Primal Interface Debonding Formulation for Finite Strain Isotropic
Plasticity

Sunday C. Aduloju?, Timothy J. Truster  §

 Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, 318 John D. Tickle
Engineering Building, Knoxville, TN 37996

+ Associate Professor. Corresponding author: Ph: (865) 974-1913; Fax: (865) 974-2669, e-mail: ttruster@utk.edu

Abstract

A framework is developed for modeling ductile damage of nonlinear materials whose plastic deformation is
characterized using rate independent classical plasticity. This method relies on the assumption that the free energy can
be decomposed into elastic, plastic and damage parts. A thermodynamically consistent method is derived which
satisfies the second law of thermodynamics in the Clausius-Duhem inequality form. The dissipation associated with
plasticity takes place in the domain only, while damage dissipation is localized to the interface. The method is
developed using Variational Multiscale ideas to obtain definitions of the interface fluxes within a primal formulation
analogous to the Discontinuous Galerkin method, which ensures weakly vanishing interface gap prior to reaching a
damage initiation criterion. The local nonlinear problem to calculate both plastic deformation gradient and damage
variable follows an incremental approach similar to classical plasticity return mapping algorithm. This elastoplastic
damage formulation is developed for material undergoing finite strain, and it naturally accommodates a trapezoidal
traction separation law (TSL) whose shape can be varied to model either ductile interface behavior or brittle interface
behavior. The formulation’s performance is assessed through modeling a patch test and a compact tension specimen.

Key Words: Finite strains, Variational Multiscale method, Discontinuous Galerkin, Computational inelasticity,
Debonding

is the path independent contour J-integral method
1. Introduction which was first presented by Rice [3, 4] for analysis

The results from tensile experiments show that of cracks in nonlinear materials where an elastic-

typical metals lose their load carrying capacity and
undergo ductile fracture during tensile loading.
Experimental techniques to quantify damage
parameters for materials undergoing elasto-plastic
damage behavior are not trivial. With computational
tools playing an ever-increasing role in the study of
mechanics of materials, computational models are
now being developed and employed to capture and
quantify elastoplastic ~damage processes in
engineering materials. At present, there is no general
agreement among researchers as to whether damage
should be modeled as localized or diffused cracks in
a ductile material.

The global approach to fracture consists of
methodologies which assume that fracture can be
described by a single parameter [1, 2]. One example

plastic deformation is idealized as nonlinear elastic.
The J contour integral method enjoyed early
acceptance for use as a fracture criterion for crack
tip conditions in elasto-plastic materials [5], but the
method is known to break down when there is a
combination of significant plasticity and crack
growth. Also, this method could only be applied to
model preexisting cracks. These limitations have
also been found in approaches employing crack tip
opening displacement (CTOD) as a fracture
criterion. Another methodology is the continuum
damage mechanics method which is a
phenomenological approach to fracture and relies on
the continuous description of damage where a scalar
or tensorial damage variable is related to the
material characteristic properties. These methods
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are based on the early developments of Kachanov
and Lemaitre [6]. Later, this method was posed in
[7] as a consistent thermodynamic framework that
guarantees that dissipation is always positive.

A group of methods categorized under the
methodology of local approach to fracture were
developed to provide a detailed and physically based
description of damage phenomena in the rupture
process zone. The Gurson or Gurson-Tvergaard-
Needleman (GTN) model and the cohesive zone
method fall into this category [1]. The Gurson model
describes ductile damage using crack nucleation,
growth and coalescence as the three consecutive
processes that occur during material damage. The
inaccuracies in the representation of fracture and
void growth predicted by the earlier Gurson model
led to the improvement of the yield surface
expression for Gurson model to arrive the GTN
model that is free from these limitations [8]. See [1,
2] for reviews of current extensions of the method.
Though the Gurson model was derived from
rigorous micromechanical analyses, thermodynamic
framework which guarantees that the dissipation is
always positive is only possible when the void
nucleation is absent [9].

The cohesive zone model (CZM) accounts for the
processes occurring within the fracture process zone
through the traction separation law (TSL), and
attempts have been made to classify the damage
mechanisms in the fracture process zone based on
forward and wake regions of the TSL [10, 11].
Several TSL shapes exist in the literature, and it has
been recently argued that the TSL shapes affects the
prediction of ductile fracture behavior [11-13]. The
intrinsic CZM type is known to have stability issues
due to artificial compliance of the interface [14, 15].
This artificial compliance is associated with the
large elastic penalty coefficient assigned to the
traction-separation curve to approximate a perfect
interface bond below the crack initiation threshold
traction. Setting large values to the coefficient leads
to large eigenvalues in the global stiffness [16]. The
artificial compliance could be eradicated by using
extrinsic CZM. Unfortunately, the extrinsic CZ
approach requires data structures that permit mesh
adaptivity to insert these elements [16].

The Discontinuous Galerkin (DG) formulation
overcomes both problems associated to CZM by
weakly enforcing displacement field continuity and

representing TSL using a relation instead of a
function [17]. The Discontinuous Galerkin method
has been used to enforce continuities in nonlinear
materials with large deformations [18, 19], plasticity
[20-22], microscale modeling [23], and damage [17,
24, 25]. To the best knowledge of the authors, this
paper presents for the first time the development of
a Discontinuous Galerkin method for modeling
ductile damage. It employs the use of extrinsic
trapezoidal TSL which has not been used previously
within such formulations to account for processes
occurring in the fracture process zone.

In the next section, we discuss the variational
characterization of elasto-plastic-damage response
and evaluation of the stability tensor. We derive the
weak form from the free energy and dissipation
functionals in Section 3. In Section 4, constitutive
update equations are developed for both bulk
plasticity and interface damage that appear within
the DG numerical flux terms, and the mathematical
differences between the recently developed return
mapping algorithm of the extrinsic trapezoidal TSL
and a triangular TSL are presented. The
linearization of the weak form is also presented. The
performance of the method is evaluated using a
patch test and a ductile damage simulation on a
coarse finite element mesh of a compact (CT)
specimen in Section 5. Finally, conclusions are
drawn in Section 6.

2. Variational Characterization of Elasto-
Plastic Damage Response

We begin our developments by treating the case
of an evolving interface gap at the interface T,

embedded within a body QR  undergoing an
elasto-plastic finite deformation. The domain Q is
divided into two regions Q' by the interface T,
as shown in Figure 1 where « =1,2. The two regions
deform according to the motion ¢’ (X,7) that
maps the reference configuration to the current
configuration x =g’ (X,1).
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Figure 1. The multiplicative decomposition of
deformation gradient F in domain 2 divided into two
regions ol by the interface I',

We allow the deformations ¢ to be distinct

along the interface I, to accommodate the

1
existence of the interface gap or debonding ¢ . Let
F(X,1)=V,x=0x/0X be the deformation
gradient that has a multiplicative decomposition into
an elastic part F° and plastic part F" as follows:
F=FF", detF°>0, detF">0 €))

The Helmholtz free energy y of the domain can

be decomposed according to [22, 25, 26] into a bulk
contribution y,, and an interface contribution y. as

follows:

1//9(F,Fp,ap)zq/e<F,Fp)+l//p<ap) )

vi(a')=v*(a") )

where the bulk contribution is additively split into
an elastic y° (F,Fp) and plastic y° (a" ) part, as
is typically assumed for elastoplastic damage
theories [27, 28]. Within these expressions, a’ is
the strain-like plastic hardening variable in the
domain while a is the damage hardening/softening
parameter at the interface within the damage free
energy y’ (ad )

The framework of rational thermodynamics is
adopted as in [29, 30] where for an isothermal
condition, the Clausius-Duhem dissipation
inequality at the domains can be written in terms of

the first Piola-Kirchoff stress tensor [31, 32] or the
Mandrel stress [33, 34]. Here-in, we follow the latter

approach in accordance with the additive split (2)
whereby the plastic dissipation is expressed as:

D P-Q-¢ 1 Q9 =12 (4)
where X' =2C°0_.y* (F,Fp) is the Mandel stress
with C*=F"F°, I’ =1
the velocity gradient tensor, and Q° =—0 ,y/° (a")

is the plastic part of

is the stress-like work conjugate flux of «".

We limit the discussion of this method to dissipative
processes governed by associative flow rule where
the domain’s plastic and the interface’s damage
flows are determined from the respective yield
function. The deformation gradient and plastic
hardening are constrained to lie in the closure of
elastic domain, and the yield function f* (Z , Qp) is
associated to the stress-space yield surface
E 0")] f”(Z,Q")SO}. Similar to [25],
the dissipation inequality at the interface is
expressed as (5) with yield condition f* (T ,Qd)
that s
E ') 1 (1.0")<0}.

associated with the yield surface

D on I’ &)

The D and D are the Lagrangian functionals
associated with plastic and damage dissipation. In

(5), de—ﬁadl//d (ad) is the stress-like work

conjugate flux of a’ and the interface flux T has
the connotation of the interface traction field and is
defined similar to [25] in terms of two quantities
inspired by variational multiscale developments [35,
36] as:

T={P(F,F")N}+|z]( ¢ —¢) (6)

where P=7F" = F*"XF"" is the first Piola-
Kirchhoff stress tensor defined in terms of the
Kirchhoff stress T or the Mandel stress 2,

is the jump operator defined for

vector-valued fields on interface I'|, and
()N =8P () NV 432 ():-N®  is  the
weighted average flux operator. Furthermore,

0" =1 -7\ is the flux weight and N s the

K

outward unit normal vector in the reference



configuration to domain Q" R and

1
T, —( 4 1(2)) is the stability or penalty tensor.

The reader is referred to the Appendix for the details

about the stability tensor r ) and its definition. The

stability tensor is obtained by transforming a mixed
Lagrange interface formulation into a primal
formulation where the Lagrange multiplier field is
condensed using Variational Multiscale (VMS)
ideas. The VMS approach facilitates the derivation
of stabilized formulations via numerically modeled
fine-scale fields [25]. Employing rational localized
modeling assumptions to the fine scales results in
analytical expressions for both the fine scale and the
Lagrange multiplier fields. These analytical
expressions are substituted back in the coarse scale
formulation to obtain a primal interface debonding
formulation with enhanced stability.

3. Derivation of Weak Form and Euler-
Lagrange Equations

The weak form of combined bulk elastoplasticity
and interface damage is developed from time
discretization of the evolving total free energy and
dissipation functionals. Ortiz and Stainier [32] have
shown that the classical incremental forms from [31,
37] can be recast within broader variational
formulations. Hence, the bulk -elasto-plastic
contribution will be summarized here and
specialized within Section 4.1. Emphasis is placed
on the interface contribution and the effect of the
elastoplastic model on the numerical flux.

The total free energy P at time ¢ is expressed

1] and

Discontinuous Galerkin treatment along I", [25]:

through a Hu-Washizu principle in Q [3

2

P ¢ P ¢

a=1
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a=1
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where P is the external energy function. The total

dissipation up to the time ¢ can be obtained by
evaluating the integral of the combination of the
dissipation functionals and yield functions
associated with plastic and damage processes:

L D ?5,Q§)]dl/d(§ ®)

£ D ;,Qg)]dAdg 9)

where ;/(') and f O are the consistency parameter
and yield function for plasticity and damage,

respectively. The history of the state variables over

the time interval [O, tn] is assumed to be known.

The unknown state variables y ,  at time

t,., =t,+At are targeted, and compact notation is

n+l
adopted for them along with the yield functions and
elastic energy:

Zoo =85 20070 (10)
20 = F LN el A ] (1
Lo = &t A7 (12)
L= 2,000 ] (13)
fh=rT,.00 ] (14)
e =yt (F L) (15)

Backward Euler time discretization is applied to
each of the terms in the dissipation functionals,
exempting the plastic flow rule which is evaluated
by the backward exponential integrator in
anticipation of volume-preserving plastic flow.
Treatment of bulk plasticity is referred to [34] while
the interface damage emerges similarly as in [25]:

L ¢ c

o 2, (B, 1) a-2r fY, (16)
- 5+1 (“5+1 1)dV

L ¢ v L

+_[ n+l n+] )_A?/dflil (17)
_Qnd+1 ’ (a;j‘Fl n+1 )dA



where Apy™* =" At are incremental consistency
parameters. A discrete functional for free energy
P x at time ¢, is obtained similarly as the sum

of the free energy P x | at ¢,, and the

incremental dissipation during time [z, 7,,,]:

P P L ¢
‘ (18)
ra)-L L ¢ L
The stationary conditions of P yx are

obtained by the variational derivative of (18) with
respect to each of its arguments, leading to weak
(integral) statements of each governing equation for
the domain and interface fields. These results are
recorded for plasticity alone in [31, 37] and for
hyperelasticity and interface damage in [25]. For
conciseness and consistency with our previous
developments, the bulk stress terms are defined in
terms of the first Piola-Kirchhoff stress. A crucial
outcome of the Hu-Washizu treatment of the bulk
term is that the evaluation of the first Piola-

Kirchhoff stress P‘*’ is decoupled from the update

n+l

of the interface debonding ¢ Hence, typical

n+l*
return mapping algorithms for plasticity can be
utilized at collocation (numerical quadrature) points
within the bulk and the interface. The pertinent
Euler-Lagrange equations are obtained from
applying integration by parts to the bulk equilibrium
equation and localizing the integrals on I', to

discrete quadrature points along the interface
segments y :

Vy PD+p 9B =0 in Q° (19)
}31(1)1 N(1)+P(2) N(Z) 0 on 1—-[ (20)
i;ﬁ j ) onT, 1)
$u =8¢, A0, fyy  on T, (22)
05,,+1 —a +A;/ 6 f,7+1 on T, (23)

S < AP 20, fAAr'=0 onT,  (24)

where (19) is the statement of equilibrium in the
bulk, V,
the body force in the reference configuration, and
P= FPT(OI)F T(@) 5~ pp- T(Ot)1

n+l n+l

- is the divergence operator, p'“ B is

is evaluated hereafter

using a generic return mapping algorithm, given for
example in Section 4.1. The equations (20) — (24)
represent the interface traction equilibrium,
interface gap constraint, interface damage flow rule,
interface softening relation, and Kuhn-Tucker
consistency condition for damage/softening. The
evaluation of (22) and (23) at interface quadrature
points in terms of the numerical flux 7,,, obtained

from (6) using P'® is described in Section 4.2.

Note that the evaluation of the numerical flux via the
elastoplastic stress tensor was also derived for small
strain [21, 22] and finite strain [26] Discontinuous
Galerkin formulations without debonding.
Employing weak enforcement of the variation

OP gy nn)=0 and collocation at quadrature

points for all other relations, we arrive at the
variational Discontinuous Galerkin weak form of
elastoplastic damage which is stated as follows:

Find {¢}.42}eS S such that for all

+1°Fn+1

ey v
R($“a)=0=3P ¢
a=1

+ng(a; X’I(a) Pn(fl) :' ar

+_[ wet M, (25)
+fr,[’s (u¢ I -1, d4
( ¢n+l _Cn+l)'

+'[r' {(Van A, ) . N} d4

where the first elasticity tensor of material moduli
A@

n+l1

is given in the Appendix. The appropriate

functional spaces are contained in (26) and (27).

s g e[m ()]
det(F(“) () >0, (26)
¢(a) ponr, — X(a)}
vy @ e [H; (QW))]"’“ :
' 27
”‘(’a) r“nr, - 0}




4. Constitutive Model and Time Integration
for Elastoplasticity and Damage

We summarize the important steps of the return
mapping scheme and Hencky material model that
are used for a prototypical elastoplasticity
algorithm. These constitutive assumptions help
simplify the stress update by allowing infinitesimal
strain predictor/corrector algorithms to be extended
into the finite strain range [37, 38]. The resulting
stress update will provide the input for the
computation of the numerical fluxes appearing in
the Discontinuous Galerkin (DG) interface terms.
As an additional contribution herein, the interface
constitutive models and corresponding return
mapping for triangular TSL are extended to extrinsic
trapezoidal TSL. The new TSL has a material
parameter for changing the shape of the TSL to
include ductile interface effects. The reader is
referred to the Appendix for the linearization of the
weak form.

4.1. Hencky material model and elastic
deformation gradient return mapping scheme

A quick summary of the elastoplastic constitutive
models is presented. The reader is encouraged to see

[37] for details. Let V° be the elastic left stretch
tensor and R° be the elastic rotation tensor
according to F°=V°R°, B°=F°F, and the
&=V

1

:ElnBe. Consider a finite strain-based extension

Eulerian logarithmic elastic strain

of linear elastic law that is presented using Hencky
hyperelastic model with a strain energy function

w* =3¢ :C:& . The moduli C has the form of the

and the
=C:&° has a linear

infinitesimal isotropic elastic tensor,

Kirchoff stress 7

relationship with logarithmic strain. Similarly, the

yield function : T =fP (Z ,Q") follows in

a manner that is consistent with the transformation
between the stress measures.

Next, the elastic deformation gradient update (28)
- (29) is obtained by using the multiplicative split
(1) and plastic deformation gradient backward
exponential integration expression:

F,=F,FR
~ 28
exp [—A "o, (28)
F,=F,(F) =1+o [ad] (29
where the incremental displacement

Au=¢(X.1,,)-9(X.1,).

The trial state of the elastic deformation gradient
and plastic hardening variable in (30) and (31)
results from enforcing (28) with Ay? =0.

EL = FF; (30)
@ =a) (31)

The elastic state is accepted as the actual state if
the ensuing trial stress and plastic flow are
admissible, or the return mapping equations (32) —
(34) are solved.

Ezil = F'ne””"“/R:E
~ 32
exp [—A;/p 0, 32)
@b, =+ A0, (33)
B II]:‘:’l < Oa AJ/p 2 05 anA]/p :O (34)

Plastic isotropy is assumed, which implies the

and 0, are coaxial. Under
V¢ and
&~ commute allowing for the simplification of

(32) to arrive at (35):
Ve, =V exp|-Arta, (35)

Kirchoff stress 7

elastoplastic isotropy (zero plastic spin),

We arrive at a much simpler equation (36) by
taking the tensor logarithm of both sides. Notice that
(36) is expressed in terms of Eulerian logarithmic
strain tensors.

ea=e, " -Ay0, T INED
Therefore, return mapping equation of the finite
strain incremental problem (43) is similar to
backward return mapping algorithms of the
infinitesimal theory. We adopt a von Mises yield
function with linear isotropic hardening as the
prototypical plasticity model herein, with material
parameters identified in Section 5. The detailed
return mapping algorithm is described in Table 1.



Table 1: Integration algorithm for von Mises plasticity in Hencky elasticity material

STEP 1: Given the incremental displacement Au
STEP 2: Update the deformation gradient
F, =1+V, [Au], F.,=F,F,

STEP 3: Compute the elastic trial state
B = exp[2s§]

B = F,B; (F,)
R I R e
e =a)
T v (&), o =0
IF, T ")<0 THEN
set )", and EXIT
ELSE

ENDIF
STEP 4: Return mapping with T

e
n+l1

ve(e

solve for &°

p p
n+l2 an+1 and A7/
e
n+l

_ e trial P ~
e, —& ™ +AyO, T

p
a - oY

p_ p
n+l an A7 a \T

STEP 5: Update the first Piola-Kirchhoff stress
P

n+l

J

T

=T

Plastic evolution step: Proceed to STEP 4

(37

(3%
(39

(40)

(41)
(42)

p trial
n+l

)

a"l//p (a

p
n+l

p
n+l1

),

=0y’ (a

)

(43)

(44)

4.2. Interface constitutive models and
corresponding return mapping

We depart from the discussion of the plasticity in
the bulk and turn to the damage constitutive
behavior of the interface. We extend the earlier
developments of triangular TSL in [25] to extrinsic
trapezoidal TSL that is more suitable for ductile
fracture. The extrinsic trapezoidal TSL does not
have compliance issues associated with the common
trapezoidal TSL.

A return mapping algorithm for the extrinsic
trapezoidal TSL in Figure 2 is developed for
modeling interfacial damage. Similar to [10, 11, 39],
it is assumed that certain fracture processes belong
either to forward region or wake region of the TSL.
Let G, be the total cohesive fracture energy

required for creating a new crack surface. The
cohesive energy associated to the forward region is
known as the extrinsic cohesive fracture energy I'™
while intrinsic fracture cohesive energy I'™ is
associated to the wake such that
rmu ' . We remark that the intrinsic and
extrinsic cohesive fracture energies herein have
separate meanings from those directly associated to
the intrinsic or extrinsic cohesive zone methods.

region,
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Figure 3. Triangular separation law

The reader is first referred to [25] for details of the
return mapping algorithm developed for triangular
TSL in Figure 3. An isotropic yield function is
assumed, such that the single hardening variable is
given by Q. Herein, an extension of the triangular
TSL model is done by adding a plateau condition to
the hardening law for when the norm of the residual

gap ¢ = ||C || is less than the transition gap constraint
¢, » while the interface gap evolution remains as an

associative flow rule according to normality [25]:

[ o, [£. <&, (forward dam.)
( v [¢,]|<¢. (wake dam.) (45)
0, ¢ < ening)
¢ (46)

where H, = PL/(Q'C —é’b) is the softening slope,
P, is the critical debonding traction magnitude in
the reference configuration, and ¢, is the maximum
residual opening. The transition gap constraint ¢,

serves as a material parameter for changing the
shape of the TSL to represent ductile damage. By
substutituting (22) — (23) into the consistency
condition (24) and accounting for normality [25],
the incremental consistency parameter Ay can be

obtained as follows:

0= =| ,mn (R-01,)
— [l (P -0!)+a0!,

n+l

(47)

where the hardening increment AQ’,, comes from
evaluating the damage conditional (45) with Ay®.

Crucially, the trial interface flux T\ ={P, N}

n+l n+l
( ¢n+l

from the last converged step and the current value of

+||T

s

—Cn) involves the interface gap ¢,
the deformation map @) and stress tensor P“ on

each side of I',, with the latter evaluated using
trzal — ||Tt11al ( d)

Table 1. Lastly, defining f, ol
we combine (45) and (47) to find Ay* for all stages

as well as the updated interface gap:
55

Ayt =1 L5 (e - 1.), Cb

s /(”73"_ C), é/cg

n+l
4«’”] _ +Aj/ Tmal/"Tmal

n+l n+l

cn

(49)

Remark: While an isotropic damage model has
been considered (accounting for contact under
compression as in [25]), more general TSL could be
envisioned for this formulation. The extrinsic
trapezoidal TSL was chosen since the shape can be
varied to model either ductile interface behavior or
brittle interface behavior through one parameter.
Additionally, generalized isotropic plasticity models
with segmented hardening curves could be utilized.
Note that, similar to trapezoidal CZM, the plasticity
hardening curve must not plateau or soften prior to
reaching the critical stress in order to ensure global
stability and uniqueness of the numerical solution.



5. Numerical Results

In this section, we investigate the performance of
this method using a patch test of a 3-dimensional
rectangular block and a compact tension specimen
test. The bubble functions used for evaluating the
stability tensor of three dimensional meshes are
presented in [40], and all calculations are performed
using full numerical quadrature with 8-node trilinear
bulk elements. The plastic hardening behavior is
characterized using the finite strain von Mises flow
theory. The computed global responses of the
materials using the triangular TSL and the extrinsic
trapezoidal TSL are compared for suitability to
model macroscale ductile damage.

5.1. Patch test of a rectangular block
A displacement of 1.5 mm is applied at 70 equal

load steps onto a4 mm x 2 mm % 1 mm block shown
in Figure 4. The block is discretized into 8 linear
hexahedral elements as in Figure 5; symmetry
conditions are applied on the surfaces x =0 and
y=0, and all surfaces are constrained from

deforming along the z direction. We assume cracks
initiate and grow at the middle plane only. For this
reason, interface elements are only inserted at the
middle plane [41]. We remark that interface
elements could be inserted on all solid elements
faces for problems where crack initiation and
growth are not known a-priori [42]. The Hencky
hyperelastic material model with material properties
specified as E=100MPa and v =0.25, yield stress

is o, =5MPa and the plastic modulus K =20MPa

is used.

e 2 mm —3(¢)

5(1)

Figure 4. Problem domain and boundary condition

Figure 5. Finite element mesh

A TSL shape parameter study is performed using
two test cases, each comparing the total reaction
force versus applied displacement ( f — &) relation
of an extrinsic trapezoidal TSL to two triangular
TSLs. The first triangular TSL is produced by
setting £, =0 while retaining the cohesive fracture

energy, and the second triangular TSL retains only
the intrinsic cohesive energy (energy in wake region
only) of the trapezoidal TSL. The interface material
properties for all test cases considered are presented
in Table 2. We remark that, due to the variational
consistency of the formulation as shown for elastic
and plastic models [17, 22], the computed interface
gap prior to damage (yet before and after bulk
plasticity develops) vanishes to machine precision.

Table 2: Interface constitutive material properties

First case P, <, ¢, G,
(MPa) (mm) (mm) (KJ /m? )

Trapez. 5.5 0.1 1.1 33

Triang.-A 5.5 0.0 2.2 33

Triang.-B 5.5 0.0 1 2.75

Second

case

Trapez. 7.0 0.3 0.8 4.4

Triang.-A 7.0 0.0 1.1 4.4
Triang.-B 7.0 0.0 0.5 1.75

Figure 6 shows the force-displacement plot
obtained from all TSL models in the first test case.
Essentially, the bulk and interface responses of the
body are in series with each other. The block first
stretches elastically and then plastically while the
interface is bonded. Then, the interface begins to
debond and the block unloads elastically. The
plastic hardening is noticeably small because of the



small difference between the yield stress and critical
stress chosen for this example. The f —& relation is

the same from all the TSL types considered when
the stress is lower than the critical value.

14
—&— trapezoidal TSL (Ge=3.3 KJ/m?)
12 — * — triangular-A TSL (Ge=3.3 KJ/m?)
— ® — triangular-B TSL (Gc=2.75 KJ/m?)
10
Z 3
@
=
S 6
4
2
0

0 0.5 1
applied displacement (mm)

1.5

Figure 6. Global material response, first test case

The ductile fracture behavior (sustained force
during increased deformation) is more noticeable in
the trapezoidal TSL while the triangular models
exhibit more brittle behavior. The difference in the
shape of the TSL and the fracture energies are
responsible for the difference in material responses;
the total area under the curve of the triangle-A and
trapezoidal case appear similar, in agreement with
the shared G, parameter.

Figure 7 shows the global material response
obtained from all TSL models in the second test
case. The effect of the choice of the TSL shape
parameters on the global force-displacement results
is more noticeable than in the first case. In the
second test case, the solid elastoplastic material
properties of the first case are retained while
changes are made to the interface properties. The
critical stress is higher than the value in the previous
example. This allows the material to plastically
deform more than the first test case before damage.
The reduction in the reaction force of the triangular-
A TSL is more gradual than the other models.
Meanwhile, the trapezoidal and triangular-B TSL
exhibit rapid force reduction due to the conversion
of elastic energy in the blocks into dissipated
fracture energy at the interface.
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Figure 7. Global material response, second test case

For interface models with the same fracture
energy, the trapezoidal TSL represents a more
realistic experimental ductile fracture result because
it permits more work of separation to be captured by
the forward region of the TSL. However, there does
not appear to be a restriction on the form of the TSL
that the DG method can accommodate.

5.2. Force-displacement predictions for cracked
CT specimen

The accuracy of the DG method is examined in
comparison with a fracture analysis using the Park-
Paulino-Roesler (PPR) cohesive zone model (CZM)
[43] as implemented in the WARP3D code [44]. For
the analysis domain, a coarse finite element mesh of
a CT specimen having one layer of solid elements
over its thickness and constrained at the surface with
z=0 (analogous to a plane stress) is used from a
benchmark in the WARP3D code, as shown in
Figure 8. The CT specimen dimensions are W = 50.8
mm, B=0.5715 mm and a/W = 0.24, and it contains
1744 solid elements with 76 interface elements
inserted along the direction of crack growth; note
that both CZM and DG can be implemented via
interface elements [45]. The material properties are
specified as E=71.66GPa, v=0.3, yield strength

o, =345GPa, and plastic modulus K =170 MPa ..



Figure 8. CT specimen, coarse FE mesh

The Discontinuous Galerkin interface conditions
are P. = 600GPa, ¢, =0.001mm, and

¢, =0.0042mm. A PPR model with interface
conditions having equivalent cohesive fracture
energy G, :39.63K.]/m2 is used for comparison.

The cohesive zone model is described using
P, =600GPa, initial slope 4=0.2 and separation

curve shape o =20. Note also that the isotropic
plasticity model in WARP3D is expressed through
a hypoelastic formulation based on the Green-
Naghdi objective stress rate; the CT specimen
strains remain small so that this difference is
expected to minimally impact the results, which was
confirmed from infinite toughness simulations.

A monotonic vertical displacement is applied to
the center node of the upper-left stiff-elastic pin in
the CT specimen, and the computed reaction versus
the displacement (measured center to center of the
pins) is reported in Figure 9. The f —¢& results from
both methods are close even for a coarse mesh. The
lower force produced from the CZ method in the

initial elastic region (f <0.6 kN) is attributed to

artificial compliance of the CZM method. The later
difference in the results from the two methods after
plasticity and damage accrue is attributed to both the
artificial compliance and the different shapes of the
PPR and trapezoidal TSL, most likely to the latter as
in[13-15].
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Figure 9. CT specimen, force vs. displacement response

6. Conclusions

This method extends our previous work for
modeling quasi-static and dynamic damage to
enable elastoplastic deformation before damage.
This paper derives the Discontinuous Galerkin
method from the free energy and dissipation
functional and relies on the assumption that the free
energy can be decomposed to the elastic and plastic
processes in the material domain and localized
damage processes at the interface. The distinctive
features of the formulation are the treatment of the
nonlinear constitutive updates of the internal
variables in both the bulk domains and interface, and
the treatment of numerical flux at the interface for
large strain plasticity. We extend the return mapping
algorithm of a triangular TSL to an extrinsic
trapezoidal TSL that is free from artificial
compliance issues and suitable for modeling ductile
damage processes. The new TSL allows either
brittle or ductile interface behavior in an
elastoplastic deforming body by varying a single
material parameter. This will provide the capability
of the method to model macroscale ductile interface
fracture or brittle intergranular separation in
plastically deforming microstructure. The results
from the patch test show that the method can
accommodate other TSL forms. The comparison of
the results from the method to those from the
cohesive zone method produced from modeling CT
specimen crack example shows that the method
produces physical and meaningful results on coarse
meshes.
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Appendix

Stability tensor

(a)

The stability tensor 7.* is defined locally along

segments y, of the interface ', according to the

following expressions (with notation given in [36,
40]):

7' =[ meas(y, )T (j/ b dA)2 T

(50)

nal - (51

VB AYY b dV}

[N

b E, is supported

J=1"5

where the bubble b(") Z

on a sector @ and E, are the reference frame

Cartesian basis vectors. The bubble functions 5{*’
are higher order polynomials that vanish on the
boundaries of the sector @f“) that are not in contact

with segment y,, V() denotes the gradient with

respect to the reference coordinate, and

A =d’y* [dF)dF.%

N is the first elasticity
tensor of material moduli, computed as the total
algorithmic derivative of the associated strain
energy density function. An expression for A in
component form is provided in [37] along with the

model-specific stress derivative dr,,, /dF,,, :

d
A, =L pt_p pE

iliJ d F ik I
M

(52)

Perhaps the most attractive feature of this

stabilized definition of T as described in our
previous works [36, 40] is that the stability
parameter z{* is systematically derived and

accounts for the variation of material properties and
element geometry adjacent to the interface. The

derivation that led to the analytical solution of z(*

in (50) relies on variational multiscale ideas where
the displacement field is decomposed into coarse
and fine scales. The analytical solution of the fine
scales is substituted into the coarse scale problem to
provide a stabilizing effect to the formulation.
Herein, we follow additional steps as in [22] for
accommodating history dependent plastic material
response by treating the fine scales as small
perturbations about the current coarse scale
deformation. Further details on computing z{* are
presented in [22, 36]. Note that the novel
contribution herein is to extend the small strain
plastic formulation of [22] to large strains in
combination with evolving interface debonding ¢ .

Remark: Notice that the stability tensor depends on
the first elasticity tensor which introduces the effect
of evolving geometric and material nonlinearity
properties of the adjacent elements into evolution of

7{?. The softening of the tangent tensor during

prolonged plasticity can affect the stability of the
method, particularly when the interface begins to
debond and the bulk responds incrementally
elastically. Herein, the initial elastic tensor is
employed in order to guarantee positive definiteness
of the stability tensor '* for all timesteps [22].

Weak form linearization

For completeness, the linearization of the weak
form (25) can then be expressed as follows; the
reader is encouraged to consult [25] for details:

K( @ Ay ¢(a))
Z o Vel AV (A ) Y
+-[r, n, ||| Au d4

+J‘ n, -{[A:VX(Auﬂ-N}dA
+J V,n,:A)-

+Irl{[VXnn HOR VN (Au)}-N}'( ] —f)dA

(53)
} Au dA4

| 7 -
T, Lot , . ]

where the subscript #n+1 has been suppressed, and
E=dA"/dF? is a sixth order tensor of material

n+1 n+l

moduli, as well as 7 is an incremental interface
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) is the linearized damage

tensor expression according to:
L] A .

] .

(54)

0 a d _aAyd
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(55)
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In most cases the term involving E can be neglected
with only a minor reduction in the convergence rate
of the Newton iterations residual norm.
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