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Abstract—We propose a two-layer coding architecture for
communication of multiple users over a shared slotted medium
enabling joint collision resolution and decoding. Each user first
encodes its information bits with an outer code for reliability,
and then transmits these coded bits with possible repetitions over
transmission time slots of the access channel. The transmission
patterns are dictated by the inner collision-resolution code and
collisions with other users’ transmissions may occur. We analyze
two types of codes for the outer layer: long-blocklength LDPC
codes, and short-blocklength algebraic codes. With LDPC codes,
a density evolution analysis enables joint optimization of both
outer and inner code parameters for maximum throughput. With
algebraic codes, we invoke a similar analysis by approximating
their average erasure correcting capability while assuming a large
number of active transmitters. The proposed low-complexity
schemes operate at a significantly smaller gap to capacity than
the state of the art. Our schemes apply both to a multiple access
scenario where number of users within a frame is known a priori,
and to a random access scenario where that number is known
only to the decoder. In the latter case, we optimize an outage
probability due to the variability in user activity.

Index Terms: Random access channel, multiple access channel,
LDPC code design, density evolution, adder MAC, erasure,
algebraic codes

I. INTRODUCTION

Random access (RA) protocols are at the heart of many
modern cellular standards for contention resolution over their
control channels or for medium access control in wired or
wireless local area networks. Almost all these protocols are
developed based on variations of the legacy (slotted) Aloha
(SA) or carrier sense multiple access. These legacy protocols,
while having served us well, do not meet the requirements
in the emergent machine-to-machine communications and the
Internet of things with limited communication delays or a
massive number of communicators. Indeed, random access
protocols are to be reinvented.

Efforts on improving the performance of SA methods
were revived by contention resolution diversity slotted Aloha
(CRDSA) [2], which replaces the concept of destructive col-
lisions in SA by successive interference cancellation (SIC)
strategies. Specifically, each user is prescribed to send its
packet twice over two time-slots of a single contention frame.
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The receiver then detects the signals received without a col-
lision, and subsequently removes the associated interference
from time-slots in which their replicas were transmitted. The
process iteratively continues until all transmitted packets are
recovered. In [3, 4], the SIC is represented by an irregular
bipartite graph and the users adopt repetition rates from a
given distribution for the transmission of each packet. Utilizing
a density evolution analysis, this distribution is optimized to
maximize throughput. Other improvements are presented in
e.g. [5, 6,7, 8, 9]. Many of the works in this domain assume
an error free transmission, and the loss is only due to collisions
that are not resolved. Since errors in the recovery of one
packet will propagate and harm the SIC process, the error
free assumption is typically ensured using long and low-rate
channel codes.

There are works with similar spirit in the context of mul-
tiple access channels, where message passing algorithms are
utilized to enable multiuser detection. This is indeed the case
in sparse coded multiple access [10, 11], where each user is
provided with a sparse codebook and the codewords of dif-
ferent users are transmitted over shared orthogonal resources,
e.g., OFDM tones. In a similar scenario, [12] rigorously ex-
amines the role of error correcting codes in iterative decoding
and multiuser detection. A multiple access code based on
analog fountain codes [13] purposely designed for wireless
fading channels is proposed in [14]. Contemporaneously with
the conference version of the current work [1], a two-layer
coding scheme for collision resolution and noise removal was
proposed in [15], in which a collision resolution code to
resolve NN collisions is constructed from the columns of an
N-error correcting BCH code. A specific scenario following
the two-layer architecture known as the two-user joint iterative
decoding, is discussed in [16, 17, 18] for Gaussian and binary
adder multiple access channels.

In this paper, we present a two-layer coded channel access
architecture for communications over binary adder access
channel with erasures (Section III). The inner layer is meant
to resolve collisions, while the outer layer targets erasures;
the layers operate in lockstep while passing messages back
and forth, resulting in a joint resolution of collisions and
erasures. The inner layer is described by a transmission pattern
to transmit the coded bits with repetitions according to an
optimized probability distribution over a frame. In principle,
one may use any point-to-point error correcting code as the
outer erasure-correcting code in our two-layer architecture.



In this paper, we study two possibilities for the outer layer
code: a low-density parity check (LDPC) code drawn from an
ensemble of LDPC codes (Section IV), and a short algebraic
code from a family of such codes (Section V). Density
evolution analyses presented in Sections IV and V enable an
optimization of the code parameters in both layers subject to
an imposed complexity constraint. The analysis of the short
codes in Section V is aided by an efficient approximation
of the decoding performance of the algebraic code using its
parity check matrix. Both a two-layer coded multiple access
(TCMA) scenario where the number of users within a frame
is known at the transmitters and the receiver, and a two-layer
coded random access (TCRA) scenario, where this information
is only available at the receiver, are considered. In the latter
case, the code is designed to achieve a certain probability of
outage induced by the randomness in the number of users.
Simulation results in Section VI demonstrate that TCRA with
large-blocklength LDPC codes at the outer layer (TCRA-
LDPC) halves the gap to the outage capacity compared to the
performance of an equivalent perfect orthogonal transmission
scheme (for an average of 6 active users) and noticeably out-
performs a benchmark due to prior art, in which the two layers
are designed and operate separately. As expected, the TCRA
with algebraic codes of short blocklength at the outer layer
underperforms TCRA-LDPC, however, it still outperforms the
prior art benchmark while maintaining a low application level
delay and payload size requirement.

Compared to the scheme in [16, 17, 18], TCMA introduces
an additional degree of freedom in system design by enabling
a joint optimization of the code and transmission patterns with
repetitions, achieving wider design trade-offs for complexity,
user/system rate and performance. In [16, 17, 18], the trans-
mission pattern is fixed and each coded bit is transmitted
only once over bit intervals. Compared to the traditional
coded CDMA schemes, which operate with a given bandwidth
expansion and a spreading sequence for each coded bit, with
all users colliding with each other at all times, both layers
of our TCMA scheme are jointly optimized, and not all
users may necessarily collide over a time slot. Compared
to the conference version of this paper [1], the results on
short algebraic codes, as well as those on the multiple access
scenario with an a priori known number of users, are new.

II. SYSTEM MODEL AND ASSUMPTIONS
A. Channel Access Model

We consider a network consisting of one receiver (base
station) and a total of N transmitters. The time is divided
into (contention) frames of length Ty that are composed of T
bit intervals of length T}, hence Ty = T * Tj. For the sake
of simplicity, we assume that each active transmitter sends
a packet of size k information bits within the 7" bit intervals
(k < T) of each frame, leading to a common transmission rate
of R, = k/T bits per user per bit interval. Each transmitter
first encodes its k-bit packet into n bits (K < n) and then
transmits them over T bit intervals (n < T') with possible
repetitions according to a random but fixed pattern. Different
transmitters can use the same bit interval, colliding with each

other, however, self-collisions are not allowed, that is, the same
transmitter can at most send one bit over a bit interval.

Frame synchronization for channel access management is
typically facilitated by the transmission of beacon messages
by the receiver to mark the start of a frame. In a multiple
access channel (MAC) scenario, the number of active users
within a frame is assumed known at the transmitters. In a
random access channel (RAC) scenario, the transmitters are
only aware of the start and the end of a new contention frame,
as well as the codes to use. Therefore, they are unaware
of the real number of active users. We assume that the
receiver knows both the set of active transmitters and their
transmission patterns (location of their bits) in the frame.
These transmission patterns may be agreed upon between
the transmitters and the receiver in a setup phase. Ideas on
practical ways to handle such issues in a RAC are presented
at the end of Section VI, after more is discussed about the
decoding procedure.

To model variable user activity in a RAC, we assume that
each transmitter participates in a frame with the probability p,.
Under the assumption of a large number of transmitters /N and
a low activity probability p,, the number of active transmitters
in a frame, N,, closely follows a Poisson distribution with
parameter N p,. We consider bit intervals and bit transmissions
in each interval in this paper, however, the scheme can be
generalized to time-slots and bit sequences.

B. Channel Model

We consider a binary adder random access channel with
erasures, whose inputs z; € {0,1}, 1 < i < N, are binary,
and whose output r € {0,1,2,...,N,} U {e} is given by

Na
> x;, with probability 1 — e
r=193i=1

) (1
e, with probability €

where, as before, N, is the number of active transmitters in a
frame and e designates an erasure. This simple channel models
the situation in which a digital encoder and decoder commu-
nicate over an analog channel via modulator/demodulator; the
modulator converts bits to analog signals under a power con-
straint; the demodulator, having observed a sum of the signals
from all the users and a random thermal noise, digitizes it by
simple quantization. If the demodulator deems the received
signal too noisy to digitize reliably, it declares an erasure
and passes it on to the coding layer to resolve. Specifically,
for BPSK in high SNR regime with N, users, the output of
the demodulator 7 is in {—Ng, —Ny+2,...,No —2,N,}. A
simple transformation r = (7 + N,)/2 converts the received
signal in each slot to r € {0,1,2,..., N,}. In the presence
of a noise, the demodulator declares an erasure when it
cannot reliably detect the received symbol; hence we have
re{0,1,2,..., N} U{e}.

Regardless of the number of active users N,, due to
the symmetry of the channel in (1), its capacity-achieving



distribution is Bernoulli(1/2), and the sum-rate capacity (for
N, active users) is

N
1 < (N, N,
Cn, = (1—¢) (N“_QMZ< . >log2(i>>. 2)
i=0

This is readily obtained by computing the mutual information
between the vector of inputs and the output for the capacity
achieving distribution, similar to what is reported in [19] for
the noiseless adder multiple access channel.

If the number of active users N, is random but stays
constant within a contention frame, the outage capacity is an
appropriate performance measure:

Cp, =max{R;: Pr[Cn, < N, Ri] <p}, 3)

where p is the outage probability, i.e., the probability that the
system cannot support the target rate R; given the randomness
in the number of active users N,. This metric is used for design
and evaluation of access schemes for RAC in the sequel.

III. TWO-LAYER CODED CHANNEL ACCESS SCHEME

In this section, we describe our two-layer coding architec-
ture for medium access, an inner layer dealing with collisions
and an outer layer dealing with erasures. During the decoding
procedure, these two layers run iteratively and update each
other, enabling joint contention resolution and decoding of
messages.

In the rest of this section, we first introduce the en-
coder/transmitter model and the system parameters, then we
discuss the decoder/receiver.

A. Encoder/Transmitter

Fig. 1 shows the encoding diagram of the proposed coded
medium access scheme. First, using an error correcting code
of rate R, = k/n, the j-th transmitter encodes its k-bit packet
29 to create n coded bits ¢). To each coded bit /) €
{0,1},1 < i < n there corresponds a repetition rate dz(-j )
and a repetition pattern indicating which dl(.J ) out of the T bit
intervals will carry this bit. Each transmitter uses a bit interval
at most once in a frame.

The common per-user rate R; = k/T can be expressed in
terms of outer erasure-correcting code rate R, = k/n and
inner collision-resolution code rate R; = n/T as

Ry = RoR;. “4)

Of course, the rate of any concatenated code is equal to the
product of the rates of its component codes. From (1), it is
clear that the received value on an interval is the summation
of coded bits sent on that interval from different transmitters,
which could be erased with probability e. ‘
In our analysis, we assume that the repetition rates dz(-j )
are generated according to the probability mass function {I'},
and that the repetition patterns are randomly selected without
biasing any particular location. These choices are at the
purview of code design and are fixed during transmission.
For simplicity, we consider the case where all the transmitters
use an identical erasure-correcting outer layer code, but the
repetition patterns are generated individually for each user.

B. Decoder/Receiver

Message passing is performed on the decoder’s factor graph
to recover the value of the bit (variable) nodes. Fig. 2 shows
the factor graph of the receiver with (a) LDPC codes with
message passing decoding, and (b) short algebraic codes with
MAP decoding at the outer layer. Messages passed on the
edges of the decoder’s graph are either e, indicating that the
value of the variable node has not been recovered yet, or 0 /
1, reflecting the value of the associated variable node.

For each node, we define a node-perspective and an edge-
perspective degree distribution. The former determines the
fractions {Ag, A1, -+, Aq} of nodes with degrees 0 to d,
while the latter specifies the fractions {ai,as, - ,aq} of
edges connected to nodes with specified degrees. We use
the standard polynomial representations A(z) = Efzo Azt
a(z) = Zle a;x'~1 for these degree distributions. Note that
the edge-perspective polynomial is obtained by the normalized
derivative of the node-perspective polynomial. Table I summa-
rizes the notations for the edge and node-perspective degree
distributions for the different layers of the decoding graph.

At each node, the processing rule generates an output
message to a neighbor node, based on the messages it received
from its other neighboring nodes. At a time node of degree
d with input messages m;, 1 < ¢ < d — 1, and a received
value of r from the channel, the processing rule to generate
the message to a variable node is:

coded bits

uncoded bits

<0 O

n
T2
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g

Erasure

Fig. 1: Transmission diagram of the two-layer coded medium
access system: k information bits of each of the N, trans-
mitters are first mapped into n coded bits. These coded bits
are then transmitted with possible repetition across the bit
intervals of the contention frame. The adder-erasure channel
(1) adds the bits that share the same bit interval, possibly
introducing erasures and producing the outcomes 71, ...
for the receiver to decode.
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TABLE I: Degree Distributions of the Decoding Graph

’ Symbol ‘ Degree Distribution (Probability Mass Functions) ‘

{A}/{A} | Variable edge/node-perspective degree dist. in outer layer
{p}/{P} | Check edge/node-perspective degree dist.

{7v}/{T'} | Variable edge/node-perspective degree dist. in inner layer
{¥}/{¥} | Time edge/node-perspective degree dist.

Variable Nodes  Time Nodes

Time Nodes
Variable Nodes (]
(nNq)

(nNa) ()

Check Nodes
(mNq)

[ Channel MAP Decoder 1 ]

[ Channel MAP Decoder N, ]

(a) b)

Fig. 2: Decoding graph with the outer layer implemented using
(a) LDPC codes with message passing decoder, (b) linear
block codes with block MAP decoder.

0, r= > my
im;Fe
fr(r,my,ma, .. ,oma_1)=<1, r=1+ > my+ > 1
imm,;#e itm;=e
e, otherwise.
)]

Equation (5) states that a time node can recover the unknown
bits whenever there is no other choice for them except being
all zeros or all ones. Note that the message sent from an erased
time node is always e.

For the outer layer, depending on the application, LDPC
codes or short linear block codes can be used.

1) Using LDPC Codes: Fig. 2(a) shows the factor graph
[20] of the decoder, which is obtained by combining N,
Tanner graphs of the senders’ LDPC codes to the transmission
graph of the coded bits. Both layers use message passing de-
coding on bipartite graphs. Check nodes of the LDPC Tanner
graphs (designated by squares) and time nodes (triangles) are
the function nodes, and bit nodes (circles) are the variable
nodes in this graph.

The N, LDPC decoders behave exactly as the standard
erasure decoders, i.e., the output message of a check node
equals the modulo-2 sum of its input messages if none of
them is e, and e otherwise:

d—1
Fo(mas 1) = 7@1 m;, Vie{l,2,..,d—1}:m; #£e
e, otherwise,

(6)

where €D denotes modulo-2 sum. Since the erasure channel
does not change received values but erases them, the non-
erased input messages to a variable node always agree. There-
fore, when the value of a variable node is recovered from
a time node or a check node equation, it always equals the
real value sent by the transmitter. As a result, the outgoing
message from a variable node is e if all the input messages
are erased; otherwise, it equals the non-erased value of the
input messages:

Fie{l,2,...,d=1}: m; #£e

e, otherwise.

fv(ml, ceey md_1) = {m“
@)

Note than even with just one non-erased input from either
the time nodes or the check nodes in any step of the iterative
decoding, the true value of the variable node is resolved and
accordingly could be used for all the outgoing messages from
the variable node.

2) Using Short Algebraic Codes: Fig. 2(b) shows the factor
graph of the receiver that uses IV, individual decoders for the
erasure-correcting outer layer. The decoding architecture in
general can accommodate various types of the individual de-
coders for the erasure-correcting linear codes. For the analysis
and design, however, we focus on block MAP decoders in the
sequel, whereby depending on the erasure pattern of the input
codeword, the decoder either recovers all the erased bits or
fails to recover any of them.

3) Design, Operation and Complexity Considerations: As
the transmitters select bit intervals according to their repetition
patterns, the time node degree distribution {¥} cannot be de-
signed directly and is obtained from repetition rate distribution
of variable nodes, i.e., {I'}. As we shall see, this is essential
in the analysis and design of the decoders performance in the
sequel.

The probability that the jth transmitter selects a bit interval
is d9) /T, where d\¥) S dY s the total number
of transmissions for sender j. As the code length grows,
according to the law of large numbers,

%d(j) S E {dgﬂ’} =Y i =1'(1), )

where I'(.) is the polynomial representation of the repetition
rate distribution. Hence, the degree of time nodes follows the
binomial distribution

(¥} ~ B (Na, %F’(l)) = B(N,RI'(1). )

With LDPC codes, the decoding complexity is determined
by the total number of edges in the decoder’s graph, as the
number of operations at each node has a linear relationship
with its degree. The number of edges in the graphs of the
outer and the inner layers are nN, ), iA; and nN, >, il';,



respectively. Hence, the complexity of decoding in one iter-
ation is O (nN, Y, i(L; + 1)) = O (nN,(I''(1) + A’(1)).
The complexity remains linear in terms of the number of
active users, code length and maximum degree of nodes. If
short linear codes are used at the outer layer, the decoding
complexity depends on that of the individual decoders. Still
the share of the complexity due to the inner layer remains the
same. Therefore, the decoding complexity grows linearly with
the number of users in both cases.

Introducing a schedule will finalize the definition of the
decoder. The decoder starts a decoding iteration with the
collision resolution inner layer: time nodes send messages
containing their estimates (5) of the values of the variable
nodes to the set of variable nodes. The variable nodes update
and broadcast their values (7) to the set of check nodes (case
of LDPC) or the MAP decoders (case of short codes). The
check nodes or the MAP decoders then report back to the
variable nodes. Finally, the variable nodes send their updated
values (5) to the time nodes, concluding a decoding iteration.
The decoder continues until either no new variable node
is recovered during an iteration, or a maximum number of
iterations is reached. Note that this schedule is motivated by
the particular processing rule at variable nodes described in

).

IV. ASYMPTOTIC ANALYSIS OF DECODING THRESHOLD -
LDPC CODES

Like other message-passing decoders, our decoder exhibits
threshold behaviors. The threshold is determined both by the
channel erasure probability and users transmission rate. More
accurately, under the assumption of asymptotically large code
and frame length, if the number of active transmitters does
not exceed N/ and the erasure probability is less than €, the
receiver is able to recover message bits completely as long
as the per-user rate is less than the threshold, R} (N;,¢€").
An equivalent characterization of the decoding threshold is
the maximum number of users sustainable by the system
that is compatible with a given rate and erasure probability,
NF(Rf,€e*). We use density evolution [21] to calculate the
exact average performance of a code ensemble in each iteration
under the assumption of infinite code length. In asymptotic
regime, the decoding graph becomes a tree, which implies the
independence of incoming messages to a node. Therefore, as
customary, density evolution is analyzed on an idealized nat-
ural schedule defined on a tree [22, p.82] instead of analyzing
the efficient decoding schedule introduced before for the non-
asymptotic setting. Specifically, with the natural schedule, the
message from a variable node to any single check (time) node
is a function of the messages it receives from all neighboring
time (check) nodes and the rest of the neighboring check
(time) nodes. We compare the analysis results for obtaining
the decoding threshold and the decoding simulation results
in Section VI. In the following, we first derive the erasure
probability transfer function of each node in Section IV-A.
Then, we introduce a set of equations to recursively track the
erasure probability in each iteration in Section IV-B. Finally,
we present optimized degree distributions in Section IV-C.

A. Erasure Transfer Function of Nodes

In this subsection, we find the probability F,, that the
output message of a node equals e, given the erasure prob-
ability of input messages pi,. Note that under the assumption
of infinite code and frame lengths, all messages entering a
node are independent, since there is no loop in the decoding
graph of the receiver.

From the standard density evolution of erasure correcting
LDPC codes, we obtain for the check and variable nodes:

Pow,e =1~ p(l - pin)a
Pout,v = /\(pm)

(10)
Y

For the time nodes with the processing rule in (5), Propo-
sition 1 presents the transfer function.

Proposition 1: Erasure transfer function of a time node is
described by

P =1-(1-y(1-8). (12)

2
Proof: An examination of (5) reveals that the unknown
inputs can be recovered if all of them have the same value and
r is not erased, therefore the probability that a degree-d time
node with ¢ input erasures outputs an erasure is given by

Pouttjga=1— (1 —¢)27

Assuming that g follows a binomial distribution B(d — 1, p,),
we can compute the expectation over ¢ using its moment-
generating function:

pm)d*1

Pouja=1—-(1—¢) (1 -5

Finally, averaging over d yields

Puwir=1—-(1 76);7/12' (1 B %)i—l

:1—(1—e)¢(1—%).

B. Tracking Decoder Erasure Probability

Having derived the erasure probability transfer function of
the nodes, now we can track the erasure probability of a
specific message along different iterations for fixed N, and
€. This is done by stating the erasure probability of a message
in terms of its value in the previous iterations. In the following,
we denote by ml(f;) the message sent from the node a to
the node b in the (th iteration. Pég) is the probability that
mff;) equals e, where a and b can stand for v (for variable
nodes), ¢ (for check nodes), and ¢ (for time nodes). Fig. 3(a)
depicts the messages passed in one iteration. By expressing the
erasure probability of each message in terms of the erasure
probability of its generating messages, we reach a set of
recursive equations for P,Sf?:



PO =T (P ) A (PYED) (13)
P =1-(1-au(1-PY/2) (14)
P = A (PD)y (PLY) (1s)
P =1-p(1-PP) (16)
PO =1 (17)
piY =1 (18)

Equations (13) and (15) are derived from (11), while (14)
and (16) are based on (12) and (10), respectively. The defini-
tion of the initial values for the recursion in (17) and (18) are
obvious since at the beginning of the decoding, every variable
node is unknown and all edges carry erasure messages. Note
that in each iteration, the fraction of non-recovered variable
nodes is given by

PO =T (P}f*“) A (ng—U) . (19)

(¢-1)
v

Variable
Nodes

Variable
Nodes

MAP Decoder

(b)

Fig. 3: Messages passed in one iteration with the outer layer
using (a) LDPC codes with message passing decoder, (b) linear
block codes with block MAP decoder.

C. Optimizing Degree Distributions

For maximum number of active senders N} and fixed
channel erasure probability €, one can determine the threshold
Rf(NZ,e€) of a given code ensemble {I'}, {\}, {p} by finding
the largest value of R; which leads to limy_,., P,;” = 0 in
recursion (13)—(17). This could be done using a binary search
on R;. To look for the optimized degree distributions leading
to the largest per-user rate threshold, we set up the following

optimization problem.

maximize R (N}, e 20
{TH {3} ¢(Na ) 20)
subject to: 0 < Ro(\,p) <1

R{ < Ro/T'(1)
Li=X=pi =0,

Fia)‘ivpi S [07 1]7
ZifiZZim:ZMi:l

The second constraint in (20) ensures the total number of
transmissions per user does not exceed 7', as users cannot use
a bit interval more than once in a frame. We use differential
evolution [23] to solve the above optimization problem. This
meta-heuristic method, which is a combination of hill climbing
and a genetic algorithm, is quite popular in code design
problems, e.g. [21], since it is capable of searching large
parameter spaces effectively. It is particularly appealing in
our case because it does not need the objective function to
be explicitly stated.

For multiple access with a known maximum number of
users N and erasure probability €, the optimization (20)
results in a maximum per-user rate. For random access, the
design procedure to attain an acceptable outage probability
Poutage = Pr [N, > N;] is as follows. Knowing the distribu-
tion of the number of active users N, first the maximum
number of senders N, compatible with Fyyge is determined.
Then, by solving (20) with N, one can calculate the opti-
mized degree distributions leading to the maximum per-user
transmission rate.

Table II presents the per-user rate thresholds corresponding
to optimized degree distributions for target number of users
N} = 7 and different values of € for dpy,x limited to 13.
As expected, as the probability of channel erasure grows,
the code rate decreases to cope with channel impediments.
Another observation from Table II is the abundance of degree-
2 variable nodes in the outer layer, as indicated by \(z) = z,
ie. A2 = 1. Such a result is expected since rate threshold
is the sole subject of maximization in (20). The number of
degree-2 variable nodes plays a major role in the trade-off
between error floor and the threshold. For that matter, one
can consider constraining A in (20) to trade rate threshold
for error floor. An example of such a strategy is suggested in
[24]. In the noiseless case (¢ = 0), the optimized code rate
of R, = 0.857, which is the maximum possible under the
complexity constraint dy,.x < 13, falls short of 1, suggesting
that in the noiseless scenario a better performance could be
achieved by removing the outer layer. However, when the
channel erasure exists, the collision-resolution layer alone

1> diax
Z’ S dmax



cannot recover all the transmitted bits. Proposition 2 introduces
a lower bound on the fraction of non-recovered bits for the
collision-resolution layer.

Proposition 2: In the absence of the erasure-correcting outer
layer, the fraction of non-recovered bits is lower-bounded by
T(e).

Proof: The collision-resolution layer cannot recover a
variable node if all its repetitions on the channel have been
erased. All transmissions of a degree d variable node will be
erased by the channel with probability €?. By averaging over
d, we obtain

E{e’} = Tie' =T(e). 1)
K3
Therefore, the probability of erasing all transmissions of a bit
is T'(e). |
Also, note the trade-off for the outer code rate: on one hand,
a low outer code rate increases the correction capability of the
erasure-correcting layer, but on the other hand, it raises the
load on the collision-resolution layer, increasing the collisions
and the risk of a decoding failure.

V. ASYMPTOTIC ANALYSIS OF DECODING THRESHOLD -
SHORT ALGEBRAIC CODES

A. Erasure Transfer Function of MAP Decoder

In Section IV-A, we calculated the equations for erasure
transfer functions of time and variable nodes. To incorporate
the performance of block MAP decoders in the analysis,
we first need to derive their erasure transfer function. More
specifically, we are looking for the probability of a decoding
failure, given the i.i.d. erasure probability of codeword bits.

Let £ C {1,2,...,n} be the set of indices of erased elements
in a codeword, and let £ be its complement. Denote by cg the
sub-vector of erased elements in a codeword ¢, and by H¢ the
sub-matrix of columns of the parity check matrix H indexed
by £. For a linear block code C(n,k,dnyn) with the parity
check matrix H, c is a codeword if and only if H ¢l =0,

Heel = Heel £ 87, (22)

If bit erasures happen independently and equiprobably, every
sub-codeword cg¢ satisfying (22) is equally likely. If the system
of equations in (22) leads to only one answer cg, then the
MAP decoder is successful in retrieving all the erasures. This
is equivalent to H¢ having a full column rank [22, Ch. 3]:

rank (Hg) = |€]. (23)

In the sequel we assume that the decoder declares a decoding
failure if (23) is not satisfied, that is, the decoder does not make
any guesses if there is an ambiguity. Denote by Pr(H) the
ratio of the number of sub-matrices of H with non-complete
column rank to the total number of sub-matrices of H with
FE columns:

ILrank(H‘g)<E‘a (24)

where 1. is an indicator function, which is 1 when the
test is satisfied and zero otherwise. In fact, Pg(H) is the

probability of decoding failure given E erasures. Furthermore,
let 7g(pim) be the probability of having E erasures in a
codeword of length n, assuming that the bit erasures are
independent and happen with probability pj,:

n

TE(Pin) = (E) (pin) Z (1 — pin)" " F.

The probability of decoding failure can be written as follows

(25)

P, = Z g (pin) Pe(H).
E=0

Having Pgr(H) values of a linear block code for 0 < E <
n, one can determine the exact performance of the code under
i.i.d. erasures using (26). In fact, P (H) characterizes the era-
sure correction capability of the code, and 7g(pin) represents
the erasure imposed by the channel. Fig. 4 shows Pg(H)
coefficients for the (24,14, 4) cyclic code with the generator
polynomial 1+ z* + 25+ 2'° and the (16,11, 4) Reed-Muller
(RM) code, as well as 7 (pi,) for different values of pj,. It is
evident from (26) that when the overlap of non-zero values of
Pr(H) and 7g(pin) (as functions of E) is smaller, the erasure
correction performance of the code is stronger.

When Gaussian elimination is used to exactly compute
Pg(H), that computation is only feasible for short codes as it
demands O(2"n?) operations, with O(n3) operations to find
the rank of 2™ matrices corresponding to each erasure pattern.
However, we can consider a few simplifying facts. First, every
linear block code is capable of correcting all erasure patterns
of weight d,i, —1 or less. In addition, the rank of a parity check
matrix (and all its sub-matrices) is at most n — k. Therefore,

(26)

F < dpin
E>n—k.

27)

Pp(H) =0,
=1, (28)

Pp(H)

As a result, we only need to compute Pg(H) for dyi, < E <
n — k, which is still computation-intensive for long or low-
rate codes. An alternative approach is to approximate Pg(H).
Equation (29) below demonstrates a step approximation which
assumes the code can only correct erasure patterns of weight

0.9 b
PE(H) for (16,11,4)

0.8 Reed-Muller Code

P (H) for (24,14,4)
0.7 cyclic code 8
0.6 ]
0.5
0.4 - P =005 )
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0.1 4

e S _

"
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Number of erasures in a code word (E)

Fig. 4: Pg(H) and 7 (pi) for the (24, 14, 4) cyclic code with
the generator polynomial 1 + 2% + 2% + 20 and (16,11, 4)
Reed-Muller code.



TABLE II: Optimized Degree Distribution for the Asymptotic Setting.

’ € ‘Degree Distributions ‘ R, N;“ Ry
['(z) = 0.2857x + 0.2857x2 4 0.22862% + 0.028572% + 0.02857z7 + 0.142928
0 | Az)==2 0857 | 7 |0252
plz) = '3
I'(z )-—()4762xA+()4286x4—%()09524x10
0.1 | Az) = 0813 | 7 |0233
(z)-—()0303x +0.09091z7 4 0.0606128 + 0.09091z° + 0.121221° + 0.303z'2 + 0.303z13

less than d,. In fact, this approximation leads to the exact
failure probability of a bounded distance decoder, and to an
upper bound for a MAP decoder.

Oa E< dmin

29
]-a E Z dmin ( )

PE(H):{

In the same direction, we can consider a linear approximation
of Pg(H) for dyn < E <n—k:

O’ E< dmin
= E—(dmin—1)
PE(H) =\ =kt ) —(dmn—1)* Anin < E<n—Fk (30)
1, E>n—k.

The approximations are more accurate for codes whose min-
imum distance approaches n — k. In fact, the approximation
is exact when the code is MDS. Fig. 5 compares the exact
values of Pg(H) for a (24,14,4) cyclic code with step and
linear approximations in (29) and (30), respectively.

B. Tracking Decoder Erasure Probability

In the previous section, we characterized the probability of
block MAP decoding failure. We can now track the evolution
of erasure probability of messages passed along the edges
of the Tanner graph in the proposed two-layer decoding
architecture of Fig. 2(b), for a fixed N, and e. Fig. 3(b)
depicts the messages passed in one iteration. By expressing
the erasure probability of each message in terms of the erasure
probability of its generati (g messages, we can reach a set of
recursive equations for P.,’. Using variable and time node
erasure transfer functions in (11) and (12), we have

—o—P:(H)
—#—Linear approximation
—A—Step approximation

n-k+1

0.8

06

PL(H)

04

P (H) for (24,14,4)

cyclic code
0.2

L L -}
0 5 10 15 20 25
Number of erasures in a code word (E)

Fig. 5: Exact Pg(H) and its step and linear approximations.

P =1-(1-ew ( 31)

P“W_W(Pw)

From (26), we have

P
2

(32)

P =Pr(my) =e)

=Pr ( (=1) — ¢ decoding failure)

RS (R )R (- pe)
— E—-1

(33)
Since at the beginning of the decoding, every variable node
is unknown and all edges carry erasure messages, the initial
value for the recursion is

P =1, (34)

Unlike Section IV where large code lengths allow for asymp-
totic analysis, in case of short codes for density evolution
equations (31) to (33) to be valid in each frame, a large number
of active users N, is assumed. In this case, as seen in the
decoder graph of Fig. 2(b), the overall size of the decoding
block (N,n and T') remains large.

C. Optimizing Code and Repetition Rate Distribution

Using the recursive set of equations in (31)-(34), now
we can compute the user rate threshold R} corresponding
to a repetition rate distribution {I'}, parity check matrix
H, the maximum number of active transmitters N, and
channel erasure probability e. Considering the thresholding
behavior of the decoder if for the user rate R; the limit
Pc(fo) = limy_, o P > 0, where p o ) is defined in (34), then
R} < R;. On the other hand, a zero value of Pc(t o) implies
that R} > R;. Therefore, we can perform a binary search on
R} to calculate the user rate threshold for a fixed N and e.

Now we can search for the pair of optimized
code and repetition rate distributions; i.e., the
optimized code 1is selected from the ensemble of
4 = {Cl(nl,kl,dl),...,C|<g|(n|<g‘,/€‘<g|,d|<g|>} along

with an optimized degree distribution {I'}. Furthermore, ¢
could be part of a code family, e.g., Reed-Muller codes,
Hamming codes, or Expander codes, or it could be a set of

Pp(H)



arbitrary binary linear block codes. We seek to solve the
following optimization.

s e )
subject to: C €%
R} < Re/T'(1)
I'; =0, 1 > dmax
Tie0,1], i< dmn

S Ti=1

Similar to Section IV-C, to this end we use differential
evolution [23]. Table III shows the optimized codes and degree
distributions using the linear approximation (30) and Reed-
Muller codes up to length 128 as the ensemble 4.

TABLE III: Optimized codes and degree distributions for
Reed-Muller codes up to length 128 and € = 0.1, dpax = 13.

’ Ng | Optimized Degree Distribution Selected Code
6 I'(z) = 0.4063z3 + 0.5625z* 4+ 0.03125z13 RM (7,5)
31 | T'(z) =0.9091z* + 0.09091213 RM (6,5)

VI. PERFORMANCE EVALUATION

In this section, we present numerical and simulation results
to analyze the performance of our two-layer coded channel
access scheme over a binary adder channel with erasures. We
first consider the multiple access scenario (TCMA), where the
number of active users IV, is known both at the transmitters
and at the receiver. Next, we consider the random access
scenario, where the number of active users is random in
each frame and only known at the receiver (TCRA). For
comparison, we consider several performance limits and a
benchmark scheme that are described in the sequel.

In simulating the outer layer in the proposed scheme with
LDPCs, the LDPC codes are constructed randomly from opti-
mized degree distributions by avoiding cycles of size 4. More
advanced code construction methods can be considered for
practical implementation. For the short algebraic block codes,
we use the family of Reed-Muller codes as the search space ¢
in the optimization problem (35). Reed-Muller family [25, 26]
offers a class of highly structured linear block codes with
predefined minimum distance. This is important in the current
setting, since it allows us to characterize the performance of
the code family using the approximations (29) and (30) simply
by the code parameters m(FM) and r(FM),

A. Multiple Access Channel

Fig. 6 depicts the rate per user (b/s/Hz) of the proposed
TCMA with LDPC codes as a function of the number of active
users over the binary adder channel with erasure probability
e = 0.1. The curves are obtained by solving the design
optimization problem (20) for each N and dm., = 13.
For comparison, we also present the per-user capacity of the

multiple access channel (2), and the per-user capacity with
orthogonal transmission, given by
a
Nq

1—¢
=N (36)

As evident in this figure, the proposed scheme noticeably
outperforms an ideally coded orthogonal transmission scheme.
Specifically with five users, compared to such an ideal scheme,
the proposed TCMA-LDPC reduces the gap to MAC capacity
by approximately two thirds.

Of interest is also a comparison with a complexity con-
strained capacity of binary adder MAC with erasures in which
user transmission patterns are constrained to satisfy the same
time-node degree distribution 4(z) = S r_, 12" as the one
that optimizes (20). The complexity-constrained capacity is
computed as

1 XK
N 2 ¥ O, (37)
k=1
where C}, is given in (2). Of course, the orthogonal per-user
MAC capacity (36) is a special case of (37) with ¢ (z) = .
Another important special case is the capacity of the MAC
channel with < K-fold collisions allowed in each time-
slot. In that case, the per-user capacity is given by %,
which corresponds to 1 (z) = z%. We see from Fig. 6
that taking decoding complexity considerations into account
bridges part of the gap to the MAC capacity. We stress that the
performance of the proposed TCMA-LDPC is obtained with
a suboptimal decoder whose complexity grows only linearly
with the number of users, code length and node degrees.
Also in this figure, the rate per user performance of the
proposed TCMA with Reed-Muller codes is depicted. The
performance is obtained by solving the design optimization
problem (35) for each IV} and € = 0.1 and dm, = 13.
The TCMA-RM provides a competitive rate performance in
comparison, while maintaining a low application level delay
and data rate (payload size) requirement due to its short code
block length. These characteristics are of substantial interest

1 T

—+—MAC Capacity
09 —=—Capacity with Complexity Constraints |
—e—TCMA-LDPC
—=—TCMA-RM

—=— Orthogonal MAC Capacity
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Fig. 6: Transmission rate per user (threshold from analysis)
for the proposed Two-layer Coded Multiple Access scheme
using LDPC codes and RM codes for € = 0.1 and dp,x = 13.



in next generation internet of things and machine to machine
applications.

B. Random Access Channel

For different maximum number of active transmitters N,
we designed optimized TCRA codes with LDPC codes (Sec-
tion 1V) and the family of Reed-Muller codes (Section V).
Translating the maximum number of active transmitters into
target outage probabilities for a Poisson distribution of number
of active users, we can evaluate the performance of the system
for different average number of active users, Np, (for Poisson
distribution, Foyge is a function of the average number of
active users INp, only).

Fig. 7 demonstrates the optimized user rate threshold R; for
TCRA as a function of the outage probability using the LDPC
codes and the family of Reed-Muller codes with m(FM) < 5,
for e = 0.1 and dy.x = 13, along with the corresponding
outage capacity curves (without complexity constraints). The
exact performance of the RM codes (Pg(H)) has been used
to solve (35) and design the system.

The proposed design noticeably outperforms the outage
capacity of orthogonal signaling (computed by letting Cn, =
C1 =1 — € in (3)), confirming that indeed allowing collisions
in this framework is beneficial. Furthermore, we compare the
performance of our design with a benchmark system in the
spirit of [2]-[8], in which the inner layer is optimized for a non-
erasure channel and the outer layer is an LDPC code designed
for the BEC(e). Unlike the proposed TCRA system in which
the inner layer and the outer layer cooperate by iteratively
passing messages back and forth to achieve a joint resolution
of collisions and erasures, the two layers in the benchmark
scheme operate in tandem. The proposed scheme noticeably
outperforms the benchmark. Also evident is a rather graceful
trade-off of quality of service (quantified by probability of
outage) and the throughput performance (achievable rate).
A more stringent QoS constraint imposes a greater toll on
throughput.

Fig. 8 shows the simulation results for the performance of
the proposed TCRA-LDPC scheme with the efficient decoder
presented in Section III-B as a function of the actual number of
active transmitters. Although the curves in Fig. 8 are evaluated
for limited code and frame lengths, in line with our asymptotic
analysis, the system exhibits a threshold effect at the designed
maximum number of active senders, N .

Fig. 9 compares the optimized user rate threshold of TCRA-
RM with m(®M) < 5 designed with the exact and approx-
imated values of Pg(H) for ¢ = 0.1 and dp,x = 13. As
expected, compared to the step approximation, the optimized
rates obtained based on linear approximation are closer to
those based on exact values of Pg(H). In fact, the codes
selected in the optimization process for linear approximation
and exact Pr(H) are the same. Also, the optimized degree
distributions resulted from both approaches are very similar.
Nonetheless, as discussed in Section V, the design of TCRA
with algebraic short codes are computationally much more
efficient when the code performance is approximated as pre-
scribed.

VII. PRACTICAL REMARKS

In this section, we briefly comment on some practical issues
on the operation of TCRA. Briefly, here is how the system
operates: The receiver announces the start of a frame via a
beacon signal in which it also informs the transmitters of the
current V. This is estimated based on a specific target outage
probability and some model of user activity as discussed in
the beginning of this section. The transmitters based on the
code choices and designs agreed upon during the setup phase,
would then know the code in the outer layer (fixed for all
users in the current setup), and the degree distribution in
the inner layer and the frame length. Each transmitter will
then use this information to randomly place the coded bits
over the T time slots. This may be accomplished using a
properly seeded random generator. For the receiver to decode
the messages, it needs to know the inner layer codes (active
users/seeds) to obtain the full decoding graph. In principle,
there are several ways to this end: (1) The receiver may learn
this directly from the received sequence via a joint user (seed)
identification and decoding approach. This is in the same spirit
as the rich literature on blind joint CDMA code detection
and decoding, e.g., [27], [28]. (2) Each user may embed a
user ID (with one to one correspondence with the seed) in
each time slot transmission. This is the approach suggested
in [3] for the packetized contention resolution random ac-
cess. (3) Alternatively, we may consider a one-way check-
in procedure at the beginning of the transmission frames,
wherein the users announce their intention-to-transmit within
the upcoming frame. This can be carried out using contention-
based [14] or non-contention-based RA schemes. One may
argue that such a check-in procedure can be exploited by the
receiver to coordinate the users. In this scenario, the system
would operate in the TCMA mode as opposed to the TCRA
mode. However, we emphasize that there is no advantage in
attempting to schedule the users since the proposed schemes
favourably exploit the collisions for improved performance as
presented in Figs. 6 and 7. While, in the above performance
evaluation, we assumed perfect knowledge of the set of active
users in each frame at the receiver, further investigation of this
issue remains for future research.

VIII. CONCLUSIONS

We introduced and analyzed a two-layer coded channel
access framework for reliable communications over erasure
adder multiple access channels, which enables joint resolution
of user collisions and erasure correction. The outer layer deals
with erasures, while the inner layer deals with collision resolu-
tion. Both layers are optimized jointly. The decoding process
proceeds iteratively, with both layers exchanging messages
back and forth.

Both a multiple access scenario where the number of users
are known at the transmitters and the receiver, and a random
access scenario, where this information is only available at the
receiver, were considered. In the proposed two-layer coded
channel access framework, we presented density evolution
analysis for code optimization in cases where the outer layer
is a long LDPC code or a short (algebraic) code.
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1000 bits.

The results with long LDPC codes demonstrated a superior
performance for the proposed scheme in comparison to the
capacity of an equivalent orthogonal MAC, and the related
prior art. The proposed message passing decoder offers a
linear complexity as a function of number of users and node
degrees and approaches the capacity of the corresponding
channels. With short codes from the Reed Muller family, the
proposed scheme provides a competitive performance, while
maintaining a low application level delay and data rate (pay-
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Fig. 9: Optimized user rate thresholds for TCRA-RM obtained
by the exact and approximated values of Pg(H) as a function
of probability of outage with € = 0.1 and dpy.x = 13.

load size) requirement due to its short code block length. These
characteristics are of substantial interest in next generation
internet of things and machine to machine applications.

In this work, we considered binary erasure adder access
channel. This channel model also serves as a simplied model
for binary signaling of multiple users over a noisy channel,
where a received signal with low reliability may be inter-
preted as erasure. The simplicity of the model allowed us
to develop, investigate and gain insight into the elements
of a high performance and scalable coded access scheme
with collision resolution. Future research could examine code



design with other iterative decoding schemes, and possibly
over other types of multiple access communications channels.
Specifically, of prime research interest are practical issues
such as synchronization in presence of symbol collisions [3,
Appendix B] and design and decoding of TCRA over Gaussian
channel and over fading channels. Another line of research is
to aim for a more accurate analysis of the proposed coded
access schemes with short algebraic codes. For example, if
the weight enumerator of the linear block code is known as in
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case of some algebraic codes [29], one may approximate
outer layer block error probability using a union bound.
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