuss adaptations one could make to avoid this
degradation of angular resolution.

Although our work is motivated by the PGW-driven desire to un-
derstand the statistical properties of polarized foreground emission,

in this paper, as was the case in Aylor et al. (2021), we restrict
ourselves to intensity. Observations of polarized dust emission
with high signal-to-noise ratio over a large fraction of sky do not
currently exist, which precludes the training of similar models on
real data. However, in ongoing work, we are exploring the use of
magnetohydrodynamical (MHD; Kim et al. 2019) simulations to train
generative models of polarized emission. In this scenario, a trained
model would provide a ‘compression’ of the information available
in MHD simulations into a single statistical model, which could
then be used either in inference or to augment real low-resolution
observations with physically motivated small-scale realizations.

The rest of this paper is structured as follows. In Section 2, we
introduce VAEs, and the objective for their optimization. We then
describe the network architecture we used, the training data set we
produced to train the network, and how hyperparameter values were
set. In Section 3, we present the results of applying the trained VAE
to test set images. Finally, in Section 4 we summarize our findings
and discuss areas of current and future work.

2 VARIATIONAL AUTOENCODERS

In this section, we will introduce the idea of VAEs, the specific
model we implement, and the details of how we train that model.
This derivation closely follows the literature on this subject (e.g.
Kingma et al. 2016; Kingma & Welling 2019), but we reproduce it
here for pedagogical purposes.

Our goal here is to take a set of images of thermal emission
from interstellar dust x(i ) = (x(i )

1
, . . . , x(i )N ) ∈ RN , and infer from

them an underlying distribution, p(x) from which they could have
been drawn, using the techniques of generative modelling. VAEs
are a type of generative machine learning model, which provide
a framework by which we may infer the parameters of a joint
distribution over our original data, and some latent variables, z,
representing the unobserved part of the model. We can factorize
the joint distribution of the data and latent variables into two terms
representing the generative process of the data, and the latent space,
responsible for the variance in the observed data:

p(x, z) = p (x|z) 
Generative

p(z)

Variance

. (1)

The VAE approach is to model the conditional distribution with
an appropriate family of functions with some unknown weights,
θ: pθ(x|z) ≈ p (x|z). This conditional model encodes the generative
process by which x depends on the latent set of variables z. The choice
of p(z) can then be a simple, perhaps Gaussian, prior probability
distribution p(z), which encodes the data set variation in a simple
latent space. This can be seen as a type of regularization by which
we separate out different sources of variation within the data set, a
process that is quite natural for physical processes, and often makes
the resulting model interpretable.

The goal of training is thus to find a transformation that delivers
an acceptable approximation pθ(x) ≈ p (x), that is optimal (in some
sense), given the training set data. Towards that end, we consider the
parametrized joint distribution of x and z:

pθ(x, z) = p θ(x|z)p(z), (2)

which leads to our object of interest via marginalization overz:

pθ(x) = dz pθ(x, z). (3)

Our tasks are thus to choose a parametrization – this is referred
to as a choice of architecture – and then find a means of optimizing

MNRAS 504, 2603–2613 (2021)

D
ow

nlo
ade

d fro
m

 https://a
ca

de
m

ic.o
up

.co
m

/m
nr as/article/5

04
/2

/ 2
60

3/62
23

441
 b

y U
n

ive
rsity o

f C
hica

go use
r on

 31 M
a

y 2
021



Generative modelling of galactic dust 2605

these parameters (θ) with resepect to a chosen objective, via a process
referred to as training.

2.1 Objective

In principle, we could determine θ by maximizing the training set’s
joint likelihood i pθ(xi ). In practice, however, this would involve
evaluating the integral in equation (3) for each data point individually,
which is intractable for even moderately high-dimensional latent
spaces. The VAE framework provides an objective function that
bounds the maximum likelihood value, and is computationally
tractable.

Let a data setD be made up of samples x(i ) = (x(i )
1

, . . . , x(i )N ) ∈ RN ,
which we will assume to be independent and identically distributed
samples from some true underlying distribution pD (x). Absent an
analytical model forpD (x), we can instead take it to be a member of
an expressive family of functions parametrized byθ: pD (x) = p θ(x).
This can be done by introducing an unobserved set of latent variables,
z = (z1, . . . , zd) ∈ Rd, and considering the joint distributionp(x, z).
This joint distribution is specified by: the prior over the latent space,
p(z), which is assumed to be some simple distribution (typically
Gaussian), and the conditional distributionp(x|z), which is intended
to represent most of the complexity in the true underlying distribution
pD (x). We model this distribution as a neural network with weights
θ: pθ(x|z). The marginal likelihood is then:

pθ(x) = dz p(z)pθ(x|z) = Ep(z) [pθ(x|z)] , (4)

where we have introduced the notation EY[h(y)] to indicate the
expectation of the function h(y) with respect to the distribution
y ∼ Y. In principle, we could determine the conditional model
by fixing θ to a value that maximizes the marginal likelihood. In
practice, however, the integral in equation (4) is intractable, due to
the dimensionality of the latent space, and in any case would require
a per-data point optimization process. As a result, the posterior
pθ(z|x) = p θ(z, x)/p θ(x) is also intractable.

We make progress by introducing a second approximation, this
time to the posterior: qφ(z|x) ≈ p θ(z|x), where qφ(z|x) is often
referred to as an inference network. For any choice of qφ(z|x),
including any choice of its weightsφ, we can write the log likelihood
of the data as

log pθ(x) = Eqφ(z|x) log pθ(x) . (5)

Applying the chain rule of probability:pθ(x, z) = p θ(z)pθ(x|z), and
inserting an identity, this can be split into two terms:

log pθ(x) = Lθ,φ(x) + DKL(qφ(z|x)||p θ(z|x)), (6)

where Lθ,φ is referred to as the evidence lower bound (ELBO):

Lθ,φ(x) ≡ Eqφ(z|x) log
pθ(x, z)

qφ(z|x)
, (7)

and the second term is the Kullback–Leibler (KL) divergence:

DKL(qφ(z|x)||p θ(z|x)) = Eqφ(z|x) log
qφ(z|x)
pθ(z|x)

, (8)

which is a measure of the ‘distance’ between two distributions, and
is always positive.

From equation (6), we see that the bound Lθ,φ(x) will become
tightest when DKL(qφ(z|x)||p θ(z|x)) → 0, such that our approxima-
tion to the posterior,qφ(z|x) ≈ p θ(z|x), becomes exact. However, due
to the presence of the pθ(z|x) term, DKL(qφ(z|x)||p θ(z|x)) cannot be
evaluated directly, and so we are not able to directly optimize the

likelihood in equation (6). Instead, we seek to maximize the ELBO,
thereby achieving an ‘optimum’ set of weightsθ, φ.

The ELBO and its gradient with respect to θ can be computed
straightforwardly. The gradients with respect to φ appear more
problematic, since the expectation we are calculating is taken over
a distribution parametrized byφ. The typical Monte Carlo estimates
of this expectation, and its derivatives, are unbiased, but tend to
have a high variance, often making the training process unstable.
Through a reparametrization presented in Kingma & Welling (2013),
it is possible to rewrite this expectation such that the source of
randomness is not dependent on φ, and gradients with respect to
φ may be calculated with standard Monte Carlo techniques. We are
therefore able to optimizeLθ,φ(x) by stochastic gradient descent, and
approximately optimize the marginal log likelihood.

2.2 Architecture

In this section, we describe the architecture of the networks pθ(x|z)
and qφ(z|x), and the latent prior p(z). We adopt a convolutional
architecture for both the encoder and decoder network.

2.2.1 Latent space

We choose to use a d-dimensional latent space, with a multivariate
normal prior, z ∼ N (0, 1d×d ).

2.2.2 Encoder

The encoder maps input images x ∈ R256× 256 to latent space distri-
bution parameters, [μd, σd] ∈ R2d. It is worth emphasizing the point
that, since we are modelling the distribution p(z|x), the output of
the encoder is not a single point in the latent parameter space, but
rather a distribution, parametrized by the mean and variance [μd, σd].
The mapping from image to latent space parameters requires both
a dimensionality reduction, and a reshaping. We achieve these
goals by using a convolutional neural network. In the following,
we will describe the precise network that we implemented, using
the language of neural networks. For details on the motivation for
these choices, and their technical meaning, we refer to introductory
texts on machine learning and convolutional neural networks such as
Goodfellow, Bengio & Courville (2016).

The encoder reduces the dimension of the input image by applying
a series of strided convolutions with a rectified linear unit activation
function, and then flattens the image for input to a final dense layer
connected to the output latent space distribution parameters. Each
convolution is characterized by a kernel shape with a number of
pixels, ki, where i indicates the layer, and a stride length, which we set
to 2. The values ki are set during the hyperaparameter optimization
stage described in Section 2.3.3. We apply a batch normalization
with momentum parameter equal to 0.9 after each convolution. This
regularizes the weights, and leads to more stable training. A summary
of the encoder model is given in Table 1.

2.2.3 Decoder

The decoder is essentially the reverse process to the encoder, mapping
a latent vector z∈ Rd to an image x∈ R256× 256. We denote a decoder
g, with weights φ as gφ : z → x. The primary difference to the
structure of the encoder is that we use transverse convolutions
as opposed to convolutions, in order to increase the size of each
dimension. A summary of the decoder model is given in Table 2.
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2606 B. Thorne, L. Knox, and K. Prabhu

Table 1. This table shows the structure of the encoder network,qφ(z|x).

Layer Layer output shape Hyperparameters

Input (256, 256, 1)

Conv2D (128, 128, 256) Stride = 2

ReLu (128, 128, 256)

BatchNorm (128, 128, 256) Momentum = 0.9

Conv2D (64, 64, 128) Stride = 2

ReLu (64, 64, 128)

BatchNorm (64, 64, 128) Momentum = 0.9

Conv2D (32, 32, 64) Stride = 2

ReLu (32, 32, 64)

BatchNorm (32, 32, 64) Momentum = 0.9

Dense (1024)

Dense (512)

Table 2. This table shows the structure of the decoder network, pθ(x|z).

Layer Layer output shape Hyperparameters

Input (256, 1)

Dense (8192)

Reshape (16, 16, 32)

BatchNorm (16, 16, 32) Momentum = 0.9

TransposeConv2D (32, 32, 128) Stride = 2

ReLu (32, 32, 128)

BatchNorm (32, 32, 128) Momentum = 0.9

TransposeConv2D (64, 64, 64) Stride = 2

ReLu (64, 64, 64)

BatchNorm (64, 64, 64) Momentum = 0.9

TransposeConv2D (128, 128, 32) Stride = 2

ReLu (128, 128, 32)

BatchNorm (128, 128, 32) Momentum = 0.9

TransposeConv2D (256, 256, 16) Stride = 2

ReLu (256, 256, 16)

BatchNorm (256, 256, 16) Momentum = 0.9

TransposeConv2D (256, 256, 1) Stride = 1

2.3 Training

In this section, we detail the process by which we optimize the
weights of the VAE model described in Section 2.2 with respect to
the ELBO objective introduced in Section 2.1. The training process
requires us to specify the training data set, D , the training strategy
by which we make updates to the weights θ, φ, and the process of
hyperparameter optimization by which we make concrete selections
of meta parameters of the model (such as kernel shapes and training
parameters).

2.3.1 Data

Machine learning techniques are notoriously data hungry, and will
perform best for larger data sets. Standard computer vision data sets
on which algorithms are tested (e.g. ImageNet Russakovsky et al.
2015) contain tens of thousands, sometimes millions, of images.
However, we have only one sky from which to obtain observations
of Galactic dust. As such, we are forced to partition the sky into
patches, which we treat as separate images in the training process. In
order to obtain ∼ thousands of images, the natural linear scale of an
individual patch is ∼ 10◦. Such a small patch size has the advantage
that we are then justified in projecting the cutouts on to the flat sky,
and applying standard machine learning techniques to the resulting
two-dimensional images, sidestepping the issue of defining neural

networks that operate on spherical images (for such implementations,
see Krachmalnicoff & Tomasi 2019; Perraudin et al. 2019).

We use the Planck GNILC-separated thermal dust intensity map
at 545 GHz,2 which we download from the Planck Legacy Archive.
In order to extract cutout images from this map, we follow a similar
procedure to Aylor et al. (2021). We mask the Galactic plane by
excluding all regions at latitudes below 15◦. Then we lay down a set
of centroids (li + 1, bi + 1) = (li + s, bi + s/cos (li)), where s is a step
size parameter, and s/cos (li) is a step between longitudes for a given
latitude, which ensures the same angular separation in the latitudinal
direction. Each centroid is then rotated to the equator, and an 8 ◦ ×
8◦ square region around the centroid is projected on to a Cartesian
grid with 256 pixels along each size. For s= 4◦, this results in a data
set, D , of 2254 maps. We then shuffle and splitD into three groups:
a 70 per cent training set, xtrain, a 15 per cent validation set, xval, and
a 15 per cent test set, xtest.

Data sets with large dynamic ranges can be difficult to use directly
with neural networks due to correspondingly large fluctuations in the
updates to weights during the backpropagation of the loss. Therefore,
all images were standardized to have unit variance, and zero mean.

In order to artificially increase the diversity of images in our limited
sample, we employ two standard data augmentation techniques. Dur-
ing the data preprocessing stage of training, we randomly flip each
image along the horizontal and vertical directions, and rotate each
image by an integer multiple of 90 ◦. These transformations are not
invariant under convolution; however, the transformed image would
constitute a perfectly realistic foreground image. The transformed
images exist only during the training process, and are not stored or
used later.

2.3.2 Strategy

Here, we discuss the training strategy used to learn the weightsθ, φ.
As discussed in Section 2, to train a VAE we maximize the lower

bound on the log likelihood of the data given in equation (7) with
respect to the weights θ, φ. In practice, at each step we compute a
Monte Carlo estimate of this quantity:

Eqφ(z|x)

pθ(x, z)
qφ(z|x)

≈ log pθ(x|z) + log p(z) − log qφ(z|x), (9)

where x on the RHS is now a minibatch of the data, the size of
which is a hyperparameter of the training process. The analysis we
present in Section 2.3.3 shows that a batch size of 8 is preferred.
For each batch, we then calculate the gradients of this quantity with
respect to the weightsθ, φ and backpropagate the errors through the
network, adjusting θ, φ in accordance with the learning schedule.
For this schedule, we used the Adam optimizer (Kingma & Ba 2014)
with hyperparameters determined through the optimization process
described in Section 2.3.3.

The training was performed by passing over the entire data set
100 times, and in each pass splitting the data into batches of eight
images. To guard against overfitting, we evaluated Lθ,φ(xtrain) and

Lθ,φ(xval) every five epochs and checked for divergence between these
quantities at late epochs. If the network had begun to overfit on the
training data, its predictions for the validation set would deteriorate,
which would be reflected in a worseningLθ,φ(xval). We found that the

Lθ,φ(xtrain) plateaued after 50 epochs, and saw no divergence between

Lθ,φ(xtrain) and Lθ,φ(xval) after training for an additional 50 epochs.

2http://pla.esac.esa.int/pla/aio/product-action?MAP.MAP ID=COM Com

pMap Dust-GNILC-F545 2048 R2.00.fits
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Generative modelling of galactic dust 2607

Models were built using the TENSORFLOW software package
(Abadi et al. 2015), and trained using a Tesla V100 GPU on the
Cori supercomputer at NERSC. The time taken to train an individual
model depends on the complexity of the architecture (e.g. number
of layers, kernel sizes, and number of features). For the nominal
architecture shown in Tables 1 and 2, training for 100 epochs on a
single Tesla V100 GPU took an average of 12 min over 10 trials,
with a standard deviation between trials of 3 s.

2.3.3 Hyperparameter optimization

In this section, we provide motivation for our selection of the model
hyperparameters. It is not possible to optimize model hyperparam-
eters such as batch size, or model architecture, using the same
stochastic gradient descent technique that is used to optimize model
weights and biases. Instead, a limited number of hyperparameter
combinations can be trained, and the corresponding model that
achieves the best loss after a certain amount of training time, or
certain number of epochs, is used. The space of hyperparameters is
high dimensional, and so cannot be uniformly densely sampled due
to computational cost. Instead, we employed a Bayesian optimization
approach in which a few random combinations of hyperparameters
are chosen, and trained for 20 epochs each. From this set of
hyperparameters, a Gaussian process (GP) model of the loss as a
function of hyperparameters is built. From this GP model, new trial
candidates are selected, and trained, with the resulting loss then
being incorporated into the GP weights. We allowed this process to
continue for 100 different trials, and used the hyperparameters that
achieved the lowest loss after 20 epochs of training.

3 RESULTS

3.1 Reconstructions

In this section, we present reconstructions of test set images, and
compare their pixel value distribution and power spectra.

For a given image, xtest, we can sample the posterior as z (i )
test ∼

qφ(z|x), and push these through the decoder to get a reconstructed

image x
(i )
test = gθ(z

(i )
test). To summarize the distribution of reconstructed

images, we draw L samples and calculate their average:

x̃ ≈
1
L

L

l= 1

gθ(z(l)
test). (10)

For the remainder of this section, a ‘reconstruction’ refers to the
calculation of equation (10) with L= 100. For a given reconstruction,
we can straightforwardly calculate two statistics: (i) the histogram
of its pixel values and (ii) the power spectrum. We calculate the
histogram of pixel values in 20 bins from − 3 to 5, and normalize
the count such that the area under the histogram is equal to unity. To
calculate the power spectrum, we apply a cosine apodization with a
characteristic scale of 1 ◦ to the image, such that it smoothly tapers
to zero at the edge of the map. We then calculate the mode coupling
matrix for this mask, and calculate the uncoupled power spectrum
using the NAMASTER code (Alonso et al. 2019). For reasons that
will become clear later, we are primarily interested in comparing
ranges of multipoles in the signal-dominated regime, well within the
resolution limit of the original maps, and so we do not make any
efforts to noise debias or account for the beam present in the original
maps.

First, we present the reconstructions of three randomly selected
test set images, and show the resulting maps, along with the residuals,

in Fig. 1. We can see that the network does very well in reconstructing
the large-scale features in these test set maps, and the visual quality
is sufficient to appear ‘real’, if lower resolution. Features are well
recovered up to∼ degree scales, with features below that scale being
smoothed out by the calculation of the expectation in equation (10).
The residuals shown in the bottom row of Fig. 1 do not show any
visual biases correlated with features in the input maps. To quantify
this, we take each image in the test set, calculate the residuals, and
calculate the cross power spectrum of the two maps. We take the
mean and standard deviation across the test set at each bandpower,
and plot the result in Fig. 2.

In Fig. 3, we take a single randomly selected test set image, and
show its reconstruction, the pixel value histograms of each image, and
their power spectra. As was the case for the three examples shown in
Fig. 1, there is excellent visual agreement between the original image
and its reconstruction. This is enforced by the excellent agreement
between the distribution of pixel values in the two images, shown in
the bottom left panel of Fig. 3. The reconstructed power spectrum
in the bottom right panel of Fig. 3 also shows excellent agreement
up to  ∼ 400, and suppression of power in the reconstructed image
going to smaller scales, consistent with the visual blurriness of the
reconstructed image.

In order to compare reconstructions for the whole test set, we now
calculate the pixel value distribution and power spectrum for each of
the 339 images in the test set and their reconstructions. In order to
represent the distribution of pixel value histograms across this test set,
we calculate the quartiles and median in each bin, across the test set.
In Fig. 4, we plot the 25th percentile, median, and 75th percentile as
a function of bin centre, for both the original test set images, and their
reconstructions. There is excellent agreement between the two sets of
images, with no evidence of any aggregate bias in the reconstructions.
In Fig. 5, we compare the power spectra of the test set images and
their reconstructions. Fig. 5 shows that the same behaviour as was
seen in Fig. 3 is displayed for the entire test set. Spectra are generally
well recovered for < 400, with power being increasingly suppressed
for  > 400, relative to the real image power spectra. Note that we
have standardized all test set maps, as described in Section 2.3.1,
and so the spread of amplitudes does not reflect the variation one
would expect from a random sample of non-standardized foreground
spectra.

Here, we are encountering a known issue with VAEs: reconstructed
images are often blurry (Kingma et al. 2016; Kingma & Dhariwal
2018; Kingma & Welling 2019). The blurriness can be understood
by considering the objective function in equation (7), and inspecting
the term Eqφ(z|x) [pθ(x, z)]. Since this expectation is taken with
respect to the distribution qφ(z|x), it will strongly penalize points
(x, z) that are likely under q φ, but unlikely under p θ. On the other
hand, points that are likely under pθ, but are not present in the
empirical data distribution, will suffer a much smaller penalty. The
result is that, if the model is not sufficiently flexible to fit the data
distribution exactly, it will compensate by widening the support of
pθ(x, z) beyond what is present in the data distribution, inflating the
variance of pθ(x|z). Since we have assumed a Gaussian distribution
for the decoder model that is independent from pixel to pixel,
and given that the signal in the training images is red tilted (as is
the case for most natural images containing extended recognizable
structures), the increased variance leads to a degradation of small-
scale features through the averaging process of equation (10) (Zhao,
Song & Ermon 2017). A corollary of the extended support of
pθ(x, z) is that sampling the prior in order to generate novel images
will not necessarily produce realistic samples (Kingma & Welling
2019).
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2608 B. Thorne, L. Knox, and K. Prabhu

Figure 1. This figure shows the reconstruction of three randomly selected images from the test set, not used during the training or validation of the network.

The top row are the original images, the second row are the reconstructions. and the third row are the residuals of the reconstructions. The reconstructions clearly

lose small-scale details, but manage to recover the large-scale variations well.

Figure 2. In this figure, we plot a summary of the cross-correlation between

residual maps and input maps, calculated across the test set. For each map,

we calculate the residuals, and correlate them with the input map. We then

plot the mean and standard deviation of each bandpower across the test set,

and plot them above. We do not see any evidence for systematic correlations

between residual maps and input maps.

One way in which the flexibility of VAEs may be enhanced is
through the use of normalizing flows (Jimenez Rezende & Mohamed
2015). As the name suggests, the idea here is to start with a simple
distribution, such as a multivariate normal, and ‘stack’ layers of
invertible transformations, such that the output may be significantly

more complex. There are certain requirements placed on these
transformations such that they remain computationally efficient, for
example, they must have tractable Jacobians (Jimenez Rezende &
Mohamed 2015). Expanding the VAE model presented here by
introducing normalizing flows could be expected to improve both
the reconstruction quality, and the quality of novel samples, and is
the subject of this work.

3.2 Interpolation in the latent space

As a means of investigating the structure of the encoding that has been
learned, we study the ‘interpolation’ between real images, x1 and
x2, by performing the interpolation between their latent encodings,
z1 and z2. From the smooth nature of the changes in the resulting
continuum of maps, we will see that smooth variations in the latent
space result in smooth variations in the map space. This study also
demonstrates that the VAE has learned generalizable information
about foreground images, as each image generated by sampling along
the trajectory has the visual appearance of a foregound map, and the
correct statistics, but does not correspond to any real image.

The probability mass in high-dimensional distributions tends to
concentrate in a shell relatively far from the modal probability
density. Therefore, traversing the latent space in a straight line (in
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Generative modelling of galactic dust 2609

Figure 3. Top left: A randomly selected test set image, x. Top right: The reconstruction of the test set image, x̃, as computed using equation (10). Bottom left:

Kernel density estimate of the distribution of pixel values of the original image, and its reconstruction. Bottom right: The log power spectra of the test set image

and its reconstruction. Note that the test set images are standardized, as described in Section 2.3.1 therefore these quantities are unitless.

Figure 4. In this figure, we compare the pixel value distributions of the

339 test set images (black), and their reconstructions (green). We calculate

quantiles across the test set, and plot the 25th and 75th percentiles (the dashed

lines), and the median (the solid lines) as functions of pixel value.

the Euclidean sense), does not necessarily pass through areas of
high probability mass. In order to keep the interpolated points within
areas of high probability mass, we interpolate from z 1 to z2 using
spherical trajectories that traverse great circles in the latent space,
as the distance from the origin smoothly changes from |z1| to |z2|.
Specifically, we follow this continuous trajectory parametrized by
some factor λ:

z1,2(λ) =
sin((1 − λ )θ)

sin θ z1 +
sin(λθ)

sin θ z2, (11)

where cos( θ) = ẑ1 · ẑ2. We then take N points along this line
corresponding to λ = [1/(N + 1), 2/(N + 1), . . . , N/(N + 1)], and
decode to obtain the corresponding map x1,2(λ) = g φ(z1,2(λ)).

Figure 5. In this figure, we compare the power spectra of the 339 test set

images (black) and their reconstructions (green). We calculate quantiles in

each bandpower across the test set and plot the 25th and 75th percentiles (the

dashed lines), and the median (solid lines) as a function of bandpower.

Fig. 6 shows the smooth transition in image space between the two
real images (the top left panel and the bottom right panel) randomly
selected from the test set, calculated using the interpolation described
above. Features, such as the strong filamentary structures in the
centre of the image, transition smoothly in and out of the image,
demonstrating that small perturbations in the latent space result in
small perturbations in decoded images.

3.3 Data imputation

In this section, we consider a possible application of our trained
model to the reconstruction of corrupted data. During the analysis
of CMB data, there are many possible reasons that data may
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2610 B. Thorne, L. Knox, and K. Prabhu

Figure 6. This figure presents synthetic images generated by interpolating between real images, x1 and x2, shown in the top left and bottom right panels,

respectively. The interpolation is carried out in the latent space using equation (11), and is parametrized by a continuous variable λ. The intermediate panels

show the interpolation evaluated at N = 10 points along the trajectory.

be incomplete, from masking of point sources, to corruption by
uncontrolled systematics.

If trying to estimate the power spectrum from a corrupted map,
troublesome regions can be masked and in principle an optimal
estimate can still be made by using the correct inverse-variance
weighting of the pixels (Gorski 1994; Tegmark & Bunn 1995;
Borrill 1999). In practice, however, such a calculation is prohibitively
computationally expensive, and pseudo-C techniques are relied
on (Wandelt, Hivon & G órski 2001; Hivon et al. 2002; Alonso
et al. 2019). In the pseudo-C approach, near-optimal results can
still be obtained, given a careful apodization of the masked re-
gion.

When computing higher order estimates, the typical approach is to
inpaint the desired region (Gruetjen et al. 2017). This task is simple
when the missing emission is well described by Gaussian statistics,
as is the case for the CMB (Bucher & Louis 2012). The lack of a
similarly simple approach for the non-Gaussian foreground signal
means that previous efforts have relied on empirically validated,
simple, algorithms, such as diffusive filling (Bucher, Racine & van
Tent 2016), and more recently targeted machine learning applications
(Puglisi & Bai 2020).

Future surveys will have ever lower noise floors, and will be
increasingly contaminated by polarized point sources (Datta et al.
2019). If particularly aggressive masking is required, this could lead
to the biasing of standard power spectrum techniques, as well as
biasing of higher order estimators (Puglisi & Bai 2020).

The statistical foreground model presented here allows us to take
a Bayesian approach to foreground inpainting, in which we may
compute a posterior distribution for the missing data, conditioned
on the observed data (B öhm, Lanusse & Seljak 2019). This has
the advantage of conserving the foregrounds’ statistical properties,
while also taking into account all of the contextual information in the
image, unlike methods such as diffusive inpainting. In the rest of this
section, we will present a toy model for corrupted data, and show
that we are able to perform inpainting by optimizing the posterior
distribution in the latent space.

Representing the contamination as a linear operator A, we can
write down a model for the observed data d: d = A x + n, where n
is a possible noise term. The posterior distribution of z is given by
Bayes’ theorem:

log p(z|d) = log p(z) + log pθ(d|z) − log p(d). (12)

For a given statistical model of the noise, we have a complete
description of the term logp(d|z), and we can work with the posterior
distribution in the latent space.

As a concrete example, we will consider the case of a binary N
× N masking operator, A, with elements equal to one (zero) where
pixels are (un)observed. To form simulated ‘corrupted’ images, we
take random images from the test data set, apply A, and add white
Gaussian noise n, characterized by a pixel standard deviation σ:
dtest = A xtest + n. The posterior distribution in the latent space is
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Generative modelling of galactic dust 2611

Figure 7. This figure shows three randomly selected test set images, x1,2,3 in the top row. As described in Section 3.3, these images are corrupted with a binary

mask A1,2,3 and white noise. The corrupted images are shown in the second row. The third row shows the reconstructed images obtained by maximizing the

latent space posterior in equation (13) for each of the three corrupted images, and decoding the resulting points in the latent space. The fourth and fifth rows

show the pixel value histograms and power spectra of the original and reconstructed maps.

MNRAS 504, 2603–2613 (2021)

D
ow

nlo
ade

d fro
m

 https://a
ca

de
m

ic.o
up

.co
m

/m
nr as/article/5

04
/2

/ 2
60

3/62
23

441
 b

y U
n

ive
rsity o

f C
hica

go use
r on

 31 M
a

y 2
021



2612 B. Thorne, L. Knox, and K. Prabhu

then:

− 2 logp(z|dtest) ∝ z
T

z +
μθ(z)T μθ(z)

σ2
, (13)

where we have written the residual vector asμθ(z) = A gθ(z) − dtest.
Fully sampling equation (13) can be computationally expensive

due to the dimensionality of z, and is made more challenging by
the possibility of logp(z|dtest) being multimodal. For these reasons,
applying standard Markov chain Monte Carlo techniques can often
fail to fully explore the posterior (B öhm et al. 2019), and we leave
a sampling approach for future work, here taking only a single
representative sample by maximizing ẑtest = argmaxz log p(z|dtest).

In the following, we will take A to be a masking operator that
applies a binary mask to a map. However, as long as a forward
model for the corruption operation can be written down (e.g. a
Gaussian convolution), the same technique could be applied. We
take three randomly selected test set images, x1, x2, x3, and apply
three different binary masks, A1, A2, A3. To each corrupted image,
we add a white noise realization with a pixel standard deviation
of 0.2. For each corrupted, noisy image, we then maximize the
posterior in equation (13) to find z MAP

i using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm. In Fig. 7, we show
the randomly selected test set images in the first row, the corrupted
images in the second row, and the reconstructed mapg(zMAP

i ) in the
third row. We also calculate the pixel value histograms and power
spectra of the input and reconstructed maps and show these in the
bottom two rows of Fig. 7.

One can see from Fig. 7 that all the images are well reconstructed,
and there is no visible effect of the masking remaining in the
reconstructions. Comparing the regions in the first and third rows
corresponding to the masked areas, we see that the network does
not reproduce the exact features in the masked region, for any
of the x i , as expected. However, the network does reconstruct
plausible inpaintings, with the correct statistics, given the context
in the rest of the image. For example, the reconstruction gφ(zMAP

2 )
does not replicate the true high-intensity filamentary structure in
the input image, x2, which would be impossible. However, it does
recognize from the context that intensity is increasing towards the
masked area in the bottom left of the image, and populates that area
with high-variance, high-intensity features. Correspondingly, such
high-intensity features are not seen in the reconstructed regions of
gφ(zMAP

1,3 ), which correspond to relatively low emission regions. The
pixel value histograms and power spectra in the last two rows of
Fig. 7 show similar behaviour. We see good agreement between the
original and reconstructed histograms and power spectra for both
the x 1 and x 3 maps, up to the suppression at  > 400 common
to all reconstructions. On the other hand, we see a disagreement
between the original and reconstructed statistics of x 2, due to the
higher variance associated with the filled-in region.

These results show that the network has learned generalizable
information about foreground behaviour, and is able to inpaint novel
foreground emission with correct statistical properties, based on the
context of an image. The forward model used in this inpainting
process can be easily extended to maps with multiple masks and
different types of filtering and noise found in real data.

4 DISCUSSION AND CONCLUSIONS

In this paper, we have presented a new application of VAEs to images
of Galactic thermal dust emission. Using a training set extracted
from Planck observations of thermal dust emission, this technique
allowed us to learn a transformation from a space of uncorrelated

latent variables with a multivariate normal prior, to the space of
possible dust maps.

The training process was validated by computing and comparing
summary statistics, including the distribution of pixel values, and
power spectra of reconstructed maps, on a test set withheld during
the training process. The applicability of the trained model was
also demonstrated by reconstructing data corrupted by noise and
masking. This was the first use of a trained generative dust model
to perform Bayesian inference, and demonstrates the applicability
of this approach in the simulation of foreground images, and the
Bayesian modelling of polarized CMB data.

The usefulness of this model is currently limited by the flexibility
of the posterior, and its ability to fit the true underlying posterior. As
was discussed in Section 3.1, this has two main consequences: (i)
a naı̈ve sampling of the prior is not guaranteed to produce realistic
samples and (ii) reconstructed images are blurry, limiting accuracy
to degree scales. Both of these issues may be tackled by increasing
the expressiveness of the model (Kingma & Welling 2019), which
we plan to do by introducing a normalizing flow to link the prior and
latent space (Kingma et al. 2016).

As discussed in the Section 1, our main goal is to model polarized
dust emission. We attempted a similar analysis to that presented
here by repeating the training procedure on a network that accepted
an additional ‘channel’ as input, representing a tuple of Stokes Q
and U parameters, rather than only Stokes I, and using the Planck
353 GHz polarization observations to form a training set. We found
that the network was not able to learn any meaningful information
from this set-up, consistent with what similar analyses have found
(Petroff et al. 2020). In order to extend our analysis to polarization,
we are therefore exploring the use of MHD simulations (Kim et al.
2019) as a training set. Kim et al. (2019) have demonstrated that
simulations of a multiphase, turbulent, magnetized ISM produce
synthetic observations of the ISM with statistics (such as the ratio of
E power to B power, and the tilt of the EE and BB power spectra)
matching those of real skies. Our initial results have shown that this
is a promising alternative to the use of real data in training generative
networks.
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