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Abstract—Consider a random access communication scenario
over a channel whose operation is defined for any number
of possible transmitters. As in the model recently introduced
by Polyanskiy for the Multiple Access Channel (MAC) with a
fixed, known number of transmitters, the channel is assumed
to be invariant to permutations on its inputs, and all active
transmitters employ identical encoders. Unlike the Polyanskiy
model, in the proposed scenario, neither the transmitters nor
the receiver knows which transmitters are active. We refer
to this agnostic communication setup as the Random Access
Channel (RAC). Scheduled feedback of a finite number of bits
is used to synchronize the transmitters. The decoder is tasked
with determining from the channel output the number of active
transmitters, k£, and their messages but not which transmitter
sent which message. The decoding procedure occurs at a time n;,
depending on the decoder’s estimate, ¢, of the number of active
transmitters, k, thereby achieving a rate that varies with the
number of active transmitters. Single-bit feedback at each time
ni,t < t, enables all transmitters to determine the end of one
coding epoch and the start of the next. The central result of this
work demonstrates the achievability on a RAC of performance
that is first-order optimal for the MAC in operation during each
coding epoch. While prior multiple access schemes for a fixed
number of transmitters require 2° — 1 simultaneous threshold
rules, the proposed scheme uses a single threshold rule and
achieves the same dispersion.

Index Terms—Channel coding, random access channel, finite
blocklength regime, achievability, second-order asymptotics, rate-
less codes.

I. INTRODUCTION

€ a Access points like WiFi hot spots and cellular base
stations are, for wireless devices, the gateway to the network.
Unfortunately, access points are also the network’s most
critical bottleneck. As more kinds of devices become network-
reliant, both the number of communicating devices and the
diversity of their communication needs grow. Little is known
about how to code under high variation in the number and
variety of communicators.

Multiple-transmitter single-receiver channels are well under-
stood in information theory when the number and identities
of transmitters are fixed and known. Unfortunately, even in
this known-transmitter regime, information-theoretic solutions
are too complex to implement. As a result, orthogonalization
methods, such as TDMA, FDMA, and orthogonal CDMA, are
used instead. Orthogonalization strategies simplify coding by
allocating resources (e.g., time slots) among the transmitters,
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but applying such methods to discrete memoryless MACs can
at best attain a sum-rate equal to the single-transmitter capacity
of the channel, which is often significantly smaller than the
maximal multi-transmitter sum-rate.

Most random access protocols currently in use rely on col-
lision avoidance, which cannot surpass the single-transmitter
capacity of the channel and may be significantly worse since
the unknown transmitter set makes it difficult to schedule or
coordinate among transmitters. Collision avoidance is achieved
through variations of the legacy (slotted) ALOHA and car-
rier sense multiple access (CSMA) algorithms. ALOHA,
which uses random transmission times and back-off schedules,
achieves only about 37% of the single-transmitter capacity of
the channel [2]. In CSMA, each transmitter tries to avoid col-
lisions by verifying the absence of other traffic before starting
a transmission over the shared channel; when collisions do
occur, all transmissions are aborted, and a jamming signal is
sent to ensure that all transmitters are aware of the collision.
The procedure starts again at a random time, which again
introduces inefficiencies. The state of the art in random access
coding is “treating interference as noise,” which is part of
newer CDMA-based standards. While this strategy can deal
with random access better than ALOHA, it is still far inferior
to the theoretical limits.

Even from a purely theoretical perspective, a satisfactory
solution to random access remains to be found. The MAC
model in which a fixed number, k£, out of the total avail-
able K transmitters are active was studied by D’yachkov
and Rykov [3] and Mathys [4] for zero-error coding on a
noiseless adder MAC, and by Bassalygo and Pinsker [5] for
an asynchronous model in which the information is considered
erased if more than one transmitter is active at a time. See [0]
for a more detailed history. Two-layer MAC decoders, with
outer layer codes that work to remove channel noise and inner
layer codes that work to resolve conflicts, are proposed in [7],
[8]. Like the codes in [3]-[5], the codes in [6], [7] are designed
for a predetermined number of transmitters, k; it is not clear
how robust they are to randomness in the transmitters’ arrivals
and departures. In [9], Minero et al. study a random access
model in which the receiver knows the transmitter activity
pattern, and the transmitters opportunistically send data at the
highest possible rate. The receiver recovers only a portion of
the messages sent, depending on the current level of activity
in the channel.

A. Our Contributions and Related Works

This paper poses the question of whether it is possible, in
a scenario where no one knows how many transmitters are



active, for the receiver to almost always recover the messages
sent by all active transmitters. Surprisingly, we find that not
only is reliable decoding possible in this regime, but, for
the class of permutation-invariant channels considered in [6],
our proposed RAC code performs as well in its capacity
and dispersion terms as the best-known code for a MAC
with the transmitter activity known a priori [10]-[13]. Since
the capacity region of a MAC varies with the number of
transmitters, it is tempting to believe that the transmitters of a
random access system must somehow vary their codebook size
in order to match their transmission rate to the capacity region
of the MAC in operation. Instead, we here allow the decoder
to vary its decoding time depending on the observed channel
output—thereby adjusting the rate at which each transmitter
communicates by changing not the size but the blocklength of
each transmitter’s codebook.

Codes that can accommodate variable decoding times are
called rateless codes. Rateless codes originate with the work of
Burnashev [14], who computed the error exponent of variable-
length coding over a known point-to-point channel. Polyanskiy
et al. [15] provide a dispersion-style analysis of the same
scenario. A practical implementation of rateless codes for an
erasure channel with an unknown erasure probability appears
in [16]. An analysis of rateless coding over an unknown binary
symmetric channel appears in [17] and is extended to an
arbitrary discrete memoryless channel in [18], [19] using a
decoder that tracks Goppa’s empirical mutual information and
decodes once that quantity passes a threshold. In [20], Jeffrey’s
prior is used to weight unknown channels. A rateless code
for noiseless random access communication is described in
[21]; each user transmits replicas of its message in multiple
time slots, possibly colliding with the messages of other
transmitters. At the end of each time slot, the decoder attempts
to apply successive interference cancellation starting with the
messages received without collision and subsequently remov-
ing the associated interference from the time slots in which
replicas are transmitted. The decoder then decides whether to
terminate an epoch or to ask the transmitters to send more
replicas.

Unlike the codes described in [14]-[21], which allow truly
arbitrary decoding times, in this paper we allow decoding
only at a predetermined list of possible times ng, ni,na, .. ..
This strategy both eases practical implementation and reduces
feedback. In particular, the schemes in [14]-[21] transmit a
single-bit acknowledgment message from the decoder to the
encoder(s) once the decoder completes its decoding process.
Because the decoding time is random, this so-called “single-
bit” feedback forces the transmitter(s) to listen to the channel
constantly, at every time step trying to discern whether or not
a transmission was received. This either requires full-duplex
devices or doubles the effective blocklength and can be quite
expensive. Thus while the receiver technically sends only “one
bit” of feedback, the transmitters receive one bit of feedback
(with the alphabet {“transmission”,“no transmission”}) in ev-
ery time step, giving a feedback rate of 1 bit per channel use
rather than a total of 1 bit. In our framework, feedback bits
are sent only at times ng < ny < --- < ng, where each n; is
the pre-determined decoding time used if the receiver believes

that ¢ transmitters are active. Thus the transmitters must listen
only at a sparse collection of time steps. The total number of
feedback bits equals one plus the receiver’s estimate of the
number of transmitters, giving a feedback rate approaching 0
bits per channel use as the blocklength grows.

In the central portion of this paper, we view the random
access channel as a collection of all possible MACs that might
arise as a result of the transmitter activity pattern. Barring
the intricacies of multiuser decoding, the model that views
an unknown channel as a collection of possible channels
without assigning an a priori probability to each is known
as the compound channel model [22]. In the context of
single-transmitter compound channels, it is known that if the
decoding time is fixed, the transmission rate cannot exceed
the capacity of the weakest channel from the collection [22],
though the dispersion may be better (smaller) [23]. With
feedback and a variable decoding time, one can do much better
[17]-[20].

In [6], Polyanskiy argues for removing the transmitter iden-
tification task from the physical layer encoding and decoding
procedures of a MAC. As he points out, such a scenario was
previously discussed by Berger [24] in the context of conflict
resolution. Polyanskiy further suggests studying MACs whose
conditional channel output distributions are insensitive to input
permutations. For such channels, if all transmitters use the
same codebook, then the receiver can at best hope to recover
the messages sent without recovering who transmitted which
message (the transmitter identity). In some networks the trans-
mitter identification task can be insignificant. For example, in
some sensor networks, we might be interested in the collected
measurements but indifferent to the identities of the collecting
sensors. In scenarios where transmitter identity is required, it
can be included in the payload.

In Section IV, we propose a code for a random access com-
munication channel model built from a family of permutation-
invariant MACs. Our code employs identical encoders at
all transmitters and identity-blind decoding at the receiver.
Although not critical for the feasibility of our approach, these
assumptions lead to a number of pleasing simplifications
of both our scheme and its analysis. For example, using
identical encoders at all transmitters simplifies design and
implementation. Further, the collection of MACs comprising
our compound RAC model can be parameterized by the
number of active transmitters rather than by the full transmitter
activity pattern.

We provide a second-order analysis of the rate universally
achieved by our multiuser scheme over all transmitter activity
patterns, taking into account the possibility that the decoder
may misdetect the current activity pattern and decode for
the wrong channel. Leveraging our observation that for a
symmetric MAC, the fair rate point is not a corner point
of the capacity region, we are able to show that a single-
threshold decoding rule attains the fair rate point. This dif-
fers significantly from traditional MAC analyses, which use
2% — 1 simultaneous threshold rules. In the context of a MAC
with a known number of transmitters, second-order analyses
of multiple-threshold decoding rules are given in [10]-[13]
(finite alphabet MAC) and in [25] (Gaussian MAC). A non-



asymptotic analysis of variable-length coding with “single-bit”
feedback over a (known) Gaussian MAC appears in [26].

Other relevant recent works on the MAC include the fol-
lowing. To account for massive numbers of transmitters, in
[27], [28], Chen and Guo introduce a notion of capacity for
the multiple access scenario in which the maximal number
of transmitters grows with the blocklength and an unknown
subset of transmitters is active at a given time. They show that
time sharing, which achieves the conventional MAC capacity,
is inadequate to achieve capacity in that regime. In [29],
Sarwate and Gastpar show that rate-0 feedback, such as the
feedback in our approach, does not increase the capacity of
the discrete memoryless MAC. In compound MACs, limited
feedback can increase capacity. For example, one strategy
uses a simple training phase to estimate the channel state and
employs feedback to send the state estimate to the transmitter.
Such schemes cannot increase the capacity beyond the rate
achievable when the state is known to the encoders and the
decoder [29].

The sparse recovery problem is identical to a special case
of the RAC problem in which each transmitter sends only its
“signature” to the receiver. Here, the decoder’s only task is
to determine who is active. Active transmitters in this variant
of the RAC problem may correspond to defective items or
positive test outcomes in the sparse recovery problem, and
successful decoding is identified with successfully detecting
the set of defective or confirmed-positive elements. A group
testing problem in which an unknown subset of £k defective
items out of K items total is observed through an OR MAC,
is studied in [30]-[34]; this problem is a special case of the
sparse recovery problem. In these works, the decoder reaches
a conclusion about tested items at a fixed blocklength n.
Atia and Saligrama [32] consider a noiseless group testing
scenario in which the number of transmitted elements, k,
does not grow with the total number of elements, K, showing
that the smallest possible number of measurements needed to
detect the defective items is O(klog £). In in [33], Scarlett
and Cevher extend this result to the scenario where k scales
as O(K?) for & € (0,1). In [34], Scarlett and Cevher
derive the information-theoretic limits of the exact and partial
support recovery problems for general probabilistic models,
where exact recovery refers to detecting all k defective items,
and partial recovery refers to detecting at least s out of k
defective items. While we consider a nonvanishing average
error probability and operate in the central limit theorem
regime, [30]-[34] assume vanishing average error probability
and operate in the large deviations regime. The main difference
between the decoder designs in [30]-[34] and our decoder
design is that [30]-[34] use 2k _ 1 simultaneous information
density threshold tests at a single blocklength n, while our
decoder uses a single information density threshold test at
multiple decoding times, allowing successful detection with a
computationally less complex decoder even when the number
of active transmitters to be detected is unknown.

B. Paper Organization

Our system model and proposed communication strategy
are laid out in Section II. The main result, showing that

for a nontrivial class of channels our proposed RAC code
performs as well in terms of capacity and dispersion as the
best-known code for a MAC with the transmitter activity
known a priori, is presented in Section III. The proofs are
presented in Section IV. Section V includes discussions of the
effect of using maximum likelihood decoding, the choice of
an input distribution in the random code design, the difficulties
in proving a converse, an extension of our strategy that
enables transmitter identity decoding, and performance bounds
under the per-user error probability criterion. Interestingly,
the problem of decoding for £ > 1 unknown transmitters is
substantially different from the problem of detecting whether
there are any active transmitters at all. In Section VI, we
employ universal hypothesis testing to solve the latter problem.
Section VII concludes the paper with a discussion of our
results and their implications.

II. PROBLEM SETUP

For any positive integers 4,7, let [i] = {1,...,i} and
[i: 4] ={i,...,7}, where [i : j] = 0 when ¢ > j. We denote
an n dimensional vector by =™ = (x1,...,2,). When the
dimension of a vector " is clear from the context, we denote
z" by x. All-zero and all-one vectors are denoted by 0 and 1,
respectively. For a collection of length-n vectors z7, ..., 2%
and any subset C C [K], we denote the corresponding sub-
collection of vectors by 3 = (z7:c € C). For collection of
vectors 2 and index i € [n], z¢; denotes the collection of
scalars obtained by taking i-th coordinate from each vector in
2. For any vectors x¢ and yc, we write x¢ < yc if . < ¥y,
for all ¢ € C, z¢ = yc if there exists a permutation 7 of y¢

such that z¢ = 7(yc), and z¢ ;Té ye if ¢ # w(yc) for all
permutations 7 of yc. For any set A and integer k < |A|,
(4) = {B:B C A, |B|= k}. For a random variable X, we
write X ~ Px to specify that X is distributed according to
distribution Px. We use Q(-) to denote the Gaussian com-
plementary cumulative distribution function, giving Q(z) =

\/% L exp{%“z}du. We employ the standard o(-) and
O(-) notations, giving f(n) = o(g(n)) if lim,_, ’% =0

and f(n) = O(g(n)) if limsup,,_, ‘% < 0.

A stationary, memoryless, symmetric, random access chan-
nel (henceforth called simply a RAC) is a memoryless channel
with one receiver and an unknown number of transmitters. It
is described by a family of stationary, memoryless MACs

K

{(XkaPYk,IX[k](yk‘x[k])vyk)}k_ , (D
each indexed by a number of transmitters, k; the maximal
number of transmitters is K < oco. When k£ = 0, no trans-
mitters are active; we discuss this case separately below. For
k > 1, the k-transmitter MAC has input alphabet X'*, output
alphabet )i, and conditional distribution Pyk| Xy When k
transmitters are active, the RAC output is Y = Y}. The input
and output alphabets X and ), can be abstract.

A. Assumptions on the Channel

We assume that the impact of a channel input on the channel
output is independent of the transmitter from which it comes;



therefore, each channel in (1) is assumed to be permutation-
invariant [6], giving

Py x0 Yklzm) = Py xp, Ukl 23) (2)

for all 2 = ) and yx € Vi, k € [K]. We further assume
that for any s < k, an s-transmitter MAC is physically iden-
tical to a k-transmitter MAC operated with s active and k — s
silent transmitters. At each time step of the communication
period, each silent transmitter transmits a silence symbol, here
denoted by 0 € X. This reducibility constraint gives

PY3|X[S] (y|37[s]) = PYk‘X[k] (y|x[s]70kis) (3)

for all s < k, T[s) € Xy, and y € Vs. An immediate conse-
quence of reducibility is that ) C Yy for any s < k. Another
consequence is that when there are no active transmitters,

the MAC (XO,PYO‘XM (y\a:[o]),yo) satisfies A° = {0} and
PYU\X[O] (Ylzjo)) = PYk|X[k] (y|0*) for all k.

B. RAC Communication Strategy

We here propose a new RAC communication strategy.
In the proposed strategy, communication occurs in epochs,
with each epoch beginning in the time step following the
previous epoch’s end. Each epoch ends when the receiver’s
scheduled broadcast to all transmitters indicates a decoding
event, signaling that the prior transmission can stop and a
new transmission can begin. At this point, each transmitter
decides whether to be active or silent in the new epoch; the
decision is binding for the length of the epoch, meaning that
a transmitter must either actively transmit for all time steps in
the epoch or remain silent for the same period. Thus, while
the total number of transmitters, K, is potentially unlimited
and can change arbitrarily from one epoch to the next, the
number of active transmitters, k, remains constant throughout
each epoch.

Each active transmitter uses the epoch to describe a message
W from the alphabet [M]. When the active transmitters are
[k], the messages are Wy, € [M]*, where the messages
Wy, ..., Wi of different transmitters are independent and
uniformly distributed. The proposed strategy fixes the potential
decoding times ng < n; < --- < nk.' The receiver chooses
to end the epoch (without decoding) at time ng if it believes
at time ng that no transmitters are active and chooses to end
the epoch and decode at time n; if it believes at time ny
that the number of active transmitters is ¢. The transmitters
are informed of the decoder’s decision through a single-bit
feedback Z, at each time ns with s € {0,1,...,t}; here
Zs =0forall s <tand Z; = 1, with “1” signaling the end of
one epoch and the beginning of the next. Since the blocklength
for a given epoch is the decoding time chosen by the receiver,
the result is a rateless code. As we show in Section IV below,
with an appropriately designed decoding rule, correct decoding
is performed at time nj with high probability.

'We focus the exposition on the scenario where the decoding blocklengths
are ordered both for simplicity and because a particular choice of ordered
blocklengths emerges as optimal within our architecture (see (72) in Sec-
tion IV-C, below).

It is important to stress that in this domain each transmitter
knows nothing about the set of active transmitters A C N
beyond its own membership and what it learns from the
receiver’s feedback, and the receiver knows nothing about
A beyond what it learns from the channel output Y; we
call this agnostic random access. In addition, since designing
a different encoder for each transmitter is expensive from
the perspective of both code design and code operation, as
in [6], we assume through most of this paper that every
transmitter employs the same encoder; we call this identical
encoding. Under the assumptions of permutation-invariance
and identical encoding, what the transmitters and receiver
can learn about A is quite limited. Together, these properties
imply that the decoder can at best distinguish which messages
were transmitted rather than by whom they were sent. In
practice, transmitter identity could be included in the header
of each log M-bit message or at some other layer of the
stack; transmitter identity is not, however, handled by the RAC
code. Instead, since the channel output statistics depend on
the dimension of the channel input but not the identity of
the active transmitters, the receiver’s task is to decode the
messages transmitted but not the identities of their senders.
We therefore assume without loss of generality that |A|= &
implies A = [k]. Thus the family of k-transmitter MACs in
(2) fully describes the behavior of a RAC.2

C. Code Definition

The following definition formalizes our code.
Definition 1: For any number of messages M, ordered
blocklengths ng < n; < --- < ng, and error probabilities

€0s---y€x, an (M, {(ny,ex)H< ;) RAC code comprises a
(rateless) encoding function
£ U x [M] — A% 4)

and a collection of decoding functions

g U XY — [MPU{e}, k=0,1,...,K, (5)

where e denotes the erasure symbol, which is the decoder’s
output when it is not ready to decode. At the start of each
epoch, a common randomness random variable U € U, with
U ~ Py, is generated independently of the transmitter activity
and revealed to the transmitters and the receiver, thereby
initializing the encoders and the decoder. If k transmitters are
active, then with probability at least 1 — ¢, the k£ messages
are correctly decoded at time ny. That is,’

b % effee iy

w[k]G[IVI]k

k-1
{U {e:(U,Y,)") # e}} Wi = w[k]] <e, (6)

t=0

where W[ are the independent and equiprobable messages
of transmitters [k], and the given probability is calculated

2Section V-D treats a variant of our RAC communication strategy that
enables decoding of transmitter identity. Mathematically, the variants are quite
similar.

ks
3Recall that = and # denote equality and inequality up to a permutation.



using the conditional distribution PYk”kl xpE = P;:“ Xy here
X" = f(UW;)"™, i = 1,...,k At time ng, the decoder
outputs the erasure symbol “e” if it decides that the number
of active transmitters is not s. If £ = 0 transmitters are active,
the unique message “0”, denoted [M]° £ {0} to simplify the
notation, is decoded at time ny with probability at least 1 —¢g.
That is,

P [g0(U, Yy') # 0|Wio) = 0] < eo. @)

In Definition 1, we index the family of possible codes by
the elements of some set I/ and include u € U as an argument
for both the RAC encoder and the RAC decoder. We then rep-
resent encoding as the application of a code indexed by some
random variable U € U chosen independently for each new
epoch. Deterministic codes are represented under this code
definition by setting the distribution on U as P[U = up] = 1
for some uwy € U. In practice, we can implement a RAC
code with random code choice U using common randomness.
Common randomness available to the transmitters and the
receiver allows all nodes to choose the same random variable
U to specify a new codebook in each epoch. Operationally,
this common randomness can be implemented by allowing
the receiver to choose random instance U at the start of each
epoch and to broadcast that value to the transmitters just after
the feedback bit that ends the previous epoch. Alternatively, all
communicators can use synchronized pseudo-random number
generators. Broadcasting the value of U increases the epoch-
ending feedback from 1 bit to [log|if|] + 1 bits; Theorem 8
shows that |/|< K + 1 suffices to achieve the optimal
performance.

In Section IV, we employ a general random coding argu-
ment to show that a given error vector (e, ..., €x) is achiev-
able when averaged over the ensemble of codes. Unfortunately,
this traditional approach does not show the existence of a
deterministic RAC code (i.e., a code with |U/|= 1) that achieves
the given error vector (eg,...,€x). The challenge here is
that our proof showing that the random code’s expected error
probability meets each of the K + 1 error constraints does not
suffice to show that any of the codes in the ensemble meets
all of our error constraints simultaneously. A similar issue
arises in [15], [35]. For example, in [15], a variable-length
feedback code is designed with the aim of achieving average
error probability no greater than e and expected decoding time
no greater than ¢. To design a single code satisfying both
constraints, [15] relies on common randomness. Similarly, [35]
describes a variable-length feedback code designed to satisfy
an error exponent criterion for every channel in a continuum
of binary symmetric or Z channels. Their proof that a single,
deterministic code can simultaneously satisfy this continuum
of constraints exploits the ordering among the channels in
the given family. While channel symmetry can sometimes be
leveraged to show the existence of a deterministic code [15, eq.
(29)], the symmetries in a RAC are quite different from those
in point-to-point channels. We leave the question of whether
a single-code solution exists for the RAC to future work.

The code model introduced in Definition 1 employs iden-
tical encoding in addition to common randomness. Under
identical encoding, each transmitter uses the same encoder, f,

to form a codeword of length ng. That codeword is fed into
the channel symbol by symbol. According to Definition 1, if
k transmitters are active, then with probability at least 1 — e,
the decoder recovers the transmitted messages correctly after
observing the first nj channel outputs. As noted previously,
the decoder gj, does not attempt to recover transmitter identity;
successful decoding means that the list of messages in the
decoder output coincides with the list of messages sent. The
error event defined in Definition 1 differs from the one in
[6]. Our definition (6) requires that all transmitted messages
are decoded correctly. In contrast, [6] bounds a per-user
probability of error (PUPE), which measures the fraction of
transmitted messages that are missing from the list of decoded
messages. In Section V-E, we discuss the error probability for
our code under the PUPE criterion.

D. Information Density Definitions

The following definitions are useful for the discussion that
follows. When k transmitters are active, the input distribution
is PX[k], and the marginal output distribution is Py,. The
information density and conditional information density are
defined* as

Py, x4 (Yk|T.4)
Py, (yr)
Py, 1 x.4.x5Yk|TA,75)
Py, x5 (Yk|z5)

(743 yx) = log (8)

w(zasyrles) = log ©)
for any A, B C [k], 4 € X4,x5 € X, and yj, € V; here
u (245 Yk |2B) £ ez a3 yk) when B = 0 and v, (z.4; yi|zp) =
0 when yr ¢ YVp or A = (). The corresponding mutual
informations are

I (X a5 Yi) = Elur (X 45 i) (10)

Ip(X a3 Yi| X) 2 Elog (Xa: Yie| X)) (11)
Throughout the paper, we also denote for brevity

I 2 I (Xpg; Ya) (12)

Vk £ Var [Zk(X[k]; Yk)] . (13)

The multi-letter information density and conditional informa-

tion densities are defined as

Pyrxn (yi|27)
Pyn(y)

Pyrixn xp (W12, ©5)
Pyrixp (yi o)

u (@7 yg) £ log (14)

w (s yilag) £ log (15)

E. Assumptions on the Input Distribution

To ensure the existence of codes satisfying the error con-
straints in Definition 1, we assume that there exists a Px such
that when X4, X5, ..., Xk are distributed i.i.d. Px, then the
conditions in (16)—(21) below are satisfied.

4We here employ notation for discrete alphabets. In the general case, it
can be replaced by the logarithm of the Radon-Nikodym derivative, giving

dPy | x ==
1 (T A5 yk) = log fl}iy:“(yk)-



The friendliness assumption states that for all s < k < K,
I( X193 Vi X s 10 = 0°7%) > (X (g3 YVie| X s 187)- (16)

Friendliness implies that by remaining silent, inactive transmit-
ters enable communication by the active transmitters at rates
at least as large as those achievable if the inactive transmitters
had actively participated and their codewords were known to
the receiver.

The interference assumption states that for any s and ¢, X[
and X541 are conditionally dependent given Yy, giving

PX[t]‘Yk‘ 7é PX[5]|yk PX[5+1:t]‘Yk Vi<s<t< k‘, VEk. 17

Assumption (17) eliminates trivial RACs in which transmitters
do not interfere.

In order for the decoder to be able to distinguish the time-ng
output Y™ that results when no transmitters are active from
the time-ng output Yk”0 that results when & > 1 transmitters
are active, we assume that there exists a dg > 0 such that the
output distributions satisfy

sup |Fx(y) — Fo(y)| > ¢ for all k € [K],

YEYVK

(18)

where Fj(y) denotes the cumulative distribution function
(CDF) of Py, for k € {0,...,K}.> The measure of dis-
crepancy between distributions on the left-hand side of (18)
is known as the Kolmogorov-Smirnov distance. The assump-
tion in (18) is only needed to detect the scenario when no
transmitters are active; the remainder of the code functions
proceed unhampered when (18) fails. When K is finite, (18)
is equivalent to Py, # Py, for all k € [K].
Finally, the moment assumptions

Var [1x (X3 Yi)] > 0
EfJok (X3 Yie) — In(Xugs Ya) IP] < 00

19)
(20)

enable the second-order analysis presented in Theorem 1,
below. In the case when 1;(X[q;Y%) > —oo almost surely,
we also require

Var [14(X[s; Ya)] <oo Vs <t <k 1)

Moment assumptions like (19)—(21) are common in the finite-
blocklength literature, e.g., [12], [36].

In the discussion that follows, we say that a channel satisfies
our channel assumptions ((2), (3), (16)—(21)) if there exists
an input distribution Px under which those conditions are
satisfied. All discrete memoryless channels (DMCs) satisfy
finite second- and third-moment assumptions (20)—(21) [36,
Lemma 46], as do Gaussian noise channels. Common channel
models from the literature typically satisfy a non-zero second-
moment assumption (19) as well. Example channels that meet
our channel assumptions ((2), (3), and (16)—(21)) include the
Gaussian RAC,

k
Yo=Y X+ 2, (22)
i=1
5Although the CDF is defined for real-valued random variables, i.e., Vi C

Yk C Ris required, it can be generalized to abstract alphabets by introducing
a partial order < on the set V. Then Fy(y) = P[Yy < y].

where each X; € R operates under power constraint P and
Z ~ N(0,N) for some N > 0, and the adder-erasure RAC

(8],
k
Yk’ _ {Zi—l Xi7
e

where X; € {0,1} and Y, € {0,...,k} U {e}. In [8], the
adder-erasure RAC (23) is used to model a scenario where
a digital encoder and decoder communicate over an analog
channel using a modulator and demodulator. The modulator
converts the bits into analog signals; the channel output equals
the sum of the transmitted signals plus random noise; the
demodulator quantizes that output, declaring an erasure, e, if
reliable quantization is not possible due to high noise. Thus,
one can view the adder-erasure RAC as a discretization of the
Gaussian RAC.

For the Gaussian RAC, 1;(X[4); Yz) > —oo almost surely,
and (21) is satisfied. For the adder-erasure RAC, 1, (X [s]5 Yi) =
—oo for some channel realizations and user activity patterns,
and (21) is not required.

We conclude this section with a series of lemmas that de-
scribe the natural orderings possessed by RACs that satisfy our
permutation-invariance, reducibility, friendliness, and interfer-
ence constraints ((2), (3), (16), and (17)). These properties
are key to the feasibility of the approach proposed in our
achievability argument in Section III. Proofs are relegated to
Appendix A.

The first lemma shows that the quality of the channel
for each active transmitter deteriorates as the number of
active transmitters grows (even though the sum capacity may
increase).

Lemma 1: Let Xi,Xo,...,X; ~ 1iid. Px. Under
permutation-invariance (2), reducibility (3), friendliness (16),
and interference (17),

Iy I
k < S

The second lemma shows that a similar relationship holds
even when the number of transmitters is fixed.

Lemma 2: Let X1,Xs,..., Xy ~ 1iid. Px. Under
permutation-invariance (2), reducibility (3) and interference
amn,

1 1
I (X Ya) < ;Ik(X[s]§Yk|X[s+1:k]) for k>s>1.

k
(25)

wp.1—9 23)
w.p. 0,

for k > s > 1. (24)

Lemma 2 ensures that the equal-rate point of the £-MAC lies
on the sum-rate boundary and away from all the corner points
of the rate region achieved with Px. In their work on the group
testing problem [31, Th. 3], Malyutov and Mateev prove a
non-strict version of (25) for permutation-invariant channels
(2). They use this non-strict version of (25) to conclude
that their achievability and converse results in [31, Th. 1
and 2] coincide for permutation-invariant channels. Adding
the reducibility (3) and interference (17) assumptions to the
permutation-invariance assumption (2) enables us to prove the
strict inequality in Lemma 2, which in turn enables the use of a
single threshold rule at the decoder, as discussed in Section IV.



Lemma 3 compares the expected values of the information
densities for different channels.

Lemma 3: Let Xy, Xo,..., X}, ~ iid. Px. If a RAC
is permutation-invariant (2), reducible (3), friendly (16), and

exhibits interference (17), then for any 1 < s <t < k,
Elo (Xpg); Ya)] < 1o(X(o); Ya) < Li(X[g5 Y2). (26)

The orderings in Lemma 1-3 are used in bounding the
performance of our agnostic random access code.

ITII. MAIN RESULT
A. An Asymptotic Achievability Result

Our main result is the following bound on achievable rates
for the RAC.
Theorem 1: (Achievability) For any RAC

{ (Xk’ Py xpq (Wklm), yk) }

satisfying (2) and (3), any K < oo, and any fixed Px
satisfying (16)—~(21), there exists an (M, {(ny, ex)}_,) code
provided that

klog M < ngly — \/nkaQ
for all k € [K], and

K

k=0

Ek 7*10gnk+0( ) 27

ng > cologny + o(logny), (28)

where ¢g is a known positive constant. The O(1) term in (27) is
constant with respect to ny; it depends on the number of active
transmitters, k, but not on the total number of transmitters, K.
The code in Theorem 1 assigns equal rates Rjy) = (R, ..., R),
R = M, to all active transmitters. The sum-rate kR

ng
converges as O (\/%) to Irx(X(x); Yr) for some input dis-

tribution Py, (zx)) = Hl 1 Px(x;) for all k. Note that Px
is independent of the number of active transmitters, k. If the
RAC is discrete and memoryless and a single Px maximizes
It (X(x); Yi) for every k, then the achievable rate in (27) not
only converges to the symmetrical rate point on the capacity
region of the MAC in operation but also achieves the best-
known second-order term [10]-[13]° (see Section ITI-B for
details.)

To better understand Theorem 1, consider a channel satisfy-
ing (16)—(21) for which the same distribution Px maximizes
I}, for all k. For example, for the adder-erasure RAC in (23),
setting Px to be Bernoulli(1/2) maximizes I for all k. By
Lemma 1, for M large enough and any €,e€,...,€x, One
can pick n; < my < --- < ng so that equality holds in
(27) for all k. Therefore, Theorem 1 certifies that for some
channels, rateless codes with encoders that are, until feedback,
agnostic to the transmitter activity pattern perform as well in

%Note that we are comparing the RAC achievable rate with rate-0 feedback
to the MAC capacity without feedback. Wagner er al. [37] show that if
a discrete, memoryless, point-to-point channel has at least two capacity-
achieving input distributions and their dispersions V7 (13) are distinct, then
using one-bit feedback improves the achievable second-order term. Although
rate-0 feedback does not change the capacity region of a discrete memoryless
MAC [29], in light of [37] it is plausible that even one-bit feedback can
improve the achievable second-order term for some MACs.

both first- and second-order terms as the best-known scheme
[10]-[13] designed with complete knowledge of transmitter
activity. Moreover for any fixed 0 < ¢y < 1, the probability
that at time ng > c¢glogn; + o(logny) the decoder correctly
detects the scenario where no transmitters are active is no
smaller than 1 —¢y. Thus, a new epoch can begin very quickly
when no transmitters are active in the current epoch.

The constant ¢y in (28) depends on the output distributions
Py,, k = 0,...,K, and on the hypothesis test chosen in
Section VI but not on the target probability of error ¢g.
In contrast, the o(logn;) term in (28) depends on ¢y. See
Section VI (eq. (151)) for an example where we bound
the dependence of the o(logni) term on ¢, under the log-
likelihood ratio test.

Our achievability result in Theorem 1 assumes that the
total number of transmitters, K, is constant. The asymp-
totic regime in which K grows with the decoding times,
ni,Na2,...,Ng, seeks to characterize scenarios with massive
numbers of communicators [6], [28], [33]. Understanding the
fundamental limits of random access communications in that
regime presents an interesting challenge for future work.

B. Comparison With the Existing Achievability Results

1) Discrete Memoryless RACs: Our achievable region (The-
orem 1) is consistent with the achievability results for the 2-
transmitter MACs given in [10]-[13]. The proofs in [10]-[12]
use i.i.d. random code design, an approach that we follow in
Theorem 1. In [13], Scarlett et al. use constant-composition
codes. In [10]-[12], the achievable rate region of a discrete
memoryless MAC is expressed as a three-dimensional vector
inequality that relies on a 3 x 3 dispersion matrix Vo defined in
[12, eq. (48)]; the entry of V5 at location (3,3) is V5 (13) for
some input distribution (P, , Px, ). For rate pairs approaching
interior (i.e., non-corner) points on the sum-rate boundary for
(Px:, Pxy), i.e., rate pairs satisfying

(R1, R2) € {(r1 +0o(1),m2 + o(1)):
r < L(X{; Y5 [X5)
T < Io(X3; Y5 |XT)

1 +7’2 :IQ(XT,X;;YQ*)}, (29)

the achievable region in [10]-[12] reduces to the scalar in-
equality

*

V. ]
Ri+ Ry <13 —/-2Q7'()+0 ( Oi”) . 30)

where

I 2 I(X], X5:,Y5) (31)

is the sum-rate capacity and V5 is the dispersion Vo (13)
evaluated using (Px;, Px;). The bound in (30) implies that
the only component of Vs employed in the second-order
characterization of the region (29) is V5". The result in (30) is
proved in [38, Prop. 4 case ii)].

In [13, Th. 1], Scarlett et al. use constant-composition
codes to show that the dispersion matrix Vs in the second-
order achievable region can be improved to V,, defined in



[13, eq. (13)]. Further, they show that \72 =< Vs, where =<
designates positive semidefinite order. Therefore, the second-
order rate region that is obtained using constant-composition
codes includes that achieved with i.i.d. random coding when
the target error probability satisfies € < % Scarlett et al. [13]
present two examples for which Vy < Vs, demonstrating that
the inclusion can be strict. The (3,3) component of Vs is

V5= V5 — Var [E ia(X], X353 Y5)| X7 ]]

— Var [ [12(X7, X3 Y5) | X3]], (32)

where PxyPx;Pyyx: x; = Px;Px; Py, x, x,- The right
side of (30) is achievable with V5 replaced by ‘72* In
Lemma 4, below, we derive a saddle point condition for
general MACs without cost constraints. Lemma 4 implies that

Vo =V5. (33)

This means that while constant-composition code design can
yield achievability results with second-order terms superior
to those derived through i.i.d. code design, on the sum-rate
boundary that superior performance is observed only at corner
points. For any rate point approaching an interior point on the
sum-rate boundary, the i.i.d. random code design employed in
this paper achieves first- and second-order performance iden-
tical to that achieved by constant-composition code design.

Lemma 4: Let Py, x, x, be a 2-transmitter MAC with finite
sum-rate capacity. Assume that the o-algebra on the abstract
input alphabets &; includes all singletons on X, i = 1,2. Let
(Xf,X;,sz*) ~ PXfPXQ*PYz\Xl,Xz’ where (PXT’PXg) is a
sum-rate capacity achieving input distribution, i.e.,

I3 2 L(X{,X5;Y5) = sup Io(Xy,Xo;Ys) <oo. (34)

x, Px,
Then, for i =1, 2,

E (X7, X35 Y5) | X[] = I3, (35)

where (35) holds Px--almost surely.

Proof: See Appendix B. ]
A version of Lemma 4 for discrete memoryless MACs appears
in [39, Prop. 1]. The result is proved by verifying that (35)
satisfies the Karush-Kuhn-Tucker (KKT) conditions for the
maximization problem in (34) (Although the maximization
problem in (34) is not convex, it satisfies a regularity condition
ensuring the necessity of the KKT conditions for optimality
[39].) We extend [39, Prop. 1] to general MACs by demon-
strating a saddle point condition for MACs. The saddle point
condition is more general in the sense that it applies to abstract
alphabets.

From (35), we deduce that

Var [E [1o(X7, X5;Y5) | X7]] = 0,

Substituting (36) into (32), we obtain (33).

The result in (34)—(35) extends the following well-known
properties of point-to-point DMCs to MACs. In [40, Th. 4.5.1],
the KKT conditions in (34)—(35) for point-to-point DMCs are

i=1,2. (36)

If 2 maxI;(X1;Y7) (37)
Px,
E[u(X7: V)| XT] =17 if Pxy(z1) >0 (38)

Ef (X7 Y9)IXT =2 <I7 if Pxp(21) =0;  (39)

these conditions are necessary and sufficient for optimality.
As noted in [36, Lemma 62], (38)-(39) indicate that for a
capacity-achieving input distribution Py,

Var [ [, (X735 Y1) X7]] = 0. (40)

From (40) and the law of total variance, it follows that the
unconditional and conditional variances of 11 (X7;Yy*) given
X7 are equal, i.e.,

Vi = E [Var [ (X7; Y1) X7]].

For point-to-point DMCs, Moulin [41] shows that the second-
order term V; achievable using constant-composition coding
equals the right-hand side of (41), meaning that i.i.d. random
code design and constant-composition random code design
achieve the same fundamental limits for point-to-point DMCs.

2) The Gaussian RAC: While the RAC code definition
(Definition 1) does not impose cost constraints on the code-
words, cost constraints can be added where needed. In the
case of the Gaussian RAC defined in (22), the maximal power
constraint P on the codewords requires that

[, )™ ||* < ny, P

(41)

(42)

for all u € U, w € [M], and k € [K], where ||| denotes
the Euclidean norm. If any encoder attempts to transmit a
codeword that does not satisfy (42), we count that event as an
error. Hence, the maximal power constraints add the term

k k
Pl UU x> np)
j=1li=1

to the error terms in (6).

For the Gaussian k-MAC under maximal power constraints,
drawing codewords i.i.d. according to distribution Px ~
N(,P — §,,) for any §,, — 0 as ny — oo yields a
worse second-order performance bound than the one achieved
by drawing codewords uniformly at random from the ng-
dimensional power sphere [25], [42]. MolavianJazi and Lane-
man [25] and Scarlett et al. [13] derive the improved second-
order term for the Gaussian MAC by drawing codewords
uniformly at random over an nj-dimensional power sphere
and by combining constant-composition code design with a
quantization argument, respectively. In [43], for the Gaussian
MAC and RAC, we prove the achievability of the same
second-order term as [13], [25] with an improved third-order
term % log n.. The proof employs codewords designed by con-
catenating spherically distributed sub-blocks and a maximum
likelihood decoding rule combined with a threshold rule based
on the output power.

(43)

C. An Example RAC

The following example investigates rates achievable for the
adder-erasure RAC in (23).

Example 1: For the adder-erasure RAC, the capacity achiev-
ing distribution is the equiprobable (Bernoulli(1/2)) distribu-
tion for all k. (See the proof of Theorem 7 in Appendix
C.) For this channel, one can exactly calculate I; and Vj



for this channel for every k (labelled “True” in Fig. 1). The
approximating characterizations

1 mek

Iy = (1-9) (10g‘

2 2 (44)

loge _3
- 1%2) +O(k™)

5 kE  log? log?
vk:<1_5>[10g2” e Lo

4 2 2 2k

loge dlog “Tek loge log k
(sne S8 o] o (o28)
which capture the first- and second-order behavior of I, and
Vi for each k, are, nonetheless, useful since they highlight
how each depends on & and 0. These values, without the O(-)
terms in (44)—(45), are labelled “Approximation” in Fig. 1.
The approximations are quite tight even for small k. Both I,

and /V}, are of order O(log k), indicating that as k grows,

the sum-rate capacity grows, albeit slowly, while the per-user
log k
k

rate vanishes as O . The dispersion V} also grows,
and the speed of approach to the sum-rate capacity is slower.
Interestingly, the dispersion behavior is different for the pure
adder RAC (§ = 0), in which case V}, = # +0(3) is
almost constant as a function of k. The derivation of (44)
and (45) relies on an approximation for the probability mass
function of the (k,1/2) Binomial distribution using a higher
order Stirling’s approximation (Appendix C).

Fig. 2 shows the approximate rate per transmitter, R, =
% (neglecting the O(1) term in (27)), achieved by the
proposed scheme as a function of the number of active
transmitters, k, and the choice of blocklength n; for a fixed
error probability ¢, = 107% for all k. Fixing n; and ¢ fixes
the maximum achievable message size, M, according to (27).
The remaining ny for £k > 2 are found by choosing the
smallest n, that satisfies (27) using the given M and ¢;. Each
curve illustrates how the rate per transmitter (R;) decreases
as the number of active users k increases. The curves differ
in their choice of blocklength n; and the resulting changes
in M and ng,no,...,ng. Here ny is fixed to 20,100, 500
and 2500. For a fixed k, the points on the same vertical line
demonstrate how the gap between the per-user capacity and
the finite-blocklength achievable rate decreases as blocklength
increases.

D. A Non-asymptotic Achievability Result

Theorem 1 follows from Theorem 2, stated next, which
bounds the error probability of the RAC code defined in Sec-
tion IV. When k transmitters are active, the error probability
€} captures both errors in the estimate ¢ of k and errors in
the reproduction W[t] of Wy when ¢ = k. Theorem 2 is
formulated for an arbitrary choice of a statistic h: Y™ — R
used to decide whether any transmitters are active. Possible
choices for h(-) appear in (126) and (133) in Section VI,
below.

Theorem 2: Fix constants v, A%, > 0, and ; > 0 for all
1 < s <t < k. For any RAC

K

{ (Xk’ Py x (k12 8)) yk) }

k=0

26
*  True
241 Approximation i
22
2t
1.8
=16
141
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1t
0.8
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Approximation %
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Fig. 1. (a) Sum-rate capacity I (in bits) and (b) dispersion V3 (in bits?)
for the adder-erasure RAC with § = 0.2.

\ Capacity
ny = 2500

N ny = 500

N ny; = 100

Fig. 2. Capacity and approximate achievable rates (in bits per user) for the
adder-erasure RAC with erasure probability § = 0.2 are given for the target
error probability e;, = 1076 for all k. For each curve, the message size M
is fixed so that the rates { Ry} are achievable with nq set to 20, 100, 500,
and 2500, respectively.



oo’, and any fixed input

(nk, €x) HE ) code such

satisfying (2) and (3), any K <
distribution Px, there exists an (M,

that
€0 < P[R(Y5) > 0], (46)
and for all £ > 1,
er < ]P)[’L}C(X[TL’]C Y,"") < log il (47a)
+P [h(YknO) < ] (47b)
k(k—1)
+W (470)
+Z ( ) w(X[;Y) > logyi] (47d)
k t—1
+>D) (t ) [ (X Ya™)
t=1 s=1
> B (X1 Yie)] + )‘f,t} (47¢)
kot
M —k S i
EEL) o
t=1 s=
> 108 7e — MeE o (X as1; Vi) — t}, (47f)
where for any (X (k] X (k] Y") is a random

X X Ve (T Tl Yk) =
(Hle Px (z;)Px (»@‘)) Py, x Ykl m))-

The operational regime of interest is when €g,...,€; are
constant; that is, €; does not vanish as nj grows. For k = 0,
the error term in (46) is the probability that the decoder does
not correctly determine that the number of active transmitters
is 0 at time ng. For k£ > 0, (47a) is the probability that the true
codeword set produces a low information density. This is the
dominating term in the regime of interest. All remaining terms
are negligible, as shown in the refined asymptotic analysis
of the bound in Theorem 2 (see Section IV-C, below.) The
remaining terms bound the probability that the decoder incor-
rectly estimates the number of active transmitters as 0 (47b),
the probability that two or more transmitters send the same
message (47¢),} the probability that the decoder estimates the
number of active transmitters as ¢ for some 1 < t < k and
decodes those ¢t messages correctly (47d), and the probability
that the decoder estimates the number of active transmitters
as t for some 1 < ¢t < k and decodes to s messages that
were not transmitted and ¢ — s messages that were transmitted
(47e)—(471).

For k = 1, 2, the expression in (47) particularizes to

1 < Pl (X Y{) < logn] + P[A(Y{™) < o)
+ (M — V)P (X745 Y)™) > log v — )\%71]

e < p[zz(X{éT, Y3 < logra] + P [R(Y3) < 5]

n
sequence drawn i.id. ~

(48)

+ M + 2P0 (X77:Y5") > log 1]

"Note that while Theorem 1 requires K < oo, Theorem 2 allows K = oo.
For K = oo, (47) holds for every finite k since the bound on ¢; depends
only on the RAC with at most k active transmitters.

8Given the use of identical encoders, multiple encoders sending the same
message can be beneficial or harmful, depending on the channel. To simplify
the analysis, we treat this (exponentially rare) event as an error.

+ 2P[12 (X325 Y5'2) > nola(Xa; Ya) 4 AT ]
+ (M — )Py (X7 Y5") > log v — )\%,1]
+2(M — 2)Pho (X7 Y52 X5?)

> logye — nola(Xa; Ya) — A 4]

M —2)(M -3
+ (M =2)(M = 3) )2( )]P’[ (X[ZT,Y”?) > log vz — A3 5.
(49)

For the MAC with K transmitters, i.e., the scenario where
K transmitters are always active, the only decoding time is
ng. The error terms associated with incorrect decoding times
are no longer needed in this case, and the error probability
bound in (47) becomes

K(K -1
exc < Pl (X5 V) <logae] + P (son)
K—1
K ng NnNK
' sz::l (K_s) { (XfeFrarey Yi©)
> ngBlig (Xjsp1:x0; Y] + )\fK} (50b)

K \(M-K )
s> < >P[ (XG5 YR X (1)

K
+82=:1<K— S

> log 7k — Nk Bl (Xjerrory; V)] — /\fK} . (50¢)

A description of the proposed RAC code and the proofs of
Theorems 1 and 2 appear in Section IV.

IV. THE RAC CODE AND ITS PERFORMANCE
A. Code Design

We construct the RAC code used in the proofs of Theo-
rems 1 and 2 as follows.
Encoder Design: The common randomness random variable
U= (U(1),...,U(M)) has distribution

Py £ Pyy x -+ x Py, (51)

where Py () = Py, w=1,...,M, and Px is a fixed dis-
tribution on alphabet X. Each realization of U defines a code-
book with M i.i.d. vectors U(1),...,U(M) of dimension n
(the codewords). Note that the cardinality of the alphabet U is
|X|Mnx In [15, Th. 19], Polyanskiy et al. use Carathéodory’s
Theorem to show that the common randomness U can be
replaced with common randomness U’ with cardinality at most
K +2. We reduce this alphabet size to K +1 in Appendix D. As
described in Definition 1, an (M, {(ny, €x)}E_,) RAC code
with identical encoders employs the same encoder f(-) at every
transmitter. The encoder f(U,-) depends on U as

fUw)=U(w) forw=1,...,M. (52)

For brevity, we omit U in the encoding and decoding func-
tions and write f(U,w) = f(w) for w = 1,...,M, and
gr(U,y") = gr(y™) for y™ € V¥ k € {0,..., K}. Recall
that f (w) is a nx-dimensional vector. We use f(w)™* to denote
the first ny coordinates of vector f(w). For any collection of
messages wi € [M]*, we use f (wyy) = (F(wr), ..., f(wk))
to denote the collection of encoded descriptions produced by
the encoders.



Decoder Design: Upon receiving the first ng samples of the
channel output Y, the decoder runs the following composite
hypothesis test

i) = {

to decide whether there are any active transmitters. Decoder
output 0 signifies that the decoder decides that all transmitters
are silent, sending a feedback bit ‘1’ to all transmitters to
start a new coding epoch. Decoder output e indicates that the
receiver believes that there are active transmitters; the decoder
transmits feedback bit ‘0’ to the transmitters, telling them that
it is not ready to decode, and therefore that transmissions must
continue. Statistic h: Y™ — R is used to decide whether any
transmitters are active.

For each £ > 1, decoder g; observes output y™* and
employs a single threshold rule

0 if h(y™) <7

e otherwise (53)

wiy i (F (wpg) ™ 5y™) > log

gr(y™) = and w; < w; Vi < j (54)

e otherwise

for some constant 7y, chosen before the transmission starts.
Under permutation-invariance (2) and identical encoding (4),
all permutations of the message vector wy give the same
information density. We use the ordered permutation specified
in (54) as a representative of the equivalence class with
respect to the binary relation =. The choice of a representative
is immaterial since decoding is identity-blind. When there
is more than one ordered wy that satisfies the threshold
condition, decoder gj, chooses among these options arbitrarily.
All such events are counted as errors in the analysis in
Section IV-B, below. If the decoder output is a message vector
wii], then the decoder sends feedback bit ‘1°, telling them to
stop transmission. Otherwise, the decoder sends feedback bit
‘0’, and the epoch continues. For k > 1, the decoder g (y™*)
depends on U through its dependence on the encoding function
f (wi); for k=0, go(y™) does not depend on U.

The proof of Theorem 2, below, bounds the error probability
for the proposed code.

B. Proof of Theorem 2

In the discussion that follows, we bound the error proba-
bility of the code (f, {gx}X_,) defined above. For k = 0, the
only error event is that the received vector at time ng, Y™,
fails to pass the test

co < P[go(Y) # 0|Wo = 0] (55)

given in (53). For £ > 0, the analysis relies on the inde-
pendence of codewords f(W;) and f(1V;) from distinct trans-
mitters ¢ and j. Given identical encoders and i.i.d. codeword
design, this assumption is valid provided that W; # W;; we
therefore count events of the form W; = W as errors. Let P
denote the probability of such a repetition; the union bound
gives

(56)

The discussion that follows uses wjj; = (1,2,...,k) as an
example instance of a message vector wp in Wthh w; # Ww;j
for all i # j. The set W[, describes all ordered message
vectors that do not share any messages in common with wf‘k],
ie.,

Wi & {wpy € [M)*:wy > k,w; <w; Vi<j}. (57)
Let the components of the vectors (X},%, X1,%, V") be i.id.

(k] > (k]
with joint distribution

= Px, (@m) Px ) (Zr) Py x Yk lzmy)- (58)

Recall that the information density zt(xﬁ; y;t) in (14)
is defined with respect to (X[Z]’ Y;"*), not with respect to
(XTit,Y/"). The resulting error bound proceeds as shown in
(59) (64); here X7 is the vector of transmitted codewords,
and X[, (W) is an iid. copy of Xy, which represents
the codeword for a collection of messages w; € W that
was not transmitted. Line (60) separates the case where at
least one message is repeated from the case where there are
no repetitions. Lines (61)—(62) enumerate the error events
in the no-repetition case; these include all cases where the
transmitted codeword passes the binary hypothesis test (53)
for “no active transmitters” (61), all cases where a subset
of the transmitted codewords meets the threshold for some
t < k (61), all cases where a codeword that is incorrect in s
dimensions and correct in ¢ —s dimensions meets the threshold
for t < k (62), and all cases where the transmitted codeword
fails to meet the threshold (62). We apply the union bound and
the symmetry of the code design to represent the probability
of each case by the probability of an example instance times
the number of instances. Equations (63)-(64) apply the bound
in (56) and replace decoders by the threshold rules in their
definitions.

The delay in applying the union bound to the first probabil-
ity in (64) is deliberate. It allows us to exploit the symmetry
assumptions on the channel and to use a single threshold rule
instead of 2% — 1 threshold rules as in [10]-[13]. Applying the
bound

P[ U @E&@

We) EWa)
N {Zt(X[s—',-l 3 Y5 ) > el (Xjsp1: Ya)] + /\f,t} ]

U {Zf(

Ws) GW[_

[s]>7 [s+1 t]’ ) > IOg ’715}‘| (65)

U &

B EWs)

w[s]) [g+1 t]? Yn ) > lOg’yt}

+P o (@ps1)s X3 Y1) > log i}

M {1 V) < Bl (K V)] + M } ]

<P [zt(X Y t > nt]E[Zt(X[s-H t]aYk)] + >‘ ]

[s+1: t]7



€r= ﬁ > PHeo(V°) # e} U{Ui e (V") # e} U {gr(Yi™) y Wi HWiky = wi) (59)
wi) E[M]*
< Prep + (1= Prog) Pl{go (V™) £ e} U (U1 g (V) # e} U g (V™) 7 wig Wi = wiy) (60)
k—1
< Prep + Plgo(V,) # €| Wiy = wiyy] Z < ) [g:(Y,") = wiy| Wik = wiy] 61)
k t =
2> z; (t ﬁ S)P[Uw[slew[s1{gt(ykm) = (Wis), W1 HWiwy = wiy] + Ple (V™) = el Wiy = wiy]  (62)
t=1 s=
k(k —1) . Xk L
< Wi P[A(Y,) <’Y()]-|-t71 (t)]P’ (X[t]’,Y *) > log vt (63)
K i B
DM ()Pl e 0 R0 010, X ¥2) > ol 4 Plu X1 < o] (69

+P| | (X @) Vi X ) >

log vs — niBloe (Xsy1:005 Ya)] — )\I;,t}l (66)

before applying the union bound to the first probability in (64)
yields a tighter bound. Combining (64) and (66) and applying
the union bound to the second probability in (66) completes
the proof.

C. Proof of Theorem 1
We fix Px, M, {ek}szo, and we set the blocklengths
{nkhiz, as

e —2k
ng =i (E(M - k)) ) (67)
where
log vk = nidy, — T/ i Vi (68)
B+ C
A —1 k k
= - 69
TE=Q (% N ) ; (69)
C}. is a constant to be chosen in (102),
67;
By & —7 (70)
Vi

is the Berry-Esseen constant [44, Chapter XVIL.5 Th. 2] (which
is finite by the moment assumptions (19) and (20)), and

TkéEHZk(X[k];Yk)_IkP] . (7])

The choice of the threshold v (68) follows the approach
established for the point-to-point channel in [36]. Solving (67)
for M and applying the Taylor series expansion to Q~(-),
we see that the size of the codebook admits the following
expansion

klogM—nka—\/nkaQ ~€;.C —§lognk+0( )

(72)

simultaneously for all k¥ € [K]. Note that the expansion in
(72) is the best-known performance up to the second-order

term for MACs without random access [10]-[13], and we have

chosen our parameters with the goal of matching that best prior

performance. By Lemma 1, the resulting blocklengths satisfy
ny <ng < --- < ng for M large enough.

We proceed to apply Theorem 2 to show that under the
given parameter choices, the probability of decoding error at
time ny is bounded above by €. The constants {)\’;’t} used
in the error probability bound (47e)—(47f) are set as

Xy = 5 (B Vil Xgy) = 21) (3)
to ensure that )‘(I‘it > 0 when s < t (see Lemma 2) and that

A’;t = 0 when s = t. Next, we sequentially bound the terms

in Theorem 2 using the parameters chosen in (67), (68), and

(73).

e (47a): As noted previously, this is the dominant term. Since
1 (X {;f’]“ ;Y,'*) is a sum of ny, independent random variables,
by the Berry-Esseen theorem [44, Chapter XVI.5 Th. 2] and
(68)—(70),

Ck

P {0 (X% Y, <ep— —2
e ( =

oE (74)

) < log s

e (47b): The test statistic h(-) and the threshold o given in
(53) are chosen in Section VI to satisfy

E
<7
\/7

P[R(Y5™) > 0] < €0

P[A(Y,") < 7] (75)

(76)

for some constant F; > 0. Lemma 5, below, bounds the
type-1I error in (75) in terms of ng when the type-I error in
(76) is bounded by e.

Lemma 5: Fix ¢y € (0,1). Assume that (18) holds. Then
there exists a test function h(-) such that (76) is satisfied
and

P [R(Y) < o] < exp{—noC’ + o(ng)} 77

for some C’ > 0 depending on the output distributions Py
fori=0,..., K.

Proof: See Section VI. |



From (72), ny, = O (ny) for k > 1. To make (77) behave as

0} ( \/é in Lemma 5, we pick ng as in (28) with ¢ = 55
E k 1
(47¢c): According to (67), the upper bound ( ) on Prep
in (56) decays exponentially with ny.
(47d): Define p as
P = Plu(Xpy; Vi) > —o0). (78)

We next analyze (47d) for the cases p =1 and p < 1.
Case 1: p=1. By Lemma 3 and moment assumption (21),

Vi
I = E [1(X(g: Yi)] = 7q [ £ > 0 (79)
t

for sufficiently large n;. Chebyshev’s inequality gives

Pl (X5 Yy'") > log i
Var[zt(X[t] s Yk)]

< 5 (80)
ny (It —E [1(Xp; Ya)| — 7 7‘1/2)
The right side of (80) behaves as O (n%)
Case 2: p < 1. Here
Plon (X5 Yi™) > log ]
< Plu(X[: Yy) > —oc] (81)
=p", (82)

where (82) holds because 2;(X &‘;Yk."*) is the sum of ny
ii.d. random variables, and that sum is greater than —oo if

and only if all the summands satisfy the same inequality.

From (80) and (82), (47d) contributes O ( to our error
bound.
(47e): As in the analysis of (47d), we define

q £ ]P)[Zt(X[erl:t]; Yk) > —OO], (83)

and treat the cases ¢ = 1 and ¢ < 1 separately. Observe that
for ¢ = 1, Chebyshev’s inequality implies

P [lt(X[5+1 t]7yn ) > niBloy (Xpsq1:; Yi)] + A?,s:|
Var [lt(X[s+1:t]§Yk)]

nt (%(It(X[s];Y;f|X[s+1:t]) - fIt))

7 (34)
which is of order O ( ) by the moment assumption (21)

and Lemma 2.
Forq <1,

P [Zt(X[e+1 ) Y1) > B (Xpsq1ap; Ya)] + )‘f,s:| <qm™.
(85)

Therefore (47¢) contributes O

(471): First, consider the case where s < ¢ < k. By Lemma 3
and Chernoff’s bound,

Pl (X[ Y X[ )
> log v — neElue(X(s 1.3 Yi)] — A% ] (86)
< ]P[Zt(Xnt Ym|X[s+1 t])

> log v — nudy (X515 Ye) — AF ] )

Sy

nik) to our error bound.

<E [exp {u (X570 1X 0 1) ]
-exp {—(logv; — nelt(Xs41:45 Y2)
= exp {—(logve — Ly (X[sq1:45 Ye) —

— A5 88)
AS)Y (89)

Using Stirling’s bound

n en\*
< (=
PR
we find that for all s <t <k
M — M —
log( k)gslog(e( - k)) 1)

(e(M—t
< slog T

)) + slog (z) (92)
S 1 t
=—|logy— =logn; | +slog | — |,
t 2 ]

(93)

where (93) follows from (67). From (68), (73), (89), and
(93), we have

M —
( k)IP[ (X[ v | X
s
> logve — nedy (Xsq1:45 Ye) — )\];,t} %4)

1 s
< exp{ g (It(X[s];Yt|X[s+1:t]) - ZLﬁ)

S S t
+ (1 — %) T/ Vi — 57 logne + slog (S>}.(95)

Lemma 2 ensures that the exponent in (95) is negative for
n; large enough.
For s =t < k, from (89) and (93) with s = ¢, we get

[s+1: t])

M—k B M—k
( >P[zt(Xﬁ]t;Yk"‘) > logvy] < ( L )
t Vi

ﬂH

(96)

For s =t = k, following the change of measure technique
(e.g., [45, Prop. 17.1]), one can rewrite an expectation with
respect to measure () as an expectation with respect to

measure P, giving
P[Z] ) -
(Q[Z] 1{Z € .A}] . 97)

Switching to the measure PX[k] Py, | X in this way, by (90)
and the parameter choice (67), we write

Q[ZEA]:EP

M —k v n
< k )P[Zk(X[kTQYkk)>log7k]

< (01— 1) E [espln(Xp ) 09

(X 0) > log i}

<Dx 99)
ng
where
log 2
D, & +2B 100
k ( o k) (100)



and Bj is defined in (70). To justify (99), notice that
zk(X[’}e’]“;Yk"’“) is a sum of i.i.d. random variables; in [36,
Lemma 47], Polyanskiy et al. derive a sharp bound on the
expectation

o) )

when the Z;’s are independent. Applying that bound with
Zi = w(Xx),i5 Ye,s) yields (99). Note that Dy is finite
by the moment assumptions (19) and (20). Combining the
bounds for the three cases in (95), (96), and (99), we
conclude that (47f) contributes O \/153

Finally, we set the constant C, in (69)k to ensure

E 101

to the total error.

C
(47b) + (47c) + (47d) + (47e) + (47f) < —k (102)
N
The existence of such a constant is guaranteed by our
analysis above demonstrating that the terms (47b)—(47f) do

L) to the total.”
Due to (74) and (102), the total probability of making an

Vg
error at time ny is bounded by ¢, and the proof of Theorem 1
is complete.

not contribute more than O

V. DISCUSSION OF THE MAIN RESULT

A. Refining the Third-Order Term Using a Maximum Likeli-
hood Decoder

For a RAC that satisfies the conditions in Theorem 1 and
the conditional variance condition

E [Var [1e(X; Ya)|Ye]] >0 Vs € [K], (103)

we can improve the achievable third-order performance in
(27) from —3logny to +3 logny. Prior work showing the
achievability of the +% logn third-order term includes [46,
Th. 53] for point-to-point channels satisfying (103) with
k =1, [47, Th. 1] for the Gaussian point-to-point channel, [48,
Th. 7], [49, Th. 14] for discrete memoryless MACs satisfying
(103), and [43, Th. 2 and 4], [50, Th. 2 and 4] for the Gaussian
MAC and RAC. We can achieve the result here by replacing
the threshold rule in (54) with a combination of a hypothesis
test and a maximum likelihood decoder, giving

arg max 1 (Flwiry)™ 5 y™) if he(y"™) < e

(k]

ge(U,y™) = .
e otherwise,

(104)

where the maximum is over the ordered message vectors Wk]»
and hy(+) is a suitable test function that allows us to distinguish
Py, from any Py, with ¢t # k. As in prior work, the analysis
applies the random coding union bound from [36, Th. 16]. As
discussed in Section VI, suitable test functions hy(-) can be
found provided that Py, # Py, for all ¢ # k. For instance,

in [43], we use hi(y™*) = rle ly™||* — (1 4 kP)| for the

90ur bounds on (47b)—(47f) technically depend on -4, and therefore on CY.
However, it is easy to see that their dependence on CY, is weak, and for large
enough ny, it can be eliminated entirely. Thus the choice of C}, satisfying
(102) is possible.

Gaussian RAC, where P is the maximal power constraint. The
result does not apply to channels such as the adder-erasure
RAC (23), which does not satisfy the condition in (103).

B. Choosing the Input Distribution Px

Although there are RACs for which a single input distri-
bution Px achieves the capacity for all k--MACs, k € [K],
(e.g., the adder-erasure channel), the permutation-invariance
(2) and reducibility (3) assumptions do not imply that such a
distribution exists for all RACs. In the following, we discuss
how to choose the input distribution when the optimal input
distribution varies with k.

Given a permutation-invariant (2) and reducible (3) RAC,
M, € = (eg,...,€x), and any Px such that (16)—(21) are
satisfied for the given RAC under input distribution Py, let

R(M, €, Px) = {(Rq, ..., Ri):(27) and (28) hold} (105)

denote the achievable rate region under input distribution Px.
Here

_log M
=

Ry, for all k € {0,...,K}. (106)

Let
R(M,e) = U

Px: (16)~(21) hold

R(M,e,Px) (107)

denote the achievable rate region over all i.i.d. input distri-
butions. A point in this set is called dominant if no other
points in the set are element-wise greater than or equal to that
point. To optimize the achievable rate vector over the allowed
input distributions, we must choose a distribution Px~ that
achieves a dominant point for the set R(M, €). Note that for
the dominant points of R(M,€) corresponding to different
values of Px-, there is an O(1) difference between the left
and right sides of the inequalities in (27). If the achievable
rate region R (M, €) is not convex, it can be improved to its
convex hull using time sharing. For the modifications to the
coding strategy that enable us to incorporate time sharing, see
[10], [12], [13].

To illustrate what happens when different Px-« values
achieve different dominant points of R(M,€), we consider
the following example.

Example 2: Consider a RAC with K = 2, X = ), = {0, 1},
and transition probability matrix Py, x, x,

Yo \ X1 Xo 00 01 10 11
0 1-5 b b 1—a
1 b 1-b|1-0 a

(108)

where a,b € [0,1]. This RAC is permutation-invariant since
the “01” and the “10” columns are identical. When k£ = 1,
the channel reduces to the binary symmetric channel with
crossover probability b. Fig. 3 illustrates the set of achievable
rate vectors R(M, €) (neglecting the O(1) term in (27)) with
log M = 1000 and € = 10731 for two choices of parameters
in the channel in (108). In Fig. 3a, a = 0.7,0 = 0.11, and
in Fig. 3b, a = b = 0.11; for each, the finite blocklength
and capacity boundaries are demonstrated. In Fig. 3a, the
dominant points are highlighted. The input distribution Px~» =



(0.65,0.35) (i.e., the Bernoulli(0.35) distribution) achieves the
dominant point (Ry, Re) = (0.400,0.204); the correspond-
ing region R(M,e, Px+) is shown as the region bounded
by the dashed lines. In Fig. 3b, the only dominant point
(0.437,0.227) is achieved by the input distribution Px« =
(0.5,0.5) (i.e., the Bernoulli(0.5) distribution.) Therefore, for
the channel in Fig. 3b, the achievable rate region R(M,€)
coincides with R(M, €, Px+), and we must choose Px- as
our input distribution. For this channel, Px- = (0.5,0.5)
simultaneously maximizes the mutual informations I; and I,
and the maxima are [; = I, = 0.5.

0.3

025 Finite blocklength boundary

Dominant points

R(M, €, (0.65,0.35))

0.1 0.2 0.3

Capacity boundary Finite blocklength boundary

(0.437,0.227)

o
[N

The only dominant point

= log M/ny
°
&

Ry

o

R(M, €) = R(M, e, (0.5,0.5))

o
o
&

Q- __ o __"__

o

0.1 0.2 0.3 0.4 0.5 0.6

Fig. 3. The achievable rate region from Theorem 1 (excluding the O(1)
term) applied to the channel in (108) with log M = 1000 and €, = 10~3
for k& € [2]. The results are shown for (a) @ = 0.7 and b = 0.11 and
blocklengths (n1,n2) = (2501,4904), and (b) for a = b = 0.11 and
blocklengths (n1,n2) = (2290, 4399).

C. Discussion of the Converse

Even for MACs with only 2 transmitters, the capacity
region for the MAC remains incompletely understood. A brief
summary of related results follows. For any blocklength n and
average error probability € € (0, 1), let

log My log M-
R(n,e) = {(Ogl, 0g2> :3 an (n, My, My, €) code
n n
(109)

denote the set of achievable rate pairs, where M, is the
message size for transmitter ¢ € {1,2}. The capacity region
of the MAC [51], [52] is

C = U {(Rl,RQ):

PoPx,1qPx;51q
Ry < Ir(X1;Y2]|X2,Q)

Ry < Ir(X2;Y2|X1,Q)

Ri+ Ry < (X1, X2;Y2(Q)}, (110)

where () is the time sharing random variable. In [53], Dueck
uses the blowing-up lemma to derive the first strong converse
for discrete memoryless MACs. In [54], for discrete memory-
less MACs, Ahlswede uses a wringing technique to show

R(n,e)gc+0<1°g"> 1, (111)

vn

which improves Dueck’s result. The coefficients of the term

0 (hi%") 1 in (111) are bounded by a multiple of the prod-

uct of input and output alphabet sizes |X}||X2]|V2|. In [55,
Th. 1], Fong and Tan improve Ahlswede’s second-order term

0 (hi%’) 1to O 1 for the Gaussian MAC. They

derive this result by applying Ahlswede’s wringing technique
[54] to quantized channel inputs. In [56], Kosut further im-
proves the second-order term to O (%) 1. The second-order
term in [56, Th. 7] has the same order and, for some channels,
the same sign as the best-known second-order achievable term
in [13]. Kosut’s result applies to all discrete memoryless MACs
and to the Gaussian MAC. To prove this converse, Kosut
introduces a new measure of dependence between two random
variables called “wringing dependence.” A key aspect of the
approach is to restrict the channel inputs so that the wringing
dependence between them is small.

In [57], Moulin proposes a new converse technique for
maximum-error capacity. His approach relies on strong large
deviations for binary hypothesis tests and leads to a second-
order term as in (27) when no time sharing is needed. Since
the capacity regions for the maximum and average error prob-
ability can differ [58], Moulin’s result does not give a converse
for the average-error capacity. Whether it is possible to derive
a converse for the average-error capacity with a second-order
term matching the ones in [10]-[13], [25] remains an open
problem.

In the sparse recovery literature, where achievability proofs
typically consider the expected error probability evaluated
under i.i.d. codebook design (see, e.g., [30]-[34]), converses
derive lower bounds on the expected error probability assum-
ing i.i.d. code design. Although a lower bound on the expected
error probability for our problem could be derived using tools
from [33], such a bound would yield a bound for the best i.i.d.
random code rather than a bound for all possible codes.

logn
n

D. A RAC Code That Decodes Transmitter Identity

While the use of identical encoding at all transmitters has
a number of practical advantages, the techniques employed in
this work are not limited to that case.

We next briefly explore the use of distinct encoders at
each transmitter of a RAC. Under permutation-invariance (2)
and identical encoding, the decoder cannot distinguish which
transmitter sent each of the decoded messages. Maintaining
permutation-invariance but replacing identical encoders with
a different instance of the same random codebook for each
encoder, we get a code that achieves the same first- and



second-order terms as in Theorem 1, with a decoder that
can also associate the corresponding transmitter identity to
each decoded message. The following definition formalizes
the resulting RAC codes.

Definition 2: An (M, {(ny,€;)}< ) identity-preserving
code comprises a collection of encoding functions

fro U x [M] = X", k=1,... K, (112)

and a collection of decoding functions

— {[M]k X C?)}u{e}, k=0,1,...,K,
(113)

where erasure symbol e is the decoder’s output when the
decoder is not ready to decode. At the start of each epoch,
a random variable U € U, with U ~ Py, is generated
independently of the transmitter activity, and revealed to the
transmitters and the receiver for use in initializing the encoders
and the decoder. If the set of active transmitters A C [K]
satisfies |A|= k > 0, i.e., k transmitters are active, then the
messages of 4 and their corresponding transmitter identities
are decoded correctly at time nj, with probability at least
1-— €k i.e.,

1
w2

g U x Yp*

]P {gk(Ua Yk;nk w.A7 }U
wa E[M]*
k—1
{U {&(U.Y") #e}} WA:wA] e, (114)
t=0

where W 4 are the independent and equiprobable messages of
the transmitters in .4, and the given probability is calculated
using the conditional distribution Py x| xni = Pyt |x, Where
X" =fR(U W)™, i e A If A=10, then the probablhty
that at time ng the receiver decodes to the unique message in
set [M]° = {0} is no smaller than 1 — €. That is,

P [go(U,Yy™) # 0[Wjg = 0] < €. (115)

If we continue to assume permutation-invariance (2) and
to employ the same input distribution Px at all encoders,
then the channel output statistics again depend on the di-
mension of the channel input but not on the identity of the
active transmitters. In this case, we can apply the proof from
the identical-encoding single-threshold-decoding argument in
Section IV-A to derive an achievability result for the general
case.'? In particular, consider a code with K M (rather than M)
messages. Replacing M by KM in Theorem 1 implies that our
RAC code with identical encoders gives a penalty of —k log K
on the right-hand side of the rate bound (27). Suppose that
we use this identical-encoding code to design a general code
in which codewords indexed from (¢t — 1)M + 1 to tM are
used exclusively by transmitter ¢ for t = 1,..., K. Since each
message belongs to a single transmitter, the list of decoded
messages reveals the identities of the active transmitters. Under
this allocation of codewords, the repetition error P, in (56)
disappears since transmitters send messages from distinct sets.
The error probability from decoding the wrong codeword

10This simple argument was suggested by Dr. Jonathan Scarlett.

values decreases since there are fewer legitimate codeword
combinations to consider. Therefore, in the case where K is
a finite constant and the receiver decodes both messages and
transmitter identities, the first three terms in (27) are preserved,
and the penalty —k log K only affects the constant term O(1)
in (27).

When applied to a scenario with M = 1 and identity de-
coding, the bound in Theorem 2, modified as described in the
preceding paragraph, extends the non-asymptotic achievability
bound in the group testing problem [33, Th. 4] to the scenario
where an unknown number k out of a total of K items are
defective. In the scenario considered in [33], the number of
defective items k is known, and our MAC bound (50) with
K replaced by k, M replaced by KM = K, and the term
KE-D removed applies. The resulting bound is similar to
[33, Th. 4]. The difference is that the bound in (50) uses a
single information density threshold rule, while [33, Th. 4]
uses 2¥ — 1 simultaneous information density threshold rules.

E. Per-user Probability of Error

We extend the definition of the PUPE from [6, Def. 1] to
the RAC with k € [K ] active transmitters as

1
ekﬁm Z Z [wi & gr(U,Y,'") Wiy = wi] ,
wi E[M]F =1
(116)
where Y,'” is the received output at time n, and
T £ min{t € {0} U [K]: g:(U, Y,"") # e} (117)

is the random variable describing the decoder’s estimate of
the number of active transmitters.!! We set T = K if
g(U,Y,") = e for all t € {0} U[K]. For k = 0, we define

=P [go(U, Yono) 7é O|W[0] = 0] as in (7)

For a RAC with a total of K transmitters and a MAC with
K transmitters, the following corollary to Theorem 2 gives
non-asymptotic achievability bounds under the PUPE criterion
(116).

Corollary 1: Fix constants 7, )\9 + >0, and 'yt > 0 for all
1 <s <t <k For any k and n, let(X[”] (k) ,Y)") be a
random sequence drawn iid. ~ Px, v, (T}, Ty k) =

(T, P () P (3)) Priy, ()

K

A) For any RAC {(Xk Py, |x,. (yk|x[k]) yk)} B
fying (2) and (3), any K < oo, and any ﬁxed input
distribution Py, there exists an (M, {(ny, ex)}H< ) RAC
code under the PUPE criterion (116) such that

satis-
=0

eo < P[A(Y5™) > 0], (118)
and for all k > 1,
er < P[zk(Xﬁq’]“;Y,:”“) < log ] (119a)

TNote that the joint error probability in (6) can likewise be written as

1 T
T Z,PFNUW”¢WM

M
Wik c[M]k

Mmzwﬁ-



k(k—1)

+P[B(Y") < 0] + =5 (119b)
+Z<k ) w(X[Y) > logy] - (119¢)
k t—1
+Z ( ) [ (X Y
t=1 s=1
> nyB[1 (X (o103 Yo )] + )\f,t} (119d)
t

(7))

P [Zt(Xnt v |X[s+1 t])

> log 71— neEli (X105 Yi)] = AL, (119)

B) For a MAC with K transmitters satisfying (2), there exists
a MAC code for M messages and decoding blocklength
ny such that

K(K-1)

exc < Pluc (X[ Vi) < log ] + =5

K]’
K—-1 ni
+ Z (K—s) [ (X[s+1 K]?
s=1
> ng Bk (Xs41:x) Y| + )\EK}

(M9

s=1

Y

P{ZK(X[’;]K;YI?K X5 ) > log i

kBl (X157 Yio)] — AﬁfK] (120)

Proof: Notice that in (119), the only modification from
Theorem 2 is the replacement of the coefficients (’t‘) in
(47d) and (,*) in (47¢)~(47f) by the coefficients (*,') and
(’z_i), respectively. To see how Corollary 1 is derived from
Theorem 2, observe that the PUPE (116) measures the fraction
of transmitted messages missing from the list of decoded
messages. Therefore, to bound the PUPE for the RAC, we can
multiply the error probability bounds in (47) that correspond
to the case where ¢ out of k£ messages are decoded by #,
where s is the number of messages decoded incorrectly.

Similarly, under the PUPE, the coefficient ( K S) in the K-
transmitter MAC bound (50) is replaced by (X!} in (120)
since we can multiply the error probability bounds in (50b)—
(50c), corresponding to the case where s out of K messages
are decoded incorrectly, by . [ |

From the proof of Theorem 1, the error probability bounds
in (119¢)—(119¢) behave as O ( W() This implies that under
the PUPE criterion (116), our encoding and decoding scheme
described in Section IV-A achieves the same first three order
terms as Theorem 1. Only the constant O(1) term in (27) is
affected by the change from the joint error probability to the
PUPE.

The PUPE criterion becomes critical in applications of the
Gaussian RAC with K — oo, where the energy per bit
) and the number of bits sent by each transmitter

(210g M

(log, M) are fixed as the blocklength n grows, and all K
transmitters are active. In [6], Polyanskiy shows that in this
regime, the joint error probability goes to 1 as K — co. As we
saw in (120), the PUPE introduces scaling factors + in front of
the error terms corresponding to s out of K messages decoded
incorrectly, for s = 1,..., K. In the regime K — oo, the
number of these terms is infinite, and the PUPE can be strictly
less than 1 even as the joint error probability approaches 1. In
[6], Polyanskiy shows that the PUPE behaves nontrivially in
this regime.

VI. TESTS FOR NO ACTIVE TRANSMITTERS

In this section, we give an analysis of the error probabilities
of the composite binary hypothesis test that we use to decide
between Hy: “no active transmitters,” and Hy: “k € [K] active
transmitters;” that is

Hy:Y"™ ~ PP

Hy:Y™ NP;}]f for some 1 < k < K. (121)

In the context of Theorem 2, the maximal number of transmit-
ters, K, can be infinite. In that case, enumerating all alternative
possibilities as in (121) becomes infeasible, and a universal
(goodness-of-fit) test

Hy:Y" ~ P}

Hy:Y™ o PR (122)

is appropriate.

Following [59], a test statistic h,:Y"™ — R is a function
that maps the observed sequence y™ to a real number used
to measure the correspondence between that sequence and the
null hypothesis. A (randomized) test corresponding to the test
statistic h,, is a binary random variable that depends only on
h,(Y™). The test is deterministic if it outputs Hy if h, (y™) <
~o for some constant 7, and H; otherwise.

Type-I and type-II errors corresponding to a deterministic
test with the statistic h,, are defined as

O‘(hn) £ Py, [hn(Yn) > 'YO}
B(hn) £ Q[hn(Y”) < '70]7

where () is the unknown alternative distribution of Y, and
Yo is a constant determined by the desired error criterion.
Throughout the following discussion and in our application
of these results in Lemma 5, we employ deterministic tests.
For these deterministic tests, we choose 7y to ensure that we
meet the zero-transmitter error bound «(h,) < €, and then
we show that B(h,,) decays exponentially with n for each @
in {Py,,..., Py, } to ensure (28) in Theorem 1.

In Sections A and B, below, we consider Hoeffding’s test
and the Kolmogorov-Smirnov test as possible hypothesis tests
for recognizing the zero-transmitter scenario. Both tests are
universal in the sense that the test statistic does not vary with
the alternative output distributions Py, ..., Py, . They both
give an exponentially decaying type-II error for a fixed type-
I error €9 € (0,1). The disadvantage of Hoeffding’s test is
that its traditional form requires the channel output alphabet
to be finite for every k (as in the adder-erasure RAC in (23));

(123)
(124)



the advantage of Hoeffding’s test is that it achieves the same
exponent as the Neyman-Pearson Lemma, which is optimal
for a given collection of output distributions Py,,..., Py,
but is not universal, meaning that a different test statistic
is necessary for each collection {Py,:k € [K]}. In contrast
to Hoeffding’s test, the Kolmogorov-Smirnov test does not
require ) to be finite; however, when applied to a setting with
finite ), it achieves a type-II error exponent that is inferior
to that achieved by Hoeffding’s test. In Section VI-C, we
compare the performances of these universal test statistics to
that of the log-likelihood ratio (LLR) threshold test, which
is third-order optimal in terms of the type-II error exponent
for composite hypothesis testing [60] and relies explicitly on

alternative output distributions Py, , ..., Py,.

A. Hoeffding’s Test

Denote the empirical distribution of an observed sequence
Yis-- - Yn by

n

Al
Pyn(a):EZHyi:a} Yac.
i=1

(125)

Hoeffding’s test is based on the relative entropy, denoted by
D(-||-), between P,» and Py,, giving the test statistic

Py,).

Note that if Py, is a continuous distribution, h (y") = +o0.

Theorem 3 (Hoeffding’s test [61]): Let ) be a finite set, and
let (2 be an unknown alternative distribution for Yy. If Py, is
absolutely continuous with respect to (), and Py, # @, then
the type-I and type-II errors of Hoeffding’s test satisfy

B (y") = D(P,

yn

(126)

a(hf) < exp{—nyo + O(logn)} (127)
H .
sy <esp{-n f  DPIQ)+ Oogn)}.
(128)

In [61], a more restrictive assumption (Py,(y) > 0 and
Q(y) > 0 for all y € ) is used. Absolute continuity
is sufficient according to the proofs given in [59] and [62,
Th. 2.3], which both rely on Sanov’s theorem. The error
exponents of Hoeffding’s test coincide with the exponents of
the optimal (Neyman-Pearson Lemma) binary hypothesis test.
Therefore, Hoeffding’s test is asymptotically universally most
powerful.

Setting vg = achieves type-I error ¢g — 0 as n —
oo; therefore, the type-I error condition is satisfied for any
€o > 0 and sufficiently large n. Under this choice, type-II error
exp{—nD(Py,||Q) + o(n)} is achieved (see [62, Th. 2.3]).
Therefore, in (77), the maximum type-II error decays with
exponent

| Y|log n
n

Cl: inf D(PY0||PYk) (129)
ke[K]
2
> 92 inf Fi.(z) — F
> kg[lx]{(ig% k() o(fﬂ)l)
4 4
+ 5 (swlFi) - R } (130)
z€R

> 202 + 353. (131)
The inequality in (130) is due to [63, eq. (5)-(6)] and Pinsker’s
inequality [64]. The inequality in (131) follows from (18).

In [59], Zeitouni and Gutman extend Hoeffding’s test to
continuous distributions. Their test, which also uses the em-
pirical distribution, employs “d-smoothing” of the decision re-
gions obtained by a relative entropy comparison. The Zeitouni-
Gutman test is optimal under a slightly weaker optimality
criterion than the standard first-order type-II error exponent
criterion. Using [59, Th. 2], it can be shown that the Zeitouni-
Gutman test also yields the desired exponentially decaying
maximum type-II error.

B. Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test [65], [66] relies on the
empirical CDF

Zl{yigw} VzelR

i=1

Lk (z|ly™) £ (132)

S|

of the observed sequence y1,...,y, € R. The Kolmogorov-
Smirnov test uses a deterministic test

hES(ym) = Stelglﬁ(") (z[y™) — Fo(z)|

(133)

to test whether the observed sequence y" is well-explained by
Py, with the CDF Fy.

The following theorem bounds the probability that the
Kolmogorov-Smirnov statistic exceeds a threshold .

Theorem 4 (Dvoretzky-Kiefer-Wolfowitz [67], [68]): Let
Y1,...,Y, bedrawn i.i.d. according to an arbitrary distribution
Py, with the CDF Fj on R. For any n € N and 79 > 0, it
holds that

a(hE9) < 2exp{—2n72}. (134)

In [67], Dvoretzky et al. prove Theorem 4 with an unspecified
multiplicative constant C' in front of the exponential on the
right side of (134). In [68], Massart establishes that C' = 2.

In our operational regime of interest, we set the type-I error
to a given constant €g, which by Theorem 4 corresponds to
setting the threshold v, to

log 2 1
= =0 ()

We next bound the type-II errors for every k € [K]. For each
k €0,...,K}, let Fj, denote the CDF of Py,. The type-1I
error when k£ > 1 transmitters are active is bounded as

(135)

Be(hES) =P [suglﬂ") (z[V") — Fo(x)|< 70} (136)
xe

< P|sup (|Fk(93) — Fo(z)|

L z€R

~IFOGEE) - R@) <] a3

<P sup| F™) (V") — Fi(x)|
L z€R




> sup| Fe(z) - Fo<x>|w} (138)
z€eR
2
< 2exp { —-2n (Suple(JC) - Fo(ﬂﬂ))
xzeR
" o<¢ﬁ>}, (139)

where (137) follows from triangle inequality |x+y|> |z|—|y|,
and (139) follows from Theorem 4 and (135). Applying (18)
to (139), we conclude that the maximum type-II error in (77)
decays exponentially with n, with exponent

2
C'=2 inf (suka.(a:) - Fo(a:)|> (140)
ke[K] \zeR
> 207, (141)

Comparing (140) and (130), from (18), we see that the type-II
error exponent achieved by the Kolmogorov-Smirnov test is
always inferior to that achieved by Hoeffding’s test.

C. The Optimal Composite Hypothesis Test

From (131) and (141), we know that there exists a positive
constant ¢g such that

ng > cologny + o(logny) (142)

suffices to meet the error requirements of the composite
hypothesis test given in (75) and (76). Since the proposed tests
are universal, Theorem 2 allows us to decode any message set
of k < K active transmitters without knowing the total number
of transmitters, K. In this section, we find the smallest first
three terms on the right side of (142) that we can achieve
when K is finite and we allow the composite hypothesis test
to depend on the distributions Py, ..., Py,.

Let B¢, (Py,,{Py, }< |) denote the minimax type-II error
among the alternative distributions Py,,..., Py, such that
type-I error (under Py,) does not exceed €p; that is,

/860 (PY(J’ {PYk }5:1) £ min max ﬁk(h’n)v

143
hya(hy)<ep kE[K] ( )

where the minimum is over all tests including deterministic

and randomized tests.
The LLR test statistic hZER: Y s RE is given by

he R ™) = e (), (144)
i=1

where

1 Py, (y)
A

vo (Y

0g PY;(Z/)

R R (y) 2 (145)

P.'Y (y)
08 PYIO( (v)

Given a threshold vector 7 € R, the corresponding LLR test
outputs Hy if hEXR(y™) > 7, and H; otherwise.

The gap in the type-II error exponent (C” in (77)) between
the general optimal tests and the LLR tests with the optimal
threshold vector 7 is O (%) [60]; therefore, we only consider

minimizing over the LLR tests in (143) for asymptotic opti-
mality.

Denote by D and V the mean and covariance matrix of the
random vector hYR(Y}), respectively. Define

Dyin £ min D(Py. || P 146

Jnin (Py, || Py;,) (146)
Imin £ {k S [K] D(PYOHPYk) = Dmin} (147)
Vinin 2 Cov | (BER(p)) | € RIFwelXITuel - (148)

The following theorem gives the asymptotics of the minimax
type-II error defined in (143).

Theorem 5: Assume that Py, is absolutely continuous with
respect to Py,, 0 < D(Py,||Py,) < oo for k = 1,..., K,
V is positive definite, and 7' = E[||h}R(Yy) — D||3] < oo.
Then for any ¢q € (0, 1), the asymptotic minimax type-II error
satisfies

Beo(Pros (P ) = exp { = nDuwin + v/

- %logn—FO(l)}, (149)

where b is the solution to
P[Z <b1l]=1— ¢, (150)
for Z ~ N(0,Vpin) € RIZminl | Moreover, the minimax error

in (149) is achieved by a LLR test with some threshold vector
T.
Proof: See Appendix E. [ ]
Rewriting (149), defining b as given in (150), and using the
condition in (75) with any fixed Ej, we see that a decision
about whether any of the transmitters are active can be made
at time

nyg = logny +

b f——
W lOg nq

loglogny + O(1)

2Dmin

— 151
2Drnin ( )

while guaranteeing both that the probability that we do not
decode at time ng when no transmitters are active does not
exceed €y and that the probability that we decode at time ng
when k£ > 0 transmitters are active does not exceed Erfk . Note
that Ej, only affects the constant term O(1) in (151). Theo-
rem 5 implies that the coefficients in front of logn;, v/logn,
and loglogmn, in (151) are optimal. Juxtaposing (129) and
(151), we see that Hoeffding’s test achieves the optimal first-
order error exponent (that is, the optimal coefficient in front
of logny).

VII. CONCLUSION

We study the agnostic random access model, in which each
transmitter knows nothing about the set of active transmitters
beyond what it learns from limited scheduled feedback from
the receiver, and the receiver knows nothing about the set
of active transmitters beyond what it learns from the channel
output. In our proposed rateless coding strategy, the decoder
attempts to decode only at a fixed, finite collection of decoding
times. At each decoding time n,, it sends a single bit of
feedback to all transmitters indicating whether or not its



estimate for the number of active transmitters is ¢. We prove
non-asymptotic and second-order achievability results for the
equal rate point (R,...,R) under our assumptions on the
channel (permutation-invariance (2), reducibility (3), friend-
liness (16), and interference (17)). For a nontrivial class of
discrete, memoryless RACs, our proposed RAC code performs
as well in its capacity and dispersion terms as the best-known
code for the discrete memoryless MAC in operation; that is, it
performs as well as if the transmitter set were known a priori.
The assumptions of permutation-invariance (2), reducibility
(3), and interference (17) together with our use of identical
encoding guarantee (by Lemma 2) that the equal rate point
always lies on the sum-rate boundary rather than on one of the
corner points. For example, for two users, the capacity region
is a symmetric pentagon. This ensures that our simplified,
single-threshold decoding rule results in no loss in the first-
or second-order achievable rate terms, making the codes far
more practical than prior schemes [10]-[13] in which decoders
employ 2¥ — 1 simultaneous threshold-rules. In Section V-D,
we show that as long as K < oo, there is no loss in the
first two terms even if the decoder is tasked with decoding
transmitter identity.

We also provide a tight approximation for the capacity and
dispersion of the adder-erasure RAC (23), which is an example
channel satisfying our symmetry conditions.

In order to decide whether there are any active transmitters
without enumerating all K alternative hypotheses, we analyze
universal hypothesis tests. Results are given both for the
case where the channel output alphabet is finite and the case
where the channel output alphabet is countably or uncountably
infinite. Using existing literature, it is possible in both cases
to obtain exponentially decaying maximum type-II error under
the condition that sup, e |Fx () —Fo(x)|> dp > 0 for all k €
[K]. We also derive the best third-order asymptotics of the
minimax type-II error (Theorem 5).

We conclude the paper by giving some directions for
generalizations and future work.

o Achievability of unequal rate points: While identical
encoding is appealing from a practical perspective, it is
also possible to design codes with different transmitters
operating at different rates. Such codes would employ
non-identical encoding at the transmitters, and they could
also employ a decoding rule with multiple, simultaneous
threshold rules. In [69, Section VI], Chen et al. use a
similar strategy to derive third-order achievability and
converse results for the random access source coding
problem where operation at both identical and distinct
rates is allowed.

o Unordered decoding times: Example scenarios where
unordered decoding times can arise include channels that
do not satisfy the assumptions (16) or (17), applications
characterized by small message sizes (e.g., in the internet
of things), and scenarios where the system designer
chooses unordered decoding times (e.g., when a quick
error is preferable to a long period of low individual data
rates caused by unusually high traffic in the network). It
is easy to modify our nonasymptotic bound (Theorem 2)
to capture the case where ng,...,nk are unordered.

20

o Non-i.i.d. input distributions at the random encoders: Our
random coding design generalizes to scenarios where an
arbitrary input distribution Px»x is employed instead
of Px x --- X Px. For example, in [43, Th. 4], we
improve the achievable second- and third-order term for
the Gaussian RAC by employing uniform distributions
over spheres instead of i.i.d. distributions. To prove [43,
Th. 4], random codewords are formed by concatenat-
ing K independent sub-codewords, drawn from uniform
distributions over the power spheres with dimensions
ni,Ny — Ni,...,Ng — Ni—1. This non-product input
distribution satisfies the maximal power constraints for
all decoding times ni,no,...,ng. More broadly, non-
stationary input distributions can arise in communication
over RACs where no single Px simultaneously maxi-
mizes all mutual informations ;. While we explore in
Section V-B how to choose the “best” single-letter input
distribution Px for this scenario, it is possible to employ
different input distributions for each of the sub-codewords
ni,Ne —Nni,...,Ng —Ni—1 to achieve higher rates.

o Fading channels: A rateless code design for quasi-static
fading RACs where the channel fading coefficients are
unavailable either at the transmitters or at the receiver
would constitute one of the most practically relevant
extensions of this work. In the quasi-static fading channel
model with a fixed blocklength, the achievable rate is
dictated by a quantity called the outage probability [70].
If the fading coefficient is small in a communication
epoch, then the channel is declared to be in outage and
reliable communication is not achieved. However, using
rateless codes, it is possible to maintain reliable com-
munication at the expense of reduced rates (i.e., larger
decoding times) when the fading coefficient is small while
achieving larger rates when the fading coefficient is large.
While Kowshik et al. [71] derive achievability results
for the quasi-static fading RAC in the fixed blocklength
regime under the PUPE (116) criterion, rateless coding
over fading RAC:s is yet to be fully explored.

APPENDIX A
PROOFS OF LEMMAS 1-3

We first state and prove Lemma 6, which we then use to
prove Lemmas 2, 1, and 3 (in that order).

Lemma 6: Let X1, X5,..., X be i.i.d., and let the inter-
ference (17), permutation-invariance (2), and reducibility (3)
assumptions hold. Then Iy (X;; Yi|X[;_1j) is strictly increas-
ing in ¢, i.e., for all ¢ < j <k,

T (X5 Yie | Xi—qp) < Tn( X5 Yae| X —1))- (A1)

Proof of Lemma 6: By permutation-invariance (17) and
the i.i.d. distribution of Xy, ..., X, we have

L (X5 Yie | X(i—1)) = e (XG5 Yie| Xi—1)- (A2)

Let (U,V,T) be mutually independent random variables.
Then I(U;V) = I(U;T,V) = 0. Since I(U;T,Y) <
I(U;T,V,Y), the chain rule implies that

I(U;Y|T) < I(U;Y|T,V). (A3)



Setting U to X, Y to Yy, T'to X};_q3, and V to X[;.;_q) in
(A.3) and then applying (A.2) gives (A.1) with < replaced by
<. Equality in (A.3) is attained if and only if U and V are
conditionally independent given (Y,T). As a result, equality
in our modified form of (A.1) occurs if and only if X; and
X}i:j—1) are conditionally independent given (Y3, X|;_q]). We
proceed to show that this is not possible using a proof by
contradiction.

Assume that X; and X|;;;_1) are conditionally independent
given (Y, X[;_1)), i.e

PX[i:j]lyk:X[ —1 PX[i:_;'—l]\YmX[ _1 Pleyk,X[i—l]' (A4)
Set X[;_1) = 0°"" and use Bayes’ rule to show
Pxp e Xion=0i-1 = Px;_ oy Vi (A3)
PX[i:j—l]|Yk7X[i—1]:0i71 = PX[2:_7‘—(7‘,—1)]\YA:—(7:—1) (A.6)
Pleyk,X[ifl]:oifl - PXllyk—(i—l) (A7)

due to reducibility (2), permutation-invariance (3), and the

ii.d. distribution of Xji,..., Xj. Therefore, (A.4) implies

that Xy and Xpo.;_(;—1)] are conditionally independent given

Yi—(i—1), which is not possible by interference assumption

17). [ |
Proof of Lemma 2: We wish to show that

(A.8)

1
L (X3 Yi) < gIk(X[e]QYk|X[s+1:k])'

1

k
By the chain rule for mutual information, the left-hand side
of (A.8) equals the average of k terms

Elk(X[k Yy) = (A.9)

?r\'—‘

k
Z (X5 Yie| Xpiz1))-

By permutation-invariance (2) and the chain rule, the right-
hand side of (A.8) equals the average of the last s of those &
terms

1 1
;Ik(X[s];Yk\X[sH;k]) = gfk(X[k_sH;k];Yk|X[k_s])

(A.10)
|k
S Z T (X3 Y| Xp5-1)-
Si:kferl

(A.11)

Since the terms in these averages are strictly increasing in ¢
by Lemma 6, we have the desired result. [ |

Proof of Lemma 1: We wish to show that 11, > 11.
We proceed by representing [, in terms of Ij, as
1 1 k—s
gIs = gfk(X[s];Yk\X[sH:k] =0""7) (A.12)
1
> gfk(X[s];Yk\X[sH:k]) (A.13)
1
> Elk’ (A.14)

where (A.12) follows from reducibility (3), (A.13) follows
from friendliness (16), and (A.14) follows from Lemma 2.
|

21

Proof of Lemma 3: To derive the bound E[z;(X[4; Yz)] <
Ik(X[S]; Yk) < It(X[s] ; }/t), we write

Py, x,, (Y| X(g)

El2:(Xis; Ye)] = E |lo A.15
[20(X o1 V)] R ) (A.15)
= —D(Px, Prixy 1Px, Pr.x,,)
+D(Py, || Py,)
+D(Px, Py, x| Px Pyi.) (A.16)
= D(PX[]PYk|X HPX[ PYt\X )
D( )+Ik(X[s],Yk) (A.17)
< Ik(X[s]aYk) (A.18)
= Z-[k(Xi§Yk|X[i—l]) (A.19)
=1
<D (X Vel X1y Xpsg1:15-17) (A20)
i=1
= In(X1s); Ya | Xpe41:07) (A.21)
< Te(X () Vel X1 = 0°7) (A.22)

where (A.18) follows from data processing inequality of
relative entropy (e.g., [45, Th. 2.2.5]), (A.19) follows from the
chain rule, (A.20) follows from permutation-invariance (2) and
Lemma 6, (A.21) follows from permutation-invariance (2) and
the chain rule, and (A.22) and (A.23) follow from friendliness
(16) and reducibility (3), respectively.

|

APPENDIX B
PROOF OF LEMMA 4

To prove Lemma 4, we first derive the saddle point condition
for the MAC.

Theorem 6 (Saddle point condition for the MAC): Let Py
and P, be convex set of distributions on alphabets & and X5,
respectively. Suppose that there exists a product distribution
PXT PX2* such that

sup I (X1, X0, Ys) = (X7, X5, Yy) =15,

Px, Px,
Px, €P1,Px,€P2

(B.1)
where Pyy x: xy = Py,|x, x,- Then, for all Px, € P; and
for all Qy,, it holds that

D(Px, Px; Py, x, . x, |1Px, Px; Pyy)
<
<D(Px: Px; Py, x, x,|| Px: Px; Qy,)-
Proof of Lemma 4: Lemma 4 follows by an application
of Theorem 6 to the setting where P; includes the set of all
distributions with a singleton on X} having probability 1, i.e.,

{0z,:1 € X1} C Pq, and I} < oo. Particularizing Px, in
(B.2) to any Px, = 0., with z; € A} yields

D(Px; Py, x, =2, %, || Px; Pry) < I3

(B.2)
(B.3)

(B.4)

for all x; € &;. Since the left-hand side of (B.4) is equal to
the conditional expectation of (X7, X3;YS") given X =



x1, (35) follows with less than or equal to. The equality in
(35) follows since otherwise (B.4) would give the contradiction
L(X7, X5:Y5) < I3, ]

Proof of Theorem 6: The proof of Theorem 6 is similar
to the proof of the saddle point condition for point-to-point
channels in [45, Th. 4.4] and extends [45, Th. 4.4] to the
MAC. Although the optimization in (B.1) is not convex in
general [39], the optimization

sup IQ(XlaXéka }/2)7
Px, €P1

(B.5)

where Px, X3Y, = Px, PX; Py, |x, x, is convex.
Inequality (B.3) follows from the golden formula (e.g., [45,
Th. 3.3])

I3 = D(Px: Px; Py, 1x, x| Pxs Px; Pry) (B.6)
= D(Px: Px; Py, |x, x. || Px; Px; Qv,) — D(Py; || Qy,)
(B.7)

and the nonnegativity of the relative entropy. Notice that for
I3 = o0, (B.2) is trivial. Assume that I5 < oco. Fix any Px, €

Pi. Let A € (0,1). Set
PXM = )\le + (1 — A)PXT € Py.

Let § ~ Bernoulli(\), so that Py  9—o = Px; and
Px\,j9=1 = Px,, and let

(B.8)

Px, x5vo, = Px1, Px; Py x, x,- (B.9)

Then
I3 > I (X1, X5;Y2)) (B.10)
= D(Px,, Px; Pr,|x, x| Px., Px; Py,,) (B.11)

= AD(Px, Px; Py, x,,x, | Px, Px; Pyy,)

—|—(1 — /\)D(PX{‘PXEPYﬂXl,XQ||PX{‘PX§PY2>\) (B.12)
> AD(Px, Px; Py, |x, x, | Px, Px; Py, )

+(1-MNI3, (B.13)

where (B.13) follows from (B.3). By subtracting (1 — A\)I3
from both sides of (B.13) and dividing by A, we get

I3 > D(Px, Px; Py, x, x, | Px, Px; Pr,).  (B.14)

By taking liminfy_,¢ in (B.14) and applying the lower semi-
continuity of the relative entropy (e.g., [45, Th. 3.6]), (B.2) is
proved. [ |

Note that (Px:,Px;) does not have to be unique for
Theorem 6 and Lemma 4 to hold.

APPENDIX C
ADDER-ERASURE RAC

Here, we approximate the sum-capacity and dispersion of
the adder-erasure RAC for a large number of transmitters (k).

Theorem 7: The optimal input distribution for the adder-
erasure RAC defined in (23) is the Bernoulli(1/2) distribution
at all encoders. That input distribution achieves the sum-rate
capacity, and

1 ek  loge _

(C.1)

22

log? log?
Vk:(l—(S)lélong 06 ¢ 108 ¢

4 2 2 2k
loge dlog ”Te’“ loge log k
—< 13 | TO . (C2)

i3
The calculation leading to Theorem 7 is presented in Lem-
mas 7-8, which rely on Stirling’s approximation and the Taylor
series expansion.
Consider a binomial random variable X ~ Binom(n,1/2).
Lemma 7, below, shows that the probability mass that this
Binomial distribution puts at k is well approximated by

1 G52 k k
Py (k) 2 e ¥ (1 + k) + 9(2)> ;o (C3)
V& nooon
where
A 1 (2z—n) 12z — n)2 1
= —— — - — .4
Jla) & -5 4 1 (C4)
e L@-n' 3 er-nt 19@—n
e b a e
g 288 1 40wl 48 n?
11 (22 —n)®> 1
-5 - ok (C.5)
Define the interval
Aln A n A
K2 5_5\/7@7 54—5 nlogn (C.6)

for some constant A > 0.
Lemma 7: Let X ~ Binom(n, 1/2). Then for any k € K,

Py (k) = (Z)Q" = Px(k) <1 +0 <loizn>) (eR)

Proof of Lemma 7: We apply Stirling’s approximation
[72, eq. (6.1.37)]

1 1
| — nt+i —n - -3
nl=+2mn""2e (1 + on + 2882 +O0(n )> ,

(C.8)

and a Taylor series expansion of (Z) around x = 0, where

n o x

=—4 - 1 .
k 2+2 nlogn, (C.9)
to Px (k) = (})27", to derive (C.7). [

Let V(X)
1
V(X) = Var |log ———| . C.10)
&) { ¢ PX(X)] (

denote the varentropy of X.
Lemma 8 (Entropy and varentropy of Binom (n,1/2)): For
X ~ Binom (n,1/2),

1 men  loge _3
H(X)= 510g7 192 +0(n™7) (C.11)
loge log’e log’e _
V(X) = g2 - an - QiQ +O(m™).  (C.12)

Proof of Lemma 8: Let T(k) denote the first 3 terms of
the Taylor series expansion of log 2 1( k) around 3 evaluated
X
at k, giving

(k—3)

~ 1
T(k)52log7r2n+loge( o
2



_ 2(k)
G W (O ) (C.13)

n n2

Recall the definition of interval K from (C.6). Then we can
write the entropy H(X) as

HX)=>" (2%) log (%7) (C.14)
k=0 (k)
—E [T(X)]
1 .
1 .
+E [(log P (X) — T(X)) HX ¢ IC}] . (C.15)
Using the moments of Binom(n,1/2) (e.g., [72,
eq. (26.1.20)]), the first term in (C.15) is
~ B men  loge
E [T(X)} - 71 L (C.16)
By Lemma 7, the second term in (C.15) is
1 ~ B log®n
(C.17)
By Hoeffding’s inequality,
P[X ¢ K] < 2n~ "5 (C.18)

where A is the constant in (C.6). Since the minimum of Px (k)
over k is achieved at k = n, using (C.18), we get

log6 n
n3

E [log . 1( X ¢ IC}} (C.19)

for A > \/12?. SiIPilarly, l~)y taking the derivative of T(k),
one can show that T'(k) < T'(n) < n for all k € [0, n], which
gives
~ log®n
E[T(X)1{X ¢ /C}} -0 < = ) . (C.20)
Combining (C.15)—(C.17), (C.19)—(C.20) gives
B men  loge log®n
H(X) = 71 5 g 7O ( ). can

Via an argument similar to (C.19) and (C.20), we can
4 . .

show that for A > 7\/1%?’ the contribution of k& ¢ K to

log' n

the varentropy is O ( 3 ) Therefore, using the moments

of Binom(n,1/2) and Lemma 7, we can approximate the
varentropy V(X)) as

V(X)=E [logz th X)} — (H(X))? (C.22)
_E [(T(X))Q} — (H(X))*+0 ( o8 ”) (C.23)

1 1 1 log®n
=log’e(=— — — — . (C24
0ge<2 2n 2n2>+0< n3 ) (€24)
The above analyses use the first 3 terms of the Stirling
log n

series (C.8) to obtain the remainder O ( ) Applying the

23

same analyses with 4 terms of the Stirling series improves the
remainder to O(n~3), as claimed in (C.11) and (C.12) in the
statement of Lemma 8. [ ]
We are now equipped to prove Theorem 7.

Proof of Theorem 7: Define
E21{Y =e}. (C.25)

By the chain rule for entropy, we have for the adder-erasure
RAC

I (X3 Yie) = H(Yi) — H(Yi| Xg)) (C.26)
— H(Y;,, E) — H(E) (C.27)
— H(Y:|E) (C.28)
— (1 - §)H(Y;|E = 0). (C.29)

Given the independent inputs X, ~ Bernoulli(p;) for i € [k],
H(Y|E = 0) is equal to the entropy of the sum of & indepen-
dent Bernoulli random variables with parameters (p1, ..., k),
which is maximized when p; = 1/2 for all ¢ [73]. Therefore,
for any § € [0, 1], the equiprobable input distribution at all
encoders, X ~ Bernoulli(1/2), maximizes the mutual infor-
mation I;(X(y); Yi) for all k. Let (X, Y)") ~ Px: Pyixy-
Then

Ik(kak];Yk*) =

(1-8)H(Z), (C.30)

where Z ~ Binom(k,1/2), and (C.1) follows from Lemma 8.
Furthermore,

0 w.p. 0

XE V) = k
(X ) wp. (1-6)%

0<i<k,
(C.31)

N
log (QT)

which gives

Vi = Var [zk(X[*k];Yk*)} = (1-06) [V(2) + 6(H(2))%],
(C.32)

and (C.2) follows from Lemma 8. |

APPENDIX D
BOUND ON THE CARDINALITY ||

While the analysis in Section IV-B employs common ran-
domness U with |[U|= |X|M"x, [15, Th. 19] shows that
|U|< K + 2 suffices to achieve the optimal performance.
Theorem 8, stated next, improves the cardinality bound on |/
from K + 2 [15, Th. 19] to K + 1 by using the connectedness
of the set of achievable error vectors defined in (D.1).

Theorem 8: If an (M, {(ny, e) }H_ ) RAC code exists, then
there exists an (M, {(ng, ex) }_,) RAC code with [U|< K +
1.

Proof of Theorem 8: For fixed M, ng,...,ng, let G,
denote the set of achievable error vectors compatible with
message size M, blocklengths ng,...,ng, and cardinality

[U|< u; that is,
Gu = {(eh, .-, €%) : M, {(ng, €)}r_y) code with
U< u}. (D.1)



Let G denote the set of achievable error vectors compatible
with message size M and blocklengths ng, ..., nk; that is,

G ={(e),...,éx): M, {(ng, €,),) code}.

As observed in [15, Proof of Th. 19], G = G‘X‘Aan is the
convex hull of G;. Indeed, every vector (e, ..., €%) in G is
a convex combination of vectors in G, and the coefficients
of the convex combination are determined by the distribution
of the common randomness random variable U.

Furthermore, (G; is a connected set. To see this, take any
€1,€2 € Gy. For any € > € with € € Gy, the line segments
L;={)&+(1-X)1: X €[0,1]}, i = 1,2, also belong to G,
and the path L; U Lo connects €; and €5. Therefore, G is a
connected set.

Since G = conv(Gy) C and G; is a con-
nected set, by Fenchel-Eggleston-Carathéodory’s theorem [74,
Th. 18 (ii)], G = G k41 holds. Therefore, (e, ...,ex) € G
implies that (eg, ..., €x) € Gx11. |

(D.2)

K+1
REFL

APPENDIX E
COMPOSITE HYPOTHESIS TESTING

We begin with a lemma that is used in the proof of
Theorem 5. See Fig. 4 for an illustration of Lemma 9.
Lemma 9: Let f:R? — R be a continuous function that
satisfies coordinate-wise partial ordering, i.e., f(x) < f(y)
for any x,y € R? with x < y. Then for any « in the image
of f (denoted a € Imf), it holds that
b =

min .

(E.1)
z€R: f(z1)>a

min max b; =
beR: f(b)>a 1<j<d

Proof: Since a € Imf, there exists some b € R¢ such
that f(b) = a. Denote by byin and bp.yx the minimum
and maximum components of b, respectively. Since f is
nondecreasing,

f(bmin]-) <a= f(b) < f(bmax1)~ (EZ)

Therefore, since the function mapping b to f(b1) is continuous
and nondecreasing, by the intermediate value theorem there
exists some b < by such that f(b1) = a. Equation (E.1)
follows. |
Let Z ~ N(0,V). Define the multidimensional counterpart
of the function Q~1(-) as
Om(V,e) £ {zeRF :P[Z<z]>1—¢}. (E.3)
Proof of Theorem 5: For any ¢y € (0,1), consider all

composite hypothesis tests in the form given in (121) that
achieve type-I error no greater than ¢y. Let

Eeo(Pyy, {Py 3 i) & {(61, ...,ex) : 3 a (randomized) test

such that
P [DCCidC H1|H()] < €0,

P [Decide Ho|Hi] = ex,1 < k < K} (E4)

24

351

{b: Fz(b) > a}

251

by

150 b X (1.69,1.69)

051

by

Fig. 4. An example to illustrate Lemma 9. Here f(b) = Fz(b) is the CDF
of Z ~ N(0,V), where V = [, -2]. The shaded region illustrates the set
{b €R2: f(b) > a = 0.95}. Lemma 9 shows that the minimax on this set
is achieved at a point described by a scalar multiple of 1. For this example,
the optimizer is b* = (1.69, 1.69).

denote the set of type-II errors achievable by these tests. Huang
and Moulin [60, Th. 1]'? show that the asymptotic form of the
error region defined in (E.4) is given by

gﬁo (PYov {PYk}i{:l)
1
= exp {nD +vVnQin(V, €0) — 3 lognl + 0(1)1} . (E.5)
By the definition of the minimax error (143) and the

characterization of the achievable error region asymptotics in
(E.5), we have

ﬂeo (PYm {PYk }i(zl)

= min max zg. (E.6)
z€exp{—nD+y/nQ,, (V,c0)— 3 lognl+0(1)1} 1SESK

Applying Lemma 9 with f(z) = P[-nD + /nZ < z] and
a=1-— ¢y, where Z ~ N (0,V), we obtain

ﬂeo (PYO? {PYk }?:1)

= min

1
-1 o). E.7
z€R: f(z1)>1—¢g exp {Z 2 ogn + ( )} ( )

Since f(z1) is nondecreasing and continuous in z,

F(z*1) =1 ¢

holds, where z* is the argument that achieves the minimum on
the right-hand side of (E.7). Recall the definitions of D, and
Zinin from (146)—(147). By Chernoff’s bound on f(z), for any

(E.8)

121n the converse part of the proof of [60, Th. 1], Huang and Moulin show
that for any LLR test (144) with threshold vector 7 such that the type-I
error is bounded by ¢p, it holds that 7 = nD — \/nb + O(1)1 for some
b € Qin(V,€o). Then, it is assumed that b = O(1)1, and [60, Lemma 2]
is applied. However, according to the definition of Qi (V,€o) in (E.3), b
can have coordinates growing with n, which violates this assumption. In [69,
Th. 11], Chen et al. confirm that the asymptotic expansion in (E.5) holds.
They prove the converse part of the expansion (E.5) by evaluating a converse
bound that they derive in [69, Lemma 9] for the composite hypothesis testing.



z=nE+o(n) with E > —D,,;,,, we have f(z1) =1—o0(1).
Similarly, for E < — Dy, we have f(z1) = o(1), giving
2% = —=nDmin + o(n). (E.9)

We proceed to show that the minimum on the right-hand side
of (E.7) is achieved at

2* = —nDyin + Vnb+ O (1),
where b is defined in (150). Here
P [_anin]- + \/EZI < Z*]_]

min —

=P [-nD +/nZ < z*1]
+P {{—aninl +nZz,. <z'1}

N{-nDz;, +VaZz;, £21}] (E1D)

1
_160+O<),
n

where (E.12) follows from (E.8), (E.9), and the union bound
and Chebyshev’s inequality on P [anIc +Zze £ z*l}.

min

By the Taylor series expansion of Qi (V, -), we conclude that

(E.10)

(E.12)

1 1
P ZImin < ﬁ(z* +7lein)1 + O (n):| =1— ¢,
(E.13)
which implies (E.10). Combining (E.7) and (E.10) completes
the proof. ]
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