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Abstract

We continue the study of the AMNM property for weighted semilattices that was
initiated in [Chol3]. We reformulate this in terms of stability of filters with respect to
a given weight function, and then provide a combinatorial condition which is necessary
and sufficient for this “filter stability” property to hold. Examples are given to show
that this new condition allows for easier and unified proofs of some results in [Chol3],
and furthermore allows us to verify the AMNM property in situations not covered by
the results of that paper. As a final application, we show that for a large class of
semilattices, arising naturally as union-closed set systems, one can always construct
weights for which the AMNM property fails.
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1 Introduction

1.1 Background context

This paper is a sequel to [Chol3], in which the first author studied approximately multi-
plicative functionals on weighted convolution algebras of semilattices, and the problem of
whether all such functionals arise as small-norm perturbations of multiplicative ones.

Banach algebras with such a “stability” property are said to be AMNM [Joh&6] or
f-stable [Jar97]. When S is a semigroup and w is a (submultiplicative) weight on S, the
AMNM condition on the Banach algebra £.(S) is equivalent to a kind of “Hyers-Ulam”-
type stability for C-valued functions on S, where the stability is measured in terms of the
weight w. Hence, one can define the notion of AMNM for the pair (S,w) directly without
relying on the Banach-algebraic concept (see Definition 2.6 and Remark 2.7). Indeed, the
present paper has been written so that no Banach algebra theory is required.

In the case where S is a semilattice, a sufficient condition for (S,w) to be AMNM was
given in [Chol3, Theorem 3.14], which covered many natural examples, such as semilattices
with finite breadth. However, it was pointed out by the third author in an unpublished
communication, that this condition fails to hold for some straightforward examples, such
as Example 3.1 below, and so it was clear that the earlier paper left significant room for
improvement. For example, is the weighted semilattice in Example 3.1 AMNM?
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1.2 New work

In this paper we sharpen some of the techniques introduced in [Chol3], and put them in
a more systematic framework, to obtain a necessary and sufficient criterion for a weighted
semilattice (S,w) to be AMNM.

As an intermediate step, we observe that it suffices to restrict attention to functions
on S with values in {0, 1}, rather than those with codomain C. This was already noted
in [Chol3] but we take the opportunity to give some extra details and make some minor
corrections. These and other preliminary results are given in Section 2, which also has a
brief discussion of characters on semilattices and the corresponding filters.

The discretization procedure mentioned above allows us to change perspective from
“character stability” to “filter stability” (with respect to the given weight w). Our cri-
terion is then an intrinsic characterization of the filter stability property, in terms of a
combinatorial property of the pair (S,w) that we call propagation. The precise statement
is given in Theorem 3.7, and most of Section 3 is devoted to setting up the necessary
framework.

We highlight two easy applications of Theorem 3.7:

(1) It is easy to check that the weighted semilattice described in Example 3.1 has “prop-
agation at all levels”. Therefore, by Theorem 3.7, this weighted semilattice satisfies
filter stability, and hence is AMNM. Details are given in Section 3.5, which also
explains why the results of [Chol3] are insufficient here.

(2) It is also easy to check that if S is a semilattice with finite breadth, then for any
choice of weight w we have propagation at all levels. Hence we can apply Theorem 3.7
once again, to deduce that (S,w) is AMNM. This was already observed in [Chol3],
but Theorem 3.7 provides a unified framework to see why this result holds.

A third application, which requires substantially more work, forms the final main result
of our paper (Theorem 4.8); it addresses a question raised in the closing remarks of [Chol3].
Given the result stated above in (2), and given that there is a weighted semilattice (7', w)
which is not AMNM ([Chol3, Theorem 3.4]), it is natural to ask if every S with infinite
breadth can be equipped with some weight w such that (S,w) is not AMNM. While we are
unable to resolve this question here, we use the “propagation” criterion to obtain a positive
answer for a large class of semilattices: namely, those which embed homomorphically into
(Pin(Q),U) for some set  (the notation is explained at the start of Section 2).

1.3 Future work

We would like to extend the construction used to prove Theorem 4.8 to cover all semilat-
tices, not just those S that embed into (Pi"(2),U). This runs into some serious technical
obstacles. Most notably, our construction relies on being able to locate finite free sub-
semilattices of S that fit togther in a well-behaved way; this is possible here because finite
free subsemilattices of (P1%(Q),U) only live on a “finite part” of Q, and hence can be
inductively removed without interfering too much with the embedded copy of S.



To move from P%(Q) to the full powerset P(Q), it seems that a deeper study is required
of union-closed set systems with infinite breadth, and their possible substructures. We
intend to pursue this in greater depth in forthcoming work.

2 Background and preliminaries

2.1 Notational conventions

If A and B are non-empty sets then A” denotes the set of functions B — A; P(B) denotes
the powerset of B; and P (B) denotes the set of all finite subsets of B.

Some of our later examples are subsets of Pﬁn(Q) for some non-empty set 2. When
working with those examples, we shall use upper-case calligraphic letters to denote subsets
of Pi(Q), while using letters such as a or F for subsets of Q; elements of Q will be denoted
by lower-case Greek letters.

If S and T are semigroups then the set of homomorphisms from S to 7' is denoted by
Hom(S,T). The zero function on a given set will usually be denoted by 0, the domain
being clear from context.

2.2 Semilattices, characters and filters

We recall some standard definitions, for readers who are not semigroup theorists.

A semilattice is a commutative semigroup S satisfying #? = x for all z € S. Such an S
has a standard and canonical partial order: if z,y € S we write z < y whenever xy = x.
It is sometimes useful to read x < y as: “z is a multiple of y” or “y is a factor of 2”. In
this language, xy is the “largest common multiple” of z and y.

With respect to <, zy is the meet (or greatest lower bound) of x and y; this gives an
alternative, order-theoretic definition of a semilattice, as a poset in which every pair of
elements has a meet. Both the semigroup definition and the order-theoretic definition fit
well with the intuition from the next example.

EXAMPLE 2.1 (The 2-element semilattice). The set {0, 1}, equipped with usual multipli-
cation, is a semilattice, which we shall denote by 2. (Note that the partial order defined
above satisfies 0 < 1.)

If X is a non-empty index set then 2%, equipped with co-ordinatewise multiplication,
is also a semilattice. Each ¢ € 2% can be identified with 1»~1(1) C X, and this defines an
isomorphism of semilattices 2% = (P(X),N).

Semilattices of the form (P(X),N) are universal in a certain sense. Given a semi-
lattice S, for each = € S let
E,={teS:t=a}. (2.1)

The definition of < implies that E, N E, = E,, for all z,y € S, and so the function
Sch : S — (P(S),N) defined by =z — E, is a semigroup homomorphism. Since z € E,
for all x € S, it is also easily verified that Sch is injective. Thus every semilattice can be
represented faithfully as a set system which is closed under binary intersections — or, by
taking complements, as a set system which is closed under binary unions. The map Sch



has appeared in the literature under various names, such as the Cayley embedding or the
Schiitzenberger representation [GHS09].

We now turn to characters. Let S be a commutative semigroup, and regard C as a semi-
group with respect to multiplication. Following the terminology of [HZ56], a semicharacter
on S is a semigroup homomorphism S — C which is bounded (equivalently, which takes
values in the closed unit disc) and which is not identically zero. The set of semicharacters
on S is denoted by S.IfSisa semilattice, every semigroup homomorphism S — C takes
values in {0, 1}, so using the notation of Example 2.1 we have

S U {0} = Hom(S,2) C 25 . (2.2)

It turns out that S is a sub-semilattice of 25 This is reminiscent of the situation for
abelian groups: non-zero semigroup homomorphisms from an abelian group G to C take
values in T, and it turns out that the set of characters G is a subgroup of T¢.

REMARK 2.2 (Conflicting terminology). In (semi)lattice theory it is more common to call
a non-zero homomorphism S — 2 a character of the semilattice S. We will adopt this
convention, which fits [HMS73, HMS74]; the remarks above show that the concepts of
semicharacter and character coincide for semilattices. We shall reserve “semicharacter”
for general commutative semigroups.

REMARK 2.3 (Duality theory for semilattices). There is a duality theory for semilattices in
which 2 acts as the dualizing object, analogous to Pontrjagin duality for (locally compact)
abelian groups where T is the dualizing object. See [HMS74] for further details, with an
emphasis on category-theoretic aspects; an accessible précis, without proofs, is provided
in [HMS73]. Here, we merely remark that there is a natural embedding g : S — 29 which
sends x € S to T : ¢ — ¢(x); this is essentially the same as the Gelfand representation for
the commutative Banach algebra ¢1(9).

As noted above, {0, 1}-valued functions on S correspond to subsets of S. It is standard
knowledge in semilattice theory that, under this correspondence, characters on S (viewed
as elements of Hom(S, 2)) correspond to filters in S. This perspective was already exploited
in [Chol3], and will be pursued more systematically in this paper. We therefore review
some of the details for the reader’s convenience.

Traditionally, a filter in a semilattice S is defined to be a non-empty subset F' which
is a subsemigroup (so z,y € F — xy € F) and is “upwards-closed” with respect to
< (sox €S, ye Fand oy =y — x € F). The second condition is equivalent to
xy € F = x,y € F — we leave the proof to the reader — and so for this paper we

adopt the following equivalent definition, which makes the link with characters clearer.

DEFINITION 2.4 (Filters in semilattices). Let S be a semilattice and let F' C S. We say
that F'is a filter in S if it is non-empty and satisfies

Ve,ye S (zy€F < x,ycF).
The set of all filters in S will be denoted by Filt(S).
It follows that for each X C S, X is a filter in S if and only if 1x € S ; equivalently,

S={ype25 (1) is a filter in S}. (2.3)



We can use duality theory and the link with filters to give an explanation of the Cayley
embedding/Schiitzenberger representation that was mentioned earlier. Each y € S defines
a filter Fy, = {t € S: ¢ = y}, and so y ~ 1, defines an injective function f: S — S. By
restriction, we obtain a homomorphism of semilattices f* : 2§ — 25, Then, composing f*
with the homomorphism ¢ : S — 2° from Remark 2.3 yields f*g : S — 2% = (P(S),N).
Checking through the definitions, we find that for each x € S

[f9(x)={yeS: (1) =1} ={yeS:vc F}={yeS:y 2}

Thus f*g is exactly the embedding Sch : S — (P(S),N) from before.

2.3 AMNM for weighted semilattices

In this section, we set up the notion of AMNM for weighted semilattices in a way that does
not require definitions or results from the theory of Banach algebras. We also take the
opportunity to make precise some arguments from [Chol3] that were unclear or incomplete
as stated there: see Lemma 2.8 and Proposition 2.9 below.

We start in a more general setting. Let S be a semigroup. A weight function on S
is a function w : S — (0, 00) which is submultiplicative; that is, w(zy) < w(x)w(y) for all
x,y € S. We shall often refer to the pair (S,w) as a weighted semigroup.

Given a weighted semigroup (S,w) and ¢, € C*, we define:

def,, (1) = sup{|(zy) — (@)Y (y)|w(z) ' w(y) ™" z,y € S}
(6,) = sup o) — o(a) () (2.4

disty, (¢) = inf{d, (¢, ¢): ¢ € Hom(S,C)}

where in the last definition we view C as a multiplicative semigroup. Note that in all three
definitions we allow the value 4o00.

def,(¢) and dist, (1)) give two different ways to quantify the failure of ¢ to be a
homomorphism; the first has a “local” flavour and the second has a “global” flavour. We
shall sometimes refer to def,, () as the w-defect of 1.

As in [Chol3], we say that ¢ € C¥ is w-bounded if sup,cg | (z)w(x)™! < co. The
following lemma is not needed for the eventual application to semilattices, but we include
it for sake of completeness and for possible use in future work.

LEMMA 2.5 (Improving w-boundedness). Let S be a semigroup. If 1 € C% is w-bounded,
then sup,eg [¥(2)|w(x) ™t < 1+ defy,(v).

This follows from a technique known in the Banach-algebraic setting [Jar85, Prop. 5.5].
To make this paper more self-contained we provide a full proof, adapted from parts of the
proof in [Jar&5].

Proof (Jarosz). Let K = sup,cg |[¢(z)|w(x)~!, and let s € S. Since

[¥(5) — (s?)|

() < def,, ()



we have

¥ (s)? ()| _ [¥(s?)]
—def, (1)) < < <K.
wep SR = )
Taking the supremum over all s yields K? — def,,(¢) < K. Since t — 1 < t? — ¢ for all
t >0, we obtain K — 1 < K? — K < def,(v) as required. O

The lemma may fail if we drop the assumption that 1 is w-bounded. For instance,
take S = N with usual addition, take w = 1, and let ¥(n) = 2". Then v is clearly not
w-bounded, yet def,, (1)) = 0.

The following terminology is modelled on the corresponding terminology for Banach
algebras, as found in [Jar97] or [Joh&06].

DEFINITION 2.6 (AMNM/f-stability for weighted semigroups). Let (S,w) be a weighted
semigroup. We say that (S,w) has the AMNM property, or is AMNM , or is f-stable, if the
following holds: for all € > 0 there exists § > 0 such that every w-bounded 1) € C¥ with
def, (v) < § satisfies dist, (¢) < e.

REMARK 2.7. Given a weighted semigroup (S,w), we can form the associated weighted
convolution algebra £.(S). Then (S,w) is AMNM if and only if £.(S) has the Banach-
algebraic AMNM property of [Joh&6]. The proof of this equivalence is merely an exercise in
translating the definitions, together with some standard properties of the ¢!-norm; details
can be found in [Chol3, Section 2.2].

We now specialize to the setting where S is a semilattice. Note first that if w is a
weight function on a semilattice, we have w(x)? > w(2?) = w(x) for all € S, which forces
w(x)>1forall xz €8S.

Another special feature is that we can improve on Lemma 2.5. The following lemma
plugs a small gap in the statement/proof of [Chol3, Corollary 3.7].

LEMMA 2.8. Let (S,w) be a weighted semilattice and let ¢ € C°. Then
sup,eg [ (z)|w(z) ™t <1+ defy,(v). In particular, if def,(v) < oo then 1 is w-bounded.

Proof. Without loss of generality, assume def,,(¢)) < co. Let s € S. Arguing similarly to
the proof of Lemma 2.5, we obtain

[W(s)w(s)™h = [(s*)|w(s) ™" > [(s?)lw(s) ™ 2 [(s)*[w(s) 7> — defu(v)

and hence (again following the proof of the earlier lemma)
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as required. O

For X,Y C S, we shall abbreviate def,(1x), dw(1x,1y) and dist,(1x) to def,(X),
dy(X,Y) and dist, (1x) respectively. By the remarks following Definition 2.4,

dist,(X) = inf{d, (X, F): F € Filt(S) U§}.



The following result is essentially the same as [Chol3, Corollary 3.7], phrased in dif-
ferent language. However, the proof there was left to the reader, and as mentioned above
there was a missing step glossed over. We take this opportunity to provide a slightly
weaker but more precise statement, with a complete proof.

PROPOSITION 2.9 (Discretizing the AMNM problem for weighted semilattices). Let (S, w)
be a weighted semilattice. The following are equivalent:

(i) (S,w) is AMNM:;
(ii) Ve >0 30 >0 such that every G C S with def,,(G) < 0 satisfies dist,(G) < e.
(iii) every sequence (X,,) in P(S) with def,(X,) — 0 satisfies dist,,(X,,) — 0.

Proof. The equivalence of (ii) and (iii) is routine. The implication (i) = (ii) follows
directly from the definitions and the fact that 1g is w-bounded for all G C S (since
w>1).

Finally, suppose (ii) holds. Let e > 0, and let § = §(¢) be as provided in (ii). Let
81 > 0, to be determined later, and let 1 € C° be w-bounded with def,,(¢) < 6;. By
[Chol3, Lemma 3.6] and the calculations which follow it, there is a set G C S such that
dy(,1g) < 612 with def,(G) < 30,/ + 26,. Therefore, provided we originally chose
6, small enough that §; < £2 and 36,2 + 26, < d(¢), condition (ii) implies there exists
¢ € S U {0} such that

dw(¢7 (b) < dw(wa 1G) + dw(lg, ¢) < 2¢e.
Thus (i) holds. O

Conditions (ii) and (iii) can be viewed as a kind of “filter stability” property relative
to the weight function w, and for the rest of this paper we shall work exclusively with the
perspective of subsets of S rather than functions on S.

3 Characterizing stability of filters

3.1 Initial remarks

In this section we shall derive an intrinsic, combinatorial characterization of when a given
(S,w) has “stable filters” in the sense of Proposition 2.9(ii). The precise statement of our
characterization is given as Theorem 3.7, and we shall build up to it in stages.

It will be convenient for later examples if we switch to working with log-weights, by
which we mean functions A : S — [0, 00) that satisfy A\(zy) < A(z) + A(y) for all z,y € S.
Given such a A and L > 0, we define W(S,\) = {x € S: AM(z) < L}. When there is no

danger of confusion we abbreviate this to Wr,.

ExaMPLE 3.1. Let © be a non-empty set. Pﬁn(Q) is a semilattice with respect to binary
union. The function x — |x| is a log-weight on (P*(Q),U), and

Wi ={0} U {{~r}: v Q}.

If we fix 7 € (1,00), the function w, : x — X is a weight on (P1(Q), V).



By varying the “level” L we obtain a useful filtration of S. Intuitively, we think of two
given sets as “agreeing at level L” when they have the same intersection with W7.

3.2 Characterizing sets on which dist, is small.

As a first step towards Theorem 3.7, we show that given two subsets Ey, Es C S, d,(F1, E2)
is small precisely when E; and Eo “agree at level L” for some large value of L.

LEMMA 3.2. Let E1,FEs C S and let A = logw.
(i) Let e > 0. If d,(Ey, Fs) < ¢, then By N Wy, = Ey "W, for every L <log(e™!).
(ii) Let L > 0. If By NWy, = Eo N W, then d,(E1, Bp) < e L.

Proof. In both parts, the key point is that |1, (x) — 1g,(x)| takes values 0 or 1.

(i) Let L <log(c~!) and suppose d,,(E1, Es) < e. Then [1g, (z) — 1g,(7)| < ew(x) for
all z € S. For each z € Wy, ew(z) < 1 and so 1g, (z) = 1g,(x); thus By N Wy, =
Es N W7y,

(ii) Suppose By N Wy, = Ey N Wy. Then 1g,(7) = 1g,(z) whenever w(z) < e’. Hence
g, (z) — 1g,(z)| < min(1,e *w(z)) for all z, which implies d,,(E1, E») <e *. O

If £ C S, let fil(F) denote the filter-or-empty-set generated by E, i.e. the intersection
of all X C S such that X € Filt(S) U {0} and X O E. Note that fil(E) = () if and only if
E =10.

REMARK 3.3. Let £ C S and let L > 0. Suppose there is some F' € Filt(S) U {0} such
that ENWy = FNWp. Since F contains E N Wy, it contains fil(E N W). Hence

EﬂWL:FﬂWL:_)ﬁl(EﬂWL)ﬂWL:_)EﬂWL

which forces ENWp = filENWg)NWr.

Summarizing: if E agrees with some filter-or-empty-set at level L, it agrees with the
particular filter-or-empty-set fil(ENW7y) at level L. Hence, in view of Lemma 3.2, dist,, (E)
is small if and only if E agrees with fil(E N W) at level L for some large L.

3.3 Characterizing sets with small w-defect

Let X C S be non-empty. Note that if x,y € X and z »= zy (that is, z is a factor of zy)
then z € fil(X). Moreover, every z € fil(X) satisfies z = x - - -z for some z1,...,z; € X.

DEFINITION 3.4 (fbp-stability). Let C' > 0. For X C S we define
tbpc(X) := {z € W there exist z,y € X N W such that z = zy} . (3.1)

(fbp stands for “factors of binary products”.) Note that fbp, () = 0. We always have
tbpo(X) O X N We; if equality holds, we say that X is fbpo-stable.

X is fbp-stable if and only if fbp,(X) C X: the “only if” direction is trivial, and the
“if” direction holds because tbp-(X) C We for any X C S.



LEMMA 3.5. Let (S,w) be a weighted semilattice, and put A =logw. Let X C S.
(i) Let C > 0. If X is fbpg-stable, then def,(X) < e C.
(i) Let § > 0. If def,(X) < & then X is fbpg-stable for any C < log(6~1/3).

Proof. (i) Assume X is fbpo-stable, and let z,y € S. We consider two cases.
Case A: A(z) + A(y) > C. In this case

1< e Cr@HAW) = e=Cu(2)w(y),

and so [1x(zy) — 1x(2)1x(y)| < e Cw(z)w(y).
Case B: A(z) + A(y) < C. In this case z, y and zy all belong to W¢. Since X is
fbp-stable:

— if z and y are in X, then zy € tbp-({z,y}) C ftbp(X) C X;

— if zy lies in X, then both x and y belong to tbp-({zy}) C thp-(X) C X.

Thus in this case, 1x(zy) = 1x(z)1x(y).
Putting Case A and Case B together, we see that def,,(X) < e ¢.

(il) If X N W¢ = ) then we are done. So suppose X N We # ). Let x,y € X N W¢, and
let z € We with 2z = xy. Then
[1x (zy) — Lx (2)1x (y)| < defu(X)w(@)w(y) < defu,(X)e™, )
I1x(zy) — 1x (@y)lx(2)] < defy, (X)w(zy)w(z) < def,(X)e3C,
and both are strictly less than 1 if def,,(X) < § and C < log(6~1/3).

Since 1x(z) =1 = 1x(y), the first formula in (%) implies 1x (zy) = 1; feeding this
into the second formula yields z € X. Therefore tbp-(X NW¢) € X N We, and the
converse inclusion is trivial. O

Summarizing: a subset of S has small w-defect precisely when it is fbp,-stable for
some large value of C.

3.4 tbp,-stability and propagation

An obvious way to obtain fbp,-stable sets is by iteration. Given E C S, put fprC(E) =
ENWe and for k > 1 recursively define fbpf(E) = fbpc(fbp’éfl(E)). Then

ENWe C fbpg(E) C fhp2(E) C fopd(E) C ...

Define fbp¢y' (E) to be the inductive limit (J; >, fbpo(F). By induction,
EnNWe CibpF(E) CH(E)NWe forall ECS. (3.2)

Even when S is finite, the second inclusion in (3.2) can be proper, as we will see in
Example 4.2. On the other hand, if F is non-empty and z € fil(E), there always exists some
C > 0, possibly depending on z, such that z € fbp¥ (F). (For instance, if z1,...,z; € E
and z >~ x1 -2} then C = max{Zle M), AM(2)} suffices.) This leads naturally to the
following definition.



DEFINITION 3.6 (Propagation). For z € fil(E), let
Ve(z) =inf {C > 0: z € tbpF (F)} . (3.3)
Given L > 0, we say that (S, \) propagates at level L, or has L-propagation, if

sup sup Vg(z) <oo. (3.4)
0AECW zefil( E)NW,

It is convenient to set Vg(z) := +o0o whenever z ¢ fil(E).
We make some observations for future reference:

e For every z € S we have Vg(z) > A(z) and Vg (2) > infyep A(z). (The first inequality
holds since fbpF (E) € We. The second one holds because if C' < infyep A(z) then
fbpo(E) = 0, preventing z € fbpF (E).)

e If (S, \) propagates at a level L, then it also does so at every lower level.

e In the formula defining L-propagation, we could restrict £ to the finite subsets of
W, without altering the value of the double supremum.

We can now state and prove the promised characterization of “filter stability”.

THEOREM 3.7. Let (S,w) be a weighted semilattice and let A\ = logw. The following
conditions are equivalent.

(i) (S,w) is AMNM.
(ii) Ve >0 30 >0 such that every G C S with def,,(G) < 0 satisfies dist,(G) < €.

(ili) VL > 0 3 C > 0 such that every G C S which is tbpq-stable satisfies G N W, =
ﬁl(G N WL) NWry.

(iv) (S,\) has L-propagation for all L > 0.

Proof. The equivalence of (i) and (ii) was proved in Proposition 2.9. The equivalence of (ii)
and (iii) has been demonstrated in the previous two subsections: specifically, one combines
Lemma 3.2, Remark 3.3 and Lemma 3.5 with some standard epsilon-delta book-keeping.

Suppose that condition (iv) holds. Let L > 0. Then we may choose C' > L such that
Va(z) < C for all G C Wy, and all z € fil(G) N Wp. Let E C S be fbps-stable and put
G = ENWp. By our choice of C and the definition of Viz(z),

Al(ENWL) N W, C tbpZ (ENWL).

But since E is fbp-stable the right-hand side is contained in E. Hence fil(ENW,)NW, C
E NWp, and the converse inclusion is trivial. Thus condition (iii) holds.

Conversely, suppose Condition (iii) holds. Let L > 0 be arbitrary, and choose C' > 0
with the property stated in (iii). Let £ C Wr. Put K = max(L,C). Since C < K,
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it follows from the definitions that every fbpy-stable set is fbp.-stable. In particular,
fbp% (E) is tbpo-stable, so by the property stated in (iii),

tbp% (E) N W, = fil(tbp% (E) N W) N Wr.
But since K > L and E C W, the right-hand side contains fil(£) N Wp,. Hence fil(£) N

Wi, C fbp%R(F). This shows that the double supremum in (3.4) is < K, hence finite; so
(S, A) has L-propagation, and (iv) holds. O

3.5 An example where our theorem improves on earlier results

In the language of the present paper, [Chol3, Theorem 3.14] may be restated as follows.
Let (S,w) be a weighted semilattice, with A = logw, such that

for each L > 0, X is bounded on the subsemilattice generated by Wr(S, ). (<)

Then (S,w) is AMNM.

Consider the semilattice S and log-weight A from Example 3.1. That is, S = (P(Q), V)
for some nonempty set 2, and A(x) = |x| for x € S. Since {7} € W for each v € €, the
subsemilattice generated by Wi is {x € S: x # (}}. Hence the condition in ({) fails for
L =1, and [Chol3, Theorem 3.14] cannot be applied. On the other hand, we will now
show that (S,\) has L-propagation for all L > 0. Putting w = exp ), it follows from
Theorem 3.7 that (S,w) is AMNM.

Our task will be made slightly simpler using two preliminary observations:
e we only need to verify L-propagation for all L € N;
e we only need to check the supremum in (3.4) for finite subsets of Wr.

(For the justification, see the remarks following Definition 3.6.)
Let L € N, and let £ be a non-empty finite subset of Wr. Put a = (J ¢ x, which is
finite and non-empty. A straightforward argument shows that fil(£) = P(a), so that

fl(E)NWr ={zCa: |zl <L}.
If z C a then there exist xi,...,x; € € such that z C x; U ... U xg; moreover, if |z| < L
then we can always choose k < L. Therefore, Vg (z) < L? for all z € fil(€) N Wp. Since this

upper bound holds for all finite non-empty & C Wy, (S, \) propagates at level L, just as
we claimed.

4 Breadth and propagation

The following is a small variation on the previous example.

EXAMPLE 4.1 (Free semilattices). Let Q be a non-empty set, and let Pi(Q) denote the
set of finite non-empty subsets of €2. Equipped with binary union, PE“(Q) is a semilattice,
which we refer to as the free semilattice generated by ().

This terminology is justified by the following universal property: for any semilattice S
and any function f : Q — S, there is a unique homomorphism f: (Pin(Q),U) — S that

extends f, defined by f(a) = [[,c, f(7)-
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When Qq is a finite, non-empty set, we write P, (o) instead of PE“(QOO). Semilattices
of the form (P(Q00),U) were used in [Chol3, Theorem 3.4] as the building blocks for a
weighted semilattice (T,w) that does not have the AMNM property. The new notion
of propagation gives a very natural viewpoint on this construction, with the key details
demonstrated in the following example.

EXAMPLE 4.2. Let Qg be a finite set with at least two elements. Define
ANz) =z f2C Qo , AMQ00):=0.  (z€Pu(Q00))- (4.1)

Then A is a log-weight on the semilattice (P, (€Qq0),U). Let & = {{w}: w € Qyo}, and note
that W1 =£U {Qoo}.

In particular Qg € fil(€) N W7. On the other hand, Ve(Qgg) > %|QOO|. To see this,
let C' > 0 be such that Qg € fbpF(£). We have Qqo ¢ €N W = fbpa(€); let m € N
be minimal such that Qo € fbp@i(€). Then there exist aj,ag € fbpgfl(g) such that
Qoo C a1 Uas. By minimality of m, both a; and ay are proper subsets of 2oy, and so

Q00| < |a1] + |a2] = A(a1) + A(a2) < 2C.

Hence 2VE(Qoo) > |Q00], as claimed.

Intuitively, for this log-weight, the constraint in the fbp, operation that we can only
multiply elements of log-weight < C creates a barrier separating us from {2qg, even though
Qoo itself has small log-weight.

The previous example suggests that to construct log-weights on a given S for which
propagation fails, we should look for isomorphic copies of (P.(gp),U) inside S. If B C S
is a finite subset, with ¢ : E — S being the inclusion map, consider 1z : P(E) — S, in
the notation of Example 4.1. 15 maps P.(E) onto (E), the subsemigroup of S geneated

by E; it is injective if and only if (E) has maximal cardinality |P,(E)| = 2/1-1.

DEFINITION 4.3. Let S be a semilattice. Given a finite, non-empty subset £ C S, we say
E is compressible if there exists a proper subset I C E such that [[,cpz = [[,cp
otherwise, we say F is incompressible.

It is a straightforward exercise to show that F is incompressible if and only if E :
P.(E) — S is injective (c.f. Exercise 6(c) of [Bir(7, Section IL.5]).
REMARK 4.4 (Comparison with older terminology). Our terminology is not entirely stan-
dard; the same property is referred to in [LLM77, Misg6] as “meet irredundant”. However,
for examples which arise as subsemilattices of (P(£2),U), as in the next section, the canon-
ical partial order is not given by inclusion but by containment: a < b <= a O b; and the
“meet” of a and b with respect to < is not a N b, but rather a U b. In other words, for
natural examples we want to consider, the product operation is naturally viewed as a join
rather than a meet, and the terminology “incompressible” seems more appropriate.

DEFINITION 4.5. The breadth of a semilattice S is defined to be

br(S) =sup{n € N : every subset £ C S with n + 1 elements is compressible}
=sup{|E|: E is a finite incompressible subset of S’} .
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The breadth of a semilattice sheds some light on its structure, and is related to more fa-
miliar order-theoretic concepts such as height and width. For instance, suppose br(S) > n.
By examining incompressible subsets, one sees that S contains a chain (totally ordered
subset) and an antichain (subset in which no two elements are comparable) both of cardi-
nality n; see [ADH 13, Section 4.1] for further details and some references. In particular,
a semilattice S has breadth 1 exactly when the poset (S, <) is totally ordered.

Diverse behaviour occurs even among semilattices of breadth 2. For instance, the
following example shows that every infinite k-ary rooted tree (k > 2) is a semilattice with
breadth 2 that contains infinite chains and infinite antichains.

EXAMPLE 4.6. Let k > 2. An infinite k-ary rooted tree is an infinite rooted tree in which
every vertex has k children. If z and y are vertices in the tree then they have a “youngest”
common ancestor, which we denote by x Ay. Clearly A is a commutative, associative and
idempotent binary operation; so the set of vertices becomes a semilattice (7, A), and the
partial order =< becomes “is an ancestor of”.

There is an infinite path P C T obtained by starting at the root and successively
taking one of the children; this gives us an infinite chain in (7', <X). If for each element
of P we then take one of its children that is not in P, then the collection obtained is an
infinite antichain in (7', <).

Let x,y,z € T, and let p =z Ay A z. Then either x Ay or y A z is equal to p: for if
not, the set {p,x A y,y A z,y} would form a cycle of length > 3 in the tree T, which is
impossible. Thus every 3-element subset of S is compressible, and so br(S) < 2. On the
other hand, br(S) > 2, since S is not totally ordered.

REMARK 4.7. Suppose S is a semilattice with finite breadth. It was originally shown in
[Chol3, Example 3.13 and Theorem 3.14] that in this case, (S,w) is AMNM for every
weight function w. With the tools of the previous section, we can give an alternative
approach to this result. Let n = br(S), and let E be a finite subset of S.

As observed in the remarks before Definition 3.6: if xq,...,z; € E and z is a factor
of x1---xy, then for any C > nlax{gj“‘:1 Azi), A(2)} we have z € ftbp¥ (E). But since
br(S) = n, every z € fil(E) is a factor of x; - - -z, for some z1,...,x € E with k < n. It
follows that whenever E C Wy, Vi(z) < nL for all z € fil(E) N Wy, and therefore (S, \)
propagates at level L for any L > 0 and any log-weight A. Now we can apply Theorem 3.7.

Motivated by this result, it is natural to ask the following question, which was raised
implicitly in [Chol3, Section 6].

QUESTION. Let S be a semilattice with infinite breadth. Does there exist a log-weight
on S for which propagation fails at some level?

At present, we do not have an answer in full generality. However, when S is (isomorphic
to) a sub-semilattice of (P(Q),U), the answer is positive. This is the final main result
of our paper.

THEOREM 4.8. Let Q) be a non-empty set, and let S C Pﬁn(Q) be closed under binary union.
If (S,U) has infinite breadth, then there is a log-weight on S which fails 1-propagation.
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The proof of Theorem 4.8 takes up the rest of this section. From here onwards, let S
be a subsemilattice of (Pi"(€2),U) which has infinite breadth. If £ is a finite subset of S,
we write join(€) for (J,cca € S.

LEMMA 4.9. Let a € P™(Q) and let n > 2. Then there exist by,...,b, € S and
Yis---ym € )\ a, such that v; € b; \ by, whenever j # k.

Proof. Let M = |a] < co. Since S has infinite breadth it has an incompressible subset of
size M + n, which we may enumerate as by, ..., bas+y,. Then for each j, incompressibility
implies bj Z Uy y.zj bk, 50 (. g; bj \ by is non-empty and we may pick some ; in this
set. Note that 1, ..., va+n are all distinct. Since at most M of these belong to a, at least
n of them belong to Q\ a; reordering if necessary, we may take these to be v1,...,7v,. O

PROPOSITION 4.10. There is a sequence (E,)°2, in P1(Q), and a sequence (F,)%, in
P(S), with the following properties:

o for each m, |E,| = |Fn| =n;

o the sets E1, FEo, ... are pairwise disjoint;

e cach x € F, satisfies x D E; for all1 <j<n—1;

e for each n and each v € E,, there is a unique x € F,, such that v € x.

Proof. We construct both sequences together by (strong) induction on n. For the base
case of n = 1: pick any non-empty a € S, pick any ~ € a, and letEy = {v}, F; = {a}.

Now let n > 2 and suppose we have found FEi,...,E,_1 and Fq,...,F,_1 with the
desired properties. In particular, since each point of E; belongs to some x € F;, we have
E; Cjoin(F;) fori=1,...,n—1.

Let a := join(F1)U...Ujoin(F,—1); we have a € S since S is closed under finite unions.
Now let by,...,b, € S and 71,...,7, € Q\ a be as provided by Lemma 4.9. For each j,
let x; := aUb; € § and note that x; D a D U?:_f E;. Also, since v; ¢ a, whenever j # k
we have

i € (bj \bg) \a=bj \ xk S x;\x .
This shows that F, := {xq,...,X,} is incompressible (since 7; is a point in x; but not in
U kot xi). Taking F, = {71,...,7}, the inductive step is complete. O

DEFINITION 4.11 (Defining our bad log-weight). Keeping the notation of Proposition 4.10,
let Dy, := Ui, E; for each n € N; we also define Dy := ) and Do, = Un21 E,,. Then, for
each x € P(Q), we make the following definitions:

e N(x):=max{n € Ny: D, Cx};
e r(x) := (XN Do) \ D) = (x\ Dnx)) N Doo;
o () = [r(x)]-

PROPOSITION 4.12. The function i : Pi(Q) — [0, 00) is subadditive.
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Proof. Let x,y € Pi(Q). Since N(xUy) > max(N(x), N(y)), we have

Dyxuy) 2 DNxy YU Diy)-

Hence (xUy) \ Dy € (x\ DN(x)) Uy \ DN(y)). Therefore, r(x Uy) C r(x) Ur(y), and
the result follows. O

LEMMA 4.13. Letn > 2 and let z,, := join(F,) € S. Let C > 0 be such that z,, € thpg¥ (Fy,).
Then 2C > |E,| = n.

Proof. Let m € N be minimal with the following property: there exists some y € fbpg (Fy,)
such that y O FE,. This is well-defined, since z, O E, (as observed in the proof of
Proposition 4.10) and z,, € tbp¢¥ (F;,) by assumption.

By definition of fbp, there exist x1,xy € fbpgfl(]:n) such that x;y Uxy Dy D E,. We
claim that x; 2 E,, for i € {1,2}:

— if m > 2, the claim follows from minimality of m;

— if m = 1, the claim holds because fbpZ(F;,) C F,, and for each x € Fy,, [x N Ey| =1
while |E,| =n > 2.

Therefore, r(x;) 2 E, Nx; # 0, for i € {1,2}, and so

2C 2 n(x1) +n(x2) = [En Nx] + |En Nxo| 2 |En N (x1 Uxz)| = [Ey
as required. O
COROLLARY 4.14. Let n be as in Definition 4.11. Then (S,n) does not have 1-propagation.

Proof. For n > 2, each x € F, satisfies x N D, = D,,—1 U {7} for some v € E,,. Therefore
Fn € Wi. Now let z, = join(F,) € fil(F,). By the properties listed in Proposition 4.10,
z, N Dow = Dy, and n(z,) = 0. Thus z, € Wj. On the other hand, by Lemma 4.13,
Vr, (zn) > n/2. Hence

sup sup  Ve(z) > sup Vg, (z,) = +00
DAECW: zefil(E)NWy n>2
and so (S,7n) does not propagate at level 1. O
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