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a b s t r a c t

This paper develops a gradient descent (GD) method for solving a system of
nonlinear equations with an explicit formulation. We theoretically prove that the
GD method has linear convergence in general and, under certain conditions, is
equivalent to Newton’s method locally with quadratic convergence. A stochastic
version of the gradient descent is also proposed for solving large-scale systems of
nonlinear equations. Finally, several benchmark numerical examples are used to
demonstrate the feasibility and efficiency compared to Newton’s method.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Systems of nonlinear equations are omnipresent and play crucial roles in scientific computing and
mathematical modeling ranging from differential equations [1,2], integral equations [3,4], and optimization
problems [5,6] to data-driven modeling and machine learning [7,8]. To date, Newton’s, Newton-like methods
(e.g. Gauss–Newton and Quasi-Newton methods [9,10]) have widely been used for solving systems of
nonlinear equations; however, the computational cost of solving the linear system at each stage can be
expensive for large-scale systems [11]. Recently, several methods have been developed to overcome this
challenge: inexact Newton methods solve the Newton equations only approximately and in some unspecified
manner [12]; Newton–Krylov methods use Krylov subspace methods to solve the linear system which
mostly requires only products of the Jacobian matrix with vectors and can be implemented as “matrix-
free” format [13]. But the expensive computational cost still limits the application of Newton’s method to
data-driven modeling problems [14] and optimization problems arising from machine learning [15]. This is
one of the reasons that people do not use Newton’s method for these problems although it has quadratic
convergence locally.

On the other hand, systems of nonlinear equations are related to unconstrained optimizations and
nonlinear least-squares. Therefore we may apply the algorithms in solving nonlinear least-squares problems
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to solve systems of nonlinear equations by minimizing the sum of squares of the equations. Recently, the first-
order iterative optimization algorithms, e.g., the GD method [16] and the Adam algorithm [17], have widely
been used for solving large-scale optimization problems arising from machine learning. These algorithms do
not need to solve a linear system each iteration which is the advantage compared to Newton-like methods.
For instance, a modification of GD method has been developed to provide a continuous solution path in
the homotopy setup [18]. However, updating the step size for each iteration relies on the trust-region and
line-search algorithms and limits the direct application of the GD method to solving the system of nonlinear
equations. In particular, these algorithms may be time-consuming especially for large-scale systems since
they need the backtracking procedure, verify the Wolfe conditions repeatedly, or the information of previous
solutions [19]. In this paper, we develop a GD method for solving the system of nonlinear equations by
deriving the explicit formula of the stepsize. Moreover, we explore the theoretical convergence of the GD
method and apply it to several benchmark systems of nonlinear equations. Therefore, the newly developed
GD method does not require a linear solver like Newton’s method and other line-search algorithms for solving
systems of nonlinear equations. By introducing stochasticity, it also provides a new way to solve large-scale
systems of nonlinear equations by using only a part of nonlinear equations for each iteration.

2. The problem setup and gradient descent method

We consider a general system of nonlinear equations below

F (x) =
(

F1(x), F2(x), . . . , Fm(x)
)T = 0, (1)

here x = (x1, . . . , xn) ∈ Rn is the variable and Fi is a nonlinear equation. The system is called a square
ystem if n = m. Otherwise it is called an underdetermined system (n > m) and an overdetermined system
n < m). Then solving the system (1) is equivalent to solving the following least minimization problem

min 1
2∥F(x)∥2

2. (2)

The GD method for solving the above optimization problem is written as

xk+1 = xk − η∇F (xk)T F (xk), (3)

here ∇F (xk) is the Jacobian matrix at xk and η is the stepsize. There are a variety of line search
lgorithms [20] to compute the stepsize such as the BB Method [21], the Cauchy step-size [22], the alternate
inimization [23], the random choice of stepsize [24], and etc. All the aforementioned line search algorithms

re for the general optimization problem not for the system of nonlinear equations and therefore the
onvergence might be very slow for large-scale systems of nonlinear equations.

.1. How to choose η?

In this paper, we propose a new explicit formula of the stepsize η for solving systems of nonlinear
equations. First, we write the GD method as xk+1 = xk − ηpk, where pk = ∇F (xk)T F (xk). By the Taylor
expansion, we have F (xk+1) ≈ F (xk) − η∇F (xk)pk ≈ 0, which implies that

η = vT F (xk)
vT ∇F (xk)pk

(4)

for any given v. Moreover, in order to guarantee the convergence, we choose v = ∇F (xk)pk in (4) such that
F (xk+1)T F (xk+1) ≤ F (xk)T F (xk). In fact,

F (xk+1)T F (xk+1) = F (xk)T F (xk) + η2(
∇F (xk)pk

)T ∇F (xk)pk − 2η
(
∇F (xk)pk

)T
F (xk)

= F (xk)T F (xk) − (vT F (xk))2
≤ F (xk)T F (xk), (5)
vT v
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which implies the convergence of the GD method. Then we summarize the GD method for solving (1) as
follows

xk+1 = xk − η∇F (xk)T F (xk), η = vT F (xk)
vT v

, and v = ∇F (xk)∇F (xk)T F (xk). (6)

In particular, when solving a linear system, namely, F (x) := Ax − b, the GD method becomes

xk+1 = xk − ηAT (Axk − b) and η = (Axk − b)T AAT (Axk − b)
(Axk − b)T AAT AAT (Axk − b) . (7)

2.2. Stochastic gradient descent

For the large-scale system of nonlinear equations, we use the stochastic gradient descent (SGD) method
to reduce the computational cost by solving a part of the original system, namely, randomly choose s

equations from F (x) for each iteration. In order to introduce the stochasticity, we define a random variable
ξ on a probability space (Ω , F , P): ξ : Ω → Γ , where Γ is a set with all the combinations of s numbers
out of {1, 2, . . . , m}. Since |Γ | =

(
m
s

)
, we denote Γ = {γ1, γ2, . . . , γ|Γ |}, and assume the random variable

follow the uniform distribution, namely, P(ξ = γi) = 1
|Γ | for 1 ≤ i ≤ |Γ |. By defining F (x, γi) :=

Fi1(x), Fi2(x), · · · , Fis(x)
)T

, where γi = {i1, . . . , is} ⊂ {1, . . . , m}, we write the SGD method as

xk+1 = xk − η∇F (xk, ξk)T F (xk, ξk), η = vT F (xk, ξk)
vT v

, and v = ∇F (xk, ξk)∇F (xk, ξk)T F (xk, ξk).

Then by (5), we have

F (xk+1)T F (xk+1) ≜ E
(
F (xk+1, ξk+1)T F (xk+1, ξk+1)

)
= E

(
F (xk, ξk)T F (xk, ξk)

)
− E

( (vT F (xk, ξk))2

vT v

)
≤ E

(
F (xk, ξk)T F (xk, ξk)

)
= F (xk)T F (xk), (8)

hich implies the convergence of the SGD method.

. Convergence analysis

In this section, we consider the convergence analysis of the GD method in a general case: the rank of the
acobian ∇F (x) is r which might not equal to m and n. When r = m = n, it is an isolated solution of a

square system of nonlinear equations. If r < m and r < n, we have positive dimensional solution sets for a
system of nonlinear equations. Then we have the following two theorems: the first one is linear convergence
as long as the solution is not singular; the second one is quadratic convergence if the Jacobian matrix at the
solution has a special structure. We refer the convergence of the general SGD method in [25] and quadratic
convergence of stochastic Newton’s method in [26].

Theorem 1. Let F be a smooth function and the Jacobian ∇F (x) is a rank-r matrix in a neighborhood of a
zero x∗, then the gradient descent method converges linearly to x∗ if the initial guess x0 is in the neighborhood
of x∗.

Proof. We define the numerical error of the kth iteration as Ek = xk − x∗ and have

xk+1 − x∗ = xk − x∗ − η∇F (xk)T F (xk). (9)
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Since F is a smooth function in the neighborhood of x∗, we have the following Taylor expansion:

F (xk) = F (x∗) + ∇F (x∗)Ek +
m∑

i=1
(Ek)T Hi(x∗)Ekei + O(∥Ek∥3), (10)

∇F (xk) = ∇F (x∗) +
m∑

i=1
ei

(
Hi(x∗)Ek

)T + O(∥Ek∥2), (11)

where Hi(x) is the Hessian matrix of Fi(x) and ei is the standard basis of Rm. Therefore (9) becomes

Ek+1 = Ek − η∇F (x∗)T ∇F (x∗)Ek +
∑

i

(Ek)T Hi(x∗)Ekei + O(∥Ek∥3). (12)

By denoting A = ∇F (x∗)T ∇F (x∗) which is a symmetric matrix, we have Ek+1 = (I − ηA)Ek +
O(∥Ek∥2). Since ∇F (x∗) is a rank-r matrix, we have ∇F (x∗) = UΣrV T and A = V Σ 2

r V T , where
Σr = diag([σ1, . . . , σr, 0, . . . , 0]T ) and V is the orthogonal eigenvector matrix of A with the eigenvalues

i = σ2
i (i = 1, . . . , r). Then we split the identity matrix I = Ir + In−r where Ir = diag([1, . . . , 1  

r

, 0, . . . , 0]T )

and In−r = diag([0, . . . , 0  
r

, 1, . . . , 1]T ). Then we have

In−rV T Ek+1 ≈ In−rV T Ek ≈ · · · ≈ In−rV T E0, (13)

hich implies that the GD method does not update the solution on the kernel of A. Moreover, since
(xk) = ∇F (x∗)Ek + O(∥Ek∥2), we have

In−rUT F (xk+1) ≈ In−rUT F (xk) ≈ · · · ≈ In−rUT F (x0) = 0. (14)

herefore, we consider the convergence on IrV T Ek and IrUT F (xk) only.
Then in (5), by the Taylor expansion, we have

vT F (xk) = F (xk)T ∇F (xk)∇F (xk)T F (xk) = (Ek)T A2Ek + O(∥Ek∥3), (15)

here A2 = AA is a rank-r positive definite matrix. Therefore, vT F (xk) ≥ 0 and becomes zero if and only
if IrV T Ek = 0. Similarly, we denote B = ∇F (x∗)∇F (x∗)T and have

vT v = F (xk)T ∇F (xk)∇F (xk)T ∇F (xk)∇F (xk)T F (xk) = F (xk)T B2F (xk) + O(∥Ek∥3),

hich implies that vT v ≥ 0 and vanishes if and only if IrUT F (xk) = 0. Therefore

vT v ≤ max
i

λ2
i ∥IrUT F (xk)∥2

2 and vT F (xk) ≥ min
i

λ2
i ∥IrV T Ek∥2

2. (16)

oreover F (xk) = ∇F (x∗)Ek + O(∥Ek∥2), we have

∥IrUT F (xk)∥2
2 ≤ max

i
λi∥IrV T Ek∥2

2, (17)

hich implies that (
vT F (xk)

)2 ≥ mini λ4
i

maxi λ2
i

∥IrUT F (xk)∥4
2. (18)

hen we have the following estimate by (5)

∥F (xk+1)∥2
2 ≤

(
1 − mini λ4

i

maxi λ4
i

)
∥F (xk)∥2

2, (19)

hich implies linear convergence. □
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Based on linear convergence estimate, the convergence rate depends on the ratio of mini λi
maxi λi

. If mini λi =
maxi λi, then we have the GD method is equivalent to Newton’s method with quadratic convergence.

Theorem 2. Let F be a smooth function and the Jacobian ∇F (x) is a rank-r matrix in a neighborhood of a
zero x∗, if the singular values of ∇F (x∗), σi = σ, i = 1, . . . , r, then the gradient descent method is equivalent
to Newton’s method in the neighborhood of x∗ with quadratic convergence.

Proof. Since the singular values of the Jacobian matrix keep the same, we have ∇F (x∗)T ∇F (x∗) = σ2Ir

and ∇F (x∗)† = 1
σ2 ∇F (x∗)T . Moreover, due to the smoothness of F , we have the Taylor expansion for η as

ollows:
η = (Ek)T ∇F (x∗)T ∇F (x∗)∇F (x∗)T ∇F (x∗)Ek

(Ek)T ∇F (x∗)T ∇F (x∗)∇F (x∗)T ∇F (x∗)∇F (x∗)T ∇F (x∗)Ek
= 1

σ2 . (20)

herefore, the GD method is equivalent to Newton’s scheme, namely, xk+1 = xk − ∇F (xk)†F (xk).
Although there is a quadratic convergence analysis of Newton’s method for the regular rank-r Jacobian

matrix in [27], we provide a different proof of quadratic convergence in this paper. Due to the smoothness
of F (x), we have

∇F (xk)† = ∇F (x∗)† +
m∑

i=1
ei

(
Ci(x∗)Ek

)T + O(∥Ek∥2), (21)

where Ci(x∗) is the second order Taylor expansion matrix function for Fi(x). Therefore

Ek+1 = Ek − ∇F (x∗)†∇F (x∗)Ek +
m∑

i=1

(
Ek

)T ∇F (x∗)Ci(x∗)Ekei.

By denoting H = ∇F (x∗)†∇F (x∗) = [V1, . . . , Vr][V1, . . . , Vr]T , we have

HEk+1 = HEk − H∇F (x∗)†∇F (x∗)Ek + H

m∑
i=1

(
Ek

)T ∇F (x∗)Ci(x∗)Ekei.

Since H∇F (x∗) = ∇F (r)†, we obtain

HEk+1 = H

m∑
i=1

(
Ek

)T ∇F (x∗)Ci(x∗)Ekei, (22)

which implies that ∥HEk+1∥2 ≤ M∥HEk∥2
2. On the other hand, the projection on

(
I − H

)
contributes the

quadratic term only, in fact

F (x∗ + (I − H)Ek) = F (x∗) + ∇F (x∗)
(
I − H

)
Ek + O(∥Ek∥2)

= ∇F (x∗)Ek − ∇F (x∗)∇F (x∗)†∇F (x∗)Ek + O(∥Ek∥2) = O(∥Ek∥2).

herefore, we have quadratic convergence for Newton’s method. □

emark.

• If the Jacobian matrix is orthogonal, namely, ∇F (xk)T ∇F (xk) = I for each xk, we have σ = 1 thus
the GD method is equivalent to Newton’s method [28]. It is very hard to achieve this condition since
the Jacobian matrix is changing dynamically at each iteration.

• One special case of nonlinear equations with positive dimensional solution sets is the rank-one Jacobian
matrix. If a positive dimensional solution set is defined by a manifold M(x) = 0, then a system of
nonlinear equations containing this manifold is defined as F (x) = G(x)M(x) = 0. For instance, a 3D
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Table 1
The number of iterations (computing time is in the unit of a millisecond (ms)) between GD and Newton’s methods in Example 4.1
with different initial guesses.

Initial guess (1, 0, 0)T (0, 1, 0)T (0, 0, 1)T (1, 1, 0)T (1, 0, 1)T (0, 1, 1)T (1, 1, 1)T

Newton 8 (2.1 ms) 7 (2 ms) 9 (2.5 ms) 7 (2.4 ms) Diverged Diverged 13 (1.3 ms)
GD 101 (3.9 ms) 23 (1.4 ms) 116 (7.4 ms) 22 (1.4 ms) 88 (3.4 ms) 102 (2.8 ms) 31 (1.1 ms)

example of F (x, y, z) =

⎛⎝ (x + 1)(x2 + y2 + z2 − 1)
(y + 1)(x2 + y2 + z2 − 1)
(z + 1)(x2 + y2 + z2 − 1)

⎞⎠ can be viewed as M(x, y, z) = x2 + y2 + z2 −

1 and G(x, y, z) =
(

x + 1, y + 1, z + 1
)T . In this case, the Jacobian matrix ∇F (x) = ∇G(x)M(x) +

G(x)∇M(x)T . For any point x∗ on the manifold M(x) = 0, we have ∇F (x∗) = G(x∗)∇M(x∗)T which
is a rank-one matrix. Then by Theorem 2 with r = 1, the GD method is equivalent to Newton’s method
and has quadratic convergence.

4. Numerical examples

In this section, we compare GD and SGD methods with Newton’s method on different systems of nonlinear
equations with a stopping tolerance of 10−10.

4.1. An example with the isolated solution

We consider a system of nonlinear equations

F (x, y, z) =
(

x2 + y2 + z2 − 1, x + y + z, x − y2 )T = 0 (23)

which has nonsingular isolated solutions. Table 1 shows a comparison between GD and Newton’s methods
with different initial guesses. Newton’s method converges faster than the GD method in general but may
diverge if the initial guess is not good. In terms of computing time, two methods are comparable although
Newton’s method has much fewer iterations.

4.2. A multi-dimensional example

We consider a large-scale system of nonlinear equations with the following formulation

F i(x) = 2xi − xi−1 − xi+1 + x3
i − 1, i = 1, . . . , n and x0 = xn+1 = 1 (24)

which has an explicit solution, (1, . . . , 1)T . We choose the initial guess as (2, . . . , 2)T and show the results of
the GD, SGD (s = n/2 and s = n/4), and Newton’s methods in Table 2. Newton’s method converges with
fewer iterations than the GD and SGD methods due to the quadratic convergence. In terms of computing
time, the GD and SGD methods are comparable since Newton’s method needs solving a linear system for
each iteration. Since the SGD method with a batch size s = n/2 has a better performance, we use s = n/2
for the following numerical examples.

4.3. An example with quadratic convergence

We test quadratic convergence of the GD method by constructing the following example

F (x) = A
x + A

x2 − 3A1, (25)
2 4 4
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Table 2
The number of iterations and computing time for three methods in (24) vs. n.

n 16 32 64 128 256 512 1024 2048

Newton 7 (5.3 ms) 7 (6.1 ms) 7 (12.3 ms) 7 (27.5 ms) 7 (0.12 s) 7(0.62 s) 7 (5.72 s) 7 (41.5 s)
GD 56 (5.5 ms) 54 (6.6 ms) 52 (8.9 ms) 51 (12.2 ms) 52 (0.03 s) 52 (0.12 s) 50 (0.41 s) 52 (2.01 s)
SGD (s = n/2) 118 (6.8 ms) 130 (7.9 ms) 140 (12.2 ms) 143 (0.02 s) 150 (0.02 s) 158 (0.07 s) 161 (0.56 s) 165 (2.11 s)
SGD (s = n/4) 233 (7.3 ms) 263 (10.1 ms) 275 (13.2 ms) 287 (0.03 s) 301 (0.03 s) 314 (0.08 s) 323 (0.50 s) 327 (2.24 s)

Table 3
The number of iterations and computing time for Newton, GD and SGD methods in Example 4.3 vs. n.

n 16 32 64 128 256 512 1024 2048

Newton 6 (2.9 ms) 6 (3.6 ms) 6 (7.6 ms) 6 (17.1 ms) 6 (65.4 ms) 6(0.41 s) 6 (3.85 s) 6 (31.6 s)
GD 6 (4.2 ms) 6 (1.6 ms) 6 (8.9 ms) 6 (4.4 ms) 6 (6.5 ms) 6 (14.9 ms) 6 (0.12 s) 6 (2.68 s)
SGD 20 (6.9 ms) 24 (4.3 ms) 22 (3.7 ms) 26 (17.5 s) 34 (63.8 ms) 33 (0.32 s) 37 (1.85 s) 35 (8.45 s)

Table 4
The number of iterations and computing time for three methods in Example 4.4 vs. n with different f(x).

f(x) n 16 32 64 128 256 512 1024 2048

x

Newton 9 (7.3 ms) 10 (5.2 ms) 11 (10.6 ms) 12 (28.9 ms) 13 (0.15 s) 13(0.76 s) 14 (7.97 s) 15 (77.8 s)
GD 9 (2.7 ms) 10 (1.4 ms) 11 (2.7 ms) 12 (2.7 ms) 13 (11.5 ms) 13 (69.2 ms) 14 (0.28 s) 15 (1.19 s)
SGD 10 (2.3 ms) 11 (1.7 ms) 12 (1.4 ms) 13 (2.3 s) 14 (6.1 ms) 15 (52.2 ms) 16 (0.24 s) 17 (0.84 s)

x3
Newton 12 (3.2 ms) 14 (6.6 ms) 15 (14.4 ms) 17 (36.4 ms) 18 (0.22 s) 20(1.31 s) 21 (14.7 s) 23 (133.4 s)
GD 12 (2.3 ms) 14 (2.1 ms) 15 (2.8 ms) 17 (5.2 ms) 18 (22.6 ms) 20 (0.12 s) 21 (0.46 s) 23 (1.91 s)
SGD 16 (1.7 ms) 19 (1.9 ms) 22 (2.8 ms) 27 (6.7 s) 31 (23.3 ms) 34 (0.13 ms) 39 (0.51 s) 43 (2.22 s)

sin(x)
Newton 9 (4.1 ms) 10 (3.8 ms) 11 (11.4 ms) 11 (29.2 ms) 12 (0.12 s) 13(0.87 s) 14 (8.34 s) 15 (79.4 s)
GD 9 (2.1 ms) 10 (1.1 ms) 11 (3.1 ms) 11 (2.7 ms) 12 (9.3 ms) 13 (72.5 ms) 14 (0.31 s) 15 (1.28 s)
SGD 9 (1.1 ms) 10 (1.1 ms) 11 (1.4 ms) 12 (2.5 s) 13 (6.7 ms) 14 (52.2 ms) 15 (0.18 s) 16 (0.76 s)

where 1 is the all-ones vector and the matrix A = UΣV T ∈ Rn×n. Here U and V are computed by the
singular value decomposition of the tridiagonal matrix whose main diagonal element is 3 and upper/lower
diagonal element is 1, and the diagonal elements of Σ are randomly chosen as σ and −σ. Obliviously, the
analytical solution is (1, . . . , 1)T . We choose the initial guess as (2, . . . , 2)T and show the results of the
GD, SGD (s = n/2), and Newton’s methods in Table 3. Both Newton’s and GD methods converge to the
solution in 6 iterations but the GD method is much faster than Newton’s method in terms of computing
time. Even the SGD method is faster than Newton’s method although the number of iterations is larger due
to stochasticity.

4.4. An example with positive dimensional solutions

We consider the following system of nonlinear equations: F (x) = f(x)(xT x − 1) = 0, which has the
positive dimensional solution set xT x = 1. By choosing different f(x) for different dimension, n, we show
the results of three methods in Table 4. All the three methods converge to the solution with few iterations
due to quadratic convergence. Moreover, the computing time of both the GD and SGD methods is much
less than Newton’s method.

4.5. An example of homotopy tracking

Since both the GD and SGD methods have the local convergence, we apply these methods to the

homotopy tracking which can always guarantee the local neighborhood by controlling the homotopy
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Table 5
Computing time (in the unit of seconds) of the homotopy tracking with three methods vs. n.

n 16 32 64 128 256 512 1024 2048

Newton 0.03 0.09 0.12 0.45 1.99 13.28 109.80 1090.61
GD 0.01 0.02 0.02 0.07 0.35 3.35 14.57 106.52
SGD (s = n/2) 0.11 0.14 0.23 0.78 4.12 40.96 220.34 1409.64

parameter. In particular, we consider the homotopy equation below:

F (x, t) = (1 − t)

⎛⎜⎜⎜⎜⎜⎜⎝

x2
1 + 2x1 + 3xnx2 − 1

...
x2

i + 2xi + 3xi−1xi+1 − 1
...

x2
n + 2xn + 3xn−1x1 − 1

⎞⎟⎟⎟⎟⎟⎟⎠ + t

⎛⎜⎜⎜⎜⎜⎜⎝

x2
1 − 1

...
x2

i − 1
...

x2
n − 1

⎞⎟⎟⎟⎟⎟⎟⎠ = 0, (26)

where i = 2, . . . , n − 1 and t is the homotopy parameter. When t = 1, we have an explicit solution xi = 1
∀i. The target system F (x, 0) is solved by tracking t from 1 to 0. We choose ∆t = −0.1 and utilize three
methods for solving the system of nonlinear equations for each t. All the comparisons among three methods
are shown in Table 5: the GD method is faster than two other methods especially for large-scale systems
while the SGD method is comparable with the Newton’s method.

5. Conclusions

The GD method has been widely used in solving optimization problems. However, the stepsize is normally
computed by the line-search algorithms and could be very slow when they are applied to large-scale systems
of nonlinear equations. In this paper, we extend the GD method to solve systems of nonlinear equations and
derive the explicit formula to compute the stepsize. With this new formulation, we prove the convergence
of the GD method which has linear convergence in general. If the singular values of the Jacobian matrix
are equal, the GD method is equivalent to Newton’s method locally with the quadratic convergence. Several
numerical examples are used to validate the convergence and to demonstrate the efficiency compared to
Newton’s method. Therefore, the GD method is very efficient especially in solving large-scale systems of
nonlinear equations since it is an explicit scheme while Newton’s method is an implicit scheme and needs
to solve a linear system each iteration. Moreover, the SGD method, using only a part of the original system
each iteration, is designed for large-scale problems whose evaluations are time-consuming. We treat the size
of sub-systems as a hyperparameter depending upon the problem itself. In the future, we will further explore
the SGD method to improve its efficiency.

Acknowledgments

This work is supported by the National Science Foundation (NSF) (Grant No. DMS-1818769).

References

[1] J. Dennis, R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Vol. 16, SIAM,
1996.

[2] W. Hao, J. Hauenstein, B. Hu, A. Sommese, A bootstrapping approach for computing multiple solutions of differential
equations, J. Comput. Appl. Math. 258 (2014) 181–190.

[3] K. Atkinson, A survey of numerical methods for solving nonlinear integral equations, J. Integral Equ. Appl. 4 (1) (1992)
15–46.

[4] W. Hao, J. Harlim, An equation-by-equation method for solving the multidimensional moment constrained maximum

entropy problem, Commun. Appl. Math. Comput. Sci. 13 (2) (2018) 189–214.

http://refhub.elsevier.com/S0893-9659(20)30371-2/sb1
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb1
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb1
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb2
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb2
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb2
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb3
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb3
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb3
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb4
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb4
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb4


W. Hao / Applied Mathematics Letters 112 (2021) 106739 9
[5] W. Hao, A homotopy method for parameter estimation of nonlinear differential equations with multiple optima, J. Sci.
Comput. 74 (3) (2018) 1314–1324.

[6] C. Kelley, Iterative Methods for Optimization, SIAM, 1999.
[7] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, 1996.
[8] Q. Chen, W. Hao, A homotopy training algorithm for fully connected neural networks, Proc. R. Soc. Lond. Ser. A Math.

Phys. Eng. Sci. 475 (2231) (2019) 20190662.
[9] D. Bates, A. Sommese, J. Hauenstein, C. Wampler, Numerically Solving Polynomial Systems with Bertini, SIAM, 2013.

[10] B. Blaschke, A. Neubauer, O. Scherzer, On convergence rates for the iteratively regularized Gauss–Newton method,
IMA J. Numer. Anal. 17 (3) (1997) 421–436.

[11] P. Deuflhard, Global inexact Newton methods for very large scale nonlinear problems, IMPACT Comput. Sci. Eng. 3
(4) (1991) 366–393.

[12] R. Dembo, S. Eisenstat, T. Steihaug, Inexact newton methods, SIAM J. Numer. Anal. 19 (2) (1982) 400–408.
[13] D. Knoll, D. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Phys.

193 (2) (2004) 357–397.
[14] D. Coakley, P. Raftery, M. Keane, A review of methods to match building energy simulation models to measured data,

Renew. Sustain. Energy Rev. 37 (2014) 123–141.
[15] S. Sra, S. Nowozin, S. Wright, Optimization for Machine Learning, MIT Press, 2012.
[16] L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proceedings of COMPSTAT’2010, Springer,

2010, pp. 177–186.
[17] D. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980.
[18] Z. Griffin, J. Hauenstein, Real solutions to systems of polynomial equations and parameter continuation, Adv. Geom.

15 (2) (2015) 173–187.
[19] J. Nocedal, S. Wright, Numerical Optimization, Springer Science & Business Media, 2006.
[20] Y. Yuan, Step-sizes for the gradient method, AMS IP Stud. Adv. Math. 42 (2) (2008) 785.
[21] J. Barzilai, J. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1) (1988) 141–148.
[22] H. Curry, The method of steepest descent for non-linear minimization problems, Quart. Appl. Math. 2 (3) (1944)

258–261.
[23] Y. Dai, Alternate step gradient method, Optimization 52 (4–5) (2003) 395–415.
[24] M. Raydan, B. Svaiter, Relaxed steepest descent and Cauchy–Barzilai–Borwein method, Comput. Optim. Appl. 21 (2)

(2002) 155–167.
[25] L. Bottou, F. Curtis, J. Nocedal, Optimization methods for large-scale machine learning, SIAM Rev. 60 (2) (2018)

223–311.
[26] Q. Chen, W. Hao, A randomized Newton’s method for solving differential equations based on the neural network

discretization, 2019, arXiv:1912.03196.
[27] Z. Zeng, A Newton’s iteration converges quadratically to nonisolated solutions too, 2019.
[28] H. Ninomiya, H. Asai, Orthogonalized steepest descent method for solving nonlinear equations, in: Proceedings of

ISCAS’95-International Symposium on Circuits and Systems, Vol. 1, IEEE, 1995, pp. 740–743.

http://refhub.elsevier.com/S0893-9659(20)30371-2/sb5
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb5
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb5
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb6
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb7
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb8
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb8
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb8
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb9
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb10
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb10
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb10
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb11
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb11
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb11
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb12
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb13
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb13
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb13
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb14
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb14
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb14
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb15
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb16
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb16
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb16
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb18
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb18
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb18
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb19
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb20
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb21
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb22
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb22
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb22
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb23
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb24
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb24
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb24
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb25
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb25
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb25
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://arxiv.org/abs/1912.03196
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb27
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb28
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb28
http://refhub.elsevier.com/S0893-9659(20)30371-2/sb28

	A gradient descent method for solving a system of nonlinear equations
	Introduction
	The problem setup and gradient descent method
	How to choose ?
	Stochastic gradient descent

	Convergence analysis
	Numerical examples
	An example with the isolated solution
	A multi-dimensional example
	An example with quadratic convergence
	An example with positive dimensional solutions
	An example of homotopy tracking

	Conclusions
	Acknowledgments
	References


