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Abstract 

A framework is developed for modeling ductile damage of nonlinear materials whose plastic deformation is 

characterized using rate independent classical plasticity. This method relies on the assumption that the free energy can 

be decomposed into elastic, plastic and damage parts. A thermodynamically consistent method is derived which 

satisfies the second law of thermodynamics in the Clausius-Duhem inequality form. The dissipation associated with 

plasticity takes place in the domain only, while damage dissipation is localized to the interface. The method is 

developed using Variational Multiscale ideas to obtain definitions of the interface fluxes within a primal formulation 

analogous to the Discontinuous Galerkin method, which ensures weakly vanishing interface gap prior to reaching a 

damage initiation criterion. The local nonlinear problem to calculate both plastic deformation gradient and damage 

variable follows an incremental approach similar to classical plasticity return mapping algorithm. This elastoplastic 

damage formulation is developed for material undergoing finite strain, and it naturally accommodates a trapezoidal 

traction separation law (TSL) whose shape can be varied to model either ductile interface behavior or brittle interface 

behavior. The formulation’s performance is assessed through modeling a patch test and a compact tension specimen. 

Key Words: Finite strains, Variational Multiscale method, Discontinuous Galerkin, Computational inelasticity, 

Debonding 

 ____________________________________________________________________________ 

1. Introduction 

The results from tensile experiments show that 

typical metals lose their load carrying capacity and 

undergo ductile fracture during tensile loading. 

Experimental techniques to quantify damage 

parameters for materials undergoing elasto-plastic 

damage behavior are not trivial. With computational 

tools playing an ever-increasing role in the study of 

mechanics of materials, computational models are 

now being developed and employed to capture and 

quantify elastoplastic damage processes in 

engineering materials. At present, there is no general 

agreement among researchers as to whether damage 

should be modeled as localized or diffused cracks in 

a ductile material. 

The global approach to fracture consists of 

methodologies which assume that fracture can be 

described by a single parameter [1, 2]. One example 

is the path independent contour J-integral method 

which was first presented by Rice [3, 4] for analysis 

of cracks in nonlinear materials where an elastic-

plastic deformation is idealized as nonlinear elastic. 

The J contour integral method enjoyed early 

acceptance for use as a fracture criterion for crack 

tip conditions in elasto-plastic materials [5], but the 

method is known to break down when there is a 

combination of significant plasticity and crack 

growth. Also, this method could only be applied to 

model preexisting cracks. These limitations have 

also been found in approaches employing crack tip 

opening displacement (CTOD) as a fracture 

criterion. Another methodology is the continuum 

damage mechanics method which is a 

phenomenological approach to fracture and relies on 

the continuous description of damage where a scalar 

or tensorial damage variable is related to the 

material characteristic properties. These methods 
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are based on the early developments of Kachanov 

and Lemaitre [6]. Later, this method was posed in 

[7] as a consistent thermodynamic framework that 

guarantees that dissipation is always positive.  

A group of methods categorized under the 

methodology of local approach to fracture were 

developed to provide a detailed and physically based 

description of damage phenomena in the rupture 

process zone. The Gurson or Gurson-Tvergaard-

Needleman (GTN) model and the cohesive zone 

method fall into this category [1]. The Gurson model 

describes ductile damage using crack nucleation, 

growth and coalescence as the three consecutive 

processes that occur during material damage. The 

inaccuracies in the representation of fracture and 

void growth predicted by the earlier Gurson model 

led to the improvement of the yield surface 

expression for Gurson model to arrive the GTN 

model that is free from these limitations [8]. See [1, 

2] for reviews of current extensions of the method. 

Though the Gurson model was derived from 

rigorous micromechanical analyses, thermodynamic 

framework which guarantees that the dissipation is 

always positive is only possible when the void 

nucleation is absent [9].  

The cohesive zone model (CZM) accounts for the 

processes occurring within the fracture process zone 

through the traction separation law (TSL), and 

attempts have been made to classify the damage 

mechanisms in the fracture process zone based on 

forward and wake regions of the TSL [10, 11]. 

Several TSL shapes exist in the literature, and it has 

been recently argued that the TSL shapes affects the 

prediction of ductile fracture behavior [11-13]. The 

intrinsic CZM type is known to have stability issues 

due to artificial compliance of the interface [14, 15]. 

This artificial compliance is associated with the 

large elastic penalty coefficient assigned to the 

traction-separation curve to approximate a perfect 

interface bond below the crack initiation threshold 

traction. Setting large values to the coefficient leads 

to large eigenvalues in the global stiffness [16]. The 

artificial compliance could be eradicated by using 

extrinsic CZM. Unfortunately, the extrinsic CZ 

approach requires data structures that permit mesh 

adaptivity to insert these elements [16]. 

The Discontinuous Galerkin (DG) formulation 

overcomes both problems associated to CZM by 

weakly enforcing displacement field continuity and 

representing TSL using a relation instead of a 

function [17]. The Discontinuous Galerkin method 

has been used to enforce continuities in nonlinear 

materials with large deformations [18, 19], plasticity 

[20-22], microscale modeling [23], and damage [17, 

24, 25]. To the best knowledge of the authors, this 

paper presents for the first time the development of 

a Discontinuous Galerkin method for modeling 

ductile damage. It employs the use of extrinsic 

trapezoidal TSL which has not been used previously 

within such formulations to account for processes 

occurring in the fracture process zone.  

In the next section, we discuss the variational 

characterization of elasto-plastic-damage response 

and evaluation of the stability tensor. We derive the 

weak form from the free energy and dissipation 

functionals in Section 3. In Section 4, constitutive 

update equations are developed for both bulk 

plasticity and interface damage that appear within 

the DG numerical flux terms, and the mathematical 

differences between the recently developed return 

mapping algorithm of the extrinsic trapezoidal TSL 

and a triangular TSL are presented. The 

linearization of the weak form is also presented. The 

performance of the method is evaluated using a 

patch test and a ductile damage simulation on a 

coarse finite element mesh of a compact (CT) 

specimen in Section 5. Finally, conclusions are 

drawn in Section 6. 

2. Variational Characterization of Elasto-

Plastic Damage Response   

We begin our developments by treating the case 

of an evolving interface gap at the interface 
I  

embedded within a body sdn
  undergoing an 

elasto-plastic finite deformation. The domain   is 

divided into two regions 
( )

  by the interface 
I  

as shown in Figure 1 where  =1,2. The two regions 

deform according to the motion ( )( ) ,t
X  that 

maps the reference configuration to the current 

configuration ( )( ) ,t=x X .  
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Figure 1. The multiplicative decomposition of 

deformation gradient F  in domain   divided into two 

regions 
( )

  by the interface 
I  

We allow the deformations ( )  to be distinct 

along the interface 
I  to accommodate the 

existence of the interface gap or debonding ζ . Let 

( ), Xt = =  F X x x X  be the deformation 

gradient that has a multiplicative decomposition into 

an elastic part e
F  and plastic part p

F  as follows: 
e p e p, det >  0, det >  0=F F F F F  (1) 

The Helmholtz free energy   of the domain can 

be decomposed according to [22, 25, 26] into a bulk 

contribution 
 and an interface contribution  

 as 

follows:  

( ) ( ) ( )p p e p p p, , ,   = +F F α F F α  (2) 

( ) ( )d d d  =α α
 

(3) 

where the bulk contribution is additively split into 

an elastic ( )e p, F F  and plastic ( )p p α  part, as 

is typically assumed for elastoplastic damage 

theories [27, 28]. Within these expressions, 
p

α  is 

the strain-like plastic hardening variable in the 

domain while 
d

α  is the damage hardening/softening 

parameter at the interface within the damage free 

energy ( )d d α . 

The framework of rational thermodynamics is 

adopted as in [29, 30] where for an isothermal 

condition, the Clausius-Duhem dissipation 

inequality at the domains can be written in terms of 

the first Piola-Kirchoff stress tensor [31, 32] or the 

Mandrel stress [33, 34]. Here-in, we follow the latter 

approach in accordance with the additive split (2) 

whereby the plastic dissipation is expressed as:  
p p p p ( ): : 0 in , 1,2 = −    =Σ L Q α  (4) 

where ( )e

e e p2 ,= 
C

Σ C F F  is the Mandel stress 

with 
e eT e=C F F , p p p-1=L F F  is the plastic part of 

the velocity gradient tensor, and ( )p

p p p= −
α

Q α  

is the  stress-like work conjugate flux of  
p

α . 

We limit the discussion of this method to dissipative 

processes governed by associative flow rule where 

the domain’s plastic and the interface’s damage 

flows are determined from the respective yield 

function. The deformation gradient and plastic 

hardening are constrained to lie in the closure of 

elastic domain, and the yield function ( )p p,f Σ Q  is 

associated to the stress-space yield surface 

( ) ( ) p p p p: , | , 0f= Σ Q Σ Q . Similar to [25], 

the dissipation inequality at the interface is 

expressed as (5) with yield condition ( )d d,f T Q  

that is associated with the yield surface 

( ) ( ) d d d d: , | , 0f= T Q T Q . 

d d d

I: 0 on=  −   T ζ Q α  (5) 

The p  and d  are the Lagrangian functionals 

associated with plastic and damage dissipation. In 

(5), ( )d

d d d= −
α

Q α  is the  stress-like work 

conjugate flux of  
d

α  and the interface flux T  has 

the connotation of the interface traction field and is 

defined similar to [25] in terms of two quantities 

inspired by variational multiscale developments [35, 

36] as: 

( )  ( )p, s= + −T P F F N τ ζ  (6) 

where 
-T e-T p-T= =P τF F ΣF  is the first Piola-

Kirchhoff stress tensor defined in terms of the 

Kirchhoff stress τ  or the Mandel stress Σ , 

( ) ( )
(2) (1)

= −  is the jump operator defined for 

vector-valued fields on interface 
I , and 

( )  ( ) ( )(1) (1) (2) (2)

s s  =   +  N δ N δ N  is the 

weighted average flux operator. Furthermore, 

( ) ( )

s s s

 = δ τ τ  is the flux weight and 
( )

N  is the 

outward unit normal vector in the reference 
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configuration to domain 
( )

 , and 

( )
1

(1) (2)

s s s

−

= +τ τ τ  is the stability or penalty tensor. 

The reader is referred to the Appendix for the details 

about the stability tensor ( )

s


τ  and its definition. The 

stability tensor is obtained by transforming a mixed 

Lagrange interface formulation into a primal 

formulation where the Lagrange multiplier field is 

condensed using Variational Multiscale (VMS) 

ideas. The VMS approach facilitates the derivation 

of stabilized formulations via numerically modeled 

fine-scale fields [25]. Employing rational localized 

modeling assumptions to the fine scales results in 

analytical expressions for both the fine scale and the 

Lagrange multiplier fields. These analytical 

expressions are substituted back in the coarse scale 

formulation to obtain a primal interface debonding 

formulation with enhanced stability. 

3. Derivation of Weak Form and Euler-

Lagrange Equations 

The weak form of combined bulk elastoplasticity 

and interface damage is developed from time 

discretization of the evolving total free energy and 

dissipation functionals. Ortiz and Stainier [32] have 

shown that the classical incremental forms from [31, 

37] can be recast within broader variational 

formulations. Hence, the bulk elasto-plastic 

contribution will be summarized here and 

specialized within Section 4.1. Emphasis is placed 

on the interface contribution and the effect of the 

elastoplastic model on the numerical flux. 

The total free energy 
t

 at time t  is expressed 

through a Hu-Washizu principle in   [31] and 

Discontinuous Galerkin treatment along I  [25]:  

( ) ( )( )

( ) ( )( )( )

( ) ( ) ( )( )( )

( )

( ) ( )

( )

2
p p d

1

2
p p

1

2

1

1

2

d d

, , , , ,

, ,

:

I

I

I

t t t t t t t ext t

t t t

t X t t

t t t

s t t t t

t

dV

dV

dA

dA

dA









 



  







=




=


=







=

 +
 

 +  −
 

− − 

− −  −

+



 

 







F F α ζ α

F F α

P F

ζ T

τ ζ ζ

α

 





 

 (7) 

where 
ext

 is the external energy function. The total 

dissipation up to the time t  can be obtained by 

evaluating the integral of the combination of the 

dissipation functionals and yield functions 

associated with plastic and damage processes: 

( )p p p p p

0
,

t

t f dV d    


 = −
   Σ Q  (8) 

( )
I

d d d d d

0
,

t

t f dA d    


 = −
   T Q  (9) 

where 
( )


 and 
( )

f


 are the consistency parameter 

and yield function for plasticity and damage, 

respectively. The history of the state variables over 

the time interval  0, nt  is assumed to be known. 

The unknown state variables 
1n+χ   at time 

1n nt t t+ = +   are targeted, and compact notation is 

adopted for them along with the yield functions and 

elastic energy:  
( ) p d

1 1 1 1: , ,n n n n



+ + + +
 =  χ χ χ  (10) 

p ( ) p ( ) p p

1 1 1 1: , , ,n n n n

  + + + +
 =  χ F F α  (11) 

d d d

1 1 1: , ,n n n + + +
 =  χ ζ α  (12) 

p p p

1 1 1: ,n n nf f+ + +
 =  Σ Q  (13) 

d d d

1 1 1: ,n n nf f+ + +
 =  T Q  (14) 

( )e( ) e( ) ( ) p ( )

1 1 1: ,n n n

    + + += F F  (15) 

Backward Euler time discretization is applied to 

each of the terms in the dissipation functionals, 

exempting the plastic flow rule which is evaluated 

by the backward exponential integrator in 

anticipation of volume-preserving plastic flow. 

Treatment of bulk plasticity is referred to [34] while 

the interface damage emerges similarly as in [25]: 

( )( )
( )

( )

p p p

1 1 1

p p p p

1 1 1

p p p

1 1

:n n n n

n n n n

n n n

t f

dV





+ + +

+ + +


+ +

=

+  −  − 

−  −



, χ

Σ L L

Q α α



 (16) 

( )( )
( )

( )

d d d

1 1 1

d d

1 1 1

d d d

1 1 1

:

I

n n n n

n n n n

n n n

f

dA





+ + +

+ + +


+ + +

=

+  − − 

−  −



, χ

T ζ ζ

Q α α



 (17) 
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where p,d p,d: t  =   are incremental consistency 

parameters. A discrete functional for free energy 

( )1
ˆ
n n+χ  at time 

nt  is obtained similarly as the sum 

of the free energy ( )1 1n n+ +χ  at 
1nt +
 and the 

incremental dissipation during time  1,n nt t + :  

( ) ( ) ( )(

) ( )( )

1 1 1 1 1

p d d

1 1 1 1

ˆ : p

n n n n n n

p d

n n n n n n





+ + + + +

+ + + +

= +

− + −

χ χ ,

χ , χ




 (18) 

The stationary conditions of ( )1
ˆ
n n+χ  are 

obtained by the variational derivative of (18) with 

respect to each of its arguments, leading to weak 

(integral) statements of each governing equation for 

the domain and interface fields. These results are 

recorded for plasticity alone in [31, 37] and for 

hyperelasticity and interface damage in [25]. For 

conciseness and consistency with our previous 

developments, the bulk stress terms are defined in 

terms of the first Piola-Kirchhoff stress. A crucial 

outcome of the Hu-Washizu treatment of the bulk 

term is that the evaluation of the first Piola-

Kirchhoff stress ( )

1n



+P  is decoupled from the update 

of the interface debonding 
1n+ζ . Hence, typical 

return mapping algorithms for plasticity can be 

utilized at collocation (numerical quadrature) points 

within the bulk and the interface. The pertinent 

Euler-Lagrange equations are obtained from 

applying integration by parts to the bulk equilibrium 

equation and localizing the integrals on 
I  to 

discrete quadrature points along the interface 

segments 
s : 

( ) ( ) ( ) ( )

1 inX n o

   +  + = 0P B  (19) 

(1) (1) (2) (2)

1 1 onn n I+ + +  = 0P N P N  (20) 

1 1 onn n I+ +− = 0ζ  (21) 

d d

1 1 onn n n If+ += +  Tζ ζ  (22) 

d

d d d d

1 1 onn n n If+ += +   
Q

α α  (23) 

d d d d

1 10, 0, 0 onn n If f + +    =   (24) 

where (19) is the statement of equilibrium in the 

bulk, X   is the divergence operator, ( ) ( )

o

  B  is 

the body force in the reference configuration, and 
pT( ) -T( ) p-T( )

1 1 1n n n

  

+ + +=P F F ΣF  is evaluated hereafter 

using a generic return mapping algorithm, given for 

example in Section 4.1. The equations (20) – (24) 

represent the interface traction equilibrium, 

interface gap constraint, interface damage flow rule, 

interface softening relation, and Kuhn-Tucker 

consistency condition for damage/softening. The 

evaluation of (22) and (23) at interface quadrature 

points in terms of the numerical flux 
1n+T  obtained 

from (6) using ( )

1n



+P  is described in Section 4.2. 

Note that the evaluation of the numerical flux via the 

elastoplastic stress tensor was also derived for small 

strain [21, 22] and finite strain [26] Discontinuous 

Galerkin formulations without debonding. 

Employing weak enforcement of the variation 

( )1
ˆ , 0n n o + =χ η  and collocation at quadrature 

points for all other relations, we arrive at the 

variational Discontinuous Galerkin weak form of 

elastoplastic damage which is stated as follows: 

Find  (1) (2) (1) (2)

1 1,n n+ +     such that for all 

 (1) (2) (1) (2),o o  η η : 

( ) ( )

( )

( )

( ) 

( )

2
( ) ( ) ( )

1

2
( ) ( )

1

1

1

1 1

1 1

1

, 0

: d

d

d

: d

I

I

I

o ext

X o n

n o

s n n o

n n

X o n

R

V

A

A

A



  



 



=

+


=

+


+ +


+ +


+

= =

 +  

+ 

 + − 
 

− 
+

 











η

η P

T η

τ ζ η

ζ

η N

 





A

 (25) 

where the first elasticity tensor of material moduli 
( )

1n



+A  is given in the Appendix. The appropriate 

functional spaces are contained in (26) and (27).  

( )
( )( )



sd

( )
I

( ) ( ) ( ) 1 ( )

( ) ( )

( ) ( )

\

,

det 0,

n

H



   

 

 

 

 =  
 



=

F

X

 





 (26) 

( )


sd

( )
I

( ) ( ) ( ) 1 ( )

( )

\

,
n

o o o

o

H



   



 

 =  
 

= 0

η η

η

 (27) 
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4. Constitutive Model and Time Integration 

for Elastoplasticity and Damage 

We summarize the important steps of the return 

mapping scheme and Hencky material model that 

are used for a prototypical elastoplasticity 

algorithm. These constitutive assumptions help 

simplify the stress update by allowing infinitesimal 

strain predictor/corrector algorithms to be extended 

into the finite strain range [37, 38]. The resulting 

stress update will provide the input for the 

computation of the numerical fluxes appearing in 

the Discontinuous Galerkin (DG) interface terms. 

As an additional contribution herein, the interface 

constitutive models and corresponding return 

mapping for triangular TSL are extended to extrinsic 

trapezoidal TSL. The new TSL has a material 

parameter for changing the shape of the TSL to 

include ductile interface effects. The reader is 

referred to the Appendix for the linearization of the 

weak form.  

4.1. Hencky material model and elastic 

deformation gradient return mapping scheme 

A quick summary of the elastoplastic constitutive 

models is presented. The reader is encouraged to see 

[37] for details. Let 
e

V  be the elastic left stretch 

tensor and e
R  be the elastic rotation tensor 

according to e e e=F V R , e e eT=B F F , and the 

Eulerian logarithmic elastic strain 
e eln=ε V  

e1

2
ln= B . Consider a finite strain-based extension 

of linear elastic law that is presented using Hencky 

hyperelastic model with a strain energy function 
e e e1

2
: : : = ε εC . The moduli C  has the form of the 

infinitesimal isotropic elastic tensor, and the 

Kirchoff stress e

e e:
ε

= = εC  has a linear 

relationship with logarithmic strain. Similarly, the 

yield function  ( )p p,f Q = ( )p p,f Σ Q  follows in 

a manner that is consistent with the transformation 

between the stress measures. 

Next, the elastic deformation gradient update (28) 

- (29) is obtained by using the multiplicative split  

(1) and plastic deformation gradient backward 

exponential integration expression: 

e e e T

1 1

p p e

1 1

:

exp

n n n

n nf

+  +

+ +

=

 −  

F F F R

R
 (28) 

( )  
1

1:
nn n

−

 += + 
x

F F F = I u  (29) 

where the incremental displacement 

( ) ( )1n n,t ,t+ = −u X X  .  

The trial state of the elastic deformation gradient 

and plastic hardening variable in (30) and (31) 

results from enforcing (28) with p 0 = . 

e e

1 :trial

n n+ =F F F  (30) 

p p

1

trial

n n+ =α α  (31) 

The elastic state is accepted as the actual state if 

the ensuing trial stress and plastic flow are 

admissible, or the return mapping equations (32) – 

(34) are solved. 
e e e T

1 1 1

p p e

1 1

:

exp

trial

n n n

n nf

+ + +

+ +

=

 −  

F F R

R
 (32) 

p

p p p p

1 1 1

trial

n n nf+ + += + 
Q

α α  (33) 

p p p p

1 10, 0, 0n nf f + +    =  (34) 

Plastic isotropy is assumed, which implies the 

Kirchoff stress 
1n+
 and 

p

1nf +  are coaxial. Under 

elastoplastic isotropy (zero plastic spin),  
e

V  and 

p

1nf +  commute allowing for the simplification of 

(32) to arrive at (35): 

e e p p

1 1 1: exptrial

n n nf+ + +
 = −  V V  (35) 

We arrive at a much simpler equation (36) by 

taking the tensor logarithm of both sides. Notice that 

(36) is expressed in terms of Eulerian logarithmic 

strain tensors.  

( )e e p p p

1 1 1 1,trial

n n n n nf+ + + += −  ε ε Q  (36) 

Therefore, return mapping equation of the finite 

strain incremental problem (43) is similar to 

backward return mapping algorithms of the 

infinitesimal theory. We adopt a von Mises yield 

function with linear isotropic hardening as the 

prototypical plasticity model herein, with material 

parameters identified in Section 5. The detailed 

return mapping algorithm is described in Table 1.  
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Table 1: Integration algorithm for von Mises plasticity in Hencky elasticity material 

 STEP 1: Given the incremental displacement u   

 STEP 2: Update the deformation gradient  

    1: , :n n n + = +  =F I u F F F  (37) 

 STEP 3: Compute the elastic trial state   

   e e: exp 2n n
 =  B ε  (38) 

   ( )e

1 :
Ttrial e

n n+  =B F B F  (39) 

 
  

e e e

1 1

1
: ln ln

2

trial trial trial

n n n+ +
   = =   ε V B  (40) 

   p p

1 :trial

n n+ =α α  (41) 

 
  ( ) ( )e p

e e p p p

1 1 1 1: :,trial trial trial trial

n n n n
 + + + +=  = 

α
ε Q α  (42) 

  ( )p p

1 1IF , 0 ΤΗΕΝtrial trial

n nf + + Q  

( ) ( )
1 1

        set : and EXIT,trial

n n+ +
 =   

ELSE  

         Plastic evolution step: Proceed to STEP 4 

ENDIF 

 

   

   

   

 
 

 

 STEP 4: Return mapping with ( ) ( )e p

e e p p p

1 1 1 1: :,n n n n+ + + +=  = 
ε α

ε Q ψ α   

    solve for e p p

1 1, andn n + + ε α   

 

  ( )

( )

( )

p

e e p p p

1 1 1

p p p p p

1 1 1

p p

1 1

, 0

, 0

0
,

trial

n n n n

n n n n

n n

f

f

f





+ + +

+ + +

+ +

 − +  
  

   
− −   =   

   
   

Q

ε ε Q

α α Q

Q

 (43) 

 STEP 5: Update the first Piola-Kirchhoff stress  

  
1 1 1: T

n n n

−

+ + +=P F  (44) 

4.2. Interface constitutive models and 

corresponding return mapping  

We depart from the discussion of the plasticity in 

the bulk and turn to the damage constitutive 

behavior of the interface. We extend the earlier 

developments of triangular TSL in [25] to extrinsic 

trapezoidal TSL that is more suitable for ductile 

fracture. The extrinsic trapezoidal TSL does not 

have compliance issues associated with the common 

trapezoidal TSL.  

A return mapping algorithm for the extrinsic 

trapezoidal TSL in Figure 2 is developed for 

modeling interfacial damage. Similar to [10, 11, 39], 

it is assumed that certain fracture processes belong 

either to forward region or wake region of the TSL. 

Let 
cG  be the total cohesive fracture energy 

required for creating a new crack surface. The 

cohesive energy associated to the forward region is 

known as the extrinsic cohesive fracture energy ext  

while intrinsic fracture cohesive energy int  is 

associated to the wake region, such that 
int ext

cG  = . We remark that the intrinsic and 

extrinsic cohesive fracture energies herein have 

separate meanings from those directly associated to 

the intrinsic or extrinsic cohesive zone methods.  
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Figure 2. Extrinsic trapezoidal traction separation law 

 

 

Figure 3. Triangular separation law  

The reader is first referred to [25] for details of the 

return mapping algorithm developed for triangular 

TSL in Figure 3. An isotropic yield function is 

assumed, such that the single hardening variable is 

given by dQ . Herein, an extension of the triangular 

TSL model is done by adding a plateau condition to 

the hardening law for when the norm of the residual 

gap  = ζ  is less than the transition gap constraint 

b , while the interface gap evolution remains as an 

associative flow rule according to normality [25]:  

b

d

b c

0, (forward dam.)

, (wake dam.)

0, (opening)

n

d

c n

c n

Q H



  



 


=  
 

ζ

ζ

ζ

            (45) 

( )d df=  ζ T  (46) 

where ( )c bc cH P  = −  is the softening slope, 

cP  is the critical debonding traction magnitude in 

the reference configuration, and 
c  is the maximum 

residual opening. The transition gap constraint 
b  

serves as a material parameter for changing the 

shape of the TSL to represent ductile damage. By 

substutituting (22) – (23) into the consistency 

condition (24) and accounting for normality [25], 

the incremental consistency parameter d  can be 

obtained as follows: 

( )

( )

d d

1 1 1

d d d

1 1

0 n n c n

trial

n s c n n

f P Q

P Q Q

+ + +

+ +

= = − −

= −  − − + 

T

T τ
 (47) 

where the hardening increment d

1nQ +  comes from 

evaluating the damage conditional (45) with d .  

Crucially, the trial interface flux  1 1

trial

n n+ +=T P N

( )1s n n++ −τ ζ  involves the interface gap 
nζ  

from the last converged step and the current value of 

the deformation map 
( )

1n



+  and stress tensor ( )

1n



+P  on 

each side of 
I , with the latter evaluated using 

Table 1. Lastly, defining ( )d

1 1

trial trial

n n c nf P Q+ += − −T , 

we combine (45) and (47) to find d  for all stages 

as well as the updated interface gap: 

( )

( )

1 b

d

1 b c

1

,

,

,

trial

n s n

trial

n s c n

trial

n s c c n

f

f H

H



  



+

+

+





 = −  


− 

τ ζ

τ ζ

T τ ζ

 (48) 

d

1 1 1

trial trial

n n n n+ + += + ζ ζ T T  (49) 

Remark: While an isotropic damage model has 

been considered (accounting for contact under 

compression as in [25]), more general TSL could be 

envisioned for this formulation. The extrinsic 

trapezoidal TSL was chosen since the shape can be 

varied to model either ductile interface behavior or 

brittle interface behavior through one parameter. 

Additionally, generalized isotropic plasticity models 

with segmented hardening curves could be utilized. 

Note that, similar to trapezoidal CZM, the plasticity 

hardening curve must not plateau or soften prior to 

reaching the critical stress in order to ensure global 

stability and uniqueness of the numerical solution.  
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5. Numerical Results 

In this section, we investigate the performance of 

this method using a patch test of a 3-dimensional 

rectangular block and a compact tension specimen 

test. The bubble functions used for evaluating the 

stability tensor of three dimensional meshes are 

presented in [40], and all calculations are performed 

using full numerical quadrature with 8-node trilinear 

bulk elements. The plastic hardening behavior is 

characterized using the finite strain von Mises flow 

theory. The computed global responses of the 

materials using the triangular TSL and the extrinsic 

trapezoidal TSL are compared for suitability to 

model macroscale ductile damage. 

5.1. Patch test of a rectangular block  

A displacement of 1.5 mm is applied at 70 equal 

load steps onto a 4 mm × 2 mm × 1 mm block shown 

in Figure 4. The block is discretized into 8 linear 

hexahedral elements as in Figure 5; symmetry 

conditions are applied on the surfaces 0x =  and 

0y = , and all surfaces are constrained from 

deforming along the z  direction. We assume cracks 

initiate and grow at the middle plane only. For this 

reason, interface elements are only inserted at the 

middle plane [41]. We remark that interface 

elements could be inserted on all solid elements 

faces for problems where crack initiation and 

growth are not known a-priori [42]. The Hencky 

hyperelastic material model with material properties 

specified as E 100 MPa=  and 0.25 = , yield stress 

is 5MPay =  and the plastic modulus K 20MPa=

is used.  

 

Figure 4. Problem domain and boundary condition 

 

 

Figure 5. Finite element mesh 

A TSL shape parameter study is performed using 

two test cases, each comparing the total reaction 

force versus applied displacement ( f − ) relation 

of an extrinsic trapezoidal TSL to two triangular 

TSLs. The first triangular TSL is produced by 

setting 
b 0 =  while retaining the cohesive fracture 

energy, and the second triangular TSL retains only 

the intrinsic cohesive energy (energy in wake region 

only) of the trapezoidal TSL. The interface material 

properties for all test cases considered are presented 

in Table 2. We remark that, due to the variational 

consistency of the formulation as shown for elastic 

and plastic models [17, 22], the computed interface 

gap prior to damage (yet before and after bulk 

plasticity develops) vanishes to machine precision. 

Table 2: Interface constitutive material properties 

First case cP  

(MPa) 

bζ  

(mm) 

cζ  

(mm) 

cG  

( )2KJ/m  

Trapez.  5.5 0.1 1.1 3.3 

Triang.-A  5.5 0.0 2.2 3.3 

Triang.-B 5.5 0.0 1 2.75 

Second 

case 

    

Trapez. 7.0 0.3 0.8 4.4 

Triang.-A 7.0 0.0 1.1 4.4 

Triang.-B 7.0 0.0 0.5 1.75 

 

Figure 6 shows the force-displacement plot 

obtained from all TSL models in the first test case. 

Essentially, the bulk and interface responses of the 

body are in series with each other. The block first 

stretches elastically and then plastically while the 

interface is bonded. Then, the interface begins to 

debond and the block unloads elastically. The 

plastic hardening is noticeably small because of the 
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small difference between the yield stress and critical 

stress chosen for this example. The f −  relation is 

the same from all the TSL types considered when 

the stress is lower than the critical value.  

 

Figure 6. Global material response, first test case 

The ductile fracture behavior (sustained force 

during increased deformation) is more noticeable in 

the trapezoidal TSL while the triangular models 

exhibit more brittle behavior. The difference in the 

shape of the TSL and the fracture energies are 

responsible for the difference in material responses; 

the total area under the curve of the triangle-A and 

trapezoidal case appear similar, in agreement with 

the shared 
cG  parameter. 

Figure 7 shows the global material response 

obtained from all TSL models in the second test 

case. The effect of the choice of the TSL shape 

parameters on the global force-displacement results 

is more noticeable than in the first case. In the 

second test case, the solid elastoplastic material 

properties of the first case are retained while 

changes are made to the interface properties. The 

critical stress is higher than the value in the previous 

example. This allows the material to plastically 

deform more than the first test case before damage. 

The reduction in the reaction force of the triangular-

A TSL is more gradual than the other models. 

Meanwhile, the trapezoidal and triangular-B TSL 

exhibit rapid force reduction due to the conversion 

of elastic energy in the blocks into dissipated 

fracture energy at the interface. 

 

Figure 7. Global material response, second test case 

For interface models with the same fracture 

energy, the trapezoidal TSL represents a more 

realistic experimental ductile fracture result because 

it permits more work of separation to be captured by 

the forward region of the TSL. However, there does 

not appear to be a restriction on the form of the TSL 

that the DG method can accommodate. 

5.2. Force-displacement predictions for cracked 

CT specimen 

The accuracy of the DG method is examined in 

comparison with a fracture analysis using the Park-

Paulino-Roesler (PPR) cohesive zone model (CZM) 

[43] as implemented in the WARP3D code [44]. For 

the analysis domain, a coarse finite element mesh of 

a CT specimen having one layer of solid elements 

over its thickness and constrained at the surface with 

0z =  (analogous to a plane stress) is used from a 

benchmark in the WARP3D code, as shown in 

Figure 8. The CT specimen dimensions are W = 50.8 

mm, B = 0.5715 mm and a/W = 0.24, and it contains 

1744 solid elements with 76 interface elements 

inserted along the direction of crack growth; note 

that both CZM and DG can be implemented via 

interface elements [45]. The material properties are 

specified as E 71.66GPa= , 0.3 = ,  yield strength 

345GPay = ,  and plastic modulus K 170MPa= . 
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Figure 8. CT specimen, coarse FE mesh 

The Discontinuous Galerkin interface conditions 

are 600GPa,cP =  
b 0.001mm, =  and 

c 0.0042mm. =  A PPR model with interface 

conditions having equivalent cohesive fracture 

energy 239.63KJ mcG = is used for comparison. 

The cohesive zone model is described using 

600GPa,cP =  initial slope 0.2 =  and separation 

curve shape 20 = . Note also that the isotropic 

plasticity model in WARP3D is expressed through 

a hypoelastic formulation based on the Green-

Naghdi objective stress rate; the CT specimen 

strains remain small so that this difference is 

expected to minimally impact the results, which was 

confirmed from infinite toughness simulations. 

A monotonic vertical displacement is applied to 

the center node of the upper-left stiff-elastic pin in 

the CT specimen, and the computed reaction versus 

the displacement (measured center to center of the 

pins) is reported in Figure 9. The f −  results from 

both methods are close even for a coarse mesh. The 

lower force produced from the CZ method in the 

initial elastic region ( )0.6 kNf   is attributed to 

artificial compliance of the CZM method. The later 

difference in the results from the two methods after 

plasticity and damage accrue is attributed to both the 

artificial compliance and the different shapes of the 

PPR and trapezoidal TSL, most likely to the latter as 

in [13-15]. 

 

Figure 9. CT specimen, force vs. displacement response 

6. Conclusions 

This method extends our previous work for 

modeling quasi-static and dynamic damage to 

enable elastoplastic deformation before damage. 

This paper derives the Discontinuous Galerkin 

method from the free energy and dissipation 

functional and relies on the assumption that the free 

energy can be decomposed to the elastic and plastic 

processes in the material domain and localized 

damage processes at the interface. The distinctive 

features of the formulation are the treatment of the 

nonlinear constitutive updates of the internal 

variables in both the bulk domains and interface, and 

the treatment of numerical flux at the interface for 

large strain plasticity. We extend the return mapping 

algorithm of a triangular TSL to an extrinsic 

trapezoidal TSL that is free from artificial 

compliance issues and suitable for modeling ductile 

damage processes. The new TSL allows either 

brittle or ductile interface behavior in an 

elastoplastic deforming body by varying a single 

material parameter. This will provide the capability 

of the method to model macroscale ductile interface 

fracture or brittle intergranular separation in 

plastically deforming microstructure. The results 

from the patch test show that the method can 

accommodate other TSL forms. The comparison of 

the results from the method to those from the 

cohesive zone method produced from modeling CT 

specimen crack example shows that the method 

produces physical and meaningful results on coarse 

meshes. 
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Appendix 

Stability tensor 

The stability tensor ( )

s


τ  is defined locally along 

segments 
s  of the interface 

I  according to the 

following expressions (with notation given in [36, 

40]): 

( ) ( )
2

1( ) ( ) ( )meas d
s

s s s sb A  




−

=    τ τ  (50) 

( )

1
( ) ( ) ( ) ( )

1: : d
s

s X s n X s V


   



−

+
 =  
  τ b bA  (51) 

where the bubble 
( ) ( )

1

sdn

s s JJ
b 

=
=b E is supported 

on a sector ( )

s

  and 
JE  are the reference frame 

Cartesian basis vectors. The bubble functions ( )

sb   

are higher order polynomials that vanish on the 

boundaries of the sector ( )

s

  that are not in contact 

with segment 
s , ( )X •  denotes the gradient with 

respect to the reference coordinate, and 
( ) 2 e ( ) ( )

1 1 1n n nd d d  + + += F FA  is the first elasticity 

tensor  of material moduli, computed as the total 

algorithmic derivative of the associated strain 

energy density function. An expression for A  in 

component form is provided in [37] along with the 

model-specific stress derivative 
1 1n nd d+ +τ F : 

1 1 1ik

iIjJ Ik ik Ij Jk

jJ

d
F F F

dF


− − −= −A  (52) 

Perhaps the most attractive feature of this 

stabilized definition of T  as described in our 

previous works [36, 40] is that the stability 

parameter ( )

s


τ  is systematically derived and 

accounts for the variation of material properties and 

element geometry adjacent to the interface. The 

derivation that led to the analytical solution of ( )

s


τ  

in (50) relies on variational multiscale ideas where 

the displacement field is decomposed into coarse 

and fine scales. The analytical solution of the fine 

scales is substituted into the coarse scale problem to 

provide a stabilizing effect to the formulation. 

Herein, we follow additional steps as in [22] for 

accommodating history dependent plastic material 

response by treating the fine scales as small 

perturbations about the current coarse scale 

deformation. Further details on computing ( )

s


τ  are 

presented in [22, 36]. Note that the novel 

contribution herein is to extend the small strain 

plastic formulation of [22] to large strains in 

combination with evolving interface debonding ζ . 

Remark: Notice that the stability tensor depends on 

the first elasticity tensor which introduces the effect 

of evolving geometric and material nonlinearity 

properties of the adjacent elements into evolution of 
( )

s


τ . The softening of the tangent tensor during 

prolonged plasticity can affect the stability of the 

method, particularly when the interface begins to 

debond and the bulk responds incrementally 

elastically. Herein, the initial elastic tensor is 

employed in order to guarantee positive definiteness 

of the stability tensor ( )

s


τ  for all timesteps [22].  

Weak form linearization 

For completeness, the linearization of the weak 

form (25) can then be expressed as follows; the 

reader is encouraged to consult [25] for details: 

( )

( )

( ) 

( ) 

( )  ( )

( ) ( ) ( )

( )

I

( ) ( ) ( )

2
( ) ( ) ( )

1

d d

, ;

: : d

d

: d

: d

: : d

I

I

I

I

o

X o X

o s

o X

X o

X o X

o

K

V

A

A

A

A

f dA



  

  






=











 =

  

+  

+      

+    

+      −  

 
−       













Ξ

T

η u

η u

η τ u

η u N

η N u

η u N ζ

T η T u
T





A

A

A

 (53) 

where the subscript n+1 has been suppressed, and 
( ) ( )

1 1n nd d 

+ +=Ξ FA is a sixth order tensor of material 

moduli, as well as T  is an incremental interface 
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flux and ( )d d

1nf +


 


T

T
 is the linearized damage 

tensor expression according to: 

( ) ( )( ) :X s
 =   + 
 

T N τA  (54)  

( )
d

d d d

1 1

d d

1

n n

n

f f

f

+ +

+

 
  = 

 



T T

TT

T T

+






 (55)  

In most cases the term involving Ξ  can be neglected 

with only a minor reduction in the convergence rate 

of the Newton iterations residual norm. 
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