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36 Abstract

37 The leading interannual mode of winter surface air temperature over the North American
38 (NA) sector, characterized by a “Warm Arctic, Cold Continents” (WACC) pattern, exerts
39 pronounced influences on NA weather and climate, while its underlying mechanisms remain
40  elusive. In this study, the relative roles of surface boundary forcing versus internal atmospheric
41 processes for the formation of the WACC pattern are quantitatively investigated using a combined
42 analysis of observations and large-ensemble atmospheric global climate model simulations.
43 Internal atmospheric variability is found to play an important role in shaping the year-to-year
44 WACC variability, contributing to about half of the total variance. An anomalous SST pattern
45 resembling the North Pacific Mode is identified as a major surface boundary forcing pattern in
46  driving the interannual WACC variability over the NA sector, with a minor contribution from sea
47  ice variability over the Chukchi- Bering Seas. Findings from this study not only lead to improved
48 understanding of underlying physics regulating the interannual WACC variability, but also provide
49 important guidance for improved modeling and prediction of regional climate variability over NA
50  and the Arctic region.

51

52 Key words: Extreme surface temperature events; North America; Alaskan ridge; Warm Arctic -
53  cold continent; Arctic sea ice loss

54
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1. Introduction

In contrast to the pronounced warming and rapid sea ice loss over the Arctic in recent decades,
frequent occurrence of cold harsh winters has been observed over Eurasia and central North
America (NA), jointly featuring a “Warm Arctic, Cold Continents” (WACC) pattern (e.g.,
Overland et al. 2011; Cohen et al. 2014; Kug et al. 2015; Sun et al. 2016). A WACC pattern has
also been identified as a prevailing interannual variability mode in surface air temperature (SAT)
anomalies during boreal winter over the mid-to-high latitudes of Eurasia and NA (Kug et al. 2015;
Blackport et al. 2019; Mori et al. 2019a; Guan et al. 2020a; see Fig. 1a for an example of the
WACC pattern over the NA sector). These cold extreme weather events over mid-latitude
continents and Arctic warm episodes are linked together via recurrent atmospheric anticyclonic
circulation anomalies, and are sustained by the circulation-induced temperature and moisture
advection and associated anomalous surface radiative and turbulent heat fluxes (e.g., Lee 2012;
Sorokina et al. 2015; Park et al. 2015; Blackport et al. 2019). The origin of the anticyclonic
circulation anomalies, which is the key to understanding the underlying physics in driving the
interannual WACC pattern, however, remains unclear.

With a main focus on the interannual time scale, many studies have suggested that sea ice
loss over the Barents-Kara Seas (BKS) and Chukchi-Bering Seas (CBS), respectively, associated
with Arctic warm SAT anomalies, is crucial in exciting the anomalous anticyclonic circulation
over the Eurasian and NA sectors via tropospheric or stratospheric planetary waves, and thus the
WACC pattern, leading to enhanced Arctic warming (Inoue et al. 2012; Tang et al. 2013; Kug et
al. 2015; Peings and Magnusdottir 2014; Semenov and Latif 2015; Orsolini et al. 2012; Nakamura
et al. 2016; Xue et al. 2017; Zhang et al. 2018). Therefore, this represents a positive feedback in

sustaining the WACC pattern. However, climate models exhibit diverse responses in mid-latitude
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SAT anomalies to Arctic sea ice loss (e.g., Cohen et al. 2020). While most of previous modeling
studies focus on the Eurasian sector, cooling anomalies over mid-latitude continents as a response
to BKS sea ice loss on the interannual time scale are able to be simulated in several model
simulations, amplitudes of the cooling anomalies are generally much weaker than the observed
counterparts (e.g., Mori et al. 2014; Kim et al. 2014; Mori et al. 2019a; Blackport et al. 2019). In
contrast, close association between observed interannual BKS sea ice and mid-latitude continental
cooling anomalies over Eurasia could not be represented in several other modeling studies (e.g.,
Sun et al. 2016; Chen et al. 2016; McCusker et al. 2016; Ogawa et al. 2018). Rather limited
modeling studies have been conducted to explore potential impacts of CBS sea ice on temperature
anomalies over NA continent.

On the other hand, previous studies indicated a possible role of tropical sea surface
temperatures (SSTs) in driving the interannual WACC pattern. La Nifa-like SST anomalies over
the tropical eastern Pacific (TEP) could induce a WACC-like pattern over the NA sector through
Rossby wave trains across the North Pacific (NP; Clark and Lee 2019), and also possibly lead to
cold winters over Eurasia via an indirect impact on tropical Atlantic SST and associated
teleconnection patterns (Matsumura and Kosaka 2019). Pacific SST anomalies have also been
proposed to play a role for the unexpected cold winters over central NA and accompanying drought
over California during the winters of 2012-2015 (e.g., Palmer 2014; Hartmann 2015; Seager et al.
2015; Lee etal. 2015; Wang et al. 2014; Watson et al. 2016), although there exists a debate on the
relative importance of SST anomalies over the tropical Pacific versus extratropics over the NP
(e.g., Hartmann 2015; Baxter and Nigam 2015; Teng and Branstator 2017).

In addition to these above remote or local boundary forcing by Arctic sea ice and SST

anomalies, there 1s increasing evidence that the anomalous anticyclonic circulation that drives the
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101 interannual WACC pattern can also be ascribed to internal atmospheric variability (e.g., Sorokina
102 etal. 2015; Gong and Luo 2017; Mori et al. 2019a; Blackport et al. 2019; Sigmond and Fyfe 2016;
103  Sun et al. 2016; McCusker et al. 2016; Ogawa 2018). The internal variability of atmospheric
104  circulation over the mid-to-high latitudes of Eurasia and NA continents 1s often manifested by the
105  vigorous subseasonal variability. For example, a similar WACC pattern in SAT anomalies has been
106  recently reported as a leading subseasonal SAT variability mode to link Arctic sea ice changes and
107 winter SAT anomalies over mid-latitude continents (e.g., Lin 2018; Guan et al. 2020b),
108  representing a cross-scale influence on the interannual WACC variability (Sorokina et al. 2015;
109  Guan et al. 2020a).

110 Considering the complex interplay of surface boundary forcing, including SST and sea ice,
111 and internal atmospheric variability in possibly contributing to the formation of the WACC pattern,
112 as well as the interactive feedback among land, ocean, and atmosphere, identification of the key
113 processes responsible for the observed WACC variability remains challenging. Large-ensemble
114  atmospheric-only global climate model (AGCM) simulations, forced by the observed SST and sea
115  ice, can provide a useful tool to assess the relative contributions of boundary forcing versus
116  atmospheric internal variability in generating the WACC pattern, although atmospheric influences
117 on SST and sea ice variability are not resolved in these AGCM simulations. For example, by
118  analyzing large-ensemble multi-model simulations, Mori et al. (2019a) found that in addition to
119  internal atmospheric processes, BKS sea ice variability plays an important role in contributing to
120 the interannual variability and long-term trend of the winter WACC pattern over the Eurasian
121 sector, while the role of the SST anomalies is largely negligible.

122 As the mterannual WACC variability over the Eurasian and NA sectors are not necessarily

123 related to each other (e.g., Kug et al. 2015), also considering that insufficient attention has been
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124 received in understanding the causes of the WACC variability over the NA sector, in this study we
125  have conducted an analysis to quantitatively characterize the relative importance of surface
126  boundary forcing versus internal atmospheric processes in regulating the interannual WACC
127  variability over the NA sector. The outcome of this study is expected to improve our understanding
128  and modeling/prediction capability of the NA regional climate variability on the interannual time
129  scales. Hereafter, the NA sector is referred to an extended region including East Siberia, NA
130  Continent, and the neighboring NP and Arctic regions. The remainder of this paper is organized as
131 follows. Section 2 introduces the observation and multi-model data sets used in this study, and the
132 approach to extract the leading interannual WACC mode over the NA sector by employing a
133 combined analysis of observations and AGCM simulations following Mori et al. (2019a). Section
134 3 presents main results on quantitative characterization of critical processes responsible for the
135 interannual WACC variability over the NA sector based on both observations and multi-model
136  simulations. A summary and brief discussions are given in Section 4.

137

138 2. Data and Method

139 2.1 Observation and model datasets

140 Monthly observational data used in this study includes SAT, surface pressure (PS), 3D
141 geopotential height (Z), zonal and meridional winds (u, v), temperature (T) from the ERA-Interim
142 Reanalysis (Dee et al. 2011), and sea ice concentration (SIC) and SST from the Met Office Hadley
143 Centre (Rayner et al. 2003) for the period of 1979-2013.

144 Same monthly variables except SIC and SST from climate model simulations based on
145 AGCMs participated in the NOAA Facility for Climate Assessments (FACTS; Murray et al. 2020)

146  are also analyzed in this study. These large-ensemble Atmospheric Model Intercomparison Project
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147 (AMIP; Gates et al. 1999)-type AGCM simulations are particularly useful for assessment of
148  predictable signal and comparing that to the climate system’s internal variability (Sun et al. 2016;
149 Sun et al. 2018; Mori et al. 2019a; Murray et al. 2020). Analyses in this study mainly focus on
150  simulations from the “amip obs rf” experiment from FACTS, in which the eight AGCMs are
151 forced by the observed monthly mean boundary layer conditions including SST and sea ice, and
152 historical changes in natural and anthropogenic radiative forcing and aerosol emissions (see Tables
153 1, 2 for details of FACTS experiments and models). Available simulations from three of the eight
154  AGCMs participated in the “amip clim polar” and “eofl sst” experiments are also analyzed.
155  While the observed historical radiative forcing specified in the latter two experiments 1s the same
156  asinthe “amip obs rf”, climatological sea ice along with climatological SST over the grids where
157 climatological sea ice 1s present are specified in the “amip clim polar” experiment to isolate the
158  role of extra-polar SST variability for model atmospheric variability; in contrast, SST anomalies
159  of the leading Empirical Orthogonal Function (EOF) mode of the observed monthly mean SST
160  variability (refer to Fig. 9a), which largely represents SST variability associated with the El Nino,
161  are used as the boundary forcing in the experiment “eofl sst” along with the observed monthly
162  sea ice (see Table 1 for more details). If not specially mentioned, model results in the following
163  discussions are based on the “amip obs rf” experiment.

164 Both the reanalysis and model data are interpolated onto common 2.5%2.5 degree grids. To
16s  focus on the interannual WACC variability, winter mean (November-March)! anomalies of
166  various fields from both observations and simulations were derived by removing climatological
167  mean and linear trends. Climatology of these variables is separately derived for observations and

168  each ensemble simulation from the eight AGCMs by averaging over the 35 winters from 1979-

! The 1979 winter represents the period from November 1, 1979 to March 31, 1980, and so on.
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169  2013.

170 2.2 Analysis methods

171 Considering model deficiencies in representing the WACC pattern over the NA sector as to
172 be discussed later, a combined analysis method using both observations and multi-model large-
173 ensemble simulations (e.g., Benestad et al. 2017; Mori et al. 2019a) is adopted to extract a leading
174  interannual WACC pattern in model simulations similar to the observed counterpart. As in Mori et
175 al. (2019a), the leading interannual SAT variability mode in observations and model simulations
176  over the NA sector are derived by a singular value decomposition (SVD) analysis of the combined
177 winter SAT anomalies from observation and simulations. In the SVD analysis, the spatial structures
178  of the observed and simulated leading modes of winter SAT anomalies are determined in such a
179  way that the modes explain the maximum squared temporal covariance between observations and
180  simulations over the analysis domain (e.g., Bretherton et al. 1992). In the FACTS experiment
181  “amip obs rf”, as the boundary and radiative forcing specified in each member of the AGCM
182 simulations is exactly the same following the observed historical SST and sea ice anomalies, this
183  SVD analysis method is expected to derive a leading interannual SAT mode over the NA sector in
184  model simulations as close as possible to the observed leading SAT pattern.

185 The SVD analysis 1s conducted based on the covariance matrix of the combined observed
186  and simulated winter SAT anomalies over the domain of 20-90°N; 120°E-60°W (~ 2117 spatial
187  points). Considering a minimum ensemble size of 12 available in all the eight AGCMs, only 12
188  members from each model are used for the SVD analysis, i.e., a total of 96 members, although the
189  remaining members will also be included for other analyses to make full use of large model
190 ensembles. The SVD analysis is performed between one set of 35-winter model anomalous SAT

191  data with all 96 members combined together and another set of the observed SAT data, which
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192 duplicates the observed 35-winter record 96 times to match the model data length, i.e., with a time
193  series of total 3360 winters on 2117 spatial points for both observational and model data. The
194  derived singular vectors based on the SVD analysis depict the leading spatial patterns of the
195  interannual SAT variability modes in observations and simulations, and the associated expansion
196  coefficients (ECs) contain the corresponding time series during the 35-winter period for the
197  observations (also duplicates 96 times) and simulations in each model member. In the following
198  discussions, ECs for both observations and simulations are normalized over the 3360 temporal
199  points so that their corresponding amplitude of SAT variability can be directly compared based on
200 their leading SVD patterns. The statistical significance of temporal correlations between
201 observations and simulations during the 35 winters is calculated based on the two-sided Student’s
202 t-test with the effective degree of freedom of the time series estimated by the lag-1 auto-correlation
203 following Bretherton et al. (1999).

204

205 3. Results

206 a. The leading WACC pattern based on the combined analysis of observation and model data

207 Figure 1a,b shows patterns of the leading co-variability mode of winter SAT anomalies and
208  associated anomalous PS in observations and models based on the SVD analysis, derived by
209  regressions of SAT and PS anomalies against the normalized ECs, i.e., ECoss and ECacem. For
210 model simulations, regressions are calculated using the total 96 members of multi-model
211 simulations, while regressions for observations are based on one 35-winter period due to
212 duplicated observational data when performing the SVD analysis. The observed and simulated
213 SAT anomalies of the leading SVD mode, which explains 40% of the total squared covariance of

214 the observed and simulated SAT variations, capture the WACC pattern over the NA sector, i.e.,
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215 warm anomalies centered over East Siberia (ES) / Alaska and cold anomalies over central NA,
216  along with the anomalous Alaskan high in bridging the two anomalous SAT centers. As previously
217  mentioned, the anomalous anticyclonic circulation is expected to sustain the WACC pattern by
218 advecting cold air from the Arctic into central NA, and warm and moist air from the south into
219  CBS (e.g., Kug et al. 2015; Guan et al. 2020a). While the warming anomalies over the Arctic are
220  well simulated, the amplitude of cold anomalies over central NA is significantly underestimated
221 in models by about 50% (Fig. 1b). Anomalous PS distribution associated with the WACC pattern
222 as illustrated in Fig. 1 bears a strong resemblance to the North Pacific Oscillation (NPO) /west
223 Pacific (WP) teleconnection pattern, a dominant mode of the mid-latitude atmosphere over the NP
224  (e.g., Feldstein 2000; Linkin and Nigam 2008; Tanaka et al. 2016; Baxter and Nigam 2015; Dai
225 and Tan 2019), and the pattern associated with the so-called Alaskan Ridge regime (Casola and
226  Wallace 2007; Straus et al. 2007; Carrera et al. 2004).

227 It is noteworthy that there are recent debates on the approach to extract the externally forced
228  WACC variability using the SVD approach (Mori et al. 2021; Zappa et al. 2021). Zappa et al.
229 (2021) suggested that rather than homogenous regressions as used in Mori et al. (2019a) and also
230 1n this study, heterogeneous regressions need to be applied to examine the co-varying WACC
231 patterns between the observations and AGCM simulations. It is found that the WACC patterns in
232 both observations and AGCM simulations based on homogenous regressions as shown in Fig. 1
233 are very close to those derived based on heterogeneous regressions (figure not shown) similarly as
234 shown in Mori et al. (2021). Also note that a very similar WACC pattern as shown in Fig. 1a can
235 be obtained as the first leading EOF mode of the observed 35-winter SAT anomalies over the same
236  region.

237 Anomalous SAT and PS patterns in individual models associated with the leading SVD mode

10
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238 are illustrated in Fig. 2 by applying a similar regression approach but only using the ECs
239 corresponding to the 12 members of that model. Again, while the Arctic warming anomalies are
240  generally well simulated in all these AGCMs, the observed cold anomalies over central NA are
241 significantly underestimated in model simulations, along with a largely weakened anticyclonic
242 anomalies near Alaska. Particularly note that cold anomalies over central NA and anomalous
243 Alaskan high associated with the leading SVD mode are largely absent in simulations from ESRL-

244 GFSv2 (Fig. 2g). This will be further discussed in the following.

245 Vertical-horizontal cross-sections of temperature and geopotential height anomalies in both
246  observations and model simulations associated with the leading SVD mode along the axis linking
247 the two anomalous SAT centers in the WACC pattern (i.e., the green lines in Fig. 1) are further
248 illustrated in Fig. 3. Both observations and simulations suggest that SAT anomalies associated with
249 the WACC pattern are connected to air temperature anomalies in a deep tropospheric layer up to
250  about 300hPa; meanwhile, the anomalous surface high near Alaska is closely linked to equivalent-
251 barotropic ridge anomalies vertically extending into the stratosphere (Fig. 3a,b). This indicates that
252 the WACC pattern is not likely a direct response to the local surface boundary forcing, rather it is
253  driven by circulation associated with large-scale tropospheric and stratospheric waves as

254 previously proposed (e.g., Blackport et al. 2019).

255 b. Optimal boundary conditions in forcing the interannual WACC variability

256 Figure 4 presents the time series of the ECs for each member of the eight AGCMs (grey lines)

257  along with the ensemble-mean EC over all 96 model members (blue line; hereafter EAGCM) and
258  EC based on the observations (red line; ECogs) during the 35 winters. Pronounced internal
259  atmospheric variability associated with the WACC pattern is readily seen by the spread of the ECs

260  among individual model members. Considering that the impact of internal atmospheric variability

11
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261 1s largely averaged out by the large-ensemble mean, the ECaccwm therefore represents the forced

262 WACC variability due to boundary forcing, including SST and sea ice. As ECaccum is highly
263 correlated with ECogs (1=0.73), this suggests that a considerable portion (~50%) of the observed
264  WACC variability can be ascribed to the SST and sea ice variability specified as the boundary
265  forcing in AGCMs.

266 Following Mori et al. (2019a), the prevailing SAT patterns associated with the internal
267  atmospheric variability can be derived by an EOF analysis of intra-ensemble SAT anomalies over
268  the NA sector (20-90°N;120E-60°W) based on model simulations. Intra-ensemble SAT anomalies
269  are defined as the deviations of detrended winter SAT anomalies from ensemble-mean fields across
270 model simulations, i.e., by removing the forced WACC variability. While the 1% leading mode of
271 internal SAT variability exhibits the Pacific North-America (PNA)-like pattern, a similar WACC
272 pattern in SAT anomalies to that shown in Fig. 1a is identified as the 2* leading mode (Fig. 5),
273 indicating that the WACC pattern is an intrinsic SAT variability mode over the NA sector.

274 Key regions of SST and sea ice anomalies responsible for the observed and forced WACC

275 variability can further be identified by the regression patterns of SST and sea ice anomalies against

276  the time series of ECops and ECaccum during the 35 winters, respectively. Figure 6a presents
277 regressed anomalous SST (shading) and sea ice (contours) associated with the observed WACC
278 variability. The observed WACC pattern is closely linked to sea ice loss over CBS as previously
279 reported (e.g., Kug et al. 2015; Blackport et al. 2019; Guan et al. 2020a), although the causality is
280  difficult to be determined based on the observations due to the two-way interactions between
281 Arctic sea ice and atmosphere. The WACC pattern over the NA sector is also found to be associated
282 with negative SST anomalies over the central and western NP along 40°N and surrounding positive

283  anomalies over the eastern part of the NP basin and CBS, as well as a small patch of warm SST

12
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284  anomalies over the tropical western Pacific (TWP) near 160°E. Although La Niia-like negative
285  SST anomalies over TEP are also discerned associated with the observed WACC variability, they
286  are not statistically significant (Fig. 6a).

287 Figure 7a similarly illustrates anomalous SST and sea ice patterns associated with the forced

288 WACC variability in AGCM simulations by regressing these fields onto model ensemble mean EC

289 (e, EAGCM) during the 35 winters. As in the observations, the forced WACC pattern is also
290 closely associated with sea ice loss over the CBS region, along with negative SST anomalies over
291 the central NP near 40°N and surrounding horseshoe-like shaped positive SST anomalies over the
292 eastern part of the NP basin and TWP near 160°E (Fig. 7a). Note that the La Nifa-type negative
293  SST anomalies over TEP associated with the WACC variability in the observations are not evident
294  in model simulations (c.f., Figs. 6a, 7a), suggesting that the SST variability over TEP associated
295 with El Nifio/La Nifia may not play a crucial role in driving the forced WACC pattern. This is
296  further supported by the similarly regressed anomalous SST and sea ice patterns but corresponding
297 to the forced WACC variability based on 12-member ensemble mean in each model (Fig. 8). While
298  regressed SST anomalies over the TEP are not statistically significant in most of these AGCM
299  simulations, the La Nifa-type negative SST anomalies over the TEP associated with the forced
300 WACC variability as in the observations is found in three of the eight models, 1.e., ECHAMS,
301  ESRL-GFSv2, and GEOS-5; in contrast, strong El Nifio-type SST anomalies over the TEP 1s found
302 in several other AGCMs, including AM3, CAM4, ESRL-CAMS, and LBNL-CAMS (Fig. 8).

303 The interannual SST and sea ice indices closely associated with the WACC variability can
304 be derived by projecting the observed winter SST and sea ice anomalies onto their corresponding
305  regressed anomalous patterns over respective key regions identified in Figs. 6a and 7a, 1.e., the

306 CBS region (50-75° N; 140°E-160° W) for sea ice, and the NP (10-65° N; 120° E-120° W) for

13
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307 SSTZ. These projections are conducted independently for observations and model simulations due
308  to their slight differences in the corresponding regression patterns as shown in Figs. 6a, 7a. The
309 derived SST and sea ice indices associated with the observed and simulated WACC variability are
310 presented in Figs. 6b,c and 7b.c, respectively. Consistent with the regressed SST and sea ice

311 patterns in Figs. 6a and 7a, both the time series of the observed (ECogs) and forced WACC

312 variability in models (EAGCM) during the 35 winters are strongly correlated with CBS sea ice
313  index (r=0.63 and 0.57, respectively; see Figs. 6¢, 7c) and SST over the NP (r = 0.73 and 0.74,
314 respectively; Fig. 6b, 7b). Note that similar correlations can be obtained if the same SST and sea
315 ice indices are used for observations and models by projections onto regressed anomalous SST and
316  sea ice patterns from either observations or simulations (not shown).

317 Since the observed SST and sea ice are specified in AGCM simulations and do not respond
318 to atmospheric variability, the close association between the forced WACC variability and the
319  derived SST/sea ice indices as shown in Fig. 7 indicates important roles of sea ice and SST
320 anomalies in driving the WACC variability. In addition to CBS sea ice loss as previously reported,
321 these results indicate that the anomalous SST variability over the NP also plays a critical role for
322 the formation of the WACC pattern over the NA sector. Of particular interest, this anomalous SST
323  pattern, especially that based on the observations in Fig. 6a, is reminiscent of the North Pacific
324 Mode (NPM; Deser and Blackmon 1995; Park et al. 2012; Hartmann 2015; Peng et al. 2018a),
325  which emerges as the second leading mode of the observed interannual SST variability over the
326 NP basin (Fig. 9b) following the first leading mode that is closely linked to the El Niiio / La Nina

327  (Fig. 9a). While the NPM is independent from El Niiio, a positive phase of the NPM as shown in

2 Slight changes of these domains, for example, by including TWP for the SST projections, will lead to largely similar
results.

14
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328 Fig. 9b is often observed prior to an El Nifo winter, a so-called “seasonal fingerprinting”
329 mechanism to set the stage for El Nifio via tropical-extratropical interactions (e.g., Vimont et al.
330 2003; Wang et al. 2014).

331 Figure 9d further illustrates that SAT anomalies associated with the NPM indeed exhibit a
332 WACC pattern over the NA sector along with surface anticyclonic circulation anomalies near
333  Alaska, showing a strong resemblance of the observed WACC pattern in Fig. 1a. The surface high
334  anomalies near Alaska associated with the NPM (Fig. 9d) are also linked to vertically extended
335  equivalent-barotropic high anomalies similarly as shown in Fig. 3 (figure not shown), which tends
336 to be sustained by strong northward wave fluxes in the lower-troposphere from the central NP (Fig.
337 9d). Largely similar SAT and PS anomalous patterns associated with the NPM are also found in
338 multi-model simulations (figure not shown). In contrast, SAT anomalies over the NA sector
339  associated with the El Nifio/La Nifa are less well organized and much weaker than those associated
340  with the NPM (Fig. 9¢). These results lend further support of a crucial role of the NPM-like SST
341 variability in driving the WACC pattern as suggested in Figs. 6 and 7, while the El Nifo/La Nifia
342  may not be critical in sustaining the WACC variability over the NA sector. An important role of
343  the NPM-like anomalous SST pattern underlying the extremely cold anomalies over central NA
344  and Californian drought during the 2013/2014 winter has also been widely reported (e.g., Baxter
345  and Nigam 2015; Hartmann 2015; Wang et al. 2014; Seager et al. 2015; Lee et al. 2015).

346 To further quantify the relative roles of SST variability associated with the El Nifio/La Niia
347 (i.e., EOF; in Fig. 9a) and the NPM (EOF: in Fig. 9b) for the observed WACC variability, Figure
348 10 shows time series of WACC indices during the 35 winters explained by the EOF;, EOF>, and
349 EOF1&EOF, respectively. The WACC coefficient associated with each EOF mode in a particular

350 winter 1s derived by projecting its related SAT anomalous pattern, constructed by the
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351 corresponding regressed anomalous SAT distribution (i.e., Fig. 9¢,d) weighted by the principal
352  component of the EOF mode, onto the observed WACC pattern in Fig. 1a. Correlations between
353  the observed WACC variability (e.g., ECoss) and the WACC indices associated with the EOFj,
354  EOF,, and EOF; & EOF; are 0.11, 0.57 and 0.57 (Fig. 10), respectively, confirming that SST
355  variability associated with the NPM plays a more important role in contributing to the observed
356  WACC variability than that associated with the El Nifio/La Nifa. In addition to a very weak
357  correlation to the ECogs, the El Nifo/La Nifa related WACC variability exhibits a very weak
358 amplitude (Fig. 10a). Note that a much higher correlation (~ 0.8) between ECoss and the NPM

359  related WACC index 1s found after 1995, in contrast to a poor correlation during a short period

360  around 1990 (e.g., 1988-1993; Fig. 10b). A very weak correlation between ECops and ECacem s
361  alsonoted around 1990 (Fig. 4), suggesting a more chaotic nature of atmospheric variability during
362 this period for a reason that needs to be further understood.

363 A minor role of SST variability associated with the El Nifo/La Nina for the observed WACC
364  variability over the NA sector is further confirmed by a weak correlation (0.22) between the time
365  series of the observed WACC variability (ECoss) and the ensemble-mean WACC indices based on
366 three FACTS AGCM simulations in the “eofl-sst” experiment (Fig. 11c), in which only the
367  observed monthly SST anomalies associated with the El Nifio/La Nifa are specified along with

368  observed sea ice and radiative forcing (see Table 1).

369 c. Relative role of internal processes versus SST and sea ice forcing for the WACC variability

370 Relative importance of internal atmospheric variability versus surface boundary forcing in
371 driving the interannual WACC variability over the NA sector is further investigated. Following the
372 approach by Mori et al. (2019a), the total WACC variance in observations and each of the eight

373  AGCMs is estimated by the variance of their ECs corresponding to the leading SVD mode during
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374  the 35 winters, which contains effects from both surface boundary forcing and internal atmospheric
375 variability. Calculations of the total WACC variance i each model are based on ECs across model
376  members. Note that although only 12 ensemble members from each model were used for the SVD
377  analysis, to make full use of the large model ensembles, all available members are used for
378  calculation of the total variance with their ECs during the 35 winters derived by projecting the
379  winter SAT anomalies onto the singular vector of the model WACC pattern (i.e., Fig. 1b). As
380 shown in Fig. 12 (yellow bars), while four models capture the total WACC variance comparable
381 to the observations, the variance is significantly underestimated in other four models, consistent
382 with their relatively weaker SAT amplitude in the WACC pattern, particularly the cold anomalies
383  over central NA (see Fig. 1b, Fig. 2). The forced WACC variance in each model can then be further
384  estimated by the variance of its corresponding ensemble mean EC during the 35 winters averaged
385 over all available members, and are denoted by red squares in Fig. 12. Difference between the total
386 (yellow bar) and the forced variance (red square) for each model depicts contribution from
387  atmospheric internal processes, which shows a range of 40%-60% of the total variance across these
388  models. While this result is largely consistent with previous studies that suggested an important
389  role of internal processes in regulating the WACC variability over the NA sector (e.g., Sigmond
390 and Fyfe 2016; Peng et al. 2018b; Sun et al. 2016), it is the first time that a quantitative estimate
391 of the contribution of the atmospheric internal processes to the total WACC variability over the

392 NA sector is dertved 1n this study.

393 The percentages of the total WACC variance explained by CBS sea ice and NP SST
394  variability can be further estimated from correlations (1) between the previously defined sea ice
395 (Figs. 6¢, 7¢) / SST indices (Figs. 6b, 7b) and ECs during the 35 winters in observations and model

396  simulations across all available members (concatenated in time series) based on the coefficients of
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397  determination (r*) approach. Figure 12 suggests that CBS sea ice (grey bar) plays a minor role in
398  driving the WACC variability compared to SST anomalies over the NP basin (blue bar) in seven
399 out of the eight models. In contrast to previous findings on the dominant role of BKS sea ice in
400  driving the WACC pattern over Eurasia (e.g., Mori et al. 2019a), averagely only about 10% of the
401 total WACC variance over the NA sector 1s explained by the interannual CBS sea ice variability;
402  in contrast, about 22% of total WACC variability over the NA sector can be attributed to the NPM-
403  like SST variability. An exception is found in ESRL-GFSv2, in which the sea ice effect dominates
404  over that by SST anomalies. As previously discussed in Fig. 2, this model is also marked as an
405  outliner with cold anomalies over central NA in the WACC pattern largely absent. Although further
406 investigations are needed for complete understanding of the deficiencies in representing the
407 WACC pattern in ESRL-GFSv2, this could be related to model insensitivity in responding to
408  anomalous SST forcing, as indicated by the largely statistically insignificant SST signals over the
409 NP associated with the forced WACC variability in this model (Fig. 8g). As a result, the large-scale
410  Alaskan high anomalies and thus the cold anomalies over central NA cannot be effectively
411 established, leading to largely regionally confined warming anomalies over the Arctic region
412 induced by local sea ice variability (Fig. 2g).

413 Since sea ice loss over CBS associated with the WACC pattern is coincident with local warm
414 SST anomalies (see Figs. 6a, 7a), the impact of CBS sea ice loss on the WACC variability as
415 indicated by the 1 approach in Fig. 12 could be partially included in that related to SST variability.
416  The WACC variance explained by a combination of CBS sea ice and NPM-like SST variability is
417  further estimated using a multiple-linear regression of the sea ice and SST indices onto ECs, which
218 is denoted by each green dot in Fig. 12. It is illustrated that the 1> of WACC variance explained by

419  a combination of SST and sea ice indices is only slightly higher than that by SST or sea ice alone,
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420  rather than a linear addition, confirming that influences of CBS sea ice and SST variability on the
421 WACC pattern are not exclusive from each other. The lower values corresponding to green dots
422  than those to red squares in Fig. 12 generally indicate that factors other than the combination of
423 CBS sea ice and NP SST indices also contribute to the forced WACC variability in the model.

424 The relative role of sea ice and SST variability in driving the WACC variability is further
425  examined by the FACTS experiment “amip clim polar” with simulations from three AGCMs. In
426  this experiments, AGCMs are forced by climatological sea ice and polar SST where climatological
427  sea ice 1s present, so that the forced model variability 1s largely ascribed to the observed SST

428  varlations over the extra-polar region (60°S-60°N). Note that the correlation between the observed

429  WACC variability (ECoss) and the forced WACC variability (ECaccm) based on these three
430 AGCM simulations 1s slightly smaller than that using all eight GCMs (0.65 in the former, Fig. 11a,
431 versus 0.73 in the latter, Fig. 4), possibly due to less total model ensemble members to sufficiently

432 suppress the internal variability when only using three GCMSs. In the experiment “amip clim polar”

433 (Fig. 11b), a correlation of 0.41 is found between ECops and ECaccwm, which is statistically
434  significant although this skill is a bit lower than the regression model using SST anomalies
435  associated with the NPM as shown in Fig. 10b. This discrepancy could be due to several reasons.
436 The SAT anomalies associated with the NPM variability derived by the regression model are based
437  on observations; therefore, other factors that are linked to the NPM that also contribute to the
438 WACC variability are indirectly included in the regression model, for example, local sea ice
439  variability over CBS as shown in Fig. 6a. On the other hand, in addition to sea ice, part of SST
440  variability associated with the NPM, for example, over the CBS region where climatological sea
441 ice 1s present, is also excluded in the “amip clim polar” experiment. Moreover, as previously

442 discussed, using more model members could also improve the correlation between ECogs and
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23 ECacowmsince only three AGCMSs participated in the “amip clim polar” experiment. Nevertheless,

444 a very strong correlation (~0.75) is found between the EC accm from the experiments
445  “amip obs rf” and “amip clim polar” based on the three AGCM simulations (Fig. 11a,b), further
446 suggesting that the forced WACC variability is primarily driven by the extra-polar SST variability.
447 It i1s noteworthy that the WACC variability in response to both CBS sea ice loss and the NPM-
448 like SST pattern are systematically underestimated in models relative to the observational
449  counterpart (Fig. 12), which are possibly due to lack of ocean-ice-atmosphere coupling in AGCM
450  simulations and potential model errors (Deser et al. 2016; Mori et al. 2019a; Mori et al. 2019b;
451 Screen and Blackport 2019). It has also been argued that roles of the sea ice and SST variability in
452 driving the WACC pattern using the coefficients of determination approach can be overestimated
453  1n observations (Screen and Blackport 2019). For example, both the observed WACC pattern and
454  sea 1ce/SST anomalies over the CBS can be induced by the anomalous Alaskan high, which can
455  be forced either by surface boundary conditions or due to internal variability (Guan et al. 2020a;
456 Blackport et al. 2019). Because of the prescribed SST and sea ice patterns, these two-way
457  interactive processes are not fully resolved in AGCMs, therefore leading to the underestimated
458  correlations between sea ice / SST and the WACC variability (Screen and Blackport 2019; Mori et
459  al. 2019b).

460
461 4. Summary and discussions

462 A “warm-Arctic, cold-continents” (WACC) pattern has been observed in the interannual
463  variability and long-term trend of winter surface air temperature (SAT) anomalies over mid-to-
464  high latitudes of northern hemisphere. The underlying physics regulating the WACC variability,

465  however, remains largely elusive. In particular, most of the existing studies towards improved
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466  understanding of the WACC variability have been focusing on the Eurasian continent, much less
467  attention has been received for the WACC variability over the NA sector. While limited studies
468  indicate that both surface boundary forcing, including that due to the sea ice and SSTs, and
469  atmospheric internal variability could be responsible for the formation of the WACC pattern over
470  the NA sector, their relative roles are difficult to be determined based on observations alone. In
471 this study, with a specific focus on the interannual time scales, connections between the WACC
472 variability, tropospheric atmospheric circulation, Arctic sea ice, and SST anomalies over the NP
473 are investigated, and particularly, contributions of internal drivers versus surface boundary forcing
474 to the WACC variability over the NA sector are quantitatively estimated for the first time using a
475  combined analysis of observations and large-ensemble AGCM simulations.

476 Our results confirm a crucial role of internal atmospheric variability in generating the WACC
477 over the NA sector as previously reported (e.g., Sigmond and Fyfe 2016; Peng et al. 2018b; Sun
478 et al. 2016). The forced WACC variance, estimated by the large-ensemble mean from AGCM
479  simulations, explains about half of total interannual WACC variance. Optimal boundary forcing
480  sources in generating the WACC variability over the NA sector are further identified, which are
481  characterized by sea ice variability over CBS and a NPM-like anomalous SST pattern over the NP
482  basin. In contrast to a dominant role of Arctic sea ice for the WACC variability over Eurasia as
483  previously reported, the NPM-like SST pattern is found to be the major boundary forcing in driving
484  the WACC variability over the NA sector. While internal atmosphere variability i1s largely
485  unpredictable, the identified surface boundary forcing such as the NP SST anomalies responsible
486  for the forced WACC variability over the NA sector can serve as important predictors for seasonal
487  climate predictions over the NA region.

488 As the NPM-like SST pattern involve both anomalous SST signals over extratropical NP
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489  basin and over TWP near 160°E (Fig. 6a), the relative importance of tropical versus extratropical
490  SST anomalies in exciting the WACC variability over the NA sector remains uncertain (e.g.,
491  Hartmann 2015; Lee et al. 2015; Baxter and Nigam 2015). For example, Lee et al. (2015)
492  concluded that the NPO/WP pattern across the NA sector can be forced by multiple boundary
493  forcing including anomalous SST in TWP, TEP, as well as over the extratropical NP. Previous
494  observational and modeling studies also demonstrated that the extratropical SST anomalies are
495  primarily driven by atmospheric circulation (Kumar and Chen 2018; Kumar and Wang 2015;
496  Bretherton and Battisti 2000), which itself could be excited in responding to SST anomalies over
497 TWP (e.g., Hartmann 2015; Sung et al. 2019), or due to the mid-high latitude internal dynamics,
498  for example, associated with the NPO/WP variability (e.g., Baxter and Nigam 2015). Therefore,
499  the relative role of tropical versus extratropical SST anomalies associated with the NPM in driving
soo0  the WACC pattern over the NA sector warrants further investigations in a future study.

501 Significant discrepancies are found in the forced WACC signals between observations and
502  AGCMs, with the WACC variability in response to both CBS sea ice loss and the NPM-like SST
503  pattern systematically underestimated in model simulations. These discrepancies between models
so4  and observations could be explained by the lack of ocean-ice-atmosphere coupling in AGCMs
sos  along with model deficiencies in depicting atmospheric responses to sea ice and SST variability.
so6 In this study, a combined analysis approach using both observations and multi-model large-
s07  ensemble simulations is used to extract a leading interannual WACC pattern in model simulations
so8  similar to the observed counterpart. Many of these AGCMs have difficulty in realistically
s09  capturing the WACC pattern as the leading mode of winter SAT anomalies in response to the
s10  specified boundary forcing, possibly due to an important role of internal atmospheric processes in

511 shaping the WACC variability as suggested by this study.
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720  Table 1. Descriptions of the AGCM experiments in the NOAA FACTS. See FACTS project
721 website for more details: https://www.psl.noaa.gov/repository/a/factsdocs .

Forcings
Experiment name  Description . Greenhouse
SST Sea 1ce
Gases& Ozone
amip_obs f AMP with observed radiative Obs Obs Obs
forcing
. . AMI.P w1tl.1 obsewe.d ra,dmt!ve Obs/Present Present
amip_clim polar  forcing, climatological sea ice climatology climatology Obs
and polar SST
The first leading EOF mode of
eofl sst global SST variability with 15t EOF Obs Obs
observed radiative forcing
722
723
724
725
726

727 Table 2. Description of FACTS AGCMSs analyzed in this study. Note that while simulations from
728  all the eight AGCMs are available from the “amip obs rf” experiment, only three AGCMs with
729  the Asterisk marks are available for both the “amip clim polar” and “eofl sst” experiments.

730

Ensemble  Horizontal resolution

Model name Institute size (longitude x latitude)
AM3 Geophysical Fluid Dynamics Laboratory (GFDL) 17 1.9°x1.9°

CAM4* National Center for Atmospheric Research (NCAR) 20 1°x1°

ECHAMS* Max Planck Institute for Meteorology (MPI) 50 0.75°x0.75°
ESRL-CAMS5 National Center for Atmospheric Research (NCAR) 40 1°x1°
ESRL-CAMS5146 National Center for Atmospheric Research (NCAR) 16 1°x1°
ESRL-GFSv2* NOAA/NWS Environmental Modeling Center (EMC) 50 1°x1°

GEOS-5 NASA Goddard Space Flight Center (GSFC) 12 1.25°x1°
LBNL-CAMS National Center for Atmospheric Research (NCAR) 50 1°x1°
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FIG. 1. Winter SAT (shading; scaled by the color bar) and PS (contours, dashed when negative;
interval: 0.5 hPa) anomalies in (a) observations and (b) AGCMs associated with the leading SVD
mode of winter SAT anomalies between observations and simulations over 20-90°N; 120°E-60°W,
which are derived by regressing their anomalies onto the respective normalized expansion
coefficients, 1.e., ECoss and ECacem. Regressions based on simulations are calculated using the
total 96 members of multi-model simulations, i.e., with a total combined time series of 3360
winters. The green lines, with the two end points of (35°N, 100°E) and (90°N, 320°W), represents
the axis linking the two SAT anomalous centers of the WACC pattern used for the cross-sections
shown in Fig. 3. Areas with stippled purple dots indicate the shaded anomalies surpassing the 95%
significance level.
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FIG. 2. Same as in Fig. 1, but for SAT (shading) and PS (contours) anomalies in observations (a;
duplicated from Fig. 1a), and simulations based on individual models (b-1).
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FIG. 3. Longitude-height cross-sections of T (shading) and Z (contours, dashed when negative)
anomalies associated the WACC pattern in (a) observations and (b) simulations. These anomalies
are derived by regressions onto normalized ECoss and ECacem and averaged over a 10-degree
latitude band (5 degree north and south) along the green lines in Fig. 1. As in Fig. 1, regressions
based on models are calculated using the total 96 members of multi-model simulations.

34

Accepted for publicatithin°Journal of Clirnate. DO F0P175/JCLID<20-088 7 < 03121 0837 FMUTC



781

782

783

784

785

786

'4 | T T 1 | T T 1 | T T 1 | T T 1 | T T 1 | T T 1 | [

1980 1985 1990 1995 2000 2005 2010
Year

FIG. 4. The normalized EC time series for the observations (red; ECogs), and AGCM simulations
for individual members (grey) along with the mean averaged over 96 ensemble members (blue;

EAGCM)-
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791 FIG. 5. The second leading internal SAT variability mode (shading; dotted areas for 95%
792 significance level) and associated PS (contours, dashed if negative; interval: 0.4 hPa) anomalies
793  based on multi-model simulations as derived by an EOF analysis of intra-ensemble SAT anomalies
794  over 20-90°N; 120E-60°W. Intra-ensemble SAT anomalies are defined as the deviations of
795  detrended winter SAT anomalies from ensemble-mean fields across model simulations. SAT and
796  PS anomalies shown here are obtained by regressions onto the principal component (PC) of the
797  EOF2 of the internal SAT variability mode. The first EOF mode is associated with the El Nifio.
798
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FIG. 6. (a) Regression patterns of SST (shading; dotted areas for 95% statistical significance level)
and SIC (contours, dashed when negative; interval: 2%) anomalies onto ECogs; (b-¢) Time series
of SST (red) and SIC (blue) indices along with ECogs (black). The SST and SIC indices series are
calculated by projecting winter SST anomalies over 10-65°N; 120° E-120°W and SIC anomalies
over 50-75° N; 140°E-160° W onto their corresponding patterns in (a). Note that the signal of the
SIC index is reversed so that a positive SIC index corresponds to reduced SIC over CBS.
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FIG. 7. Same as in Fig. 6 but for (a) regression patterns of SST and SIC anomalies onto ECaccm

and (b,c) time series of SST, SIC, and ECaccem based on model simulations. Note that the SST
and SIC time series are different between Figs. 6b,c and Figs. 7b,c, although highly correlated, due
to slight differences in the regression patterns between observations (Fig. 6a) and models (Fig. 7a).
Also see details in the text.
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FIG. 8. Same as Figs. 6a and 7a, but for regressed SST and SIC patterns based on individual model
simulations (b-1). The observational counterpart is also shown in (a), which 1s duplicated from Fig.
6a.

39

Accepted for publicatithin°Journal of Clirnate. DO F0P175/JCLID<20-088 7 < 03121 0837 FMUTC



826

(a) SST EOF1 99.1% (b) SST EOF2 10.6%

3 0.6
s A e 04

40N 1 e WON o o . 02
2N | @0 gl k 20N { il i 0

SR NI 02

60N - e 60N

208 — 77— 208 T — T 06
120E  150E 180 150W 120W 120E  150E 180  150W  120W 88T (K)

(c) PC1-SAT, PS &500hPa WAF (d) PC2-SAT, PS &500hPa WAF

0.4

04

827

828  FIG. 9. Spatial patterns of SST anomalies associated with the first (a) and second (b) EOF mode
829  of the observed winter SST anomalies over 120°E-105°W; 30°S-65°N from 1979-2013, derived
830 by regressing winter SST anomalies onto the normalized PC; and PC; of the two leading
831  interannual SST mode; (c, d) Regressed anomalous SAT (shading; dotted areas for 95%
832  significance level) and PS (contours; dashed when negative with intervals of 0.5 hPa) onto the
833  normalized PCs, and associated wave activity flux (WAF) at 500hPa (vectors; plotted only where
834  WAFs are greater than 0.1 m? s?). The 2-D WAF is calculated based on similarly regressed
835  streamfunction anomalies following Takaya and Nakamura (2001). All variables in this figure are
836  based on observations.
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FIG. 10. Time series of the observed WACC variability (ECogs; black; duplicated from Fig. 3)
and the WACC time series associated with the two leading SST modes in Fig. 9: a) EOF; (El
Nino/La Nina), b) EOF2 (NPM), (¢c) EOF1+EOF,. The WACC coefficient associated with each
EOF mode is derived by projecting its related SAT anomalous pattern, constructed by the regressed
anomalous SAT distribution (Fig. 9) weighted by the PC of the EOF mode in each winter, onto
SAT anomalies of the observed WACC pattern over 20-90°N; 120° E-60°W in Fig. 1a.
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FIG. 11. a) Same as in Fig. 3 but with model results only based on 36 members from three AGCMs,
1.e., CAM4, ECHAMS, and ESRL-GFSv2); b.,c) Same as in a), but for model results based on the
FACTS experiment “amip clim polar” and “eofl sst”, respectively. ECs for each model member
during the 35 winters in the “amip clim polar” and “eofl sst” experiments are derived by
projecting the winter SAT anomalies onto the singular vector of the model WACC pattern (i.e., Fig.
1b).
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860  FIG. 12. Total WACC variance in observations and eight AGCMs (yellow bars, scaled by variance
861  1n observations). The red squares indicate total forced WACC variance, calculated based on the
862  ensemble-mean ECacem from each model. WACC variances explained by NP SST (blue bars) and
863  CBS sea ice (grey bars) are estimated by 1> between ECs in observations or simulations from all
84  available members and the SST / SIC indices (error bars represent one standard deviation of
865  explained variances across ensemble members). Variances explained by a combination of NP SST
866  and CBS sea ice anomalies are denoted by dark green dots. See text for more details.
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