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Abstract—This work studies point-to-point, multiple access,
and random access lossless source coding in the finite-blocklength
regime. In each scenario, a random coding technique is developed
and used to analyze third-order coding performance. Asymptotic
results include a third-order characterization of the Slepian-Wolf
rate region with an improved converse that relies on a connection
to composite hypothesis testing. For dependent sources, the result
implies that the independent encoders used by Slepian-Wolf codes
can achieve the same third-order-optimal performance as a single
joint encoder. The concept of random access source coding is
introduced to generalize multiple access (Slepian-Wolf) source
coding to the case where encoders decide independently whether
or not to participate and the set of participating encoders is
unknown a priori to both the encoders and the decoder. The
proposed random access source coding strategy employs rateless
coding with scheduled feedback. A random coding argument
proves the existence of a single deterministic code of this structure
that simultaneously achieves the third-order-optimal Slepian-
Wolf performance for each possible active encoder set.

Index Terms—Lossless source coding, Slepian-Wolf, random
access, finite blocklength, random coding, non-asymptotic infor-
mation theory, Gaussian approximation, hypothesis testing, meta-
converse.

I. INTRODUCTION

WE study the fundamental limits of fixed-length, finite-
blocklength lossless source coding in three scenarios:

1) Point-to-point: A single source is compressed by a single
encoder and decompressed by a single decoder.

2) Multiple access: Each source in a fixed set of sources is
compressed by an independent encoder; all sources are
decompressed by a joint decoder.

3) Random access: Each active source from some set of pos-
sible sources is compressed by an independent encoder;
all active sources are decompressed by a joint decoder.

The information-theoretic limit in any lossless source cod-
ing scenario is the set of code sizes or rates at which a
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desired level of reconstruction error is achievable. Shannon’s
theory [3] analyzes this fundamental limit by allowing an arbi-
trarily long encoding blocklength in order to obtain a vanishing
error probability. Finite-blocklength limits [4]–[7], which are
of particular interest in delay-sensitive and computationally-
constrained coding environments, allow a non-vanishing error
probability and study refined asymptotics of the rates achiev-
able with encoding blocklength n. Due to their non-vanishing
error probability, the resulting codes are sometimes called
“almost-lossless” source codes. We here use the term “source
coding” to refer to this almost-lossless coding paradigm.

In point-to-point source coding, non-asymptotic bounds and
asymptotic expansions of the minimum achievable rate appear
in [4], [6], [8]–[10]. In [6], Kontoyiannis and Verdú analyze
the optimal code to give a third-order characterization of the
minimum achievable rate R∗(n, ε) at blocklength n and error
probability ε. For a finite-alphabet, stationary, memoryless
source with single-letter distribution PX , entropy H(X), and
varentropy V (X) > 0,

R∗(n, ε) ≈ H(X)+

√
V (X)

n
Q−1(ε)− log n

2n
, (1)

where Q−1(·) is the inverse complementary Gaussian distribu-
tion function, and any higher-order term is bounded by O

(
1
n

)
.

For a multiple access source code (MASC), also known as a
Slepian-Wolf (SW) source code [11], the fundamental limit is
the set of achievable rate tuples known as the rate region. The
first-order rate region for stationary, memoryless and general
sources appears in [11] and [9], [12], respectively. Second-
order asymptotic expansions of the MASC rate region for
stationary, memoryless sources appear in [13], [14]. Tan and
Kosut’s characterization [13] is similar in form to the first two
terms of (1), with varentropy V (X) replaced by the entropy
dispersion matrix and third-order term bounded by O

(
logn
n

)
.

For point-to-point source coding, our contributions in-
clude non-asymptotic characterizations of the performance
of randomly designed codes using threshold and maximum-
likelihood decoders. The former analysis demonstrates that
combining random coding with the best possible threshold
decoder cannot achieve − logn

2n in the third-order term in (1),
and thus it is strictly sub-optimal. The latter shows that
combining random coding with maximum likelihood decoding
achieves the first three terms in (1). We derive both bounds by
deriving and analyzing a source coding analog to the random
coding union (RCU) bound from channel coding [5, Th. 16].
Our asymptotic expansion is achieved by a random code rather
than the optimal code from [6]. Thus, there is no loss (up to
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the third-order term) due to random code design, which in
turn shows that many codes have near-optimal performance;
further, since our RCU bound holds when restricted to linear
compressors, there are many good linear codes. The RCU
bound is also important because it generalizes to the MASC
and other scenarios where the optimal code is not known.

Our MASC RCU bound yields a new MASC achievability
bound (Theorem 18). Establishing a link to composite hypoth-
esis testing (HT) yields a new MASC HT converse (Theo-
rem 19), which extends the meta-converse for channel coding
in [5] to source coding with multiple encoders. This converse
recovers and improves the previous converse due to Han [9,
Lemma 7.2.2] and is equivalent to the LP-based converse
of Jose and Kulkarni [15], which is the current best MASC
converse. Our analysis of composite HT, including both non-
asymptotic and asymptotic characterizations, develops tools
with potential application in other multiple-terminal commu-
nication scenarios and beyond. The MASC RCU bound and
HT converse together yield the third-order MASC rate region
for stationary, memoryless sources (Theorem 20), revealing
a − logn

2n third-order term that is independent of the number
of encoders. This tightens the O

(
logn
n

)
third-order bound

from [13], which grows linearly with the source alphabet size
and exponentially with the number of encoders. For dependent
sources, the MASC’s third-order-optimal sum rate equals the
third-order-optimal rate achievable through joint encoding.

While a MASC assumes a fixed, known collection of
encoders, the set of transmitters communicating with a given
access point in applications like sensor networks, the internet
of things, and random access communication may be unknown
or time-varying. The information theory literature treats the
resulting channel coding challenges in papers such as [16]–
[18]. We introduce the notion of a random access source code
(RASC) and tackle the resulting source coding challenges. The
RASC extends the MASC to scenarios where some encoders
are inactive, and the decoder seeks to reliably reconstruct the
sources associated with the active encoders assuming that the
set of active encoders is unknown a priori.

We propose and analyze a robust RASC with rateless
encoders that transmit codewords symbol by symbol until the
receiver tells them to stop. Unlike typical rateless codes, which
allow arbitrary decoding times [19]–[22], our code employs
a small set of decoding times. Single-bit feedback from the
decoder to all encoders at each potential decoding time tells
the encoders whether or not to continue transmitting.

We demonstrate (Theorem 24) that there exists a single
deterministic RASC that simultaneously achieves, for every
possible set of active encoders, the third-order-optimal MASC
performance for the active source set. Since traditional random
coding arguments do not guarantee the existence of a single
deterministic code that meets multiple independent constraints,
prior code designs for multiple-constraint scenarios (e.g., [21])
employ a family of codes indexed using common random-
ness shared by all communicators. We develop an alterna-
tive approach, deriving a refined random coding argument
(Lemma 25) that demonstrates the existence of a single de-
terministic code that meets all our constraints simultaneously;
this technique may eliminate the need for common randomness

in other communication scenarios. For stationary, memoryless,
permutation-invariant sources, employing identical encoders at
all transmitters reduces RASC design complexity.

Except where noted, all presented source coding results
apply to both finite and countably infinite source alphabets.

The organization of this paper is as follows. Section II de-
fines notation. Section III treats (point-to-point) source coding.
Section IV studies composite HT, developing general tools for
multiple-encoder communication scenarios. Section V treats
the MASC. Section VI introduces and studies the RASC. Each
of Sections III, V, and VI follows a similar flow:

1) For the (point-to-point) source code: Section III-A de-
fines the problem. Section III-B provides historical back-
ground. Section III-C presents our new random coding
achievability bounds and their asymptotic expansions.

2) For the MASC: Section V-A gives definitions. Sec-
tion V-B provides historical background. Section V-C
presents new non-asymptotic bounds. Section V-D
presents the third-order MASC characterization, compar-
ing MASC and point-to-point source coding performance.
Section V-E bounds the impact of limited feedback (and
cooperation) on the third-order-optimal MASC region.

3) For the RASC: Section VI-A defines the problem and
describes our proposed code. Section VI-B highlights
related work. Section VI-C derives converse and achiev-
ability characterizations for our proposed code’s finite-
blocklength performance. Section VI-D treats the simpli-
fied code for permutation-invariant sources.

Section VII contains concluding remarks. Proofs of auxiliary
results appear in the appendices.

II. NOTATION

For any positive integer i, let [i] , {1, . . . , i}. We use
uppercase letters (e.g., X) for random variables, lowercase
letters (e.g., x) for scalar values, calligraphic uppercase letters
(e.g., E) for subsets of a sample space (events) or index sets,
and script uppercase letters (e.g., Q) for subsets of a Euclidean
space. We use both bold face and superscripts for vectors
(e.g., x = xn, 1 = (1, . . . , 1), and 0 = (0, . . . , 0)). Given
a sequence (x1, x2, . . .) with element xi in set Xi for each
i and given an ordered index set T ⊆ N, we define vector
xT , (xi, i ∈ T ) and set XT ,

∏
i∈T Xi. Given a set X , Xn

is the n-fold Cartesian product of X . We denote matrices by
sans serif uppercase letters (e.g., V) and the (i, j)-th element
of matrix V by [V]i,j . Inequalities between two vectors of
the same dimension indicate elementwise inequalities. Given
vector u ∈ Rd and set Q ⊂ Rd, u+Q denotes the Minkowski
sum of {u} and Q, giving u+Q , {u+q : q ∈ Q}. For
two functions u(n) and f(n), u(n) = O(f(n)) if there exist
c, n0 ∈ R+ such that 0 ≤ u(n) ≤ cf(n) for all n > n0. For
a d-dimensional function u : N → Rd, u(n) = O(f(n))1 if
ui(n) = O(f(n)) for all i ∈ [d]. For any finite set A, P(A)
represents the power set of A excluding the empty set, giving
P(A) , {T : T ⊆ A}\∅. We use |· |+ , max{0, ·}. All
uses of ‘log’ and ‘exp’, if not specified, employ an arbitrary
common base, which determines the information unit.



3

Denote the standard and complementary Gaussian cumula-
tive distribution functions (cdf) by Φ(z) and Q(z), giving

Φ(z),
1√
2π

∫ z

−∞
e−

u2

2 du (2)

Q(z), 1−Φ(z). (3)

Function Q−1(·) denotes the inverse of Q(·). The standard
Gaussian probability density function is

φ(z) , Φ′(z) =
1√
2π
e−

z2

2 . (4)

The d-dimensional generalization of the Gaussian cdf is

Φ(V; z) , Φ(V; z1, . . . , zd) (5)

,
1√

(2π)d|V|

∫ z1

−∞
...
∫ zd

−∞
e
− 1

2

d∑
i,j=1

uiuj [V−1]i,j
dud . . . du1.

Given an ordered index set T ⊂ N, let PXT be a distribution
defined on countable alphabet XT . For any A,B ⊆ T with
A∩B = ∅ and any (xA,xB) ∈ XA×XB, the information and
conditional information are defined as

ı(xA) , log
1

PXA(xA)
(6)

ı(xA|xB) , log
1

PXA|XB(xA|xB)
. (7)

The corresponding entropy, conditional entropy, varentropy,
conditional varentropy, third centered moment of information,
and third centered moment of conditional information are
defined by, respectively,

H(XA) , E[ı(XA)] (8)
H(XA|XB) , E[ı(XA|XB)] (9)

V (XA) , Var[ı(XA)] (10)
V (XA|XB) , Var[ı(XA|XB)] (11)

T (XA) , E
[
|ı(XA)−H(XA)|3

]
(12)

T (XA|XB) , E
[
|ı(XA|XB)−H(XA|XB)|3

]
. (13)

We also define random variables

Vc(XA|XB) , E
[
(ı(XA|XB)−E[ı(XA|XB)|XB])

2|XB
]

(14)

Tc(XA|XB) , E
[
|ı(XA|XB)−E[ı(XA|XB)|XB]|3|XB

]
.

(15)

III. POINT-TO-POINT SOURCE CODING

A. Definitions

In point-to-point source coding, the encoder maps a discrete
random variable X defined on finite or countably infinite
alphabet X into a message from codebook [M ]. The decoder
reconstructs X from the compressed description. Formal def-
initions of codes and their information-theoretic limits follow.
For prior definitions, see, for example, [9, Chapter 1].

Definition 1 (Point-to-point source code). An (M, ε) code for
a random variable X with discrete alphabet X comprises

an encoding function f : X → [M ] and a decoding function
g : [M ]→ X with error probability P[g(f(X)) 6= X] ≤ ε.

Definition 2 (Block point-to-point source code). An (n,M, ε)
code is an (M, ε) code defined for a random vector Xn with
discrete vector alphabet Xn.

Definition 3 (Minimum achievable rate). The minimum code
size M∗(n, ε) and rate R∗(n, ε) achievable at blocklength n
and error probability ε are defined as

M∗(n, ε),min{M : ∃ (n,M, ε) code}

R∗(n, ε),
1

n
logM∗(n, ε).

A discrete information source is a sequence of discrete
random variables, X1, X2, . . ., specified by the transition prob-
ability kernels PXi|Xi−1 , i = 1, 2, . . . While Definition 2
applies to many classes of sources, including sources with
memory and non-stationary sources, our asymptotic analysis
focuses on stationary, memoryless sources, where PXi|Xi−1 =
PX for all i = 1, 2, . . . (i.e., X1, X2, . . . are i.i.d.).

B. Background

Shannon’s source coding theorem [3] describes the funda-
mental limit on the asymptotic performance for lossless source
coding on a stationary, memoryless source, giving

lim
n→∞

R∗(n, ε) = H(X), ∀ ε ∈ (0, 1). (16)

In the finite-blocklength regime, Kontoyiannis and Verdú
[6] characterize R∗(n, ε) using upper and lower bounds that
match in their first three terms and show an O

(
1
n

)
fourth-order

gap.

Theorem 1 (Kontoyiannis and Verdú [6]). Consider a sta-
tionary, memoryless source with finite alphabet X , single-
letter distribution PX , and varentropy V (X) > 0. Then1

(achievability) for all 0 < ε ≤ 1
2 and all2 n >

(
T (X)

V (X)3/2ε

)2

,

R∗(n, ε) ≤ H(X)+

√
V (X)

n
Q−1(ε)− log2 n

2n
(17)

+
1

n
log2

(
log2 e√
2πV (X)

+
T (X)

V (X)3/2

)

+
1

n

T (X)

V (X)φ
(

Φ−1
(

Φ(Q−1(ε))+ T (X)
V (X)3/2

√
n

)) ;

(converse) for all 0 < ε ≤ 1
2 and all

n >
1

4

(
1+

T (X)

2V (X)3/2

)2
1

(φ(Q−1(ε))Q−1(ε))
2 , (18)

R∗(n, ε) ≥ H(X)+

√
V (X)

n
Q−1(ε)− log2 n

2n

− 1

n

T (X)+2V (X)3/2

2V (X)φ(Q−1(ε))
. (19)

1These bounds, which are stated in a base-2 logarithmic scale in [6], hold
for any base. The base of the logarithm determines the information unit.

2According to [6], the achievability bound holds for any n ≥ 1. Notice,

however, that it only becomes meaningful when n >
(

T (X)

V (X)3/2ε

)2
.
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Remark 1. Although [6, Theorem 1] restricts attention to 0 <
ε ≤ 1

2 and X finite, the proof in [6] applies for all 0 < ε < 1
and any countable source alphabet, achieving the same first
three terms in (17) and (19) and fourth-order term ±O

(
1
n

)
(which varies with ε) provided that the third centered moment
T (X) of information random variable X is finite.

Remark 2. When V (X) = 0, the source is uniformly
distributed over a finite alphabet (i.e., non-redundant), and
H(X) = log |X |. The optimal code maps any 1−ε fraction
of possible source outcomes to unique codewords, giving

1−ε ≤ M∗(n, ε)

|X |n
≤ 1−ε+ 1

|X |n
.

As a result, when PX is uniform,

H(X)− 1

n
log

1

1−ε
≤ R∗(n, ε)

≤ H(X)− 1

n
log

1

1−ε
+

log e

n(1−ε)
exp(−nH(X)), (20)

which matches (17) up to the second order (since V (X) = 0)
but omits the − logn

2n third-order term.

Remark 3. While it is not captured by our notation, R∗(n, ε)
is a function of PX . Since the − logn

2n third-order term appears
in (17) and (19) but not in (20), the bound on R∗(n, ε), when
viewed as a function of PX , is discontinuous at the point where
PX equals the uniform distribution on X . In contrast, R∗(n, ε),
which is known and calculable, is continuous. The problem
arises because Berry-Esseen type bounds are loose for small
V (X). Thus for any finite n, the achievability bound in (17)
blows up as V (X)→ 0. See Figure 1. Theorem 1 states that
for any V (X) > 0 there exists some n0 = n0(PX , ε) such that
for all n > n0, R∗(n, ε) behaves like − logn

2n in the third-order
term; the smaller the value of V (X), the larger n0 must be.

Achievability results based on Shannon’s random coding
argument [3] are important because they do not require knowl-
edge of the optimal code, which is available only in a few
special communication scenarios (e.g., [6], [7]). The following
random coding achievability bound3 is obtained by assigning
source realizations to codewords independently and uniformly
at random. The threshold decoder decodes to x ∈ X if and
only if x is a unique source realization that (i) is compatible
with the observed codeword under the given (random) code
design, and (ii) has information ı(x) below logM−γ.

Theorem 2 (e.g. [24], [25, Th. 9.4]). There exists an (M, ε)
code for discrete random variable X such that

ε ≤ P[ı(X) > logM−γ]+exp(−γ), ∀ γ > 0. (21)

Particularizing (21) to a stationary, memoryless source
with single-letter distribution PX satisfying V (X) > 0 and
T (X) < ∞, choosing logM and γ optimally, and applying
the Berry-Esseen inequality (see Theorem 6 below) gives

R∗(n, ε) ≤ H(X)+

√
V (X)

n
Q−1(ε)+

log n

2n
+O

(
1

n

)
. (22)

3Tighter bounds based on the optimal code appear in [9, Lemma 1.3.1]
and [23, Remark 5].

Fig. 1: Evaluations of the achievability bound in (17), the converse
bound in (19), and the optimum R∗(n, ε), all shown as a function of
V (X) = p(1−p)(log 1−p

p
)2 for a Bernoulli-p source at ε = 0.1.

Since the optimal application of Theorem 2 yields (22),
which exceeds the bounds in Theorem 1 by + logn

n in the
third-order term, we are left to wonder whether random
code design, threshold decoding, or both yield third-order
performance penalties. In [6, Th. 8], Kontoyiannis and Verdú
precisely characterize the performance of a code designed with
i.i.d. uniform random codeword generation and an optimal
(maximum likelihood) decoder. Unfortunately, that result is
difficult to use in the asymptotic analysis. In Section III-C
Theorem 4, below, we derive a new random coding bound
using a maximum likelihood decoder; this result demonstrates
that random coding suffices to achieve the third-order optimal
performance for a stationary, memoryless source.

C. New Achievability Bounds Based on Random Coding

We next use random code design to derive two new non-
asymptotic achievability bounds for point-to-point source cod-
ing. We call these results the dependence testing (DT) bound
and the random coding union (RCU) bound since they are the
source coding analogues of the DT [5, Th. 17] and RCU [5,
Th. 16] bounds in channel coding. The DT bound tightens
Theorem 2, which is also based on threshold decoding.

Theorem 3 (DT bound). Given a discrete random variable
X , there exists an (M, ε) code with a threshold decoder for
which

ε ≤ E[exp{−|logM−ı(X)]|+}]. (23)

Proof. Appendix A. �

The proof of Theorem 3 bounds the random coding perfor-
mance of a threshold decoder with threshold log γ as

ε ≤ P[ı(X) > log γ]+
1

M
U[ı(X) ≤ log γ], (24)
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where U[·] denotes a mass with respect to the counting
measure UX on X , which assigns unit weight to each x ∈ X .
As in a channel coding argument from [5], we apply the
Neyman-Pearson lemma and find that the right-hand side
of (24) equals M+1

M times the minimum measure of the error
event in a Bayesian binary hypothesis test between PX with a
priori probability M

M+1 and UX with a priori probability 1
M+1 .

(The Neyman-Pearson lemma generalizes to σ-finite measures
like UX [23, Remark 5].) This error measure is minimized by
the test that compares the log likelihood ratio log UX(X)

PX(X) to

the log ratio of a priori probabilities log M/(M+1)
1/(M+1) , giving

H0 : PX , selected if ı(X) ≤ logM

H1 : UX , selected if ı(X) > logM.

Taking γ = M minimizes the right-hand side of (24), which
implies that Theorem 3 is the tightest possible bound for
random coding with threshold decoding.

Particularizing Theorem 3 to a stationary, memoryless
source with a single-letter distribution PX satisfying V (X) >
0 and T (X) < ∞ and invoking the Berry-Esseen inequality
(see Theorem 6 below), we obtain the asymptotic expansion

R∗(n, ε) ≤ H(X)+

√
V (X)

n
Q−1(ε)+O

(
1

n

)
. (25)

Unfortunately, (25) is sub-optimal in its third-order term. Thus,
random code design with threshold-based decoding fails to
achieve the optimal third-order performance.

Next, we present the RCU bound, which employs random
code design and maximum likelihood decoding.

Theorem 4 (RCU bound). Given a discrete random variable
X , there exists an (M, ε) code with a maximum likelihood
decoder for which

ε ≤ E
[
min

{
1,

1

M
E
[
exp
(
ı(X̄)

)
1
{
ı(X̄) ≤ ı(X)

}
|X
]}]

,(26)

where PXX̄(a, b) = PX(a)PX(b) for all a, b ∈ X .

Proof. Our random code design randomly and independently
draws encoder output F(x) for each x ∈ X from the uniform
distribution on [M ]. We use the maximum likelihood decoder

g(c) = arg max
x∈X : F(x)=c

PX(x) = arg min
x∈X : F(x)=c

ı(x). (27)

If multiple source symbols have the maximal probability mass,
the decoder design chooses among them uniformly at random.

Under this random code construction, the expected error
probability is bounded by the probability P[E ] of event

E , {∃ x̄ ∈ X\{X} s.t. ı(x̄) ≤ ı(X),F(x̄) = F(X)}, (28)

where probability measure P[·] captures both the random
source output X and the random encoding map F. The

resulting error bound is

E[P({g(F (X)) 6= X}|F (·))]
≤ P[E ]

= E

P
 ⋃
x̄∈X\{X}

{ı(x̄) ≤ ı(X),F(x̄) = F(X)}|X

 (29)

≤ E

min

1,
∑
x̄∈X :
x̄ 6=X

P[{ı(x̄) ≤ ı(X),F(x̄) = F(X)}|X]




(30)

≤ E

[
min

{
1,

1

M

∑
x̄∈X

1{ı(x̄) ≤ ı(X)}

}]
(31)

= E
[
min

{
1,

1

M
E
[

1

PX(X̄)
1{ı(X̄) ≤ ı(X)}|X

]}]
, (32)

where (29) applies the law of iterated expectation, (30) bounds
the probability by the minimum of the union bound and 1, (31)
holds because the encoder outputs are drawn i.i.d. uniformly
at random and independently of X , and (32) rewrites (31) in
terms of the distribution PXX̄ = PXPX .

The existence of the desired (M, ε) code follows since (32)
equals the right-hand side of (26). �

Remark 4. By the argument employed in the proof of [25,
Th. 9.5], we obtain the same RCU bound if we randomize
only over linear encoding maps. Thus, there is no loss in
performance when restricting to linear compressors.

We next show that the RCU bound recovers the first three
terms of the achievability result in Theorem 1. Thus, the sub-
optimal third-order terms in (22) and (25) result from the sub-
optimal decoder rather than the random encoder design. This
is important since optimal codes are not available for scenarios
like the MASC studied in Section V, below.

Theorem 5 focuses on a stationary, memoryless source with
single-letter distribution PX satisfying

V (X) > 0 (33)
T (X) <∞. (34)

Define constants

B , C0
T (X)

V (X)3/2
(35)

C , 2

(
log 2√

2πV (X)
+2B(X)

)
, (36)

where C0 is the absolute constant in the Berry-Esseen inequal-
ity for i.i.d. random variables. (See Theorem 6, below.)

Theorem 5 (Third-order-optimal achievability via random
coding). Consider a stationary, memoryless source satisfying
the conditions in (33) and (34). For all 0 < ε < 1,

R∗(n, ε) ≤ H(X)+

√
V (X)

n
Q−1(ε)− log n

2n
+ξ(n), (37)

where ξ(n) = O
(

1
n

)
is bounded more precisely as follows.
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1) For all 0 < ε ≤ 1
2 and n >

(
B+C
ε

)2
,

ξ(n) ≤ 1

n
logC+

1

n

B+C

φ
(

Φ−1
(

Φ(Q−1(ε))+ B+C√
n

)) . (38)

2) For all 1
2 < ε < 1 and n >

(
B+C
ε− 1

2

)2

,

ξ(n) ≤ 1

n
logC+

1

n

B+C

φ(Q−1(ε))
. (39)

Before we show our proof of the asymptotic expansion in
Theorem 5, we state two auxiliary results used in our analysis.
The first is the classical Berry-Esseen inequality (e.g., [26,
Chapter XVI.5]), stated here with the best known absolute
constant C0 from [27].

Theorem 6 (Berry-Esseen inequality). Let Z1, . . . , Zn be in-
dependent random variables such that V , 1

n

∑n
i=1 Var[Zi] >

0 and T , 1
n

∑n
i=1 E[|Zi−E[Zi]|3] < ∞. Then for any real

t and n ≥ 1,∣∣∣∣∣P
[

1√
nV

n∑
i=1

(Zi−E[Zi]) ≥ t

]
−Q(t)

∣∣∣∣∣ ≤ C0T

V 3/2
√
n
, (40)

where 0.4097 ≤ C0 ≤ 0.5583 (0.4097 ≤ C0 < 0.4690 for
identically distributed Zi) [27].

We refer to C0 ·T/V 3/2 as the Berry-Esseen constant.
The second result is from Polyanskiy et al. [5, Lemma 47].

Lemma 7 ([5, Lemma 47]). In the setting of Theorem 6, it
holds for any A and n ≥ 1 that

E

[
exp

{
−

n∑
i=1

Zi

}
1

{
n∑
i=1

Zi ≥ A

}]

≤ 2

(
log 2√
2πV

+2C0
T

V 3/2

)
1√
n

exp(−A). (41)

Proof of Theorem 5. We analyze the RCU bound of Theo-
rem 4 for random variable Xn. For notational brevity, define

In , ı(X
n) =

n∑
i=1

ı(Xi), Īn , ı(X̄
n) =

n∑
i=1

ı(X̄i). (42)

By Theorem 4, there exists an (n,M, ε′) code such that

ε′ ≤ E
[
min

{
1,

1

M
E
[
exp
(
Īn
)
1
{
Īn ≤ In

}
|Xn

]}]
, (43)

where PXnX̄n = PnXP
n
X , and each of In and Īn is a sum of

i.i.d. random variables. Applying Lemma 7 with Zi = −ı(X̄i)
and A = −In gives

E
[
exp
(
Īn
)
1
{
Īn ≤ In

}
|Xn

]
≤ C√

n
exp(In). (44)

Plugging (44) in (43), we find

ε′ ≤ E
[
min

{
1,

C

M
√
n

exp(In)

}]
(45)

= P
[
In > log

M
√
n

C

]
+

C

M
√
n
E
[
exp(In)1

{
In ≤ log

M
√
n

C

}]
(46)

≤ P
[
In > logM+

1

2
log n− logC

]
+

C√
n
, (47)

where (45) plugs (44) into (43), (46) separates the cases
In > log(M

√
n/C) and In ≤ log(M

√
n/C), and (47) applies

Lemma 7 to the second term in (46).
Denote for brevity

δn ,
B+C√

n
. (48)

We now choose

logM = nH(X)+
√
nV (X)Q−1(ε−δn)− 1

2
log n

+ logC (49)

and apply the Berry-Esseen inequality (Theorem 6) to (47),
giving ε′ ≤ ε and proving achievability bound

R∗(n, ε) ≤ logM

n
. (50)

To obtain (37) from (49), we note that as long as δn < ε,

Q−1(ε−δn) = Φ−1
(
Φ(Q−1(ε))+δn

)
(51)

= Q−1(ε)+δn(Φ−1)′(ξn) (52)

= Q−1(ε)+
δn

φ(Φ−1(ξn))
, (53)

where (51) applies the definition of the Gaussian cumulative
distribution function Φ(·) and its complement Q(·) from (2)
and (3), (52) holds by a first-order Taylor bound for some
ξn ∈

[
Φ(Q−1(ε)),Φ(Q−1(ε))+δn

]
, and (53) holds by the

inverse function theorem.
1) For ε ≤ 1

2 and δn < ε, ξn ≥ 1
2 and φ(Φ−1(ξn)) is

decreasing in ξn. We can further bound the right-hand side
of (53) and conclude that

Q−1(ε−δn) ≤ Q−1(ε)+
δn

φ(Φ−1(Φ(Q−1(ε))+δn))
. (54)

2) For ε > 1
2 and δn < ε− 1

2 , we have ξn ≤ 1
2 and

φ(Φ−1(ξn)) is increasing in ξn. We conclude that

Q−1(ε−δn) ≤ Q−1(ε)+
δn

φ(Q−1(ε))
. (55)

Plugging (54) and (55) into (49) gives (38) and (39). �

IV. COMPOSITE HYPOTHESIS TESTING

The meta-converse for channel coding [5, Th. 26]4 and its
generalizations to lossy source coding [23] and joint source-
channel coding [30], [31] apply binary hypothesis testing to
derive converses in point-to-point communication problems.
To extend this approach to multi-terminal coding (see, e.g.,
Section V Theorem 19, below), we develop a corresponding
method using composite hypothesis testing. We first develop
non-asymptotic tools and then analyze the asymptotics.

A composite hypothesis test PZ|X : X → {0, 1} tests a
simple hypothesis against a composite hypothesis:

H0 : X ∼ P, selected if Z = 1

H1 : X ∼ Qj for some j ∈ [k], selected if Z = 0,

4The quantum information theory literature contains an earlier approach to
channel coding converses using binary hypothesis testing [28], [29, Ch. 4.6].
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where X is the observation, P is the distribution under the
simple hypothesis, and {Qj}kj=1 is the collection of possible
distributions under the composite hypothesis. The following
definition generalizes the optimal β-function from binary to
composite hypothesis testing. (See, for example, [32, Def. 1].)

Definition 4. The set of achievable false-positive errors for
power-α tests between distribution P and collection of distri-
butions {Qj}kj=1 is the subset of [0, 1]k defined as

βα
(
P, {Qj}kj=1

)
, {β = (β1, . . . , βk) :

∃ test s.t. P[Z = 1] ≥ α, Qj [Z = 1] ≤ βj , ∀ j ∈ [k]}, (56)

where P[·] denotes a probability with respect to P , and for
each j ∈ [k], Qj [·] denotes a probability with respect to Qj .

Like binary hypothesis tests (see [23, Remark 5]), composite
hypothesis tests can be generalized to allow P and {Qj}kj=1

to be σ-finite measures; in such cases, βα(P, {Qj}kj=1) may
not be a subset of [0, 1]k. We apply this generalization in
Section V-C2 to derive our new MASC converse.

In [32], Huang and Moulin study the asymptotics of the
set βα(P, {Qj}kj=1), giving a third-order-optimal characteri-
zation [32, Th. 1]. As noted in [33, Appendix D], there is a
gap in their converse proof (see also Remark 6, below). We
here present a comprehensive analysis of composite hypothesis
testing, starting with non-asymptotic characterizations and
then particularizing them to give a new proof of [32, Th. 1].

A. Non-Asymptotic Bounds

The analysis of βα
(
P, {Qj}kj=1

)
in [32] uses the test that

achieves the minimal (boundary) points of that set. For each
minimal point β, there exists a vector a = (a1, . . . , ak) ≥ 0,
a 6= 0, such that the generalized Neyman-Pearson test

PZ|X(1|x) =



1, for x s.t. P (x) >
k∑
j=1

ajQj(x)

0, for x s.t. P (x) <
k∑
j=1

ajQj(x)

λ, for x s.t. P (x) =
k∑
j=1

ajQj(x),

(57)

achieves β; here λ ∈ [0, 1] is chosen so that P[Z = 1] = α.
While the above test is optimal, the achievability and converse
bounds that follow simplify the asymptotic analysis.

Lemma 8 (Achievability). For any γj ≥ 0, j ∈ [k], there
exists a composite hypothesis test PZ|X for which

P[Z = 1] = P

 ⋂
j∈[k]

{
P (X)

Qj(X)
≥ γj

} (58)

Qj [Z = 1] ≤ EP
[
Qj(X)

P (X)
1

{
P (X)

Qj(X)
≥ γj

}]
, ∀ j ∈ [k].

(59)

Proof. Fix any γj ≥ 0, j ∈ [k]. Consider the (sub-optimal)
likelihood-ratio threshold test5:

PZ|X(1|x) =

{
1, if P (X)

Qj(X) ≥ γj , ∀ j ∈ [k]

0, otherwise.
(60)

Under this test, (58) follows immediately, and (59) holds by

Qj [Z = 1] = Qj

 ⋂
j∈[k]

{
P (X)

Qj(X)
≥ γj

} (61)

≤ Qj
[
P (X)

Qj(X)
≥ γj

]
(62)

=
∑
x∈X

P (x) ·Qj(x)

P (x)
1

{
P (x)

Qj(x)
≥ γj

}
(63)

= EP
[
Qj(X)

P (X)
1

{
P (X)

Qj(X)
≥ γj

}]
. (64)

�

The following converse bound extends [5, Eq. (102)] from
binary hypothesis testing to composite hypothesis testing.

Lemma 9 (Converse). For any α, if β = (β1, . . . , βk) ∈
βα
(
P, {Qj}kj=1

)
, then

α−
k∑
j=1

γjβj ≤ P

 ⋂
j∈[k]

{
P (X)

Qj(X)
≥ γj

}, (65)

where γj ≥ 0, j ∈ [k] are arbitrary constants.

Proof. Appendix B. �

Lemma 10 extends the argument of [34, Lemma 1] from
binary to composite hypothesis testing.

Lemma 10 (Variational lemma). For any α, if β =
(β1, . . . , βk) ∈ βα

(
P, {Qj}kj=1

)
, then

α−
k∑
j=1

γjβj ≤ 1−
∑
x∈X

min

P (x),
k∑
j=1

γjQj(x)

, (66)

where γj ≥ 0, j ∈ [k], are arbitrary constants and equality is
achieved by a generalized Neyman-Pearson test.

Proof. Appendix C. �

Given any β = (β1, . . . , βk), define

ε∗(β) , inf{ε ∈ [0, 1] : ∃ test s.t.
P[Z = 1] ≥ 1−ε, Qj [Z = 1] ≤ βj , ∀ j ∈ [k]}. (67)

Then Lemma 10 gives

ε∗(β) = (68)

sup
γ1,...,γk≥0

∑
x∈X

min

P (x),
k∑
j=1

γjQj(x)

−
k∑
j=1

γjβj

.
5In [32], Huang and Moulin also use this sub-optimal likelihood-ratio

threshold in their asymptotic achievability analysis.
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Remark 5. We can derive Lemma 9 from the variational
characterization in Lemma 10 by noting that

1−
∑
x∈X

min

P (x),
k∑
j=1

γjQj(x)


≤ 1−

∑
x∈X

P (x)1

P (x) <
k∑
j=1

γjQj(x)

 (69)

= P

P (X) ≥
k∑
j=1

γjQj(X)

 (70)

≤ P

 ⋂
j∈[k]

{
P (X)

Qj(X)
≥ γj

}. (71)

Lemmas 9 and 10 are useful beyond the asymptotic analysis
of composite hypothesis testing. They also make it possible to
recover previous converse bounds from our new MASC meta-
converse, as presented in Section V-C2 below.

B. Asymptotics for I.I.D. Distributions
We here characterize the asymptotics of βα

(
P, {Qj}kj=1

)
when each of P and {Qj}kj=1 is a product of n identical
single-shot distributions, i.e., P (Xn) =

∏n
i=1 P (Xi) and

Qj(X
n) =

∏n
i=1Qj(Xi), j ∈ [k].

We begin with notation. For each j ∈ [k], define

Dj , EP
[
log

P (X)

Qj(X)

]
(72)

Vj , VarP

[
log

P (X)

Qj(X)

]
(73)

Tj , EP

[∣∣∣∣log
P (X)

Qj(X)
−Dj

∣∣∣∣3
]
. (74)

Define vector D and matrix V as

D , (Dj , j ∈ [k]) (75)

V , CovP

[(
log

P (X)

Qj(X)
, j ∈ [k]

)]
. (76)

Let Z ∈ Rd be a Gaussian random vector with mean
zero and covariance matrix V. Define the multidimensional
counterpart of the function Q−1(·) as

Qinv(V, ε) ,
{
z ∈ Rd : P[Z ≤ z] ≥ 1−ε

}
. (77)

The set Qinv(V, ε) appears in characterizations such as [13],
[32]. When V is non-singular, the boundary of Qinv(V, ε)
approaches zi =

√
[V]i,iQ

−1(ε) in each dimension i ∈ [d],
as illustrated in Figure 2(a). For ε ≤ 1/2, Qinv(V, ε) lies in
the positive orthant of Rd; for ε > 1/2, Qinv(V, ε) extends
outside of the positive orthant. If ε′ < ε, then Qinv(V, ε′) ⊂
Qinv(V, ε). See Figure 2(b) for plots of the boundaries of
Qinv(V, ε) in R2. If V is singular with rank r < d, then
Qinv(V, ε) lies in an r-dimensional subspace of Rd.

Theorem 11 derives a third-order-optimal characterization
of βα

(
P, {Qj}kj=1

)
under assumptions

Vj > 0, ∀ j ∈ [k] (78)
Tj <∞, ∀ j ∈ [k]. (79)

(a)

(b)

Fig. 2: Illustrations of Qinv(V, ε) ⊂ R2. (a) A schematic drawing of
Qinv(V, ε). (b) A graph plotting the boundaries of Qinv(V, ε) ⊂ R2

with various values of ε when V is the identity matrix.

Define the inner and outer bounding sets

B∗in(n, ε) , exp

{
−nD+

√
nQinv(V, ε)− log n

2
1+O(1)1

}
B∗out(n, ε) , exp

{
−nD+

√
nQinv(V, ε)− log n

2
1−O(1)1

}
,

where vector D and matrix V are defined in (75) and (76).

Theorem 11 (Third-order-optimal asymptotics). Assume that
P and {Qj}kj=1 are product distributions composed of n
identical single-shot distributions that satisfy (78) and (79).
For any α ∈ (0, 1), the set βα

(
P, {Qj}kj=1

)
satisfies

B∗in(n, ε) ⊆ βα
(
P, {Qj}kj=1

)
⊆ B∗out(n, ε), (80)

where ε = 1−α.

Remark 6. In [32, Th. 1], Huang and Moulin claim the third-
order-optimal result in Theorem 11 when V is non-singular.
Unfortunately, there is a gap in their converse proof. Apply-
ing [32, Lemma 2] to get [32, Eq. (13)] requires that vector b is
independent of n. However, they consider any b ∈ Qinv(V, ε),
which may grow with n because set Qinv(V, ε) is unbounded.
Thus, [32, Eq. (13)] does not always hold.

We resolve this issue with a new proof of Theorem 11 that
leverages Lemmas 8 and 9. We first show two auxiliary results.
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The multidimensional Berry-Esseen theorem bounds the
probability of a sum of i.i.d. random vectors. Bentkus’ the-
orem [35, Th. 1.1] for the case with mean zero and identity
covariance achieves the best known dependence on dimension.
Tan and Kosut extend [35, Th. 1.1] to non-singular covariance
matrices [13, Cor. 8]. We here extend [13, Cor. 8] to covariance
matrices with non-zero rank.

Lemma 12. Let U1, . . . ,Un be i.i.d. random vectors in Rd
with mean zero and covariance matrix V. Let Z ∼ N (0,V)
be a Gaussian vector in Rd. Define r , rank(V). Let T be a
d×r matrix whose columns are the r normalized eigenvectors
of V with non-zero eigenvalues. Define i.i.d. random vectors
W1, . . . ,Wn ∈ Rr such that Ui = TWi for i ∈ [n]. Let
Vr , Cov[W1] and βr , E[‖W1‖32]. If r ≥ 1, then for all n,

sup
z∈Rd

∣∣∣∣∣P
[

1√
n

n∑
i=1

Ui ≤ z

]
−P[Z ≤ z]

∣∣∣∣∣ ≤ 400d1/4βr
λmin(Vr)3/2

√
n
,

(81)
where λmin(Vr) > 0 is the smallest eigenvalue of matrix Vr.

Proof. Appendix D. �

If r = d, then Vr = V and Lemma 12 recovers [13, Cor. 8].
The following lemma is useful for our asymptotic analysis.

Lemma 13. Fix an arbitrary d×d positive-semidefinite ma-
trix V and 0 < ε < 1. Then, the following results hold.

1) There exist constants D1 and δ1 > 0 such that for all
0 ≤ δ < δ1,

Qinv(V, ε) ⊆ Qinv(V, ε−δ)−D1δ1. (82)

2) There exist constants D2 and δ2 > 0 such that for all
0 ≤ δ < δ2,

Qinv(V, ε) ⊇ Qinv(V, ε+δ)+D2δ1. (83)

Proof. Appendix E. �

Proof of Theorem 11. Define random variables

Ij ,
n∑
i=1

log
P (Xi)

Qj(Xi)
, j ∈ [k] (84)

and random vector

I , (Ij , j ∈ [k]). (85)

For brevity, denote

γ , (γj , j ∈ [k]). (86)

To prove the achievability part of Theorem 11, we particu-
larize Lemma 8 to product distributions P⊗n and

{
Q⊗nj

}k
j=1

to obtain that for any γ ≥ 0, there exists a test PZ|Xn for
which

P[Z = 1] = P[I ≥ log γ] (87)
Qj [Z = 1] ≤ EP [exp(−Ij)1{Ij ≥ log γj}], ∀ j ∈ [k]. (88)

Take any γ such that

log γ ∈ nD−
√
nQinv

(
V, ε− B√

n

)
, (89)

where B is the constant on the right side of (81) for In, which
is finite under assumptions (78) and (79). Applying Lemma 12
to (87) gives

P[Z = 1] = P
[

1√
n

(−I+nD) ≤ 1√
n

(− log γ+nD)

]
(90)

≥ P
[
Z ≤ 1√

n
(− log γ+nD)

]
− B√

n
(91)

≥ 1−ε, (92)

where Z ∼ N (0,V) and matrix V is defined in (76). Applying
Lemma 7 to (88) gives

Qj [Z = 1] ≤ Kj√
n

exp(− log γj), (93)

where

Kj , 2

(
log 2√
2πVj

+2C0
Tj

V
3/2
j

)
(94)

is a finite positive constant by the assumptions in (78) and
(79). Plugging (89) into (93) and noting (92) gives

βα
(
P, {Qj}kj=1

)
(95)

⊇ exp

{
−nD+

√
nQinv

(
V, ε− C√

n

)
− log n

2
1+O(1)1

}
⊇ exp

{
−nD+

√
nQinv(V, ε)− log n

2
1+O(1)1

}
, (96)

where (96) follows from Lemma 13-1.
For the converse, recall from Lemma 9 that if ε = 1−α,

then any β ∈ βα
(
P, {Qj}kj=1

)
must satisfy

ε ≥ 1−P

 k⋂
j=1

{
−Ij ≤ log

1

γj

}− k∑
j=1

γjβj (97)

for all γj ≥ 0, j ∈ [k]. Take

γj =
1

βj
√
n
, j ∈ [k]. (98)

Then, (97) becomes

ε ≥ 1−P
[
−I ≤ logβ+

log n

2
1

]
− k√

n
(99)

≥ 1−P
[
Z ≤ 1√

n

(
logβ+nD+

log n

2
1

)]
−B+k√

n
,(100)

where (100) applies Lemma 12 and B is the constant in the
right side of (81). By the definition of Qinv(V, ε) in (77), (100)
implies that

β ∈ exp

{
−nD+

√
nQinv

(
V, ε+

B+k√
n

)
− log n

2
1

}
. (101)

Applying Lemma 13-2, we conclude from (101) that

βα
(
P, {Qj}kj=1

)
⊆ exp

{
−nD+

√
nQinv(V, ε)− log n

2
1−O(1)1

}
. (102)

�
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V. MULTIPLE ACCESS SOURCE CODING

To simplify notation, we focus on MASCs with two en-
coders. Our definitions and results generalize to more than
two encoders, as briefly noted in Remark 12 below.

A. Definitions

In a MASC [11], also known as a Slepian-Wolf source code,
independent encoders compress a pair of random variables
(X1, X2) with discrete alphabets X1 and X2. Encoder i,
i ∈ [2], observes only Xi, which it maps to a codeword in
[Mi]; a single decoder jointly decodes the pair of codewords
to reconstruct (X1, X2). We first define codes for abstract
random objects and then particularize to random objects that
live in an alphabet endowed with a Cartesian product structure.

Definition 5 (MASC). An (M1,M2, ε) MASC for random
variables (X1, X2) with discrete alphabets X1 and X2 com-
prises two encoding functions f1 : X1 → [M1] and f2 : X2 →
[M2] and a decoding function, g : [M1]× [M2] → X1×X2

with error probability P[g(f1(X1), f2(X2)) 6= (X1, X2)] ≤ ε.

In block coding, encoders individually observe Xn
1 and

Xn
2 drawn from distribution PXn

1 X
n
2

on Xn1 ×Xn2 . Our block
MASC definition is similar to those in [13] and [14].

Definition 6 (Block MASC). An (n,M1,M2, ε) MASC is an
(M1,M2, ε) MASC for random vectors (Xn

1 , X
n
2 ) on Xn1 ×

Xn2 . The code rate R = (R1, R2) is given by

R1 ,
1

n
logM1, R2 ,

1

n
logM2. (103)

Definition 7 ((n, ε)-rate region). Rate R = (R1, R2) is (n, ε)-
achievable if there exists an (n,M1,M2, ε) MASC with R1 ≤
1
n logM1 and R2 ≤ 1

n logM2. The (n, ε)-rate region R∗(n, ε)
is the closure of the set of (n, ε)-achievable rate pairs.

While definitions 6 and 7 apply to arbitrary discrete
random variables (X1i, X2i), i = 1, 2, . . ., with transi-
tion probability kernels P(X1X2)i|(X1X2)i−1 , our asymptotic
analysis focuses on stationary, memoryless sources, where
P(X1X2)i|(X1X2)i−1 = PX1X2

for all i = 1, 2, . . .
For any rate R = (R1, R2) and distribution PX1X2

, define

R ,

 R1

R2

R1 +R2

, H ,
H(X1|X2)
H(X2|X1)
H(X1, X2)

. (104)

B. Background

In [11], Slepian and Wolf prove that if (Xn
1 , X

n
2 ) are

stationary and memoryless, then for every ε ∈ (0, 1),

lim
n→∞

R∗(n, ε) = {(R1, R2) : R1 ≥ H(X1|X2)

R2 ≥ H(X2|X1)

R1 +R2 ≥ H(X1, X2)}, (105)

(i.e., the strong converse holds). We call this region the
asymptotic MASC rate region.

In [12], Miyake and Kanaya give achievability and con-
verse bounds for finite-blocklength coding on finite-alphabet
sources. In [9], Han gives corresponding results for sources

with countable alphabets. While these results are stated in [9]
for general sources whose alphabets adopt n-fold Cartesian
product structures, we here describe them in an abstract form.

Theorem 14 (Achievability, Han [9, Lemma 7.2.1]).
Given discrete random variables (X1, X2), there exists an
(M1,M2, ε) MASC satisfying

ε ≤ P[{ı(X1|X2) ≥ logM1−γ}
∪{ı(X2|X1) ≥ logM2−γ}
∪{ı(X1, X2) ≥ logM1M2−γ}]+3 exp(−γ), (106)

where γ > 0 is an arbitrary constant.

Theorem 15 (Converse, Han [9, Lemma 7.2.2]). Any
(M1,M2, ε) MASC on discrete random variables (X1, X2)
satisfies

ε ≥ P[{ı(X1|X2) ≥ logM1 +γ}
∪{ı(X2|X1) ≥ logM2 +γ}
∪{ı(X1, X2) ≥ logM1M2 +γ}]−3 exp(−γ), (107)

where γ > 0 is an arbitrary constant.

In [15], Jose and Kulkarni derive a new linear programming
(LP) finite-blocklength converse, tightening the bound in The-
orem 15 with an extra non-negative term (see [15, Cor. 13]).

Theorem 16 (LP-based converse, [15, Th. 12]). Any
(M1,M2, ε) MASC on discrete random variables (X1, X2)
satisfies

ε ≥ sup
φ1,φ2,φ3


∑
x1∈X1
x2∈X2

min

PX1X2
(x1, x2),

3∑
j=1

φj(x1, x2)


−M1

∑
x2∈X2

max
x̂1∈X1

φ1(x̂1, x2)−M2

∑
x1∈X1

max
x̂2∈X2

φ2(x1, x̂2)

−M1M2 max
x̂1∈X1, x̂2∈X2

φ3(x̂1, x̂2)

, (108)

where the supremum is over φ1, φ2, φ3 : X1×X2 → [0, 1] such
that 0 ≤ φ1(x1, x2), φ2(x1, x2), φ3(x1, x2) ≤ PX1X2(x1, x2)
for all (x1, x2) ∈ X1×X2.

The best prior asymptotic expansion of the MASC rate
region is the second-order characterization developed inde-
pendently in [13], [14]. In [13], Tan and Kosut introduce an
entropy dispersion matrix, which serves a role similar to the
scalar dispersion in the point-to-point case [5], [6], [23].

Definition 8 (Tan and Kosut [13, Def. 7]). The entropy
dispersion matrix V for random variables (X1, X2) is the
covariance matrix V , Cov[ı(X1, X2)] of random vector

ı(X1, X2) ,

ı(X1|X2)
ı(X2|X1)
ı(X1, X2)

. (109)

Note that V is a 3×3 positive-semidefinite matrix with
V (X1|X2), V (X2|X1), and V (X1, X2) on the diagonal.
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Tan and Kosut [13] give a second-order characterization
of the MASC rate region for finite-alphabet stationary, mem-
oryless sources in terms of the asymptotic rate region and
the entropy dispersion matrix. Their result, reproduced below,
exhibits an O

(
logn
n

)
gap in the third-order term.

Define

Rin(n, ε) ,

{
R ∈ R2 : R ∈ H+

Qinv(V, ε)√
n

+
ν log n

n
1

}
(110)

Rout(n, ε) ,

{
R ∈ R2 : R ∈ H+

Qinv(V, ε)√
n

− log n

n
1

}
,

(111)

where R and H are defined in (104), V is the entropy disper-
sion matrix for (X1, X2) (Definition 8), ν , |X1||X2|+κ+ 3

2 ,
and κ is the absolute finite positive constant from [13, Def. 6].

Theorem 17 (Tan and Kosut [13, Th. 1]). Consider finite-
alphabet, stationary, memoryless sources (X1, X2) with
PX1X2

(x1, x2) > 0 for every (x1, x2) ∈ X1×X2. For any
0 < ε < 1 and all n sufficiently large,

Rin(n, ε) ⊆ R∗(n, ε) ⊆ Rout(n, ε). (112)

Remark 7. The inner boundary defined in (110) is achievable
by a universal coding scheme [13, Sec. VI]. The outer bound-
ing region in (111) is based on [9, Lemma 7.2.2].

In [14], Nomura and Han use [9, Lemma 7.2.1] and [9,
Lemma 7.2.2] to derive a second-order MASC coding theorem
for stationary, memoryless, dependent sources. Their result is
equivalent to Theorem 17 up to the second-order term and ap-
plies also for countable alphabets. Neither [13] nor [14] finds
the precise third-order term. In Sections V-C and V-D, below,
we give new non-asymptotic MASC bounds and then apply
them to precisely characterize the third-order asymptotics.

C. New Non-Asymptotic Bounds

1) Achievability: We present a MASC RCU bound, extend-
ing Theorem 4 to the multiple-encoder case.

Theorem 18 (MASC RCU bound). Given discrete random
variables (X1, X2), there exists an (M1,M2, ε) MASC with

ε ≤ E[min{1, A1 +A2 +A12}] (113)

where

A1 ,
1

M1
E
[
exp
(
ı(X̄ ′1|X2)

)
1
{
ı(X̄ ′1|X2) ≤ ı(X1|X2)

}
|X1, X2

]
(114)

A2 ,
1

M2
E
[
exp
(
ı(X̄ ′2|X1)

)
1
{
ı(X̄ ′2|X1) ≤ ı(X2|X1)

}
|X1, X2

]
(115)

A12 ,
1

M1M2
E
[
exp
(
ı(X̄1, X̄2)

)
1
{
ı(X̄1, X̄2) ≤ ı(X1, X2)

}
|X1, X2

]
(116)

PX1X2X̄1X̄2X̄′1X̄
′
2

(
a, b, ā, b̄, ā′, b̄′

)
(117)

= PX1X2
(a, b)PX1X2

(ā, b̄)PX1|X2
(ā′|b)PX2|X1

(b̄′|a).

Proof. For every xi ∈ Xi, i ∈ [2], draw Fi(xi) i.i.d. uniformly
at random from [Mi]. The maximum likelihood decoder is
defined for each (c1, c2) ∈ [M1]× [M2] by

g(c1, c2)=arg min
(x1,x2)∈X1×X2:

F1(x1)=c1, F2(x2)=c2

ı(x1, x2), (118)

where ties are broken equiprobably at random in the code
design. This decoder is optimal for the given encoder.

We bound the random code’s expected error probability by
the probability of the union of events

E1 , {∃ x̄1 ∈ X1\{X1} :

ı(x̄1|X2) ≤ ı(X1|X2), F1(x̄1) = F1(X1)} (119)
E2 , {∃ x̄2 ∈ X2\{X2} :

ı(x̄2|X1) ≤ ı(X2|X1), F2(x̄2) = F2(X2)} (120)
E12 , {∃ x̄1 ∈ X1\{X1}, x̄2 ∈ X2\{X2} :

ı(x̄1, x̄2) ≤ ı(X1, X2),

F1(x̄1) = F1(X1), F2(x̄2) = F2(X2)}. (121)

By a derivation similar to that in the proof of Theorem 4,

E[P[{g(F1(X1), F2(X2)) 6= (X1, X2)]

≤ P[E1∪E2∪E12] (122)

≤ E

[
min

{
1,∑

x̄1∈X1\{X1}

P[ı(x̄1|X2) ≤ ı(X1|X2), F1(x̄1) = F1(X1)|X1, X2]

+
∑
x̄2∈X2\{X2}

P[ı(x̄2|X1) ≤ ı(X2|X1), F2(x̄2) = F2(X2)|X1, X2]

+
∑
x̄1∈X1\{X1}
x̄2∈X2\{X2}

P[ı(x̄1, x̄2) ≤ ı(X1, X2),

F1(x̄1) = F1(X1), F2(x̄2) = F2(X2)|X1, X2]

}]
(123)

≤ E

[
min

{
1,

1

M1

∑
x̄1∈X1

1{ı(x̄1|X2) ≤ ı(X1|X2)}

+
1

M2

∑
x̄2∈X2

1{ı(x̄2|X1) ≤ ı(X2|X1)}

+
1

M1M2

∑
x̄1∈X1, x̄2∈X2

1{ı(x̄1, x̄2) ≤ ı(X1, X2)}

}]
, (124)

and (124) is equal to the right side of (113) as desired. �

Figure 4 in Section V-D1 plots the point-to-point (Theo-
rem 4) and MASC (Theorem 18) RCU bounds.

2) Converse: The MASC composite hypothesis testing
converse employs the set βα

(
P, {Qj}kj=1

)
(see Definition 4)

and its generalization to σ-finite measures.

Theorem 19 (Hypothesis testing (HT) converse). Let PX1X2

be the source distribution defined on X1×X2. Let Q(1)
X1X2

,
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Q
(2)
X1X2

, and Q(3)
X1X2

be any σ-finite measures defined on X1×
X2. Any (M1,M2, ε) MASC satisfies

(β∗1 , β
∗
2 , β
∗
3) ∈ β1−ε

(
PX1X2

,
{
Q

(1)
X1X2

, Q
(2)
X1X2

, Q
(3)
X1X2

})
,

(125)

where

β∗1 ,M1

∑
x2∈X2

max
x̂1∈X1

Q
(1)
X1X2

(x̂1, x2), (126)

β∗2 ,M2

∑
x1∈X1

max
x̂2∈X2

Q
(2)
X1X2

(x1, x̂2), (127)

β∗3 ,M1M2 max
x̂1∈X1, x̂2∈X2

Q
(3)
X1X2

(x̂1, x̂2). (128)

Proof. Consider an (M1,M2, ε) MASC with stochastic en-
coders PF1|X1

and PF2|X2
and stochastic decoder PX̂1X̂2|F1F2

,
where F1 and F2 are the encoder outputs, and (X̂1, X̂2) is
the decoder output. Fix distributions {Q(j)

X1X2
}3j=1 on X1×X2.

Then Z = 1
{

(X̂1, X̂2) = (X1, X2)
}

defines a (sub-optimal)
composite HT for testing PX1X2

against {Q(j)
X1X2

}3j=1, for
which P[Z = 1] ≥ 1−ε and

Q(1)[Z = 1]

=
∑
x1∈X1

∑
x2∈X2

Q
(1)
X1X2

(x1, x2) ·
M1∑
m1=1

M2∑
m2=1

PF1|X1
(m1|x1)

·PF2|X2
(m2|x2) ·PX̂1X̂2|F1F2

(x1, x2|m1,m2) (129)

≤
∑
x2∈X2

max
x̂1∈X1

Q
(1)
X1X2

(x̂1, x2)

M1∑
m1=1

M2∑
m2=1

PF2|X2
(m2|x2)

·
∑
x1∈X1

PF1|X1
(m1|x1)PX̂1X̂2|F1F2

(x1, x2|m1,m2) (130)

≤M1

∑
x2∈X2

max
x̂1∈X1

Q
(1)
X1X2

(x̂1, x2), (131)

where (130) follows since max
x̂1∈X1

Q
(1)
X1X2

(x̂1, x2) is indepen-

dent of x1, and (131) follows by bounding the probability in
the sum over x1 ∈ X1 by 1. Similarly,

Q(2)[Z = 1] ≤M2

∑
x1∈X1

max
x̂2∈X2

Q
(2)
X1X2

(x1, x̂2), (132)

Q(3)[Z = 1]

=
∑
x1∈X1

∑
x2∈X2

Q
(3)
X1X2

(x1, x2)

M1∑
m1=1

M2∑
m2=1

PF1|X1
(m1|x1)·

PF2|X2
(m2|x2)PX̂1X̂2|F1F2

(x1, x2|m1,m2) (133)

≤ max
x̂1∈X1, x̂2∈X2

Q
(3)
X1X2

(x̂1, x̂2)·

M1∑
m1=1

M2∑
m2=1

∑
x1∈X1

∑
x2∈X2

PX̂1X̂2|F1F2
(x1, x2|m1,m2) (134)

= M1M2 max
x̂1∈X1, x̂2∈X2

Q
(3)
X1X2

(x̂1, x̂2). (135)

Thus (125) holds by the definition of β1−ε
(
P, {Q(j)}kj=1

)
. �

To recover Han’s converse (Theorem 15) from Theorem 19,
let PX1 and PX2 be the marginals of PX1X2 and let UX1 ,

UX2
, and UX1X2

be the counting measures over X1, X2, and
X1×X2. By Theorem 19, any (M1,M2, ε) MASC satisfies

(M1,M2,M1M2)

∈ β1−ε(PX1X2 , {UX1PX2 , PX1UX2 , UX1X2}). (136)

Applying Lemma 9 to (136) with k = 3 gives

ε ≥ P
[{
ı(X1|X2) ≥ log

1

γ1

}
∪
{
ı(X2|X1) ≥ log

1

γ2

}
∪
{
ı(X1, X2) ≥ log

1

γ3

}]
−γ1M1−γ2M2−γ3M1M2.

Setting γ1 = exp(−γ)
M1

, γ2 = exp(−γ)
M2

, and γ3 = exp(−γ)
M1M2

for an
arbitrary γ > 0 recovers Theorem 15.

To show that Theorem 19 is equivalent to the LP-based
converse (Theorem 16), we apply (68) to Theorem 19, showing
that any (M1,M2, ε) MASC satisfies

ε ≥ sup
Q

(1)
X1X2

, Q
(2)
X1X2

, Q
(3)
X1X2

ε∗(β∗1 , β
∗
2 , β
∗
3) (137)

= sup
Q

(1)
X1X2

, Q
(2)
X1X2

, Q
(3)
X1X2

sup
γ1,γ2,γ3≥0


∑
x1∈X1
x2∈X2

min

PX1X2(x1, x2),

3∑
j=1

γjQ
(j)
X1X2

(x1, x2)


−γ1M1

∑
x2∈X2

max
x̂1∈X1

Q
(1)
X1X2

(x̂1, x2)

−γ2M2

∑
x1∈X1

max
x̂2∈X2

Q
(2)
X1X2

(x1, x̂2)

−γ3M1M2 max
x̂1∈X1, x̂2∈X2

Q
(3)
X1X2

(x̂1, x̂2)

. (138)

The outer supremum is over σ-finite measures Q(1)
X1X2

, Q(2)
X1X2

,
and Q(3)

X1X2
. In Appendix F, we show that the bounds in (138)

and (108) are equivalent, establishing the equivalence between
the MASC HT (Theorem 19) and LP (Theorem 16) converses.

Remark 8. When one of the sources is deterministic, the
MASC HT converse reduces to the point-to-point HT con-
verse [23, Eq. (64)]. For example, if X2 is deterministic, then
(136) reduces to

(M1, 1,M1) ∈ β1−ε(PX1X2
, {UX1

PX2
, PX1

UX2
, UX1X2

}),

which further reduces to

M1 ≥ β1−ε(PX1
, UX1

),

where βα(P,Q) is the optimal β-function for binary hypoth-
esis testing between distributions P and Q.

D. Asymptotics: Third-Order MASC Rate Region

The following third-order asymptotic characterization of the
MASC rate region for stationary, memoryless sources closes
the O

(
logn
n

)
gap between (110) and (111).
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Consider stationary, memoryless sources with single-letter
joint distribution PX1X2 for which

V (X1, X2)>0, E[Vc(X1|X2)]>0, E[Vc(X2|X1)]>0, (139)
T (X1, X2) <∞, T (X1|X2) <∞, T (X2|X1) <∞, (140)
E
[
T 2
c (X1|X2)

]
<∞, E

[
T 2
c (X2|X1)

]
<∞. (141)

When (139) holds6, rank(V) ≥ 1. Technical assumptions
(139), (140), and (141) are required to ensure applicability
of the multidimensional Berry-Esseen theorem and Lemma 7
in our asymptotic analysis. Assumption (140) is satisfied
automatically if the alphabets X1 and X2 are finite.

Define the set

R
∗
(n, ε) ,

{
R ∈ R3 : R = H+

Qinv(V, ε)√
n

− log n

2n
1

}
,

(142)
where vector H is defined in (104), V is the entropy dispersion
matrix for (X1, X2), and Qinv(V, ε) is defined in (77). Note
that R∗(n, ε) ⊂ R2 (see Definition 7) but R

∗
(n, ε) ⊂ R3.

Define the inner and outer bounding sets

R∗in(n, ε) ,

{
R ∈ R2 : R ∈ R

∗
(n, ε)+O

(
1

n

)
1

}
(143)

R∗out(n, ε) ,

{
R ∈ R2 : R ∈ R

∗
(n, ε)−O

(
1

n

)
1

}
. (144)

Theorem 20 (Third-order MASC rate region). Consider a
pair of stationary, memoryless sources with single-letter joint
distribution PX1X2 satisfying (139)–(141). For any 0 < ε < 1,
the (n, ε)-rate region R∗(n, ε) satisfies

R∗in(n, ε) ⊆ R∗(n, ε) ⊆ R∗out(n, ε). (145)

Since the upper and lower bounds in Theorem 20 agree
up to their third-order terms, we call R

∗
(n, ε) the third-order

MASC rate region. Figure 3 plots the boundaries of R
∗
(n, ε)

at different values of n for an example pair of sources.

Remark 9. As noted in Remark 2, for point-to-point source
coding, zero varentropy means that the source is uniform;
the − logn

2n third-order term is absent in that case. While
condition (139) limits Theorem 20 to sources with positive
varentropies, Appendix G considers the case where one or
more varentropies are zero. Roughly, each zero varentropy
yields a zero dispersion, and the absence of a − logn

2n third-
order term, similar to the point-to-point case. Furthermore, if
V (X1|X2) > 0 but E[Vc(X1|X2)] = 0, the corresponding
achievable third order term increases from − logn

2n to 0.7 This
means that the optimal third order term lies in [− logn

2n , 0] in
that case.

6In fact, the weaker condition V (X1|X2) > 0, V (X2|X1) > 0,
V (X1, X2) > 0 suffices.

7This is seen by modifying the reasoning in (172)–(187) in the proof of
Theorem 20 below.

Fig. 3: Third-order MASC rate regions R
∗
(n, ε) at ε = 10−3 for

stationary, memoryless sources (X1, X2) with pX1,X2(0, 0) = 1/2,
pX1,X2(0, 1) = pX1,X2(1, 1) = pX1,X2(1, 1) = 1/6.

Proof of Theorem 20: achievability. We apply Theorem 18 to
stationary, memoryless sources with PXn

1 X
n
2

= PnX1X2
and

then apply Lemmas 7 and 12 to analyze the bound. Let

I1 , ı(X
n
1 |Xn

2 ) =
n∑
i=1

ı(X1i|X2i) (146)

I2 , ı(X
n
2 |Xn

1 ) =
n∑
i=1

ı(X2i|X1i) (147)

I12 , ı(X
n
1 , X

n
2 ) =

n∑
i=1

ı(X1i, X2i) (148)

Ī1 , ı(X̄
n ′
1 |Xn

2 ) =
n∑
i=1

ı(X̄ ′1i|X2i) (149)

Ī2 , ı(X̄
n ′
2 |Xn

1 ) =
n∑
i=1

ı(X̄ ′2i|X1i) (150)

Ī12 , ı(X̄
n
1 , X̄

n
2 ) =

n∑
i=1

ı(X̄1i, X̄2i) (151)

where (X1i, X2i, X̄1i, X̄2i, X̄
′
1i, X̄

′
2i), i = 1, . . . , n, are drawn

i.i.d. according to the joint distribution defined in (117). With
this notation, the random variables A1, A2, A12 defined in
(114), (115), (116) particularize as

A1 =
1

M1
E
[
exp
(
Ī1
)
1{Ī1 ≤ I1}|Xn

1 , X
n
2

]
(152)

A2 =
1

M2
E
[
exp
(
Ī2
)
1{Ī2 ≤ I2}|Xn

1 , X
n
2

]
(153)

A12 =
1

M1M2
E
[
exp
(
Ī12

)
1{Ī12 ≤ I12}|Xn

1 , X
n
2

]
(154)

By Theorem 18, there exists an (n,M1,M2, ε
′) MASC such

that

ε′ ≤ E[min{1, A1 +A2 +A12}] (155)
= E[(A1 +A2 +A12)1{A1 +A2 +A12 ≤ 1}]
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+P[A1 +A2 +A12 > 1] (156)
≤ E[A11{A1 ≤ 1}]+E[A21{A2 ≤ 1}] (157)

+E[A121{A12 ≤ 1}]+P[3A1 > 1∪3A2 > 1∪3A12 > 1]

To bound each of the terms in (157), we first bound the
random variables A1, A2, and A12 by random variables Ā1,
Ā2, and Ā12 that are easier to work with.

Denote constants

K1 ,
2 log 2√

2πV (X1|X2)
+

2C0T (X1|X2)

V (X1|X2)3/2
(158)

K2 ,
2 log 2√

2πV (X2|X1)
+

2C0T (X2|X1)

V (X2|X1)3/2
(159)

K12 ,
2 log 2√

2πV (X1, X2)
+

2C0T (X1, X2)

V (X1, X2)3/2
(160)

that are finite by assumptions (139) and (140). Define

V1(xn1 ) ,
1

n

n∑
i=1

Var[ı(X2i|X1i = x1i)] (161)

T1(xn1 ) ,
1

n

n∑
i=1

E
[
|ı(X2i|X1i = x1i)−E[ı(X2i|X1i = x1i)]|3

]
(162)

for xn1 ∈ Xn1 . Define V2(xn2 ) and T2(xn2 ) for xn2 ∈ Xn2
analogously.

Applying Lemma 7 to A12 yields

A12 ≤ Ā12 ,
K12 exp(I12)

M1M2
√
n

. (163)

To bound A1, we consider the cases V2(xn2 ) > 0 and
V2(xn2 ) = 0 separately. If V2(xn2 ) > 0, then

K1(xn2 ) ,
2 log 2√
2πV2(xn2 )

+
2C0T2(xn2 )

V2(xn2 )3/2
(164)

is finite by assumption (140), and Lemma 7 yields

A1 ≤
K1(Xn

2 ) exp(I1)

M1
√
n

, if V2(Xn
2 ) > 0. (165)

If V2(xn2 ) = 0, then I1 = Ī1 = H(Xn
1 |Xn

2 = xn2 ) irrespective
of the realization of Xn

1 , and

A1 =
exp(I1)

M1
, if V2(Xn

2 ) = 0. (166)

Putting (165) and (166) together yields

A1 ≤ Ā1 ,

{
K1(Xn

2 ) exp(I1)

M1
√
n

, V2(Xn
2 ) > 0

exp(I1)
M1

, V2(Xn
2 ) = 0.

(167)

Similarly,

A2 ≤ Ā2 ,

{
K2(Xn

1 ) exp(I2)

M2
√
n

, V1(Xn
1 ) > 0

exp(I2)
M2

, V1(Xn
1 ) = 0,

(168)

where K2(xn1 ) is defined analogously to (164).

Next, we apply Lemma 7 again to further bound each of
the first three terms in (157):

E[A11{A1 ≤ 1}] ≤ E
[
Ā11

{
Ā1 ≤ 1

}]
≤ K1√

n
(169)

E[A21{A2 ≤ 1}] ≤ E
[
Ā21

{
Ā2 ≤ 1

}]
≤ K2√

n
(170)

E[A121{A12 ≤ 1}] ≤ E
[
Ā121

{
Ā12 ≤ 1

}]
≤ K12√

n
. (171)

We proceed to bound the last term in (157). For fixed
constants s1 < E[Vc(X2|X1)] and s2 < E[Vc(X1|X2)], define
the events S1 and S2 that Xn

1 and Xn
2 are typical, respectively:

S1 ,
{
V1(Xn

1 ) ≥ E[Vc(X2|X1)]−s1,

T1(Xn
1 ) ≤ E[Tc(X2|X1)]+s1

}
(172)

S2 ,
{
V2(Xn

2 ) ≥ E[Vc(X1|X2)]−s2,

T2(Xn
2 ) ≤ E[Tc(X1|X2)]+s2

}
(173)

Note that

Ā1 ≤ ¯̄A1 ,
K̄1 exp(I1)

M1
√
n

, if S2 occurs (174)

Ā2 ≤ ¯̄A2 ,
K̄2 exp(I2)

M2
√
n

, if S1 occurs, (175)

where

K̄1 ,
2 log 2√

2π(E[Vc(X1|X2)]−s2)
+

2C0(E[Tc(X1|X2)]+s2)

(E[Vc(X1|X2)]−s2)3/2

(176)

K̄2 ,
2 log 2√

2π(E[Vc(X2|X1)]−s1)
+

2C0(E[Tc(X2|X1)]+s1)

(E[Vc(X2|X1)]−s1)3/2

(177)

are both finite by the assumptions in (139) and (140).
Applying the union bound to P[Sck], k ∈ {1, 2}, and

Chebyshev’s inequality

P[|Z−E[Z]| > δ] ≤ Var[Z]

δ2
(178)

to both terms, we observe that for each k ∈ {1, 2},

P[Sck] ≤ Sk
n
, (179)

where

S1 ,
1

s2
1

(
E[V 2

c (X2|X1)]+E[T 2
c (X2|X1)]

)
(180)

S2 ,
1

s2
2

(
E[V 2

c (X1|X2)]+E[T 2
c (X1|X2)]

)
(181)

are finite by assumption (141).
We are now prepared to apply Lemma 12 to the last term

in (157). Pick any pair of rates (R1, R2) satisfying

R ∈ R
∗
(
n, ε− B√

n
−K1 +K2 +K12√

n
− S1 +S2

n

)
+

1

n
C,

(182)

where the set R
∗
(n, ε) is defined in (142), C ,(

log(3K̄1), log(3K̄2), log(3K12)
)T

, and B is the Bentkus



15

constant in the right-side of (81) for zero-mean i.i.d. random
vectors

Ii ,

ı(X1i|X2i)
ı(X2i|X1i)
ı(X1i, X2i)

−H, for i = 1, . . . , n. (183)

Note that B <∞ by assumption (140). We have

P[3A1 ≤ 1∩3A2 ≤ 1∩3A12 ≤ 1]

≥ P
[
3Ā1 ≤ 1∩3Ā2 ≤ 1∩3Ā12 ≤ 1∩S1∩S2

]
(184)

≥ P
[
3 ¯̄A1 ≤ 1∩3 ¯̄A2 ≤ 1∩3Ā12 ≤ 1

]
−P[Sc1∪Sc2 ] (185)

= P

[
n∑
i=1

Ii ≤ n
(
R−H+

log n

2n
1− 1

n
C

)]
−P[Sc1∪Sc2 ]

(186)

≥ 1−ε+K1 +K2 +K12√
n

, (187)

where (185) applies (174) and P[A∩B] ≥ P[A]−P[Bc], and
(187) applies (182), Lemma 12 and (179).

Substituting (169), (170), (171), and (187) into (157) yields
ε′ ≤ ε, and the proof is complete since the set of (R1, R2)
satisfying (182) contains R∗in(n, ε) by Lemma 13-1. �

Proof of Theorem 20: converse. We invoke Theorem 19 with
PX1X2 = PnX1X2

, Q(1)
X1X2

= UnX1
PnX2

, Q(2)
X1X2

= PnX1
UnX2

,
and Q(3)

X1X2
= UnX1X2

, where PX1
and PX2

are the marginals
of PX1X2

, and UX1
, UX2

, and UX1X2
are the counting

measures over X1, X2, and X1×X2. Applying Theorem 11
to β1−ε(PX1X2 , {UX1PX2 , PX1UX2 , UX1X2}) under the as-
sumptions in (139) and (140), we conclude that in order to
attain error probability ε, M1 and M2 must satisfy

(M1,M2,M1M2)

∈ exp

{
nH+

√
nQinv(V, ε)− log n

2
1−O(1)1

}
, (188)

which is equivalent to (R1, R2) ∈ R∗out(n, ε) (144), as desired.
�

Remark 10. The converse of Theorem 20 can also be proved
using Han’s converse (Theorem 15) with γ = logn

2 and
Lemmas 12 and 13 in a way similar to that in the achiev-
ability proof above, except that we would use Lemma 13
to bound Qinv

(
V, ε+O

(
1√
n

))
⊆ Qinv(V, ε)−O

(
1√
n

))
1 in-

stead of Qinv

(
V, ε−O

(
1√
n

))
. Our HT converse (Theo-

rem 19) is stronger than Han’s converse, but the gap is in the
fourth- or higher-order terms, as illustrated through compu-
tation in Figure 4. Han’s achievability bound (Theorem 14)
with the third-order optimal choice of γ = logn

2 leads to
the third order term of + logn

2n instead of − logn
2n . Thus Han’s

achievability is weaker than our RCU bound (Theorem 18) in
the third order term.
Remark 11. Tan and Kosut’s converse (Theorem 17) is also
based on Han’s converse. Instead of deriving an outer bound on
Qinv

(
V, ε+O

(
1√
n

))
as given in Lemma 13, they apply the

multivariate Taylor approximation to expand the probability,
giving a bound that is loose in the third-order term.

Remark 12. Theorem 20 generalizes to any finite number of
encoders. Let T ⊂ N be a nonempty ordered set with a unique
index for each encoder. For any vector RT ∈ R|T |, define the(
2|T |−1

)
-dimensional vector of its partial sums as

RT ,

(∑
i∈A

Ri, T̂ ∈ P(T )

)
. (189)

For any distribution PXT defined on XT and any xT ∈ XT ,
define

(
2|T |−1

)
-dimensional vectors

ıT (xT ) ,
(
ı
(
xT̂ |xT \T̂

)
, T̂ ∈ P(T )

)
(190)

HT , E[ıT (XT )], (191)

and
(
2|T |−1

)
×
(
2|T |−1

)
entropy dispersion matrix

VT , Cov[ıT (XT )] (192)

for random vector XT . Define set

R
∗
T (n, ε) , HT +

Qinv(VT , ε)√
n

− log n

2n
1. (193)

Thus, R∗T (n, ε) ⊂ R|T | while R
∗
T (n, ε) ⊂ R2|T |−1. Finally,

R∗in,T (n, ε) ,

{
RT ∈ R|T | : RT ∈ R

∗
T (n, ε)+O

(
1

n

)
1

}
(194)

R∗out,T (n, ε) ,

{
RT ∈ R|T | : RT ∈ R

∗
T (n, ε)−O

(
1

n

)
1

}
.

(195)

If every element of ıT (XT ) has a positive variance and a finite
third centered moment, then for any 0 < ε < 1,

R∗in,T (n, ε) ⊆ R∗T (n, ε) ⊆ R∗out,T (n, ε). (196)

1) Comparison with Point-to-Point Source Coding:
Figure 4 compares joint (point-to-point) compression of
(Xn

1 , X
n
2 ) to the MASC sum-rate at the symmetrical rate point

(R1 = R2). The gap between the MASC and point-to-point
HT converses captures a penalty due to separate encoding. For
small n, the third-order Gaussian approximation (without the
O
(

1
n

)
term) is more accurate at ε = 10−1 than at ε = 10−3

since the O
(

1
n

)
term blows up as ε approaches 0.

It is well-known that optimal MASCs incur no first-order
penalty in achievable sum rate when compared to joint cod-
ing [9], [11], [12]. We next investigate the higher-order penalty
of the MASC’s independent encoders.

Tan and Kosut introduce a quantity known as the local
dispersion [13, Def. 4] to characterize the second-order speed
of convergence to any asymptotic MASC rate point from any
direction. For any non-corner point on the diagonal boundary
of the asymptotic MASC rate region, the sum rate’s second-
order coefficient is optimal when approached either vertically
or horizontally. Approaching corner points incurs a positive
second-order penalty relative to point-to-point coding.

Two corollaries of Theorem 20, below, bound the MASC
penalty by considering the achievable sum rate R1 +R2 for
different choices of R1 and R2. We treat the cases where
X1 and X2 are dependent and X1 and X2 are independent
separately, assuming throughout that (139) and (140) hold.
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(a)

(b)

Fig. 4: Rate-blocklength trade-offs at (a) ε = 10−1 and (b) ε = 10−3 for a pair of binary, stationary, memoryless sources with joint
distribution pX1X2(0, 0) = 1/2, pX1X2(0, 1) = pX1X2(1, 0) = pX1X2(1, 1) = 1/6. Due to computational limitations, we only plot the
MASC HT converse for small blocklengths (n ≤ 200). We evaluate the MASC HT converse with the sub-optimal choice of measures in
(136), Han’s point-to-point (P2P) converse is from [9, Lemma 1.3.2], Han’s MASC converse is from Theorem 15 ([9, Lemma 7.2.2]), and
the P2P HT converse is given in [23, Appendix A], which coincides with the optimum R∗(n, ε).
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When X1 and X2 are dependent, H(X1)+H(X2) >
H(X1, X2) > H(X1|X2)+H(X2|X1), and the asymptotic
sum-rate boundary contains non-corner and corner points.
Corollary 21, below, shows that a MASC incurs no first-,
second-, or third-order performance penalty relative to joint
coding at non-corner points (i.e., when R1 < H(X1) and
R2 < H(X2)); in contrast, a MASC suffers a second-order
performance penalty at corner points (i.e., when R1 = H(X1)
or R2 = H(X2)). See Figure 5(a) for an illustration.

Corollary 21. Suppose that X1 and X2 are dependent.
1) Fix constants δ1, δ2, G > 0 and ε ∈ (0, 1). Then there exists

some constant n(δ1, δ2, G) such that if

R1 ≤ H(X1)−δ1 (197)
R2 ≤ H(X2)−δ2 (198)

R1 +R2 = H(X1, X2)+

√
V (X1, X2)

n
Q−1

(
ε− G√

n

)
− log n

2n
(199)

then R = (R1, R2) ∈ R
∗
(n, ε) for all n > n(δ1, δ2, G).

2) Fix ε ∈ (0, 1). If

R2 ≥ H(X2|X1)+
r∗√
n
− log n

2n
+
G

n
(200)

for some G > 0, then R = (H(X1), R2) ∈ R
∗
(n, ε).

Conversely, if R = (H(X1), R2) ∈ R
∗
(n, ε), then

R2 ≥ H(X2|X1)+
r∗√
n
− log n

2n
, (201)

where r∗ is the solution to equation

Φ(V2; r, r) = 1−ε, (202)

and V2 is the covariance matrix for random vector
(ı(X2|X1), ı(X1, X2)).

Proof. Appendix H. �

For independent sources, the asymptotic sum-rate bound-
ary contains only the single (corner) point (R1, R2) =
(H(X1), H(X2)), and the entropy dispersion matrix[

V (X1) 0
0 V (X2)

]
.

is singular.
The next result concerns the third-order-optimal sum rate

R
∗
sum(n, ε) , min

{
R1 +R2 : ∃R = (R1, R2)

s.t. R ∈ R
∗
(n, ε)

}
. (203)

According to Theorem 20, R
∗
sum(n, ε) characterizes the best

achievable sum rate in SW source coding up to an O
(

1
n

)
gap.

Corollary 22. For X1, X2 independent and ε ∈ (0, 1),

R
∗
sum(n, ε) (204)

= H(X1)+H(X2)+

√
V (X1)r∗1 +

√
V (X2)r∗2√

n
− log n

2n
,

(a)

(b)

Fig. 5: Schematic plots of the (n, ε)-rate region and the third-order-
optimal sum rate when (a) X1, X2 are dependent, (b) X1, X2 are
independent. In (a), the boundary of R∗(n, ε) between H(X1) and
H(X2) (excluding the end points) contains rate points that achieve
the optimal point-to-point rate up to the third order, while the end
points do not achieve that optimal rate. The value of r∗ in (a) is
defined in (202); the values of r∗1 , r∗2 in (b) are defined in (207).

which is achieved by R = (R1, R2) with

R1 = H(X1)+

√
V (X1)

n
r∗1−λ

log n

2n
(205)

R2 = H(X2)+

√
V (X2)

n
r∗2−(1−λ)

log n

2n
, (206)
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for any λ ∈ [0, 1] and

(r∗1 , r
∗
2) = arg min

(r1,r2):
Φ(r1)Φ(r2)≥1−ε

(√
V (X1)r1 +

√
V (X2)r2

)
.

(207)

Proof. Appendix I. �

By Corollary 22, for independent sources a unique (r∗1 , r
∗
2)

captures the best MASC second-order sum-rate; the third-order
term is achieved at all points on a segment of the rate region
boundary. See Figure 5(b). Under assumption (139),

min
(r1,r2):

Φ(r1)Φ(r2)≥1−ε

(√
V (X1)r1 +

√
V (X2)r2

)
>
√
V (X1)+V (X2)Q−1(ε), (208)

where V (X1)+V (X2) = V (X1, X2) for (X1, X2) indepen-
dent. Here (208) follows since its left-hand side solves

min
(a1,a2)

(a1 +a2)

s.t. Φ

(
a1√
V (X1)

)
Φ

(
a2√
V (X2)

)
≥ 1−ε, (209)

and the constraint in (209) requires a1 >
√
V (X1)Q−1(ε)

and a2 >
√
V (X2)Q−1(ε), which gives the bound since√

V (X1)+
√
V (X2) >

√
V (X1)+V (X2). (210)

Therefore, when X1 and X2 are independent, a MASC incurs
a positive second-order sum-rate penalty relative to joint
coding. Closed-form expressions for this penalty are available
in special cases. When V (X1) = V (X2), r∗1 = r∗2 =
Q−1

(
1−
√

1−ε
)
, and the penalty is

2

√
V (X1)

n
Q−1

(
1−
√

1−ε
)
−
√

2V (X1)

n
Q−1(ε). (211)

When X1 and X2 are i.i.d., the penalty equals the penalty for
coding a vector X2n of 2n i.i.d. outputs from PX by applying
an independent (n, ε) (point-to-point) code with error probabil-
ity 1−

√
1−ε to each of (X1, . . . , Xn) and (Xn+1, . . . , X2n)

instead of a single (2n, ε) code to vector X2n.

E. Limited Feedback and Cooperation

The RASC proposed in Section VI employs limited feed-
back. We here analyze the impact of feedback on the under-
lying MASC. In our feedback model, the decoder broadcasts
the same ` bits of feedback to both encoders. A bit sent at
time i must be a function of the encoder outputs received
in time steps 1, . . . , i−1. (See Figure 6(a).) We bound the
impact of feedback by studying a MASC with a cooperation
facilitator (CF).8 The CF broadcasts the same `-bit function
of the sources to both encoders prior to their encoding op-
erations. (See Figure 6(b).) Since the MASC network has no
channel noise, feedback from the decoder cannot convey more
information than feedback from the CF. As a result, we bound

8The CF is introduced for multiple access channel coding in [36] and
extended to source and network coding in [37].

(a)

(b)

Fig. 6: The (a) FB-MASC and (b) CF-MASC.

the impact of feedback by bounding the impact of cooperation,
which is easier to work with in our analysis.

We begin by defining the CF-MASC and its rate region.

Definition 9 (CF-MASC). An (L,M1,M2, ε) CF-MASC for
random variables (X1, X2) on X1×X2 comprises a CF
function L, two encoding functions f1 and f2, and a decoding
function g given by

L : X1×X2 → [L]

f1 : [L]×X1 → [M1]

f2 : [L]×X2 → [M2]

g : [M1]× [M2]→ X1×X2,

with error probability

P[g(f1(L(X1, X2), X1), f2(L(X1, X2), X2)) 6= (X1, X2)] ≤ ε.

Definition 10 (Block CF-MASC). An (n,L,M1,M2, ε)
MASC is a CF-MASC for random variables (Xn

1 , X
n
2 ) on

Xn1 ×Xn2 .
The code’s finite blocklength rates are defined by

R1 =
1

n
logM1, R2 =

1

n
logM2. (212)

Definition 11 ((n, `, ε)-CF rate region). A rate pair (R1, R2)
is (n, `, ε)-CF achievable if there exists an (n,L,M1,M2, ε)
CF-MASC with M1 ≤ exp(nR1), M2 ≤ exp(nR2), and L ≤
exp(`). The (n, `, ε)-CF rate region R∗CF(n, `, ε) is defined as
the closure of the set of all (n, `, ε)-CF achievable rate pairs.

We use R∗FB(n, `, ε) to denote the feedback-MASC (FB-
MASC) rate region, which is defined as the closure of the
set of all (n, ε)-achievable rate pairs when the same ` bits of
feedback from the decoder are available to both encoders.

Since the CF sees the source vectors while the decoder sees
a coded description of those vectors (using a deterministic
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code), an `-bit CF can implement any function used to deter-
mine the decoder’s `-bit feedback. As a result, any rate point
that is achievable by an `-bit FB-MASC is also achievable by
an `-bit CF-MASC. Therefore, for any 0 < ε < 1 and ` <∞,

R∗FB(n, `, ε) ⊆ R∗CF(n, `, ε). (213)

Theorem 23 bounds CF-MASC (and FB-MASC) perfor-
mance, showing that for any ` < ∞, the third-order rate
region for `-bit CF-MASCs cannot exceed the corresponding
MASC rate region. Hence finite feedback does not enlarge the
third-order (n, ε) MASC rate region. This result generalizes to
scenarios with more than two encoders.

Theorem 23 (CF-MASC Converse). Consider stationary,
memoryless sources with single-letter distribution PX1X2

sat-
isfying (139) and (140). For any 0 < ε < 1 and ` <∞,

R∗CF(n, `, ε) ⊆ R∗out(n, ε). (214)

Thus R∗CF(n, `, ε) and R
∗
(n, ε) share the same outer bound.

Proof. Appendix J. �

Remark 13. The same proof can be used to show that allowing
` to grow as o(log log n) does not change the first three terms
in the optimal characterization of the (n, ε)-MASC.
Remark 14. For dependent sources, the optimal third-order
MASC sum rate equals the optimal third-order sum rate with
full cooperation. (See the discussion in Section V-D1, above.).
Since even an infinite amount of decoder feedback is weaker
than full cooperation, an infinite amount of feedback does not
improve the third-order sum rate in this case.

VI. RANDOM ACCESS SOURCE CODE (RASC)

An RASC is a generalization of an MASC for networks
where the set of participating encoders is unknown to both the
encoders and the decoder a priori. We begin by defining the
problem and describing our proposed communication strategy.

A. Definitions and Coding Strategy

Let K <∞ be the maximal number of active encoders. We
associate each encoder with a unique source from the set of
sources indexed by [K]. Each encoder chooses whether to be
active or silent. Only sources associated with active encoders
are compressed and reconstructed. By assumption, the decision
to remain silent is independent of the observed source instance.
Given the joint distribution PX[K]

on countable alphabet X[K],
when ordered set T ∈ P([K]) of [K] is active, the marginal
on the transmitted sources is

PXT (xT ) =
∑

x[K]\T ∈X[K]\T

PX[K]
(x[K]), ∀xT ∈ XT . (215)

Thus, each encoder’s state has no effect on the statistical
relationship among sources observed by other encoders.

As in the random access channel code from [18], our
proposed RASC organizes communication into epochs. At the
beginning of each epoch, each encoder independently decides
its activity state; that activity state remains unchanged until the
end of the epoch. Thus, the active encoder set T is fixed in

Fig. 7: Coding scheme in one epoch with T = [k].

each epoch. Each active encoder i ∈ T observes source output
Xi ∈ Xi and independently maps it to a codeword comprised
of a sequence of code symbols from alphabet [Qi]. The |T |
codewords are sent simultaneously to the decoder. Since set T
is unknown a priori, the encoder behavior cannot vary with
T . The decoder sees T and decides a time mT , called the
decoding blocklength, at which to jointly decode all received
partial codewords. The set of potential decoding blocklengths
M , {mT : T ∈ P([K])} is part of the code design; it is
known to all encoders and to the decoder.

Figure 7 illustrates our coding scheme in one epoch when
T = [k]. Each encoder i ∈ T sends a single code symbol
per time step. At each time m ∈ {m′ ∈M : m′ < mT }, the
decoder sends a “0” to indicate that it is not yet ready to
decode; at time m = mT , the decoder sends a “1,” ending
one epoch and starting the next. The decoder then reconstructs
source vector XT using the first mT code symbols from each
active encoder. To avoid wasting time in an epoch with no
active encoders, we include decoding time m∅ = 1 in set M.
The decoder sends at most 2K bits of feedback, and encoders
need only listen for decoder feedback at the times in set M.

To formalize the above strategy, fix K ≥ 1. Define vectors

εK , (εT , T ∈ P([K])) (216)
mK , (mT , T ∈ P([K])∪{∅}) (217)

with m∅ = 1 and mmax , max{mT : T ∈ P([K])}.

Definition 12 (RASC). An
(
mK ,Q[K], εK

)
RASC for sources

X[K] on source alphabet X[K] comprises a collection of
encoding and decoding functions

fi : Xi → [Qi]
mmax , i ∈ [K], (218)

gT :
∏
i∈T

[Qi]
mT → XT , T ∈ P([K]), (219)

where fi is the encoding function for source Xi and gT is
the decoding function for active coder set T . For each T ∈
P([K]), source vector XT is decoded at time mT with error
probability P

[
gT
(
fi(Xi)[mT ], i ∈ T

)
6= XT

]
≤ εT , where

fi(xi)[m] denotes the first m code symbols of fi(xi).

Definition 13 particularizes Definition 12 to the block
setting.

Definition 13 (Block RASC). An
(
n,mK ,Q[K], εK

)
RASC

is an RASC for an n-block of source outcomes. The parameter
n, called the encoding blocklength does not vary with T .
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Fig. 8: The relationship between decoding blocklength mT , code
symbol alphabet sizes (Q1, Q2), and source coding rate vector RT ,
illustrated for T = {1, 2}.

An
(
mK ,Q[K], εK

)
RASC behaves, for each T , like a(

(QmTi , i ∈ T ), εT
)

MASC (see Definition 5) with a finite
number |{m ∈M : m ≤ mT }| of feedback bits. However,
the RASC is one code. Its descriptions are nested (i.e., for
each xi ∈ Xi, if mT ′ < mT , then fi(xi)[mT ′ ]

is a prefix of
fi(xi)[mT ]). It simultaneously satisfies the error constraints for
all T ∈ P([K]). And, since the code symbol alphabet sizes
Q[K] are fixed, its rate vectors are coupled. See Figure 8.

The following definitions build toward the non-asymptotic
fundamental limit of RASCs.

Definition 14 (n-Valid and (n, εK)-Rate sets). A collection
(RT )T ∈P([K]) of rate vectors is n-valid if ∃

(
mK ,Q[K]

)
s.t.

RT =
1

n
(mT logQi, i ∈ T ), ∀ T ∈ P([K]). (220)

The set Rvalid(n) is the set of n-valid rate collections.
The collection is (n, εK)-achievable if there exists an(
n,mK ,Q[K], εK

)
RASC. The (n, εK)-rate set R∗(n, εK) is

the set of (n, εK)-achievable rate collections.

B. Background

While the concept of an RASC is new, the RASC problem
is related to the universal MASC problem. Like a universal
MASC, the RASC is designed for an unknown distribution
from a known collection of possible distributions. In this
case, the possible distributions are {PXT : T ∈ P([K])}. The
RASC differs, however, from universal MASCs since even the
set of active encoders is unknown a priori.

A short summary of prior universal MASCs follows.
1) For a fixed-rate MASC and finite source alphabets, uni-

versal decoding can be realized using type methods.
(See [13], [38], [39].) Such strategies achieve optimal
performance only when the source’s MASC rate region
matches the code’s fixed rate.

2) Oohama [40] and Jaggi and Effros [41] study the effect
of limited encoder cooperation on the asymptotically
universally achievable rate region. Rate-zero cooperation
between encoders suffices to achieve universality in the
asymptotic regime. Oohama characterizes the optimal
error exponents in [40].

3) Yang et al. [42] study a block MASC with progressive
encoding; the code uses zero-rate feedback to universally
achieve the asymptotic MASC rate region. Sarvotham et

al. [43] propose a variable-rate block sequential coding
scheme with zero-rate feedback for binary symmetric
sources, showing that at blocklength n and target error
probability ε, the backoff from the asymptotic MASC rate
due to universality is O

(
1√
n
Q−1(ε)

)
.

4) In [22], Draper introduces a rateless MASC with single-
bit feedback. Draper’s algorithm asymptotically achieves
the optimal coding rates for sources with unknown joint
distributions but known finite alphabet sizes. See [44] for
a practical rateless MASC.

C. Asymptotics: Third-Order Performance of the RASC

In this section, we analyze the performance of an(
n,mK ,Q[K], εK

)
RASC for stationary, memoryless sources.

Results include both achievability and converse characteriza-
tions of the (n, εK)-rate set R∗(n, εK) under the assumption
that the single-letter joint source distribution PX[K]

satisfies

E
[
Vc
(
XT̂ |XT \T̂

)]
> 0 ∀ T̂ ⊆ T ⊆ [K], T̂ , T 6= ∅ (221)

T
(
XT̂ |XT \T̂

)
<∞ ∀ T̂ ⊆ T ⊆ [K], T̂ , T 6= ∅. (222)

E
[
T 2
c

(
XT̂ |XT \T̂

)]
<∞ ∀ T̂ ⊂ T ⊆ [K], T̂ , T 6= ∅. (223)

Constraints (221)–(223) enable us to use Berry-Esseen bounds.
The resulting characterization is tight up to the third-order
term. While the existence of an

(
n,mK ,Q[K], εK

)
RASC

implies the existence of an
(
n, (QmTi , i ∈ T ), εT

)
MASC for

each T ∈ P([K]), the existence of individual MASCs does
not imply the existence of a single RASC that simultaneously
satisfies the error probability constraints for all possible con-
figurations of active encoders. Indeed, the existence of a single
RASC that simultaneously performs as well (up to the third-
order term) as the optimal MASC for each T ∈ P([K]) is one
of our most surprising results.

Define the inner and outer bounding sets

R∗in(n, εK) ,
{

(RT )T ∈P([K]) ∈ Rvalid(n) :

RT ∈ R∗in,T (n, εT ) ∀ T ∈ P([K])
}

(224)

R∗out(n, εK) ,
{

(RT )T ∈P([K]) ∈ Rvalid(n) :

RT ∈ R∗out,T (n, εT ) ∀ T ∈ P([K])
}
, (225)

where R∗in,T (n, ε) and R∗out,T (n, ε) are the third-order MASC
bounding sets for distribution PXT . (See (194) and (195).)

Theorem 24 (Third-order RASC performance). For any K <
∞, consider stationary, memoryless sources specified by a
single-letter joint distribution PX[K]

satisfying (221)–(223).
For any 0 < εK < 1,

R∗in(n, εK) ⊆ R∗(n, εK) ⊆ R∗out(n, εK). (226)

The converse and achievability proofs follow.

Proof of Theorem 24: converse. As shown in Section V-E
(Theorem 23), even with a priori knowledge of the encoder
set T ∈ P([K]) and 2K bits of feedback, a MASC for the
encoders in set T cannot achieve performance outside of the
third-order MASC outer bounding set R∗out,T (n, εT ). �
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The achievability part of Theorem 24 provides a suffi-
cient condition for the existence of a single RASC that is
simultaneously good for all T ∈ P([K]). To prove this, we
first derive an achievability result assuming that the encoders
and decoder share the common randomness used to generate
a random code (Theorem 26). Unfortunately, the existence
of a random code ensemble with expected error probability
satisfying the error probability constraint for each T ∈ P([K])
does not guarantee the existence of a single deterministic
code satisfying those constraints simultaneously. We therefore
take a different approach, which, unexpectedly, combines a
converse bound on error probability and a random coding
argument to show achievability.

The following refinement of the random coding argument
provides a bound on the probability (with respect to the
random code choice) that the error probability of a randomly
chosen code exceeds a certain threshold. The code of interest
here can be any type of source or channel code.

Lemma 25. Let C be any class of codes with a corresponding
error probability Pe(c) for each c ∈ C. Let

ε∗(C) = min
c∈C

Pe(c) (227)

denote the error probability of the best code in C. Then any
random code ensemble9 C defined over C satisfies

P[Pe(C) > ε] ≤ E[Pe(C)]−ε∗(C)
ε−ε∗(C)

, ∀ ε > ε∗(C). (228)

Proof. Let Y be any non-negative random variable and define
ymin , ess inf Y ; that is, ymin is the largest constant y ∈ Y
for which Y ≥ y almost surely. By Markov’s inequality,

P[Y ≥ y] =P[Y −ymin ≥ y−ymin]

≤ E[Y ]−ymin

y−ymin
∀ y > ymin.

Taking Y = Pe(C) and y = ε yields the desired result. �

In the regime of interest E[Pe(C)] < ε. Therefore, the
right side of (228) is decreasing as a function of ε∗(C),
and replacing ε∗(C) by any converse on ε∗(C) yields a valid
achievability bound. Thus Lemma 25 provides a means to
leverage a converse to prove achievability.

Given any RASC c, for each T ∈ P([K]) let Pe,T (c) denote
the error probability of code c under active encoder set T .
The RASC achievability proof applies Lemma 25 with error
probability Pe,T (c) for each T ∈ P([K]). Before proceeding
to that proof, we use Theorem 26, below, to define a random
code ensemble and calculate its expected error probability.

Theorem 26 (Random code). For any K < ∞, consider a
source distribution PX[K]

defined on countable alphabet X[K].
There exists a random code ensemble C defined on the set of
all RASCs with decoding blocklengths mK and code alphabets

9A random code ensemble is a random variable C defined on code set C.

Q[K] for which the following inequalities hold simultaneously
for all T ∈ P([K]):

E[Pe,T (C)] ≤ E

[
min

{
1,

∑
T̂ ∈P(T )

exp
(
−mT ·Q(T̂ )

)
AT̂

}]
,

(229)

where

Q(T̂ ) ,
∑
i∈T̂

logQi (230)

AT̂ , E
[

exp
(
ı
(
X̄T̂ |XT \T̂

))
·

1
{
ı
(
X̄T̂ |XT \T̂

)
≤ ı
(
XT̂
∣∣XT \T̂ )}∣∣XT ] (231)

and the expectation in (231) is with respect to the conditional
distribution

PX̄T̂ |XT = PXT̂ |XT \T̂ . (232)

Proof. We construct the random code ensemble C as follows.
Random Encoding Map: For every i ∈ [K], draw encoder

outputs Fi(xi) for all xi ∈ Xi i.i.d. uniformly at random from
[Qi]

mmax , where mmax , max{mT : T ∈ P([K])}.
Maximum Likelihood Decoder: For any m ∈ [mmax], xi ∈
Xi, and i ∈ [K], denote the first m symbols of Fi(xi) by
Fi(xi)[m]. For each T ∈ P([K]), the maximum likelihood
decoder gT for T observes the first mT symbols from the
encoders in T , here denoted by

F(xT )[mT ] ,
(
Fi(xi)[mT ]

)
i∈T , (233)

and, for each cT = (ci)i∈T ∈
∏
i∈T

[Qi]
mT , produces the output

gT (cT ) = arg min
xT ∈XT :

F(xT )[mT ]=cT

ı(xT ). (234)

Expected Error Analysis: The expected error probability
E[Pe,T (C)] over the random code ensemble is bounded above
by the probability of event

ET , {∃ x̄T ∈ XT \{XT } :

ı
(
x̄T
)
≤ ı
(
XT
)
, F(x̄T )[mT ] = F(XT )[mT ]

}
. (235)

It follows that

P[ET ]

= P

 ⋃
x̄T ∈XT \{XT }

{ı(x̄T ) ≤ ı(XT ),

F(x̄T )[mT ] = F(XT )[mT ]

} (236)

= P

 ⋃
T̂ ∈P(T )


⋃

x̄T̂ ∈XT̂ :

x̄i 6=Xi ∀i∈T̂

{
ı
(
x̄T̂ ,XT \T̂

)
≤ ı(XT ),

F(x̄T̂ )[mT ] = F(XT̂ )[mT ]

}
 (237)
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= P

 ⋃
T̂ ∈P(T )


⋃

x̄T̂ ∈XT̂ :

x̄i 6=Xi ∀i∈T̂

{
ı
(
x̄T̂ |XT \T̂

)
≤ ı
(
XT̂ |XT \T̂

)
,

F(x̄T̂ )[mT ] = F(XT̂ )[mT ]

}
 (238)

≤ E

[
min

{
1,

∑
T̂ ∈P(T )

exp
(
−mT ·Q(T̂ )

)

·
∑

x̄T̂ ∈XT̂

1
{
ı
(
x̄T̂ |XT \T̂

)
≤ ı
(
XT̂ |XT \T̂

)}
, (239)

and (239) is equal to the right-hand-side of (229). Here, (237)
considers the case where source symbols in set T̂ are decoded
incorrectly for each T̂ ∈ P(T ). The derivation of (239)
from (238) follows the argument in (122)–(124). Specifically,
since each component of x̄T̂ differs from the corresponding
component of XT̂ and since the encoder output for each is
drawn independently and uniformly at random from [Qi]

mmax ,

P
[
F(x̄T̂ )[mT ] = F(XT̂ )[mT ]

∣∣XT ]
=
∏
i∈T̂

1

QmTi
(240)

= exp
(
−mT ·Q(T̂ )

)
(241)

for any x̄T̂ ∈ XT̂ \{XT̂ }. �

We now prove the achievability part of Theorem 24 by
applying Lemma 25 to the random code in Theorem 26.

Proof of Theorem 24: achievability. The probability that ran-
dom RASC C has error probability Pe,T (C) greater than εT
for some possible set T ∈ P([K]) of active encoders is

P

 ⋃
T ∈P([K])

{Pe,T (C) > εT }

 ≤ ∑
T ∈P([K])

P[Pe,T (C) > εT ].

(242)
To bound each term P[Pe,T (C) > εT ] using Lemma 25, we
next bound the expected error probability E[Pe,T (C)] and the
error probability ε∗(CT ) for the best code in CT , where CT is
the set of

(
n, (QmTi , i ∈ T ), εT

)
MASCs with mT set as in

(248) below.
To find E[Pe,T (C)], we apply Theorem 26 to our stationary,

memoryless sources with n-symbol distribution PXn
[K]

=

PnX[K]
. Given any T ∈ P([K]) and T̂ ∈ P(T ), let

IT ,T̂ , ı
(
Xn
T̂ |X

n
T \T̂

)
. (243)

Under moment assumptions (221)–(223), one can generalize
the argument in (146)–(186) to |T | active encoders to obtain

E[Pe,T (C)] ≤ P

 ⋃
T̂ ∈P(T )

{
IT ,T̂ > mTQ(T̂ )+

log n

2
(244)

− log
(
K̄T ,T̂

(
2|T |−1

))}+
∑

T̂ ∈P(T )

(
KT ,T̂√

n
+
ST ,T̂
n

)
,

where K̄T ,T̂ , KT ,T̂ and ST ,T̂ are finite positive constants.
Fix any Q[K]. By the definition of RT in (189) and the

relation in (220), we see that

RT =
1

n

(
mT Q(T̂ ), T̂ ∈ P(T )

)
. (245)

For brevity, define constant vector

CT ,
(

log
(
K̄T ,T̂

(
2|T |−1

))
, T̂ ∈ P(T )

)
. (246)

and the almost-constant error thresholds

ε′T , εT −
B√
n
−

∑
T̂ ∈P(T )

(
KT ,T̂√

n
+
ST ,T̂
n

)
(247)

where B is the Bentkus constant (81) for the vector of infor-
mation densities (243). We choose the decoding blocklength
mT as

mT = min

{
mT : RT ∈ R

∗
T (n, ε′T −δT )+

1

n
CT

}
, (248)

where δT (which may be a function of n) satisfying 0 ≤ δT <
εT will be determined in the sequel, and R

∗
T (n, ε) is defined in

(193). Applying Lemma 12 to (244) with mT in (248) yields

E[Pe,T (C)] ≤ εT −δT . (249)

To lower-bound ε∗(C), for each n and ε define

m∗T (n, ε) , min{mT : RT ∈ R∗T (n, ε)} (250)

≥ min
{
mT : RT ∈ R∗out,T (n, ε)

}
, (251)

where R∗T (n, ε) is the (n, ε)-MASC rate region (see Re-
mark 12), R∗out,T (n, ε) is defined in (195), and (251) is by
the converse (Theorem 23). By Lemma 13-2, one can always
choose ∆T = O

(
1√
n

)
such that for n sufficiently large

R∗out,T (n, ε′T −δT −∆T ) ⊆ R
∗
T (n, ε′T −δT )+

1

n
CT . (252)

It follows that

m∗T (n, ε′T −δT −∆T ) ≥ mT . (253)

Equation (253) and the converse (Theorem 23) imply that
the minimal error probability over CT satisfies

ε∗(CT ) ≥ ε′T −δT −∆T . (254)

Plugging (249) and (254) into Lemma 25 and noting the
monotonicity of the bound in Lemma 25 gives

P[Pe,T (C) > εT ] ≤ E[Pe,T (C)]−ε∗(CT )

εT −ε∗(CT )
(255)

≤ εT −ε′T +∆T
εT −ε′T +δT

, (256)

We may choose δT = O
(

1√
n

)
to ensure that the right-hand

side of (256) is as small a constant as desired. Specifically,
we choose constants (λT )T ∈P([K]) to satisfy∑

T ∈P([K])

1

λT +1
< 1, (257)
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Fig. 9: A graphical model of a common distributed sensing scenario.

and put
δT = λT (εT −ε′T +∆T ). (258)

With (256) and (258), we bound the right-hand side of (242)
as ∑
T ∈P([K])

P[Pe,T (C) > εT ] ≤
∑

T ∈P([K])

1

λT +1
< 1, (259)

which implies the existence of a deterministic(
n,mK ,Q[K], εK

)
RASC with mT in (248), Q(T̂ ) in

(245), and RT in (248). �

Remark 15. When parameters
(
n,Q[K], εK

)
are fixed, in-

creasing λT yields larger decoding blocklengths mT . There-
fore, the choice of (λT )T ∈P([K]) to satisfy (257) controls the
RASC performance trade-off across different active encoder
sets. This trade-off affects the performance of the RASC in
the fourth- or higher-order terms.

D. RASC for Permutation-Invariant Sources

A permutation-invariant10 source is defined by the con-
straint

PX[K]

(
x[K]

)
= PX[K]

(
xπ([K])

)
(260)

for all permutations π on [K] and all x[K] ∈ X[K]. For
example, given any PS and PX|S , the marginal PX[K]

of
PX[K]S = (PX|S)KPS satisfies (260). Such “hidden variable”
models have applications in statistics, science, and economics,
where latent variables (e.g., the health of the world economy
or the state of the atmosphere) influence observables (e.g.,
stock prices or climates). Figure 9 shows an example with K
sensors reading measurements of a common hidden state S.

Permutation-invariant source models interest us both be-
cause of their wide applicability and because they present an
opportunity for code simplification through identical encoding,
where all encoders employ the same encoding map. For
any permutation-invariant source, (215) and (260) imply that
Xi = X for all i ∈ [K] and, for any T ∈ P([K]) with |T | = k,

PXT = PX[k]
. (261)

Thus, PXT is permutation-invariant for every T and the joint
source distribution depends on the number of active encoders
but not their identities. Assuming that we further employ the
same error probability εk for all T ∈ P([K]) with |T | = k, we
can fix a single decoding blocklength for each number k ∈ [K]

10Polyanskiy [17] introduces a similar notion of permutation invariance for
multiple access channel coding in [17].

of active encoders and use identical encoders at all transmit-
ters, allowing us to accommodate an arbitrarily large number
of encoders without designing a unique encoder for each. A
similar phenomenon arises for RA channel coding [18].

In analyzing RASC performance with identical encoders on
a permutation-invariant source, we assume in addition to (221)
and (222) that no two sources are identical, i.e.,

P

 ⋃
i,j∈[K], i 6=j

{Xi = Xj}

 < 1. (262)

This is important since using identical encoders on identical
sources yields identical descriptions, in which case descrip-
tions from multiple encoders are no better than descriptions
from a single encoder. Under these assumptions, Theorem 24
continues to hold. In the analysis, we modify the decoder to
output the most probable source vector xT ∈ XT that contains
no repeated symbols (see the proof of Theorem 26), treating
the case where XT contains repeated symbols as an error. In
the asymptotic analysis for stationary, memoryless sources, the
probability of this error event is bounded by

P

 ⋃
i,j∈[K], i 6=j

{Xn
i = Xn

j }


≤

P

 ⋃
i,j∈[K], i 6=j

{Xi = Xj}

n

, (263)

which decays exponentially in n by (262). Therefore, under
the assumption in (262), identical encoding does not incur a
first-, second-, or third-order performance penalty.

VII. CONCLUDING REMARKS

This paper studies finite-blocklength lossless source coding
in three scenarios.

We derive a new non-asymptotic achievability (RCU) bound
(Theorem 4) and use it to show that for point-to-point coding
on stationary, memoryless sources, random code design with
maximum likelihood decoding achieves the same coding rate
up to the third-order as the optimal code from [6]. The RCU
bound generalizes to the MASC scenario (Theorem 18).

A new HT converse (Theorem 19) extends the channel cod-
ing meta-converse [5] to an MASC and suggests the possibility
of using composite hypothesis testing to derive converses for
other multi-terminal scenarios. Our analysis of composite hy-
pothesis testing provides general tools (Lemmas 8, 9, and 10)
for use in other related problems. Just as the meta-converse for
channel coding recovers previously known converses, our HT
converse recovers Han’s MASC converse [9, Lemma. 7.2.2].
Just as the HT converse for lossy source coding [23, Th. 8] is
equivalent to the LP-based converse for that setting (see [15,
Cor. 3]), our MASC HT converse is equivalent to the MASC
LP-based converse [15, Th. 12].

We give the first third-order characterization of the MASC
rate region for stationary, memoryless sources, tightening
prior second-order characterizations from [13] and [14] and
replacing the 2k−1 thresholds used there to decode for k users
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by a maximum likelihood decoder that chooses the jointly
most probable source realizations consistent with the received
codewords. We show that for rate points converging to a non-
corner point on the asymptotic sum-rate boundary, separate
encoding does not compromise the performance in lossless
data compression up to the third-order term. Numerical com-
parison of the new HT converse and the optimal performance
of point-to-point source coding in Figure 4 allows one to
bound from below the small gap between joint and separate
encoding, which is not captured in the first three terms of
the asymptotic expansion. For independent sources, there are
no non-corner points, and MASC separate encoding incurs
a positive penalty in the second-order term relative to joint
encoding with a point-to-point code. When two sources have
the same marginals, this penalty equals the penalty for using
two independent blocklength-n codes rather than a single
blocklength-2n point-to-point code for encoding 2n samples.

Our proposed RASC works universally for all possible
encoder activity patterns. The nested structure of the RASC
demonstrates that there is no need for the encoders to know the
set of active encoders a priori. The third-order-optimal MASC
performance is achievable even when the only information the
encoders receive is the acknowledgment that tells them when
to stop transmitting (Theorem 24).

Our refinement of the traditional random coding argument
(Lemma 25 and (242)) uses bounds on the minimal (converse)
and expected (achievability) error probabilities for each pos-
sible active encoder set to show the existence of a single code
that is good for all possible active encoder sets. This argument
is likely to be useful for other information-theoretic problems.

APPENDIX A
PROOF OF THEOREM 3

Following [5, Eq. (68)], note that for z > 0 and γ > 0

exp

{
−
∣∣∣log

γ

z

∣∣∣
+

}
= 1{z > γ}+ z

γ
1{z ≤ γ}. (A.1)

Let z = 1
PX(X) and γ = M . Then taking the expectation of

both sides of (A.1) with respect to PX gives

E
[
exp
{
−|logM−ı(X)|+

}]
= P[ı(X) > logM ]+

1

M
U[ı(X) ≤ logM ], (A.2)

where P[·] denotes a probability with respect to PX and U[·]
denotes a mass with respect to the counting measure UX on X ,
which assigns unit weight to each x ∈ X . In light of (A.2), we
can prove (23) by demonstrating the existence of an (M, ε)
code for which the right-hand side of (A.2) exceeds ε. We
prove a slightly stronger result, showing that there exists an
(M, ε) code with a threshold decoder such that

ε ≤ P[ı(X) > log γ]+
1

M
U[ı(X) ≤ log γ] (A.3)

for all γ > 0. Setting γ = M in (A.3) yields the desired
bound.

Fix γ > 0. For each x ∈ X , randomly and independently
draw each encoder output F(x) from the uniform distribution
on [M ]. Define the threshold decoder

g(c) =


x, if ∃ unique x ∈ X

s.t. F(x) = c, ı(x) ≤ log γ

error, otherwise.
(A.4)

We capture all errors using a union of error events

E1 , {ı(X) > log γ} (A.5)
E2 , {∃ x̄ ∈ X\{X} s.t. F(x̄) = F(X), ı(x̄) ≤ log γ}. (A.6)

By the random coding argument and the union bound, there
exists an (M, ε) code such that

ε ≤ P[E1∪E2] ≤ P[E1]+P[E2]. (A.7)

Here,

P[E1] = P[ı(X) > log γ] (A.8)

P[E2] = P

 ⋃
x̄∈X\{X}

{F(x̄) = F(X), ı(x̄) ≤ log γ}

 (A.9)

≤
∑

x̄∈X\{X}

P[F(x̄) = F(X)]1{ı(x̄) ≤ log γ} (A.10)

≤ 1

M

∑
x̄∈X

1{ı(x̄) ≤ log γ} (A.11)

=
1

M
U[ı(X) ≤ log γ], (A.12)

where (A.10) applies the union bound and (A.11) holds since
the encoder outputs are i.i.d. and uniformly distributed. �

APPENDIX B
PROOF OF LEMMA 9

The proof extends the proof of [5, Eq. (102)] (e.g., [24]).
We show that for any test PZ|X that decides between P vs.
{Qj}kj=1,

P[Z = 1]−
k∑
j=1

γjQj [Z = 1]

≤ P

 ⋂
j∈[k]

{
P (X)

Qj(X)
> γj

}, (B.1)

where γj ≥ 0, j ∈ [k] are arbitrary constants. Then Lemma 9
follows immediately by definition of βα

(
P, {Qj}kj=1

)
.
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To prove (B.1), fix a γj ≥ 0 for each j ∈ [k]. We then have

P[Z = 1]−
k∑
j=1

γjQj [Z = 1]

=
∑
x∈X

PZ|X(1|x)

P (x)−
k∑
j=1

γjQj(x)

 (B.2)

≤
∑
x∈X

PZ|X(1|x)

P (x)−
k∑
j=1

γjQj(x)


1

P (x) >
k∑
j=1

{γjQj(x)}

 (B.3)

≤
∑
x∈X

PZ|X(1|x)P (x)1

P (x) >
k∑
j=1

γjQj(x)

 (B.4)

= P

Z = 1, P (X) >

k∑
j=1

γjQj(X)

 (B.5)

≤ P

P (X) >
k∑
j=1

γjQj(X)

 (B.6)

≤ P

 ⋂
j∈[k]

{P (X) > γjQj(X)}

, (B.7)

where (B.4) follows from the non-negativity of probability and
each γj . The proof is complete since (B.7) equals the right-
hand-side of (B.1). �

APPENDIX C
PROOF OF LEMMA 10

For any test PZ|X deciding between P vs. {Qj}kj=1, we
show that

P[Z = 1]−
k∑
j=1

γjQj [Z = 1]

≤ 1−
∑
x∈X

min

P (x),
k∑
j=1

γjQj(x)

, (C.1)

where γj ≥ 0, j ∈ [k] are arbitrary constants. Fix a γj ≥ 0
for each j ∈ [k]. For notational brevity, define sets

X (<) ,

x ∈ X : P (x) <
k∑
j=1

γjQj(x)

 (C.2)

X (=) ,

x ∈ X : P (x) =
k∑
j=1

γjQj(x)

 (C.3)

X (>) ,

x ∈ X : P (x) >
k∑
j=1

γjQj(x)

. (C.4)

For any test PZ|X , we have

P[Z = 1]−
k∑
j=1

γjQj [Z = 1]

+
∑
x∈X

min

P (x),
k∑
j=1

γjQj(x)


=
∑
x∈X

PZ|X(1|x)

P (x)−
k∑
j=1

γjQj(x)


+ min

P (x),
k∑
j=1

γjQj(x)


 (C.5)

=
∑

x∈X (<)

PZ|X(1|x)

P (x)−
k∑
j=1

γjQj(x)

+P (x)


+

∑
x∈X (>)

PZ|X(1|x)

P (x)−
k∑
j=1

γjQj(x)


+

k∑
j=1

γjQj(x)

+
∑

x∈X (=)

P (x) (C.6)

≤
∑

x∈X (<)

P (x)+
∑

x∈X (>)

P (x)+
∑

x∈X (=)

P (x) (C.7)

= 1. (C.8)

The equality in (C.7) is achieved by test

PZ|X(1|x) =


1 for x ∈ X (>)

0 for x ∈ X (<)

λ for x ∈ X (=)

(C.9)

for any λ ∈ [0, 1]. Rearranging (C.8) yields (C.1). Choosing
the unique λ ∈ [0, 1] to satisfy P[Z = 1] = α, we obtain
Lemma 10 by the definition of βα

(
P, {Qj}kj=1

)
. �

APPENDIX D
PROOF OF LEMMA 12

Recall that T is composed of the r normalized eigenvec-
tors corresponding to the non-zero eigenvalues of covariance
matrix V and Ui = TWi, where Wi ∈ Rr for i = 1, . . . , n.
Thus V = TVrT

T , where Vr , Cov[W1] is non-singular.
For each z ∈ Rd, define

Ar(z) , {x ∈ Rr : Tx ≤ z}, (D.1)

which is a convex subset of Rr. Let Zr ∼ N (0,Vr) ∈ Rr. Ap-
plying [13, Cor. 8] to the i.i.d. random vectors W1, . . . ,Wn,
we obtain

sup
z∈Rd

∣∣∣∣∣P
[

1√
n

n∑
i=1

Wi ∈ Ar(z)

]
−P[Zr ∈ Ar(z)]

∣∣∣∣∣
≤ 400r1/4βr
λmin(Vr)3/2

√
n
, (D.2)

which is equivalent to (81) by the definition of Ar(z). �
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APPENDIX E
PROOF OF LEMMA 13

For simplicity, we assume that V is non-singular. When V
is singular, a similar analysis can be applied with V replaced
by Vr defined in Lemma 12.

Let Z ∼ N (0,V) be a d-dimensional multivariate Gaussian
with covariance matrix V. Recall from (77) that Qinv(V, ε) is
defined as

Qinv(V, ε) , {z ∈ Rd : P[Z ≤ z] ≥ 1−ε}. (E.1)

By the definition of Qinv(V, ε) and the definition of Φ(V; z)
in (5), Φ(V; z) = 1−ε if and only if z lies on the boundary
of Qinv(V, ε), and Φ(V; z) > 1−ε if and only if z lies in the
interior of Qinv(V, ε).

Proof of Lemma 13. To prove (82), consider any D1 > 0 and
δ ≥ 0. Since Φ(V; z) is continuously differentiable everywhere
provided that V is non-singular, we can apply the multivariate
Taylor’s theorem to expand Φ(V; z+D1δ1) as

Φ(V; z+D1δ1) = Φ(V; z)+D1δ
d∑
i=1

∂Φ(V; z)

∂zi
+ξ(z, D1δ).

(E.2)
The second-order residual term ξ(z, D1δ) can be bounded as

|ξ(z, D1δ)| ≤
ξmax

2
(d ·D1δ)

2, (E.3)

where

ξmax , max
δ′∈[0,D1δ]

∥∥∇2Φ(V; z+δ′1)
∥∥

max
(E.4)

and ‖·‖max denotes the max norm of a matrix.
Denote

D′ ,
d∑
i=1

∂Φ(V; z)

∂zi
. (E.5)

Since Φ(V; z) is increasing in any coordinate of z, D′ > 0.
Then, for any z ∈ Qinv(V, ε), we have

Φ(V; z+D1δ1) ≥ Φ(V; z)+D′D1δ−
ξmax

2
(d ·D1δ)

2 (E.6)

≥ 1−ε+δ
(
D′D1−

ξmax

2
d2D2

1δ

)
. (E.7)

We note that for any finite positive D1, ξmax approaches
‖∇2Φ(V; z)‖max as δ → 0. Thus, for any finite positive D1

that satisfies D′D1 > 1, there exists some δ1 > 0 such that
for all 0 ≤ δ < δ1,

D′D1−
ξmax

2
d2D2

1δ ≥ 1, (E.8)

which yields

Φ(V; z+D1δ1) ≥ 1−ε+δ. (E.9)

By the definitions of Φ(V; z) and Qinv(V, ε), (E.9) implies

z+D1δ1 ∈ Qinv(V, ε−δ), (E.10)

and consequently

Qinv(V, ε)+D1δ1 ⊆ Qinv(V, ε−δ), (E.11)

which proves (82).
Eq. (83) can be proved in a similar way.

�

APPENDIX F
EQUIVALENCE BETWEEN HT AND LP-BASED CONVERSES

FOR THE MASC

In this appendix, we establish the equivalence between the
HT converse and the LP-based converse by showing that the
bounds in (108) and (138) are equivalent. According to [15,
Eq. (31)], (108) is equivalent to the following converse

ε ≥ sup
η1,η2,η3∈Z


∑
x1∈X1
x2∈X2

min

PX1X2
(x1, x2),

3∑
j=1

ηj(x1, x2)


−M1

∑
x2∈X2

max
x̂1∈X1

min{PX1X2(x̂1, x2), η1(x̂1, x2)}

−M2

∑
x1∈X1

max
x̂2∈X2

min{PX1X2
(x1, x̂2), η2(x1, x̂2)}

−M1M2 max
x̂1∈X1
x̂2∈X2

min{PX1X2
(x̂1, x̂2), η3(x̂1, x̂2)}

, (F.1)

where the supremum is over

Z , {z : X1×X2 → [0,∞)}. (F.2)

Therefore, we show that (F.1) is equivalent to (138).
We first demonstrate that (F.1) implies (138). Set

ηi = γiQ
(i)
X1X2

for any σ-finite Q(i)
X1X2

and γi ≥ 0, i ∈ [3]. Since

min{PX1X2(x̂1, x2), η1(x̂1, x2)}≤ η1(x̂1, x2)

min{PX1X2(x1, x̂2), η2(x1, x̂2)}≤ η2(x1, x̂2)

min{PX1X2(x̂1, x̂2), η3(x̂1, x̂2)}≤ η3(x̂1, x̂2)

in (F.1), we obtain (138).
To prove the other direction, we substitute z1 = γ1Q

(1)
X1X2

,
z2 = γ2Q

(2)
X1X2

, and z3 = γ3Q
(3)
X1X2

in the right-hand side of
(138) to obtain

ε ≥ sup
z1,z2,z3∈Z


∑
x1∈X1
x2∈X2

min

PX1X2
(x1, x2),

3∑
j=1

zj(x1, x2)


−M1

∑
x2∈X2

max
x̂1∈X1

z1(x̂1, x2)−M2

∑
x1∈X1

max
x̂2∈X2

z2(x1, x̂2)

−M1M2 max
x̂1∈X1
x̂2∈X2

z3(x̂1, x̂2)

, (F.3)

Take a supremum of the right-hand side of (F.3) over
η1, η2, η3 ∈ Z . Since (F.3) does not contain η1, η2, η3, this
does not change anything. Now, weaken (i.e., lower-bound)
the inner supremum over z1, z2, z3 ∈ Z by setting

zj(x1, x2) = min{PX1X2
(x1, x2), ηj(x1, x2)}. (F.4)
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Observing that

min

PX1X2
(x1, x2),

3∑
j=1

min{PX1X2
(x1, x2), ηj(x1, x2)}


= min

PX1X2(x1, x2),
3∑
j=1

ηj(x1, x2)

, (F.5)

we see that the result of our weakening is exactly the right-
hand side of (F.1), as desired. �

APPENDIX G
MASCS FOR SOURCES WITH LESS REDUNDANCY

Applying Lemma 7 to get the asymptotic achievability
result in Theorem 20 requires that all V (X1, X2), V (X1|X2),
and V (X2|X1) are strictly positive (as an implication of
assumption (139)). Thus, the analysis in Section V-D breaks
down when any of these varentropies is equal to zero. (We
refer to such a source as being less redundant.) In this
appendix, we analyze the performance of the MASC for
less redundant sources. Specifically, we consider a pair of
stationary, memoryless sources and analyze the following three
cases:

1) all three varentropies are equal to zero;
2) exactly two of the varentropies are equal to zero;
3) exactly one of the varentropies is equal to zero.

We continue to assume that the joint distribution PX1X2
sat-

isfies (140) and (141). For those cases in which V (X2|X1) >
0, we continue to assume E[Vc(X2|X1)] > 0. Likewise, if
V (X1|X2) > 0, we continue to assume E[Vc(X1|X2)]>0.

In point-to-point almost-lossless source coding, the optimal
code for a non-redundant source is easy to find (see Remark 2).
When the encoders are required to operate independently in
a MASC, we know no easy way to find the optimal codes in
general. In Section A below, we give characterizations of the
(n, ε)-rate region in the three general cases listed above using
the techniques developed in Section V-D. Then, in Section B,
we restrict attention to the case where PX1X2(x1, x2) > 0 for
every (x1, x2) ∈ X1×X2; under this condition, the optimal
codes can be found and analyzed directly.

A. General Characterizations of the (n, ε)-Rate Region

We first list our results in the three general cases below.
Case 1): Suppose that V (X1|X2) = 0, V (X2|X1) = 0, and

V (X1, X2) = 0. For any δ1, δ2, δ12 > 0, let

R̂
(1)
in (n, δ1, δ2, δ12) ,

{
(R1, R2) ∈ R2 :

R1 ≥ H(X1|X2)+
1

n
log

1

δ1

R2 ≥ H(X2|X1)+
1

n
log

1

δ2

R1 +R2 ≥ H(X1, X2)+
1

n
log

1

δ12

}
. (G.1)

Define

R
(1)
in (n, ε) ,

⋃
δ1,δ2,δ12>0
δ1+δ2+δ12=ε

R̂
(1)
in (n, δ1, δ2, δ12) (G.2)

R
(1)
out(n, ε) ,

{
(R1, R2) ∈ R2 :

R1 ≥ H(X1|X2)− 1

n
log

1

1−ε
R2 ≥ H(X2|X1)− 1

n
log

1

1−ε

R1 +R2 ≥ H(X1, X2)− 1

n
log

1

1−ε

}
. (G.3)

Theorem 27. When V (X1|X2) = 0, V (X2|X1) = 0, and
V (X1, X2) = 0, the (n, ε)-rate region R∗(n, ε) satisfies

R
(1)
in (n, ε) ⊆ R∗(n, ε) ⊆ R

(1)
out(n, ε). (G.4)

As in the point-to-point scenario, there are no second-
order dispersion terms or − logn

2n third-order terms in the
characterization of R∗(n, ε) in this case. For any n and ε, the
achievable region R

(1)
in (n, ε) has a curved boundary due to the

trade-off in the O
(

1
n

)
fourth-order terms, while the converse

region R
(1)
out(n, ε) has three linear boundaries.

Case 2): There are three possible cases where exactly two
of the three varentropies are equal to zero. Here, we suppose
that V (X1|X2) > 0 while V (X2|X1) = V (X1, X2) = 0.
The other two cases can be analyzed in the same way. Let
B1 denote the Berry-Esseen constant for the random variable
ı(X1|X2), and let S2, K1, K̄1 be the finite positive constants
defined in (181), (158), and (176), respectively. For any δ1,
δ2, δ12 > 0, let

R̂
(2)
in (n, δ1, δ2, δ12) ,

{
(R1, R2) ∈ R2 :

R1 ≥ H(X1|X2)

+

√
V (X1|X2)

n
Q−1

(
δ1−

B1 +K1√
n
− S2

n

)
− log n

2n
+

1

n
log

K̄1

1−δ2−δ12

R2 ≥ H(X2|X1)+
1

n
log

1

δ2

R1 +R2 ≥ H(X1, X2)+
1

n
log

1

δ12

}
. (G.5)

Define

R
(2)
in (n, ε) ,

⋃
δ1,δ2,δ12>0
δ1+δ2+δ12=ε

R̂
(2)
in (n, δ1, δ2, δ12) (G.6)

R
(2)
out(n, ε) ,

{
(R1, R2) ∈ R2 :

R1 ≥ H(X1|X2)+

√
V (X1|X2)

n
Q−1

(
ε+

B1 +1√
n

)
− log n

2n

R2 ≥ H(X2|X1)− 1

n
log

1

1−ε

R1 +R2 ≥ H(X1, X2)− 1

n
log

1

1−ε

}
. (G.7)
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Theorem 28. When V (X1|X2) > 0, V (X2|X1) = 0, and
V (X1, X2) = 0, the (n, ε)-rate region R∗(n, ε) satisfies

R
(2)
in (n, ε) ⊆ R∗(n, ε) ⊆ R

(2)
out(n, ε). (G.8)

The achievable region R
(2)
in (n, ε) has a curved boundary due

to the trade-off in δ1, δ2, and δ12. If we let

δ1 = ε− 2√
n
, δ2 =

1√
n
, δ12 =

1√
n
, (G.9)

then it is apparent that the dispersion corresponding to R1 is
V (X1|X2) with a − logn

2n third-order term, while the disper-
sions of R2 and R1 +R2 are zero.

Case 3): Similar to Case 2), there are three possible cases
where exactly one of the three varentropies is equal to zero.
Here, we consider the case where V (X1|X2) = 0 while
V (X2|X1) > 0 and V (X1, X2) > 0. Let S1, K2, K̄2, and K12

be the finite positive constants defined in (180), (159), (177),
and (160), respectively, and let B be the Bentkus constant (81)
for the vector (I2, I12). For any δ ∈ (0, ε), let

R̂
(3)
in (n, δ) ,

{
(R1, R2) ∈ R2 : R1 ≥ H(X1|X2)+

1

n
log

1

δ[
R2

R1 +R2

]
∈
[
H(X2|X1)
H(X1, X2)

]
+

1√
n

Qinv

(
V2, ε−δ−

Cin√
n

)
− log n

2n
1+

1

n
log

1

1−δ
1+

1

n

[
log 2K̄2

log 2K12

]}
, (G.10)

where Cin , K2 +K12 +B+ S1√
n

, and V2 is the covariance
matrix of the random vector (ı(X2|X1), ı(X1, X2)). Define

R
(3)
in (n, ε) ,

⋃
δ∈(0,ε)

R̂
(3)
in (n, δ) (G.11)

R
(3)
out(n, ε) ,

{
(R1, R2) ∈ R2 :

R1 ≥ H(X1|X2)+
1

n
log

1

1−ε[
R2

R1 +R2

]
∈
[
H(X2|X1)
H(X1, X2)

]
+

1√
n

Qinv

(
V2, ε+

B+2√
n

)
− log n

2n
1

}
. (G.12)

Theorem 29. When V (X1|X2) = 0, V (X2|X1) > 0, and
V (X1, X2) > 0, the (n, ε)-rate region R∗(n, ε) satisfies

R
(3)
in (n, ε) ⊆ R∗(n, ε) ⊆ R

(3)
out(n, ε). (G.13)

For any n and ε, the achievable region R
(3)
in (n, ε) has a

curved boundary that is characterized by the trade-off between
a separate bound on R1 and a region in R2 that bounds
(R2, R1 +R2) jointly. The converse region R

(3)
out(n, ε) is the

intersection of a region with a linear boundary that bounds
R1 only and a region with a curved boundary that bounds
(R2, R1 +R2) jointly. If we let

δ =
1√
n
, (G.14)

then it is apparent that the dispersion corresponding to R2 and
R1 +R2 is given by V2 with a − logn

2n third-order term, while
the dispersion of R1 is zero.

A less redundant stationary, memoryless source has some
useful properties. When V (X1, X2) = 0,

PXn
1 X

n
2

(xn1 , x
n
2 ) ∈ {0, exp(−nH(X1, X2))}, (G.15)

for every (xn1 , x
n
2 ) ∈ Xn1 ×Xn2 ; in other words, (X1, X2)

is uniformly distributed over its support in X1×X2. When
V (X1|X2) = 0,

PXn
1 |Xn

2
(xn1 |xn2 ) =


exp(−nH(X1|X2)),

if PXn
1 X

n
2

(xn1 , x
n
2 ) > 0

0, otherwise;
(G.16)

in other words, X1 is uniformly distributed over its conditional
support for each x2 ∈ X2. When V (X2|X1) = 0, a result
analogous to (G.16) holds. These properties do not reduce the
difficulty of characterizing the optimal MASCs in general. As
a result, we continue to employ the random coding techniques
from Section V-D in our analysis here. For the achievability
argument, we invoke the MASC RCU bound (Theorem 18);
for the converse, we appeal to a modified version of [9,
Lemma 7.2.2], as stated below.

Lemma 30 (Modified [9, Lemma 7.2.2]). Any
(n, exp(nR1), exp(nR2), ε′) MASC satisfies

ε′ ≥ P
[{

1

n
I1 ≥ R1 +γ1

}
∪
{

1

n
I2 ≥ R2 +γ2

}
∪ (G.17){

1

n
I12 ≥ R1 +R2 +γ12

}]
−min

{
P
[

1

n
I1 ≥ R1 +γ1

]
, exp(−nγ1)

}
−min

{
P
[

1

n
I2 ≥ R2 +γ2

]
, exp(−nγ2)

}
−min

{
P
[

1

n
I12 ≥ R1 +R2 +γ12

]
, exp(−nγ12)

}
,

for any γ1, γ2, γ12 > 0, where I1, I2 and I12 are defined in
(146)–(148).

We next prove Theorems 27, 28, and 29.

Proof of Theorem 27. Achievability: We employ the RCU
bound in (155). To evaluate the terms in (155), note that
the uniformity over the distribution’s support that results from
V (X1, X2) = V (X1|X2) = V (X2|X1) = 0 implies that for
any (xn1 , x

n
2 ) such that PXn

1 X
n
2

(xn1 , x
n
2 ) > 0,

A1M1 = exp(nH(X1|X2)) a.s. (G.18)

Similar equalities hold for A2 and A12, and for any (R1, R2) ∈
R

(1)
in (n, ε), (155) gives

ε′ ≤ δ1 +δ2 +δ12 = ε, (G.19)

implying that such a rate pair (R1, R2) is achievable. There-
fore, the (n, ε)-rate region satisfies

R∗(n, ε) ⊇ R
(1)
in (n, ε). (G.20)
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Converse: Consider any (R1, R2) with R1 < H(X1|X2)−
1
n log 1

1−ε . Since the bound in (G.17) holds for any γ1, γ2,
γ12 > 0, we take

γ1 = H(X1|X2)−R1 >
1

n
log

1

1−ε
, (G.21)

which, under the given uniformity, implies

P
[

1

n
I1 ≥ R1 +γ1

]
= 1. (G.22)

We take γ2 and γ12 sufficiently large so that

R2 +γ2 > H(X2|X1) (G.23)
R1 +R2 +γ12 > H(X1, X2) (G.24)

and hence

P
[

1

n
I2 ≥ R2 +γ2

]
= P

[
1

n
I12 ≥ R1 +R2 +γ12

]
= 0.

(G.25)
Under these conditions, (G.17) gives

ε′ ≥ 1−exp(−nγ1) > 1−(1−ε) = ε. (G.26)

Therefore, any achievable rate pair (R1, R2) must satisfy

R1 ≥ H(X1|X2)− 1

n
log

1

1−ε
. (G.27)

The same analysis applies to R2 and R1 +R2. We then
conclude that any achievable rate pair (R1, R2) must satisfy
(R1, R2) ∈ R

(1)
out(n, ε). Thus,

R∗(n, ε) ⊆ R
(1)
out(n, ε). (G.28)

�

Proof of Theorem 28. Achievability: Take (R1, R2) ∈
R

(2)
in (n, ε) (G.6) satisfying the inequalities in (G.5) with some

δ1, δ2, δ12 > 0 such that δ1 +δ2 +δ12 = ε. We again employ
the RCU bound from (155). Since E[Vc(X1|X2)] > 0, we
use (174) to bound A1. The terms A2 and A12 are constants
(cf. (G.18)). With these observations, we weaken (156) as

ε′ ≤ E[A11{A1 ≤ 1}]+A2 +A12 +P
[

¯̄A1 > 1−A2−A12

]
+P[Sc2 ] (G.29)

≤ E[A11{A1 ≤ 1}]+δ2 +δ12 +P
[

¯̄A1 > 1−δ2−δ12

]
+P[Sc2 ] (G.30)
≤ δ1 +δ2 +δ12, (G.31)

where (G.30) is by our choice of (R1, R2), and (G.31) applies
(169), the Berry-Esseen inequality (Theorem 6), and (179)
to bound the three probability terms. Therefore, (R1, R2) is
achievable at blocklength n and error probability ε, implying

R∗(n, ε) ⊇ R
(2)
in (n, ε). (G.32)

Converse: We next apply Lemma 30 to derive a con-
verse result. Recall that under our assumptions V (X2|X1) =
V (X1, X2) = 0, ı(X2|X1) = H(X2|X1) and ı(X1, X2) =
H(X1, X2) almost surely. Consider any (R1, R2) such that

R2 < H(X2|X1)− 1
n log 1

1−ε . Since the bound in (G.17) holds
for any γ1, γ2, γ12 > 0, we can take

γ2 = H(X2|X1)−R2 >
1

n
log

1

1−ε
(G.33)

so that
P
[

1

n
I2 ≥ R2 +γ2

]
= 0. (G.34)

By this choice of γ2, 1−ε−exp(−nγ2) > 0. Thus, we can
take γ1 and γ12 sufficiently large such that

exp(−nγ1)+exp(−nγ12) < 1−ε−exp(−nγ2). (G.35)

By the above choices of γ1, γ2, and γ12, (G.17) gives

ε′ ≥ 1−exp(−nγ1)−exp(−nγ2)−exp(−nγ12) > ε.
(G.36)

Therefore, any achievable rate pair (R1, R2) must satisfy

R2 ≥ H(X2|X1)− 1

n
log

1

1−ε
. (G.37)

The same analysis applies to R1 +R2, and we conclude that
any achievable rate pair (R1, R2) must also satisfy

R1 +R2 ≥ H(X1, X2)− 1

n
log

1

1−ε
. (G.38)

Given (G.37) and (G.38), we re-evaluate the bound in (G.17)
by taking

γ1 =
log n

2n
, γ2 >

1

n
log

1

1−ε
, γ12 >

1

n
log

1

1−ε
. (G.39)

Under these conditions, we have

P
[

1

n
I2 ≥ R2 +γ2

]
= P

[
1

n
I12 ≥ R1 +R2 +γ12

]
= 0, (G.40)

and the bound in (G.17) becomes

ε′ ≥ P
[

1

n
I1 ≥ R1 +

log n

2n

]
− 1√

n
. (G.41)

Then, by the Berry-Esseen inequality (Theorem 6), taking

R1 = H(X1|X2)+

√
V (X2|X1)

n
Q−1

(
ε+

B1 +1√
n

)
− log n

2n
(G.42)

in (G.41) yields ε′ ≥ ε. Therefore, any achievable rate pair
(R1, R2) must satisfy (R1, R2) ∈ R

(2)
out(n, ε). Thus,

R∗(n, ε) ⊆ R
(2)
out(n, ε). (G.43)

�

Proof of Theorem 29. Achievability: Take any (R1, R2) ∈
R

(3)
in (n, ε) satisfying the inequalities in (G.10) with some δ ≤

ε. We employ the RCU bound in (155). Since E[Vc(X2|X1)] >
0 and V (X1, X2) > 0, we use (175) and (163) to bound A2

and A12, respectively; A1 is the constant in (G.18). With these
observations, we weaken (156) as

ε′ ≤ A1 +E[A21{A2 ≤ 1}]+E[A121{A12 ≤ 1}]

+P
[
2 ¯̄A2 > 1−A1∪2Ā12 > 1−A1

]
+P[Sc1 ] (G.44)

≤ δ+E[A21{A2 ≤ 1}]+E[A121{A12 ≤ 1}]

+P
[
2 ¯̄A2 > 1−δ∪2A12 > 1−δ

]
+P[Sc1 ] (G.45)

≤ ε, (G.46)
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where (G.45) is by our choice of (R1, R2), and (G.46) ap-
plies (170), (171), Lemma 12 (multidimensional Berry-Esseen
Theorem), and (179) to bound the four probability terms.
Therefore, (R1, R2) is achievable at blocklength n and error
probability ε, implying that

R∗(n, ε) ⊇ R
(3)
in (n, ε). (G.47)

Converse: We employ Lemma 30 to derive a converse.
Recall that in this case, ı(X1|X2) = H(X1|X2) almost
surely. Consider any (R1, R2) such that R1 < H(X1|X2)−
1
n log 1

1−ε . Since the bound in (G.17) holds for any γ1, γ2,
γ12 > 0, we can set

γ1 = H(X1|X2)−R1 >
1

n
log

1

1−ε
(G.48)

so that
P
[

1

n
I1 ≥ R1 +γ1

]
= 1. (G.49)

By this choice of γ1, 1−ε−exp(−nγ1) > 0. Thus, we can
take γ2 and γ12 sufficiently large such that

exp(−nγ2)+exp(−nγ12) < 1−ε−exp(−nγ1). (G.50)

By the above choices of γ1, γ2, and γ12, (G.17) gives

ε′ ≥ 1−exp(−nγ1)−exp(−nγ2)−exp(−nγ12) > ε.
(G.51)

Therefore, any achievable rate pair (R1, R2) must satisfy

R1 ≥ H(X1|X2)− 1

n
log

1

1−ε
. (G.52)

Given that (G.52) holds, we re-evaluate the bound in (G.17)
by taking

γ1 >
1

n
log

1

1−ε
, γ2 =

log n

2n
, γ12 =

log n

2n
. (G.53)

Under these conditions, the bound in (G.17) becomes

ε′ ≥ P
[{

1

n
I2 ≥ R2 +

log n

2n

}
∪{

1

n
I12 ≥ R1 +R2 +

log n

2n

}]
− 2√

n
. (G.54)

Applying Lemmas 12 and 13 to (G.54), we conclude that any
(R1, R2) in the (n, ε)-rate region must satisfy (R1, R2) ∈
R

(3)
out(n, ε). Thus,

R∗(n, ε) ⊆ R
(3)
out(n, ε). (G.55)

�

B. Two Special Cases

The analysis in Section G-A above applies to any stationary,
memoryless source with single-letter distribution PX1X2

that
satisfies (140). In such a general setting, it is hard to find
an optimal code. However, there are some special cases in
which the optimal codes for a less redundant source can be
characterized.

To enable the following analysis on these special cases, we
assume that PX1X2(x1, x2) > 0 for every (x1, x2) ∈ X1×
X2. Under this assumption, V (X1, X2) = 0 if and only if

V (X1|X2) = V (X2|X1) = 0. As a result, the three cases
discussed in Section A reduce to only two possible scenarios:

1) V (X1, X2) = V (X1|X2) = V (X2|X1) = 0;
2) V (X1, X2) > 0, and either V (X1|X2) = 0 or

V (X2|X1) = 0.
Note that X1 and X2 are independent in both of these
scenarios.

We first summarize the results below.
Special Case 1):

Theorem 31. Suppose that V (X1|X2) = 0, V (X2|X1) = 0,
and V (X1, X2) = 0. If PX1X2 satisfies PX1X2(x1, x2) > 0
for every (x1, x2) ∈ X1×X2, then

R∗(n, ε) = R
(1)
out(n, ε), (G.56)

where R
(1)
out(n, ε) is defined in (G.3).

This scenario is a special example of Case 1) discussed in
Section A above. The (n, ε)-rate region here coincides with
the converse region R

(1)
out(n, ε) presented in (G.3) for general

source distributions. See Figure 10(a) for a comparison among
R

(1)
in (n, ε), R

(1)
out(n, ε), and R∗(n, ε) in this special case.

Special Case 2): With V (X1, X2) > 0, we here assume that
V (X1|X2) = 0 and V (X2|X1) > 0. The other case can be
analyzed similarly. For any δ ∈ [0, ε), we define

R̂s
in(n, δ) ,

{
(R1, R2) ∈ R2 : (G.57)

R1 ≥ H(X1)− 1

n
log

1

1−δ

R2 ≥ H(X2)+

√
V (X2)

n
Q−1

(
ε−δ
1−δ

)
− log n

2n
+ξin(ε, δ, n)

}
R̂s

out(n, δ) ,

{
(R1, R2) ∈ R2 : (G.58)

R1 ≥ H(X1)− 1

n
log

1

1−δ

R2 ≥ H(X2)+

√
V (X2)

n
Q−1

(
ε−δ
1−δ

)
− log n

2n

−ξout(ε, δ, n)

}
,

where the functions ξin(ε, δ, n) and ξout(ε, δ, n) are charac-
terized as follows. For any fixed δ, ξout(ε, δ, n) = O( 1

n ) and
ξin(ε, δ, n) = O( 1

n ). For any fixed n, both ξout(ε, δ, n) and
ξin(ε, δ, n) blow up as δ approaches ε. (These bounds are
applications of the point-to-point results in Theorem 1.) Also
define

Rs
in(n, ε) ,

⋃
δ∈[0,ε)

R̂s
in(n, δ) (G.59)

Rs
out(n, ε) ,

⋃
δ∈[0,ε)

R̂s
out(n, δ). (G.60)

Theorem 32. Suppose that V (X1|X2) = 0, V (X2|X1) > 0,
and V (X1, X2) > 0. If PX1X2

satisfies PX1X2
(x1, x2) > 0

for every (x1, x2) ∈ X1×X2, then

Rs
in(n, ε) ⊆ R∗(n, ε) ⊆ Rs

out(n, ε). (G.61)
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This scenario is a special example of Case 3) discussed in
Section A of this appendix. The (n, ε)-rate region character-
ized in (G.61) is sandwiched between the achievable region
presented in (G.11) and the converse region presented in
(G.12). To compare these regions, we note that the bounds on
R1 +R2 in (G.11) and (G.12) become inactive in this special
scenario where X1 and X2 are independent. As a result, the
achievable region in (G.11) becomes

R
(3)
in (n, ε) =

⋃
δ∈(0,ε)

{
(R1, R2) ∈ R2 : (G.62)

R1 ≥ H(X1)+
1

n
log

1

δ

R2 ≥ H(X2)+

√
V (X2)

n
Q−1

(
ε−δ−Cin√

n

)
− log n

2n
+

1

n
log

1

1−δ

}
,

and the converse region in (G.12) becomes

R
(3)
out(n, ε) =

{
(R1, R2) ∈ R2 : (G.63)

R1 ≥ H(X1)− 1

n
log

1

1−ε

R2 ≥ H(X2)+

√
V (X2)

n
Q−1(ε)− log n

2n
−O

(
1

n

)}
.

As δ approaches ε, the boundary of the (n, ε)-rate region
given in (G.59) approaches the line R1 = H(X1)− 1

n log 1
1−ε ,

which matches the vertical segment of the boundary of the
converse region R

(3)
out(n, ε). See Figure 10(b) for a comparison

of R
(3)
in (n, ε), R

(3)
out(n, ε), and R∗(n, ε) in this case.

We next give proofs for Theorems 31 and 32.

Proof of Theorem 31. When V (X1|X2) = V (X2|X1) =
V (X1, X2) = 0, (X1, X2) is uniformly distributed over
X1×X2, which restricts X1 and X2 to be finite and X1 and X2

to be independent. The MASC problem reduces to independent
(point-to-point) almost-lossless source coding problems for the
two sources with a single compound error probability. As a
result, the optimal MASC with blocklength n and code sizes
(M1,M2) has an error probability given by

1−min

{
1,

M1

|X1|n

}
·min

{
1,

M2

|X2|n

}
. (G.64)

Therefore, for any 0 < ε < 1, there exists an (n,M1,M2, ε)
MASC if and only if

min

{
1,

M1

|X1|n

}
·min

{
1,

M2

|X2|n

}
≥ 1−ε. (G.65)

In this case, H(X1) = log |X1| and H(X2) = log |X2|.
• For R1 < H(X1) and R2 < H(X2), (G.65) becomes

M1M2 ≥ (1−ε)|X1|n|X2|n, (G.66)

which is equivalent to

R1 +R2 ≥ H(X1)+H(X2)− 1

n
log

1

1−ε
. (G.67)

(a)

(b)

Fig. 10: Schematic illustrations of the MASC rate regions for a
less redundant source. The drawing in (a) illustrates the achievable
and converse regions in Case 1) (V (X1, X2) = V (X1|X2) =
V (X2|X1) = 0) and the (n, ε)-rate region R∗(n, ε) when PX1X2

is assumed to have no zeros (Special Case 1)). The drawing
in (b) illustrates the achievable and converse regions in Case 3)
(V (X1|X2) = 0, V (X1, X2), V (X2|X1) > 0) and the (n, ε)-rate
region R∗(n, ε) when PX1X2 is assumed to have no zeros (Special
Case 2)).

• For R1 ≥ H(X1), (G.65) becomes

M2 ≥ (1−ε)|X2|n, (G.68)

which is equivalent to

R2 ≥ H(X2)− 1

n
log

1

1−ε
. (G.69)
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• For R2 ≥ H(X2), (G.65) gives

R1 ≥ H(X1)− 1

n
log

1

1−ε
. (G.70)

For all 0 < ε < 1 and n ≥ 1,

R∗(n, ε) =

{
(R1, R2) ∈ R2 : (G.71)

R1 ≥ H(X1)− 1

n
log

1

1−ε
R2 ≥ H(X2)− 1

n
log

1

1−ε

R1 +R2 ≥ H(X1)+H(X2)− 1

n
log

1

1−ε

}
= R

(1)
out(n, ε).

�

Proof of Theorem 32. When V (X1|X2) = 0 and
V (X2|X1), V (X1, X2) > 0, X1 is uniformly distributed over
X1, which implies that X1 is finite and H(X1) = log |X1|. In
contrast, X2 is not uniform over X2. Moreover, X1 and X2

are independent. The MASC problem in this case can also
be resolved via independent point-to-point source coding for
each of the two sources. The optimal code with blocklength
n and code sizes (M1,M2) encodes M1 arbitrary symbols
in Xn1 and a cardinality-M2 subset of Xn2 that has the
largest probability with respect to PXn

2
. As a result, for any

0 < ε < 1, there exists an (M1,M2, ε) MASC if and only if

(1−δ)δ′ ≥ 1−ε, (G.72)

where δ = 1−min
{

1, M1

|X1|n

}
is the total marginal probability

of symbols that are not encoded in Xn1 , and δ′ is the total
marginal probability (with respect to PXn

2
) of the encoded

symbols in Xn2 . Eq. (G.72) implicitly requires δ ∈ [0, ε] and
δ′ ∈ [1−ε, 1].
• For δ = 0, we have

R1 ≥ H(X1). (G.73)

In this case, (G.72) gives

1−δ′ ≤ ε. (G.74)

We can apply the point-to-point almost-lossless source coding
results from Theorem 1 to obtain

H(X2)+

√
V (X2)

n
Q−1(ε)− log n

2n
−O

(
1

n

)
≤ R2

≤ H(X2)+

√
V (X2)

n
Q−1(ε)− log n

2n
+O

(
1

n

)
. (G.75)

• For 0 < δ ≤ ε, we have

R1 = H(X1)− 1

n
log

1

δ
. (G.76)

In this case, (G.72) gives

1−δ′ ≤ ε−δ
1−δ

. (G.77)

We can also apply the point-to-point results to get

H(X2)+

√
V (X2)

n
Q−1

(
ε−δ
1−δ

)
− log n

2n
−ξout(ε, δ, n)

≤ R2 (G.78)

≤ H(X2)+

√
V (X2)

n
Q−1

(
ε−δ
1−δ

)
− log n

2n
+ξin(ε, δ, n),

where for any fixed δ, ξout(ε, δ, n) = O
(

1
n

)
and ξin(ε, δ, n) =

O
(

1
n

)
; for any fixed n, both ξout(ε, δ, n) and ξin(ε, δ, n) blow

up as δ approaches ε (see Theorem 1 for the case where ε
approaches 0). �
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1) When X1 and X2 are dependent, our choice of R =
(R1, R2) in (197)–(199) implies that

R1 ≥ H(X1|X2)+δ2−
log n

2n
(H.1)

R2 ≥ H(X2|X1)+δ1−
log n

2n
. (H.2)

Define

a ,

a1

a2

a3

 , R−H+
log n

2n
1. (H.3)

We have

a1 = R1−H(X1|X2)+
log n

2n
≥ δ2 (H.4)

a2 = R2−H(X2|X1)+
log n

2n
≥ δ1 (H.5)

a3 =

√
V (X1, X2)

n
Q−1

(
ε− G√

n

)
. (H.6)

Let Z , (Z1, Z2, Z3) ∼ N (0,V) be a multivariate Gaussian
in R3, where V is the entropy dispersion matrix (see Defini-
tion 8). Then

P
[
Z ≤

√
na
]

(H.7)

≥ 1−(P
[
Z1 > a1

√
n
]
+P
[
Z2 > a2

√
n
]
+P
[
Z3 > a3

√
n
]
),

where (H.7) holds by the union bound. It follows that

P
[
Z1 > a1

√
n
]

= P
[
Z1 ≥ a1

√
n
]

(H.8)

= Q

(
a1
√
n√

V (X1|X2)

)
(H.9)

≤ e−na
2
1/(2V (X1|X2)) (H.10)

≤ e−nδ
2
2/(2V (X1|X2)), (H.11)

where (H.10) applies the Chernoff bound of the Q-function,
and (H.11) holds since a1 ≥ δ2 > 0. Similarly,

P
[
Z2 > a2

√
n
]
≤ e−nδ

2
1/(2V (X2|X1)). (H.12)

In contrast,

P
[
Z3 > a3

√
n
]

= ε− G√
n
. (H.13)
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Plugging (H.11)–(H.13) into (H.7), we conclude that for all n
sufficiently large such that

e−nδ
2
2/(2V (X1|X2)) +e−nδ

2
1/(2V (X2|X1)) ≤ G√

n
, (H.14)

the bound

P
[
Z ≤

√
na
]
≥ 1−ε (H.15)

holds. Therefore,
√
na ∈ Qinv(V, ε), and hence R ∈ R

∗
(n, ε)

(142).
2) Recall vector a defined in (H.3). With R1 = H(X1),

a1 = H(X1)−H(X1|X2)+
log n

2n
(H.16)

a2 = R2−H(X2|X1)+
log n

2n
(H.17)

a3 = R2−H(X2|X1)+
log n

2n
. (H.18)

Note that

P
[
Z ≤

√
na
]

(H.19)

≥ P
[
Z2 ≤ a2

√
n, Z3 ≤ a3

√
n
]
−P
[
Z1 > a1

√
n
]
.

Since H(X1)−H(X1|X2) > 0, P[Z1 > a1
√
n] decays expo-

nentially in n. Therefore, by the definition of r∗ in (202) and
a first-order multivariate Taylor bound, G > 0 in (200) can be
chosen so that the right side of (H.19) is equal to 1−ε, which
implies that R ∈ R

∗
(n, ε) (142).

Conversely, for any R2 such that R ∈ R
∗
(n, ε),

P
[
Z ≤

√
na
]
≥ 1−ε, (H.20)

which further implies

P
[
Z2 ≤ a2

√
n, Z3 ≤ a3

√
n
]
≥ 1−ε. (H.21)

Thus, by the definition of r∗,

√
n

(
R2−H(X2|X1)+

log n

2n

)
≥ r∗, (H.22)

which is equivalent to (201). �
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Fix any λ ∈ [0, 1]. Define

a ,

a1

a2

a3

 , R−H+
log n

2n

 λ
1−λ

1

. (I.1)

By the assumption that X1 and X2 are independent, we have

a3 = a1 +a2. (I.2)

Denote

r1 ,
a1
√
n√

V (X1)
, r2 ,

a2
√
n√

V (X2)
. (I.3)

Let Z , (Z1, Z2, Z3) ∼ N (0,V) be a multivariate Gaussian
in R3, where V is the entropy dispersion matrix of the

independent sources X1 and X2. It follows in this case that
Z1 and Z2 are independent and Z3 = Z1 +Z2. We then have

P
[
Z ≤

√
na
]

= P
[
Z1 ≤ a1

√
n
]
P
[
Z2 ≤ a2

√
n
]

P
[
Z3 ≤ a3

√
n
∣∣Z1 ≤ a1

√
n,Z2 ≤ a2

√
n
]

(I.4)
= P

[
Z1 ≤ a1

√
n
]
P
[
Z2 ≤ a2

√
n
]

(I.5)
= Φ(r1)Φ(r2). (I.6)

Thus, for any r1, r2 such that

Φ(r1)Φ(r2) ≥ 1−ε, (I.7)

a ∈ Qinv(V,ε)√
n

and hence

R ∈ H+
Qinv(V, ε)√

n
− log n

2n

 λ
1−λ

1

 ⊆ R
∗
(n, ε). (I.8)

Therefore,

R
∗
sum(n, ε) ≤ H(X1)+H(X2)+ (I.9)

min
(r1,r2):

Φ(r1)Φ(r2)≥1−ε

(√
V (X1)

n
r1 +

√
V (X2)

n
r2

)
− log n

2n
.

On the other hand, for any r1, r2 such that

Φ(r1)Φ(r2) < 1−ε, (I.10)

a 6∈ Qinv(V,ε)√
n

and hence R /∈ R
∗
(n, ε) (142). Thus, (I.9) holds

with equality.

APPENDIX J
PROOF OF THEOREM 23

The proof employs an extension of Han’s MASC con-
verse [9, Lemma 7.2.2].

Given an (L,M1,M2, ε) CF-MASC (L, f1, f2, g), let

S ,
{

(x1, x2) ∈ X1×X2 :

(x1, x2) = g(f1(L(x1, x2), x1), f2(L(x1, x2), x2))
}

S1(x2) ,
{
x1 ∈ X1 : (x1, x2) ∈ S

}
∀x2 ∈ X2

S2(x1) ,
{
x2 ∈ X2 : (x1, x2) ∈ S

}
∀x1 ∈ X1.

Then P[Sc] equals the code’s error probability, and

|S|≤M1M2 (J.1)
|S1(x2)| ≤LM1, for any x2 ∈ X2 (J.2)
|S2(x1)| ≤LM2, for any x1 ∈ X1, (J.3)

where the bound on |S| is the number of distinct decoder
inputs and the bounds on |S1(x2)| and |S2(x1)| are the number
of distinct decoder inputs under fixed values of x2 and x1 and
an `-bit CF. Fix γ > 0. Define sets

U , {(x1, x2) ∈ X1×X2 :

ı(x1, x2) ≥ logM1 +logM2 +γ} (J.4)
U1 , {(x1, x2) ∈ X1×X2 : ı(x1|x2) ≥ log(LM1)+γ} (J.5)
U2 , {(x1, x2) ∈ X1×X2 : ı(x2|x1) ≥ log(LM2)+γ}. (J.6)
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Then,

P[U1∩S] (J.7)

= E
[
1

{
PX1|X2

(X1|X2) ≤ exp(−γ)

LM1

}
1{(X1, X2) ∈ S}

]
≤
∑
x2∈X2

PX2
(x2)|S1(x2)|exp(−γ)

LM1
(J.8)

≤ exp(−γ), (J.9)

where (J.7) follows the definition of U1, (J.8) applies 1{Z ≤
z} ≤ z, and (J.9) holds by (J.2). Similarly,

P[U2∩S] ≤ exp(−γ) (J.10)
P[U∩S] ≤ exp(−γ). (J.11)

Thus,

P[U1∪U2∪U ]≤P[U1∩S]+P[U2∩S]+P[U∩S]+P[Sc](J.12)
≤ 3 exp(−γ)+P[Sc]. (J.13)

Rearranging (J.13) gives a lower bound on the error probability
ε = P[Sc]. Thus, any (L,M1,M2, ε) CF-MASC must satisfy

ε ≥ P[{ı(X1|X2) ≥ log(LM1)+γ}∪
{ı(X2|X1) ≥ log(LM2)+γ}∪
{ı(X1, X2) ≥ log(M1M2)+γ}]

−3 exp(−γ). (J.14)

Particularizing (J.14) to stationary, memoryless sources with
single-letter distribution PX1X2

satisfying (139) and (140)
shows that any (n,L,M1,M2, ε) CF-MASC must satisfy

ε ≥ P[{I1 ≥ log(LM1)+γ}∪{I2 ≥ log(LM2)+`+γ}
∪ {I12 ≥ log(M1M2)+γ}]−3 exp(−γ) (J.15)

= 1−P

[
n∑
i=1

Ui < nR−nH+γ1

]
−3 exp(−γ), (J.16)

where γ > 0 is an arbitrary constant, I1, I2, and I12 are defined
in (146), (147), and (148), and Ui is defined in (183). Let L
be a finite constant that does not grow with n and let γ =
logn

2 − logL. Applying Lemma 12 and Lemma 13-2 to bound
the probability (J.16) in a manner similar to (182)–(187), we
conclude that any (n, `, ε)-achievable rate pair (R1, R2) must
be in R∗out(n, ε) (144). �

Remark 16. One could also prove Theorem 23 by extending
our HT converse (Theorem 19 ) to the setting with a coop-
eration facilitator. Our Theorem 19 continues to hold with
M1 and M2 replaced by LM1 and LM2 in (126) and (127),
respectively ((128) remains unchanged).
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