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Gabor-type frames for signal processing on graphs

Mahya Ghandehari - Dominique
Guillot - Kris Hollingsworth

Abstract In the past decade, significant progress has been made to generalize
classical tools from Fourier analysis to analyze and process signals defined on
networks. In this paper, we propose a new framework for constructing Gabor-
type frames for signals on graphs. Our approach uses general and flexible
families of linear operators acting as translations. Compared to previous work
in the literature, our methods yield the sharp bounds for the associated frames,
in a broad setting that generalizes several existing constructions. We also ex-
amine how Gabor-type frames behave for signals defined on Cayley graphs
by exploiting the representation theory of the underlying group. We explore
how natural classes of translations can be constructed for Cayley graphs, and
how the choice of an eigenbasis can significantly impact the properties of the
resulting translation operators and frames on the graph.
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1 Introduction

The recent field of graph signal processing was initiated to develop methods for
analyzing signals defined on graphs. Given a graph I" on N vertices, a graph
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signal is a complex-valued function on the vertex set of I", which is naturally
identified with a column vector in C¥. A natural technique to analyze signals
defined on graphs that is rapidly gaining popularity involves fixing a basis of
eigenvectors for a chosen matrix associated with the graph, and expanding a
given graph signal in that basis. The reason for doing so is to improve signal
processing efficiency by working with a basis that is more adapted to the graph
compared to an arbitrary basis of CV. Natural examples of matrices associated
with a graph I" include: (1) the adjacency matrix A with entries (4, j) equal to
1 when there is an edge from vertex ¢ to vertex j, and 0 otherwise; and (2) the
graph Laplacian Lp := Dp — Ap, where D is the diagonal matrix with entry
di; equal to the degree of vertex ¢. Other matrices such as the normalized
Laplacian and the random walk Laplacian have also been considered. Such
choices of orthonormal bases lead to the idea of graph Fourier analysis; see for
example [20].

A challenging task in graph signal processing is to produce efficient frames
for the space of signals on a given graph. A frame for an inner product space
is a generalization of the notion of basis, which provides a stable, possibly
redundant system for analyzing vectors in that space. An important class of
frames is constructed by applying a time-frequency shift operator to a given
window function. Inspired by the seminal work of Gabor on L?(R) in [12], such
frames are called Gabor frames. Wavelet frames constitute another notable
class of frames that are closely related to Gabor frames. Namely, Gabor frames
are constructed through applications of translation and modulation operators
to a window function, whereas the modulation operator is swapped with the
dilation operator in the construction of wavelet frames.

In this paper, we investigate Gabor-type constructions of frames for graph
signals. Frame and wavelet constructions for graph signals have attracted the
attention of many researchers in the past couple of decades. Early methods to
construct frames based on the eigen-decomposition of the graph Laplacian are
given by Coifman and Maggioni in [§] and by Maggioni and Mhaskar in [28].
Frames associated with a Shannon-type sampling on graphs were initiated in
[33.34]. Efforts to directly generalize multiresolution and wavelet analysis to
the graph setting can be found in [7,9,[T41T723L2529]. In [20], Hammond,
Vandergheynst and Gribonval define the graph Fourier transform and apply
it to construct wavelet frames for graphs. Other examples of wavelet-type
frames based on the graph Fourier transform can be found in [T0,26L3741]
48]. Studies exploring fundamental limits of how efficiently signals can be
represented in terms of uncertainty principles can be found in [3247], and a
proposed fast algorithm to implement frames on graphs can be found in [24].
Some of the extensive work of defining Gabor-type frames in the graph setting,
often referred to as vertex-frequency analysis, can be found in [2/[3L39,[40141]
44451[46]. Summaries of most of the references mentioned (and many more)
can be found in the survey articles [I830,[42] or collected in the recent book
[43).

In this article, we propose a general framework for constructing Gabor-type
frames for signals on graphs. A major difficulty that arises in the construction
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of Gabor frames in the graph setting is the lack of a canonical notion of trans-
lation. Indeed, many notions of translations and shifts for signals on graphs
have been defined in the literature so far, including;:

1. the translation operator introduced by Shuman, Ricaud, and Vandergheynst
[40]. Inspired by classical (commutative) Fourier analysis, they define the
notions of convolution, modulation, and translation via the graph Fourier
transform;

2. the linear isometric shift operator introduced by Girault, Gongalves, and

Fleury [16];

the energy-preserving shift operator introduced by Gavili and Zhang [13];

4. translation induced by the adjacency matrix of the graph, as proposed by
Sandryhaila and Moura [35];

5. translation induced by pointwise multiplication with personalized PageR-
ank vectors defined by Tepper and Sapiro [44], and;

6. the neighborhood preserving translation defined by Pasdeloup et al. [19]
31].

@

A common feature of the above transformations is that they operate lin-
early on a given signal g. In this paper, we construct Gabor-type frames using
general and flexible families of linear operators acting as translations. This
viewpoint allows us to bring many previously defined natural graph frames
under the same umbrella. That is, our frames (proposed in Theorem [2)) gener-
alize many known frame constructions, for which we also obtain sharp frame
bounds. See also [IT] for generalizations of translation and modulation opera-
tors in a similar spirit.

The rest of the paper is organized as follows. In Section 2] we collect the
necessary background material on discrete frames, and provide a brief overview
of signal processing on graphs. In Section Bl we present a general method for
constructing Gabor-type frames (Theorem [2]). We then provide the associated
sharp frame bounds, and propose techniques for approximating frame bounds
using certain matrix theoretic concepts. Next, we devote our attention to the
study of frames in which translations are defined using Fourier multipliers; ex-
amples include translations defined in [13l[163540]. We show that our general
approach leads to sharp frame bounds for this class of frames (Theorem [).
This provides a unified proof for some formerly known frames in the literature
such as [I3L40], and allows us to compute sharp frame bounds in each case.
In Section [ we examine the constructed frames in the special case where the
graph I'is a Cayley graph. In that case, an orthonormal basis of eigenvectors of
the adjacency matrix or the Laplacian of the graph can be explicitly obtained
by exploiting the representation theory of the associated group [I]. Building on
the work in [I5], we study how properties of the frames given above relate to
the structure of the underlying group. For example, in Theorem[7]we show that
the condition (on the window function) of Corollary [ for producing a tight
frame can be considerably relaxed in the case of a Cayley graph. Finally, we
use Cayley graphs to demonstrate the importance of carefully choosing a basis



4 Mahya Ghandehari et al.

of eigenvectors associated to the graph in the case where repeated eigenvalues
occur.

2 Notations and Background

Discrete Frames. A discrete frame for a separable Hilbert space H is a set
of vectors {¢, }zex indexed by a countable set X, such that for some positive
real numbers A and B, we have

All£13 < D7 [(F, ¢a)I? < Bl £13, for every vector f € H. (1)
zeX

Frames provide stable, possibly redundant systems which allow reconstruction
of a signal f from its frame coefficients {{f, ¢..) } »cx. When the frame provides
redundant representation, reconstruction of a signal is still possible even when
some portion of its frame coefficients is lost or corrupted.

We define the frame condition number of a frame F as the ratio ¢(F) :=
B/A, where A, B denote the optimal constants satisfying Equation (). An
important class of frames is the class of tight frames, i.e., frames for which
A = B. These frames exhibit many desirable properties, such as greater nu-
merical stability when reconstructing noisy signals, compared to general frames
or to orthonormal bases. For example, one can show that, under natural as-
sumptions, the mean-square error of a reconstruction is minimized if and only
if the frame is tight (see [6], Theorem 1.9.2). An important goal in designing
frames for real applications is to design tight frames, or at least frames with a
small condition number. For a detailed introduction to frame theory, see [6L21].

Gabor frames. A natural approach to construct frames involves applying
a time-frequency shift operator to a given function g. In his seminal 1946
paper, Gabor [12] proposes constructing such frames for functions in L?(R) by
defining

Jue(t) = (MTug)(t) = ™ g(t — u),

where (T,.9)(t) = g(t—u) and (M¢g)(t) = e*™%!g(t) denote the standard trans-
lation and modulation operators on L?(R). Such frames are commonly used in
science and engineering and have been extensively studied — see [5] for more
details.

Graph Signal Processing. Let I' be a graph with vertex set V(I') =
{1,2,...,N}. A signal on I' is a function f : V(I') — C. We identify the
signal f with the vector (f(1),(2),...,§(IN))T in CV, where M T denotes the
transpose of the matrix M.

To develop signal processing for a given undirected graph I with N ver-
tices, we first fix an associated graph matrix. The most significant matrices
associated with a graph I" are the adjacency matrix Ap and the Laplacian ma-
trix Lp. Let {&; }é\le be an orthonormal basis of eigenvectors for the chosen
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matrix, associated to (repeated) eigenvalues {\; }évzl Inspired by commutative
Fourier analysis, the graph Fourier transform was introduced by Hammond,
Vandergheynst, and Gribonval in [20] as the expansion of the vector f € CV in
terms of the orthonormal basis {¢; };V:1 More precisely, the Fourier coefficients
of f are given by

~ N [

Hr) = (F drden = Y 5o

Jj=1

~—

: (2)

Equivalently, letting @ be the matrix whose j*" column is @j, we have?: Dy
The inverse graph Fourier transform is then given by §f = &f, or

f(k) = Z?(@)@(k» (3)

-~

Note that here, we use the notation f(¢y), rather than the more conventional
notation ?()\k) to avoid confusion in cases where repeated eigenvalues occur.
See [30,35[36,38] for more details on the graph Fourier transform and the
associated theory.

The graph Fourier transform can be used to generalize the concepts of
convolution, modulation, and translation to the graph setting. To elaborate,
define the convolution of two signals f,g on I" to be the pointwise product in

the Fourier domain

~

frg=2(fog), (4)
where we use o to denote entry-wise (Hadamard) multiplication of matrices.
This convolution naturally leads to a notion of translation by defining

ij:\/ﬁ(f*(sj) (jzla"'aN)a (5)
where §; denotes the Kronecker delta function centered at vertex j, i.e.,

5j(k)={1 if k=

0 otherwise.

Here the factor of v/ N is used so that the graph translation preserves the mean
of the signal when in the setting of [40]. Finally, signal modulation is defined
as entrywise multiplication with the basis functions:

Mjf=¢jof  (j=1,....N). (6)

Using these definitions, Shuman et al. [40] defined a frame for graph signals
that is analogous to the classical construction of Gabor frames on the real line.
Given a window function g : V(I') — C, let

95,k = M T;g (j,k=1,...,N). (7)

One of the main results of [40] is the fact that, under mild assumptions, the
functions g; 5 define a frame that can be used to analyze real signals on I".
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Theorem 1 ([40], Theorem 3) Let I' be a graph. Let {¢;};, be an or-
thonormal basis of real eigenvectors for the graph Laplacian matmm and let
g c RN, If Z] 1 8(j) # 0 then the collection of functions {g;k}jk=1,..N i5 a
frame for RN i.e., for all § € RY,

N N-1

min{N T2} [ <2 3 I 0wl < weN TR} (9
i=1 k=0

The proof of the above theorem relies on calculations which hold true only
in the space of real-valued vectors. Moreover the statement is specific to the
particular definitions of translations and modulations in [40]. In the next sec-
tion, we obtain a generalization of this theorem where the translations Tj
are replaced by arbitrary linear operators. Our results hold for both real and
complex-valued signals, and are independent of the matrix (adjacency ma-
trix, Laplacian, etc.) associated to the graph. We also derive the sharp frame
bounds of the generalized frames.

3 General Constructions of Gabor-Type Frames

In this section, we present a general method for constructing Gabor-type
frames, and provide the associated sharp frame bounds. We also demonstrate
how the frame bounds and the frame condition number can be estimated via
generalized eigenvalue problems. We finish this section with the study of frames
in which the translation operator is defined via Fourier multipliers. We show
that our general approach leads to sharp frame bounds for this class of frames;
this provides a unified proof for several formerly known frames in the litera-
ture, and allows us to compute frame bounds for each case. Finally, we discuss
the case where the translation operators are given as Fourier multipliers of an
orthonormal set of vectors.

Theorem 2 Let {(bj};\[:l be an orthonormal basis of CV, let Ay, As,. .., Ag

be an arbitrary collection of complex N x N matrices, and let g € CN. For
m=1,...,5 and ¢ =1,... N, define

G0 = ¢ 0 (Amg), 9)

where o denotes the entrywise product. Also let

S
o= ()il = 3 1450 (10)

J=1

where the modulus and square operations are performed entrywise. Then the
collection of vectors {gme:m=1,...,8,=1,...,N} forms a frame for CN
if and only if vy > 0 for all k =1,...,N. Moreover, in that case,

N

S
ANIFIZ < D0 D 1, ama)® < B3

m=1¢=1
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with optimal frame bounds A := minl_, vy and B := maxj_; v.

Proof Fori=1,...,N, let D; denote the diagonal matrix with k-th diagonal
entry equal to the k-th term of the vector ¢;. Using that notation, observe
that gpm,¢ = DeApg. Now, consider the matrix whose columns are the vectors

gm,l:
T:.= (DlAlg, D1A2g, ce ,DlASg, DgAlg, DgAgg, ceey DgAsg, ce ,DNASg) .

By standard results on finite frame theory, the collection of vectors {g,, ¢ :
m=1,...,5¢=1,...,N} is a frame if and only if the matrix TT* is posi-
tive definite. Moreover, the associated optimal frame bounds are given by the
smallest and largest eigenvalues of TT™ (see e.g. [0, Theorem 1.3.1]). Here, we
have

N S
TT* =3 > DiAjgg" A;D;.
i=1 j=1
Now, observe that for any diagonal matrix D = diag(u) and any matrix M,

we have DM D* = M o (uu*). Hence,

N S
DD [(A;0)(4;0)] 0 (4:07)
S

N
> [(40)(4;0)7] (Z ¢i¢2‘>

Jj=1

TT*

|
AMO}

[(A4;0)(Aj9)"] o In,

Jj=1

where Iy denotes the N x N identity matrix and where the last line follows
from the fact that the ¢;’s form an orthonormal basis of CV. Hence TT* is
diagonal with diagonal entries given by Zle |4;g/%. The result now follows
immediately from [6] Theorem 1.3.1]

Remark 1

1. Our construction in Theorem 2lholds for any orthonormal basis {¢; };V:I of
CN. Thus, the theorem is valid regardless of the particular graph matrix
one may choose to analyze graph signals.

2. The above theorem generalizes Theorem [Il to allow a general set of linear
operators as translations. In addition, it yields a frame for CV rather than
just RV,

3. We note that the vector v in Theorem [2] captures information about how
the translated windows are spread across the graph. In particular, in order
to obtain a frame, at least one of the translated windows should overlap
with each vertex.
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Corollary 1 In the same setting as Theorem[3, the family
{gme:m=1,...,8¢=1,...,N}

forms a frame if and only if for every 1 < k < N there exists 1 < j < S such
that (A]g)k 7& 0.

While Theorem [2] provides explicit frame bounds for (@), it is not imme-
diately clear how the entries of the vector v in Equation (I0) vary with the
vector g. The following result provides a different description of the entries of
v that clarifies this relationship.

Theorem 3 Consider the same setting as Theorem [2 with A; = (age))l]c\{e:l
and v € CN as in Equation (I0). For k,£=1,...,N, define wi, € C° by

Wie = (a5,
and let
N
S N7
Cr 1= (Wit Wiy = | D aia?) eCVN N (11)
g=1 l,m=1

Then v, = g*Crg for any 1 < k < N. In particular, the family of vectors gm ¢
forms a frame if and only if g ¢ UN_, ker C,.

Proof The k*® entry of v is given by

_y (z a,aﬂzge) (z a,aa;gm)
m=1

j=1 \¢=1

a;(fg) e

|
M-
HAERINE

<.
Il
—

0 a3 00T
1

I
M

1e
= g"Chrg,

<.
Il

where C}, is as in Equation (ITJ).

Note that, for each k, the matrix Cy in Theorem [Bis the Gram matrix gener-
ated by the vectors {wy, ;}_,, therefore each is a positive semidefinite Hermi-
tian matrix. Using Theorem [B] we immediately obtain useful estimates on the
frame bounds given in Theorem [2 as well as the resulting condition number
of the frame. Given a symmetric matrix M, denote by Amin (M) and Apax (M)
the smallest and largest eigenvalues of M, respectively. The following result
provides estimates on the frame bounds that are independent of g. In partic-
ular, in the case where the translations are given as in Theorem [ we obtain

the best frame bounds possible that are valid for any given unit vector g.
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Corollary 2 Consider the same setting as Theorem [d, and assume further-
more that ||g|| = 1. Then

N s N
2< 2 o ¥ ' 2
min Amin (Cr) 2 < SN I gma? < max Amax (Cr) [If]l2;

m=1 (=1

In particular, if minh_; Amin(C) > 0, then G = {gme:m=1,...,5/¢ =
1,..., N} forms a frame whose condition number ¢(G) satisfies

o maxfcvzl Amax (Ck)

- minfc\[:1 Amin (Ck) .

The analysis of the condition number of the frame G given in Corollary
can be further refined as follows. Recall that A € C is said to be an eigenvalue
of the matrix pencil A — zB if

det(A — AB) =0.

In that case, there exists v € CV \ {0} such that Av = ABv. We will focus on
the case where A is Hermitian and B is positive definite below. In that case,
the eigenvalue problem for the pencil is equivalent to the standard eigenvalue

problem
B~Y2AB™Y%y = ).

As a consequence, the pencil has exactly n real eigenvalues A\; < -+ < Ay
that can be computed via the Courant-Fischer min-max principles:
uw*Au u*Au

Aj = min max = max min
dim U=j 0£uelU u*Bu ~ dim U=N—j+104uelU u*Bu’

In particular,

. u* Au u* Au
A1 = min AN = max
0£ueCN u*Bu 0£ueCN u*Bu’

(12)

See e.g. [22[27] for more details about matrix pencils.

As a consequence of the above discussion, we immediately obtain the follow-
ing sharp upper bound on the condition number of the frame {g,, ¢}, under the
assumption that ||g|| = 1. For two Hermitian positive definite matrices A, B,
let Amin(A, B) and Apax(A, B) denote the smallest and largest eigenvalues of
the pencil A — zB respectively.

Theorem 4 Let G := {gme :m =1,...,5¢ =1,...,N} with gme as in
Theorem[3. Let Cy;, be as in Equation () and assume C1,...,Cn are positive
definite. Then
= A C, Cy). 13
||ih1£1 c(9) b X max (Ck, Ct) (13)
Equality is attained when g is an eigenvector associated to the generalized
eigenvalue problem Cy« — ACp«, where k* and £* are values of k and £ attaining
the mazimum in Equation (I3).
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Proof By Theorems ] and Bl we have

maxit, g°Crg _ - 8°Cig
min}_, g*Cpg  k.t=1....N g*Ceg

(9) =

The result follows from Equation (I2)) upon maximizing over g.

3.1 Frames defined via Fourier multipliers

A common feature of several translation operators for graph signals that have
been proposed in the literature is that they operate by entry-wise multiplica-
tion in the Fourier domain, i.e.,

o~ —~

Tg=gof

for some f € C. Using the notion of convolution defined in Equation (@), this
is equivalent to T'g = g * f. Equivalently, for a given vector w € CV, denote by
D,, the diagonal matrix with diagonal entries wy, ws, ..., wy. Then the above
operator can be written as

T = D0,

and is called a Fourier multiplier. In fact, the first four examples of transla-
tion/shift operators given in Section [I] are special instances of Fourier mul-
tipliers. Other examples include translations or shift obtained by applying
functions to the Laplacian of the graph via the functional calculus.

The following result provides explicit frame bounds when translations are
defined as Fourier multipliers.

Theorem 5 Let {¢;}., be an orthonormal basis of CN, let {f;}5_, be an
arbitrary collection of vectors in CN, and let g € CN. Define

A; = dDy, d* (i=1,...,9).
Form=1,...,8 and £ =1,...,N, define gm ¢ as in Equation Q). Let F be

the N x S matriz whose j-th columns is f; and let u; := (¢(j))n-, € CN.
Then we have

S
AIFIZ < Y0 Y 1 amad P < B3

m=1 =1

where
N * =2 N * =12
A= min [|[F (e 09| and B =max | F(ux o g)|I".

The constants A and B are sharp.
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Proof We compute the vector v in Theorem [2I We have

S S

=Y Al =) 8D, d7g* = Z |®(fi 0 9)|
=1 =1

Let F = (f1,..., fs) be the matrix whose columns are f1,..., fs. Then

’ 2

M

S
oo =" e feo B = 3 (im0 )
=1

s
Il
-

<fuﬂk © g><fza,uk © g)

I
M"’

Il
N

= (ur 0 8)*FF*(ur, 0 9)
= || F™ OE)H2

The result now follows from Theorem

Corollary 3 Assume the functions {fj *, are orthonormal in Theorem [3
Then the family of functions {gm : m, E =1,...,N} forms a frame if and
only if for every 1 < k < N there exists 1 < j < N such that ¢;(k) and g(j)
are both non-zero. In that case, the sharp bounds for the associated frame are
given by

N X N
A=in > 0F  BOP  and w316, -8
< =

In particular, observe that the frame is tight when g is constant.

Corollary 4 Assume the functions {fj}jvzl are orthonormal in Theorem [3.
Moreover, assume g is constant. Then the family of functions {gm.e : m,{ =
1,...,N} forms a tight frame.

Proof Assume g = ¢ for some ¢ € C. Then
N N
A=lel?. mi ()2 = (o2
[ glzullzzleby( )I? = el
‘7:

since the {¢;}}_, are orthonormal. Similarly, we obtain B = |c|*.

Interestingly, the frame bounds in Corollary[3are independent of the choice
of the vectors { f;} ¥, as long as they are orthonormal. Using a trivial estimate
on the above optimal frame bound and the orthonormality of the rows of @, we
immediately obtain the following estimates that are independent of the basis

{¢j}§v:1-
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Corollary 5 Under the assumptions of Theorem [3, we have

N N
A= min |F* (a1 0 )| 2 Anin(FF*) mme BB 2 Awia(FF) - min [a(1),
i 2

N

2 < * N 2 2 < N~ 2

B = uitix | F* (1 0B < A (FF*) - it 3 165 (02 - [B)I? < A (FF) - mibix[5(8)|
=1

In particular, if FF* is non-singular and minjy_, Zjvzl | (k)* - [8(4)]* > 0,
then G :={gme:m=1,...,5 £=1,....,N} forms a frame whose condition
number satisfies:

max;’ Z;\le |5 (K)[* - [8(5)[? W(FF) maxj_, |g(k)|?
minf_y S e (B)[2 - [8(5) 2 ming_, [g(k)[2

where k(FF*) denotes the condition number of the matric FF*.

e(9) < K(FF*) -

Next, we illustrate how Theorem [B] can be applied to yield the sharp frame
bounds for the frames provided by Theorem [ (introduced in [40]). It is worth
noting that Theorem [B] shows, in addition, that the construction proposed in
Theorem [l produces a frame for CV, rather than just RYV.

Corollary 6 (Sharp frame bounds for frames from [40]) Let {¢;},
be an arbitrary orthonormal basis of CN and let g € CN. Fori =1,...,N,
define

Tig =g * (VNG;). (14)

Form,{=1,...,N, define gm ¢ as in Equation (9), where T; plays the role of
A;. Then we have

N
ANIFIE < D2 D I, ama)l® < B3

N
{=1

m=1

where
N & 2 2 N Y 2 2
A:N~Ilg1:1111j;l¢j(k)l 8 and B:Nglgfjgll%(k)l [80) .

The constants A and B are sharp. Moreover, these constants coincide with the
frame bounds given in Theorem[l (i.e. [{0], Theorem 3).

Proof Observe that T;g = D /55 ®". Now, for k=1,..., N, we have

N
0i(k) = (i, 1) = Y _ 6:(3) bk (4) = on(i).
j=1
It follows easily that 5:, ey g]; is a orthonormal basis of CV. The result now

follows immediately from Corollary[Bl The fact that A and B are the same as
the frame bounds in Theorem [l follows from an easy application of Parseval’s
identity.
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Finally, we apply Theorem[Hlto obtain sharp bounds for the frame construc-
tion given by repeatedly applying the energy preserving shift operator of Gavili
and Zhang [13] to a signal g. Let A = $AP* denote the eigen-decomposition
of the adjacency matrix A of the graph I'. The authors in [I3] define the shift
operator A, by

Ay = PD, D", (15)
where o € C¥ is an arbitrary vector of distinct complex numbers of modulus

. . . . Com(k—0) |
1. Of particular interest is the case where ayay = e '~ ¥ | i.e.,

oy = (=5 ) (16)

where ¢ € [0, 27). Note that [I3] only considers ¢ = 0 and observe that, under
this assumption, the shift operator A, given by (I5) satisfies AY = I.

Corollary 7 (Sharp frame bounds for frames from [13]) Let {¢;},
be an arbitrary orthonormal basis of CN and let g € CN. Fori =1,...,N,
define

Ajg:=ATt'g  i=1,...,N, (17)

with o € CN as in Equation ([I6). For m,{ = 1,...,N, define g as in
Equation [@). Then we have, for every f € CN,

N
AllfIE < Y

m=1

N
(=1

where
N & 2 2 N Y 2 2
A:Ngg;;m(kn 8 and B:Nglgszllebj(k)l 80

Moreover, the constants A and B are sharp.
Proof Let a = (a)Y_, € CV be given by

a = o= 4)

for some ¢ € [0,27). For 1 < j < N, let
fii= (it o™t aigl)—r.
Observe that A; = @Dy, ®*. Now, for 1 <&,/ < N, we have

N N
_ — ; _ (1 1);27(—1) 27 —1)
<fkaf€> _ § CY;? 1Oé§ 1_ ezc(k 1) § e (k=1)i ===+ (£—1)i =57

j=1 j=1

N 2r 1) N
— piclk=) Ze—i(k—é)% — piclk=D) ch;fe,
J
j=1 j=1
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miG=1) . . .
where (; = e~ % is a oot of unity. Using the standard orthogonality
relations for the discrete Fourier transform, we conclude that

N itk=/¢

0 otherwise.

(fr> fe) :{

The result now follows from Theorem [ after rescaling the functions {f;}.

4 Discrete frames for Cayley Graphs

We now examine how Gabor-type frames behave for signals defined on Cayley
graphs. Given a finite (not necessarily abelian) group G and a subset S C G,
the Cayley graph Cay(G;S) is the graph whose vertex set is indexed by the
elements of G, with adjacency defined as (z,y) € E if and only if 271y € S.
If S is symmetric (i.e., S~! = S) then the graph is undirected. A Cayley
graph is called normal if S is closed under conjugation (i.e., gSg~! = S for all
g € G). Observe that Cayley graphs are regular of degree |S|. As a result, the
eigenvectors of both the adjacency and Laplacian matrices of a Cayley graph
are the same, so the following analysis applies to either choice of analyzing
matrix. For the remainder of this chapter, we assume that I' = Cay(G; S) is
the normal Cayley graph of a finite group G of order N.

4.1 Preferred basis of eigenvectors for normal Cayley graphs

One major advantage of working with normal Cayley graphs is that their
(adjacency or Laplacian) eigenvectors can be written explicitly via the repre-
sentation theory of the associated group. Recall that a (unitary) representation
of G is a homomorphism 7 : G — Uy(C) from G into the group of d x d unitary
matrices Uy(C), i.e., a map that satisfies

7(9192) = 7(91)7(92) Yg1,92 € G.

The integer d is called the degree of the representation, and will be denoted by
dr. We denote by xr : G — C the character associated to the representation
defined as x(g) = Tr(nw(g))-

Let G = {z1 D denote the set of (equivalence classes of) irreducible
unitary representations of G. If 7(*) has degree d and 1 < 4,7 < d, we let

wg? : G — C denote the coordinate functionals of 7(F) defined as wf? (9) =

(m®) (g)ej, e;). Clearly, () = (ﬂl(?)gjzl. It is known that these coordinate

functionals satisfy the Schur orthogonality relations:

j N
> (9T (9) = 031G s
geaG
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where 0;; is the Kronecker delta function. As a consequence, the following
scaled coordinate functionals
d T

o) = | Z (7 (91), 7 (g2), . 7 () (18)
form an orthonormal basis for CV. It turns out that these vectors are precisely
the eigenvectors of the adjacency matrix of Cay(G;S) in the case where S is
closed under conjugation, i.e., S is a union of conjugacy classes of G. For
a discussion on eigenvalues of the adjacency matrix of Cay(G;.S), without
direct calculations with eigenvectors, see [1]; for a proof in the case where S is
symmetric, see [4, Proposition 6.3.1]. For a statement and proof matching our
notations here, see [I5, Theorem III.1]. Note that the proof of [I5] Theorem
II1.1] does not require the symmetry condition on the generating set.

Theorem 6 (cf. [15, Theorem III.1]) Let I' = Cay(G;S) be the Cayley
graph of a finite group G and assume S is closed under conjugation. Then for
allk=1,....,D and all 1 <i,5 < d_.w), we have

1
Ap) = | =D xalo) | 01

g geSs

where A is the adjacency matrix of I.

Note that we do not assume the graph is undirected in this section, as normal
Cayley graphs are not necessarily generated from inverse closed sets. However,
Theorem [6] shows that these graphs are always diagonalizable.

4.2 Frame bounds for normal Cayley graphs

We now revisit the frame construction given in Theorem 2] in the case where
I' is a normal Cayley graph and the eigenbasis of its adjacency (or Laplacian)
matrix is given as proposed in Theorem [6] i.e. by the following set:

[dr =~
{Qﬁz] = Nﬂ-i’j ZWEG,lgi;deﬂ}- (19)

When the representations of G are listed as 7V, ..., 7(P), we use qbg? to

denote gbg;k). As usual, we denote by & the unitary matrix whose columns
are the vectors ¢7 ;. Recall the important special case where the translation
operators are defined using Fourier multipliers, i.e. when they are diagonal
in the above orthonormal basis. In this case, we can apply Corollary d to
show that a tight frame is always obtained when the multipliers { fj}j-vzl are
orthonormal and g is constant, i.e., g = Czweé,1§i,j§d, ¢7 ; for some c € C.
We now show how the latter assumption can be considerably relaxed when
working on normal Cayley graphs, by exploiting the supplementary structure
of the group representations.
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Theorem 7 Let I' = Cay(G;S) be the Cayley graph of a finite group G of
order N, where the set S is closed under conjugation. Equip CN with the
orthonormal basis {97 ;}ij as in (I9). Assume that g is constant over every

representation of G, i.e., for every w € G and ,j=1,...,dx,
8(¢7;) = 0r

for some constant g, € C that depends only on 7 (i.e. it is independent of i
and j). Let { f;}}L, be an orthonormal basis of CN and define

A, =®D;d*  (i=1,...,N).

Then the family of vectors {gm.e:m,¢ =1,..., N} defined as in Equation (@)
forms a tight frame with optimal frame bounds A = B = % p— g |2d2.

Proof We compute the frame bounds given in Corollary Bl We have

dr
Z Z |¢f](k>|2 Z Z ~ | (k )* (8|

re@G bj=1 neGHI=1

d Ix
=> Nﬂ|ﬁw|2 > mis (k)P
el =1

dr

=> —| G Y (kg (k)

el 1,5=1

dr
PREHD PECRE I

we@

= = Yl

we@

where the penultimate equation holds since 7 is a unitary representation. Given
that the right hand side of the above equation is independent of k, the optimal
frame bounds given by Corollary B] are equal and the frame is tight.

Remark 2 Recall that all the eigenvectors assomated to a given representation
7 € G correspond to the same eigenvalue - 7= 2ges Xr(g) (see Theorem [6]).

However, different representations may be associated with the same eigenvalue.
Thus, our assumption in Theorem [7lis a weaker condition than the one in [40],
where g needs to be constant on each eigenspace.

Applying Theorem [7 to the translation operators given by Equations (I4])
and ([[T), we immediately obtain the following families of tight frames for
Cayley graphs.
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Corollary 8 Let I' = Cay(G;S) be the Cayley graph of a finite group G of
order N, where S is closed under conjugation. Equip CN with the orthonormal
basis {¢f ;}i g as in (D). Assume g is constant over every representation of

G, i.e., for every w € G and ,j=1,...,d,
ﬁ( ;Tg) = ﬁﬂ'
for some constant g, € C that is independent of i and j. Let {A;} N, be either

1. the translation operators T;g = g * (\/N(Sl) as in Corollary[@, or
2. the repeated shifts A;g = A7 'g as in Corollary [

Then the family of vectors {gm¢: m, € =1,...,N} defined as in Equation (@)
forms a tight frame with optimal frame bounds A= B =3 _ & |9 |2d2.

4.3 More general translations on Cayley graphs

We conclude this paper with a short discussion on the concept of graph trans-
lations. We present natural candidates for translations; such translations may
then be used to produce frames for graph signals. Notice that every Cayley
graph comes equipped with its own natural notion of translation, via multipli-
cation by a group element. As a consequence, given g € G, we can translate a
signal f : G — C by:

i) (g (heG).

Equivalently, the above translation is given by the action of the left (or the
right) regular representation:

L(g)i(h) =f(g~'h)  (h€@).

Our next result shows that the translation operators T; given by Equation (&)
are essentially equivalent to the action of the left regular representation.

Theorem 8 Let I' = Cay(G;S) be the Cayley graph of a finite group G of
order N with S closed under conjugation, and equipped with the eigenbasis ¢; ;
given by Equation ([I8). Assume § is constant over every representation of G,

i.e., for every m € G and i,7=1,...,dx,
ﬁ( ng) :ﬁw eC.

Then the graph translation operator Ty given in Equation (B) is given by

(Tog) (k) = %ﬁ S deg(m)xn (),

we@

where L is the left reqular representation of G and e is the group identity.



18 Mahya Ghandehari et al.

Proof Using the definition of translations in Equation (&) and the fact that
every representation 7 in the sum is unitary, we have

dr dr
@) (k) = VN 3 303 (a7, Ve (O ()

reG =1 i=1

Since each 7 is a homomorphism, we get (Tyg)(k) = \/—% >l B (m)xx (0 E).

Corollary 9 Under the conditions of Theoreml8, the translation operators Ty
for normal Cayley graphs are invariant when shifted in both indices, that is,

for allm e G
(Teg)(k) = (Temg)(km) = (Tineg)(mk).

In particular, choosing m = 0=, we see that

(Teg) (k) = (Teg) (¢~ 'k) = L(0)[Teg] (),

where e is the group identity element and L is the left reqular representation

of G.

Proof The proof is an immediate consequence of Theorem [§ and the fact that
characters are class functions.

Remark 3 Notice that Theorem [§l immediately implies that, when translation
is given by the operators Ty, the sharp frame bounds for the associated frame
are A= B = ||T.g||3. A simple calculation shows that

| Tegll3 = D lgx[7d2,
ﬂ'E@

recovering the expression for the frame bounds given in Corollary [8

Remark 4 Theorem [§ and Corollary @ show that for g defined spectrally as in
[39,40] so that they are constant on eigenspaces, the behavior of the translation
operator reduces to Tyg(k) = L(¢)T.g(k). Then T, can be viewed as some pre-
processing of the original window function g, which is then translated by the
usual group translation. In particular, this shows that with this particular
choice of basis, by Corollary [8] one can always obtain tight frames for Cayley
graphs using translations which respect the graph structure.
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A ‘natural’ choice of translations for graphs would be operators which
permute the vertex set while perfectly respecting the structure of the graph.
That is, each translation T should satisfy (T'z, Ty) is an edge in I if and only
if (z,y) is. In other words, translation preserves the adjacency structure of
I'. This is precisely the definition of a graph automorphism, and for Cayley
graphs, the collection {L(g)}4ec is in fact contained in the collection of all
graph automorphisms. For the sake of completeness, we include this well-
known fact and its proof below.

Theorem 9 (Natural choice of translations) Let I' = Cay(G;S) for a
finite group G and any generating set S. Then the automorphism group of I’
contains the family {L(g)}q4ec as a subgroup.

Proof Tt is sufficient to show that (z,y) is an edge in I" if and only if (¢~ 1z, g~ 1y)
is an edge in I for every element g € G. However, this is clear as (z,y) is
an edge if and only if S > 27y = 27 tgg 'y = (¢ '2) " (g~ 'y), therefore
(97w, g7 ly) is also an edge. Thus L(g) is an automorphism of I". As the left
regular representation L is a group homomorphism, it is obvious that its image
is a subgroup.

Remark 5 In Theorem [0 we do not restrict ourselves to normal Cayley graphs.
In the special case of Cayley graphs with the generating set closed under
conjugation, the collection { R(g)}4eq is also a subgroup of the automorphism
group of the graph. The proof is similar, showing (x,y) is an edge if and only
if (xg, yg) is an edge, which follows as above and from the additional fact that
S is closed under conjugation.

Recall that the eigenvectors of a given graph are not uniquely determined
when the graph has repeated eigenvalues, as one must pick a basis for each
eigenspace. We now demonstrate how this choice can dramatically impact the
properties of the resulting translation operators and frames.

X2 X4

5

2

e - - ER T

S
S-Sl SR SR s .

B
SRSl S |

e e e =l

Fig. 1 The Graph K33 and basis of coefficient functions of Zg. v := exp[%].
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FEzample 1 Consider the graph K3 3, the complete bipartite graph on 6 ver-
tices with equal partitions (Figures[land [2)). This graph can be realized as the
Cayley graph of Zg or S3. Depending on the group realization, the eigenvec-
tors chosen from the group representations are considerably different. While it
might seem desirable to choose the group to be Zg, unless we are considering
a time series discretization of signals on the real line, the underlying reality
of our graph is unlikely to be well-modeled by an abelian group, so it seems
unlikely to capture the desired behavior of our irregular domain.

One consequence of these different eigenbases is that for non-isometric
translation operators such as the one given in Equation (f]), the frame bounds
can vary based on the choice of the eigenbasis for a fixed graph and fixed
window function. Recall that translation in this case can be written as

T;f = VNG(®*f o $*5;),

where this form makes explicit the dependence on the chosen eigenbasis @.

Then the matrix of characters described for Zg (Figure [l diagonalizes
the graph adjacency matrix (or Laplacian). As all the entries lie in the \/—%—
radius circle, translation is an isometry leading to a tight frame for any win-
dow function. However, another basis can be chosen as this is the graph
Cay(S3;{(12),(13),(23)}) (Figurel]). Then the coefficient functions of the uni-
tary, irreducible representations of Ss also diagonalize the associated matrices,
and in this case the translation operator is not an isometry.

In the basis for Zg, any non-zero function g will provide a tight frame,
meaning the ratio between frame bounds % = 1. However, taking the window
as g := %(6, 3,2,0,0,0) T, in the basis provided in Figure B the ratio is % ~
2.4. We remark that any g such that g is not constant on representations should
yield similar examples where the frame is tight in the first basis and not in
the second. This provides a stark reminder that one should be careful when
choosing an eigenbasis for a given graph. The problem of choosing a suitable
eigenbasis for a given graph appears to be a challenging task, which we hope
to investigate in future work.
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