Efficient Assessment of State Liveness in
Open, Irreversible, Dynamically Routed,
Zone-Controlled Guidepath-based
Transport Systems:

The General Case

S. Reveliotis * T. Masopust **

* School of Industrial & Systems Engineering
Georgia Institute of Technology, USA
(email: spyros@isye.gatech.edu)

** Institute of Mathematics
Czech Academy of Sciences
(email: masopust@math.cas.cz)

Abstract: Open, irreversible, dynamically routed, zone-controlled guidepath-based transport
systems model the operation of many automated unit-load material handling systems that
are used in various production and distribution facilities. An important requirement for these
systems is to preserve the system liveness — i.e., the ability of each system agent to reach any
location of the underlying guidepath network — by blocking those traffic states that will result
in deadlock and/or livelock. The remaining set of traffic states are characterized as “live”. The
worst-case computational complexity of the decision problem of assessing the state liveness in the
considered class of transport systems is an open issue. This work capitalizes upon some recent
developments on the problem of assessing state liveness in the considered transport systems in
order to provide a novel algorithm for this problem. The worst-case computational complexity of
this algorithm is not polynomially bounded with respect to the size of the underlying transport
system, but the empirical complexity of the algorithm is expected to be very benign for the
reasons that are explained in the paper.

Keywords: Guidepath-based traffic systems; traffic liveness analysis and enforcement; deadlock

avoidance; discrete event systems

1. INTRODUCTION

Motivation and an operational characterization of
the guidepath-based transport systems considered
in this work: Open, irreversible, dynamically routed,
zone-controlled, guidepath-based transport systems is a
modeling abstraction for the traffic dynamics in many
industrial material handling systems (MHS); some specific
examples of these systems include the automated guided
vehicle (AGV) systems that are used in various production
and distribution facilities, the overhead monorail systems
that are used in modern semiconductor fabs, and the
complex crane systems that are used in various major
ports and railway yards (Heragu (2008)).

In all these environments, the system “agents” that per-
form the transporting operations are moving through the
links of a complex guidepath network that is defined either
by the physical structure of the transport system itself
(as in the case of the overhead monorail and the crane
systems), or it is enforced externally in an effort to isolate
the traffic that takes place in these systems from its sur-
rounding environment (as in the case of the AGV systems).

Furthermore, in an effort to ensure collision-free operation
among the traveling agents, it is further stipulated that

each link of the underlying guidepath network cannot
be occupied by more than one agent at a time. In the
corresponding terminology, these links are characterized as
the “zones” of the guidepath network. The advancement of
an agent from its current zone to a neighboring one must
be negotiated with the traffic coordinator, and it can be
granted only if the requested zone is currently free.!

More generally, the zone-based control scheme that was
described in the previous paragraph, turns the agent
trips between their various destinations into a “resource
allocation” process where the requested resources are the
necessary zones of the guidepath network. Also, in the
considered class of guidepath-based transport systems,
the agent routes among their different destinations are
synthesized dynamically, one zone at a time, based on the
prevailing conditions and the experienced congestion in the
underlying guidepath network.

Furthermore, agents can move only in the forward direc-
tion of their longitudinal axis, which implies a notion of
“irreversibility” for their motion; in particular, in the con-

I This last condition further implies that zone swapping among
agents that occupy neighboring zones of the underlying guidepath
network, is prohibited.

sidered guidepath-based transport systems, agents cannot
“back up” within their current zone.

Finally, the considered guidepath-based transport systems
are also “open”, in that they possess a “home” location
where all idling agents can retire, possibly receiving ser-
vice, recharging their batteries, etc.

The problem of liveness-enforcing supervision in
the considered transport systems, and a brief lit-
erature review: The guidepath networks of the consid-
ered transport systems are supposed to be connected and
with a minimal vertex degree of 2 (since the presumed
irreversibility of the agent motion further implies that an
agent reaching a vertex of degree 1 would get stuck at that
vertex). But, otherwise, the topology of these guidepath
networks can be quite arbitrary. This arbitrary structure
of the guidepath network, when combined with the dy-
namic and irreversible routing of the system agents that
was described in the previous paragraphs, further imply
that the considered transport systems are susceptible to
deadlock and/or livelock.

Hence, a significant task of the traffic coordinator is to
restrict further the aforementioned zone allocation process
in order to establish “traffic liveness”. In practical terms,
traffic liveness implies the preservation of the ability of
each traveling agent to complete successfully its current
“mission” trip and engage repetitively into similar “mis-
sion” trips in the future. On the other hand, an analytical
characterization of this concept can be provided using
concepts and representations borrowed from the Discrete
Event Systems (DES) theory (Cassandras and Lafortune
(2008)). Indeed, recognizing also the connection of the
considered traffic dynamics to the notion of “sequential
resource allocation” that was mentioned in the previous
paragraphs, a group of researchers from the DES commu-
nity has tried to establish liveness-enforcing supervision
(LES)? for the considered transport systems by adapting
to this problem ideas and techniques that have been devel-
oped for LES synthesis in the context of the more general
resource allocation systems studied in Reveliotis (2017).
Some characteristic examples of this line of past work on
the considered supervisory control problem can be found
in Reveliotis (2000); Wu and Zhou (2001); Fanti (2002).

More recently, in some work of ours presented in Reveliotis
and Masopust (2019, 2020), we have tried to address
the further notion of “maximal permissiveness” for the
considered supervisory control problem. It turns out that
the underlying traffic will be live as long as the system
retains its ability to bring all traveling agents to the
“home” location (without necessarily having completed
their “mission” trips). This result further motivates the
definition of a “live” traffic state as any state that is
co-reachable to the aforementioned traffic state where all
agents are at the “home” location; this last state will be
characterized as the “home” traffic state in the following.
Furthermore, the maximally permissive LES will admit an
agent advancement to a requested neighboring zone if and
only if (iff) this zone is currently free and the resulting
traffic state is live.

2 In the following, LES will imply either “liveness-enforcing super-
vision” or “liveness-enforcing supervisor”, depending on the context.

But the computational complexity of the decision prob-
lem of assessing traffic-state liveness in the considered
guidepath-based transport systems is currently an open
issue. Motivated by this situation, in Reveliotis and Maso-
pust (2019, 2020) we have been able to identify classes
of states from the considered transport systems where
liveness assessment can be performed with worst-case
complexity that is polynomial with respect to the size
of the underlying guidepath network. Furthermore, the
corresponding results of Reveliotis and Masopust (2020)
develop an entire methodological framework — in terms
of novel representations for the dynamics of the underly-
ing traffic, and the supporting computational techniques
— that eventually provides the aforementioned liveness-
assessment algorithm for the traffic-state class that is the
focus of that work.

The intended contribution and the further content
of this work: In this work, we extend the developments
of Reveliotis and Masopust (2020) in order to provide an
efficient liveness-assessment algorithm for the entire set of
traffic states that can arise in the considered transport
systems. More specifically, this new algorithm cannot be
claimed to be of polynomial worst-case complexity with
respect to the size of the underlying transport system,
but still it is expected to possess a very benign empirical
complexity, due to the way that it takes advantage of, and
it builds upon, the various representations, the analytical
results, and the broader insights that have been developed
in Reveliotis and Masopust (2020). This last assessment is
supported by the technical developments that are provided
in the later parts of the paper, and by some expository
examples.

In view of the above positioning of the paper content and
its intended contribution, the rest of it is structured as
follows: The next section provides a more formal char-
acterization of the structure and the traffic dynamics of
the considered transport systems, and of the notion of
“traffic state liveness” that is at the center of this work.
Section 3 overviews the results of Reveliotis and Masopust
(2020) that enable the developments to be presented in this
work. These new developments themselves are presented
in Section 4. Finally, Section 5 concludes the paper and
suggests some directions for future work. 3

2. A FORMAL CHARACTERIZATION OF THE
CONSIDERED TRANSPORT SYSTEMS AND THE
CORRESPONDING PROBLEM OF ASSESSING
STATE LIVENESS

A formal representation of the considered transport sys-
tems is provided by the tuple (A, G), where A denotes
the set of the system agents, and G is the underlying
guidepath network. More specifically, G = (V, E U {h})
is an undirected connected multi-graph with a minimal
vertex degree of 2. The edge set E corresponds to the set
of zones of the guidepath network, while h is a self-loop
edge that represents the “home” location of the underlying

3 Due to the imposed space limitations, Sections 2 and 3 provide
the minimal possible information that is necessary for a meaningful
discussion of the main results of Section 4. The reader is referred to
Reveliotis and Masopust (2019, 2020) for a more expansive treatment
of this material.

transport system. We shall also use the notation v to
denote the single terminal vertex of the self-loop edge h.

Since in the liveness-assessment problem that is considered
in this work all agents are destined to the “home” location
h, there is no need to maintain a distinct identity for each
agent. Hence, we can define the “traffic state” s by (i) the
distribution of the system agents on the various edges of
the underlying guidepath network, and (ii) for those agents
that are located on an edge e # h, we must also encode
the orientation of their motion in their current edges. A
pertinent encoding of the traffic state s is by a partially
directed graph (PDG) G(s); this graph is obtained from
the original graph G by turning each edge e € E that is
occupied by some traveling agent a in s into a directed
edge that indicates the direction of motion of agent a on
this edge. State s evolves by advancing a single agent a
from its current edge e(a; s) to a neighboring edge €’ that
(a) is free in s and (b) the corresponding advancement is
consistent with the direction of motion of agent a.

Let S denote the entire set of traffic states under the above
representation. Clearly, .S is finite, and the dynamics that
are defined in the previous paragraph define a finite state
automaton (FSA) & (Cassandras and Lafortune (2008)).
In the following, we shall use the notation s; to denote
the “home” state, i.e., the state where all agents a € A
are located on the “home” edge h. Furthermore, a traffic
state s € S will be characterized as “live” iff it is co-
reachable to state sp, in the dynamics of ®. Let S; denote
the set of all live states of ®. Then, the problem addressed
in this work is as follows: Given a traffic state s € S, does
s belong in S;7

As remarked in the introductory section, in Reveliotis
and Masopust (2020) we have developed an algorithm for
resolving efficiently this state-liveness assessment problem
for a particular traffic-state subclass. The efficiency of this
algorithm results from a pertinent processing of the infor-
mation that is encoded in the aforementioned PDG G(s).
We review the main results of Reveliotis and Masopust
(2020) in the next section, and in Section 4 we shall extend
these results to an algorithm that will provide efficient
liveness assessment for any state s € S.

3. THE METHODOLOGICAL DEVELOPMENTS OF
REVELIOTIS AND MASOPUST (2020)

Representations: In the first part of this section we
present a series of more compressed representations of
the traffic state s, that are induced by the PDG G(s)
and will enable an efficient computation of an agent-
advancing event sequence that leads from the considered
state s to the target state s, whenever such a sequence
exists. These representations are introduced through an
extensive sequence of definitions, and the reader is also
referred to Figure 1 for some concrete examples of the
various concepts and structures that are introduced by
these definitions.

Given a PDG G’(s), we define a path 7 in this graph as a
sequence m = (Vg, €1,V1,€2,...,€n, V), n > 0, where, for
i =0,...,n, the elements v;, belong to the vertex set V
of G (s), and each element e; appearing in this sequence is
an edge connecting the vertices v;_1 and v;. Furthermore,

C
v 3

p

s |2
pass ®— .

(a) A PDG é(s) and the "chain"
recognized in it.

structure that is

LI” —
An unavoidable deadlock [

Sy o
%@H@D

(b) "/l:he condensation C(G(s)) of the above PDG
G(s) and its u—connected components

Fig. 1. This figure exemplifies the definitions and the
technical results that are provided in Section 3.

if an edge e; is a directed edge in G(s), then its direction
must be from vertex v;_1 to vertex v;; hence, the sense of
direction that is induced for path 7 by the ordering of its
vertices v;, © = 0,...,n, is consistent with the direction
of motion that is implied by the directed edges of the
PDG G(s). A path = is simple iff all of its vertices are
distinct. A cycle ¢ of PDG G(s) has a structure similar
to that of a simple path, but it contains at least one edge
and the starting and the ending vertices, vg and v,, are
coinciding. 4 A joint between two cycles ¢ and ¢’ is a simple
path 7 that belongs to both cycles. A pass between two
cycles ¢ and ¢’ is a simple path 7 such that its first vertex
lies on ¢, its last vertex lies on ¢/, and all of the edges of =
are undirected and do not belong on either ¢ or ¢/, or on
any other (directed) cycle of PDG G(s). Finally, an edge
e of the original guidepath graph G is (on) a bridge of this
graph iff it does not belong on any of its cycles; hence,
the removal of a bridge-edge disconnects the entire graph
into two subgraphs.

The concepts that are introduced in the next definition
play a very central role in the subsequent developments.

Definition 1. A chain ch of PDG G(s) is the subgraph that
is induced by the sequence ch = {(¢1, 72, Co, T3, ..., T, Cn),
n > 1, where: (i) ¢;, @ = 1,...,n, are cycles; (ii) m;, i =
2,...,n, are simple paths; and (iii) each path 7; is a joint
or a pass between cycles ¢;_1 and ¢;.

Furthermore, two edges e,e’ € E will be characterized as
chain-connected (or, more simply, as chained) iff there
exists a chain ch that contains both e and ¢’.

Finally, graph é(s) will be characterized as chained iff
every two edges e,e’ € F are chained. O

Chain connectivity is symmetric and transitive, and there-
fore, we can consider the mazimal chains of a given PDG
G(s). The subgraphs of PDG G(s) that are induced by
these maximal chains are characterized as the chained
components of G(s). Furthermore, the PDG C(G(s)) that
is obtained by replacing each of the chained components of

4 Hence, according to this definition of the “cycle” concept, an edge
that constitutes a “self-loop” (like the “home” edge h) is a cycle, but
a single vertex is not.

G(s) by a simple vertex, is called the condensation of G(s).

Vertices of C(G(s)) that correspond to chained components
of G(s) will be characterized as the macro-vertices of the

new PDG C(G(s)), while the remaining vertices of C(G(s))
will be characterized as simple.

By its construction, condensation C(G(s)) is an acyclic

PDG. Furthermore, each path 7 in C(G(s)) that connects
two different macro-vertices v and vy, contains a directed
edge (since otherwise, the chains corresponding to the
macro-vertices v; and vy would not be maximal).

The next abstraction is defined on PDG C(G(s)) and

distinguishes the subgraphs of C(G(s)) that (i) contain no
directed edges, and (ii) are connected to the complement

part of C(G(s)) by directed edges only.
Definition 2. An undirected component (or, more simply,

u-component) in condensation C(G(s)) is a maximal con-

nected subgraph C, of C(G(s)) that contains no directed

edges. The edges of C(G(s)) that point to C, are the inputs
of C,, and those that point away from C, are the outputs
of C,. Cy is a source if it has no inputs, and a sink if it
has no outputs. Finally, C,, is a complex u-component if it

contains a macro-vertex of the condensed PDG C(G(s)),
and a simple u-component otherwise. O

A u-component, C,, in condensation C(G(s)) is an undi-
rected tree and it contains at most one macro-vertex of this
condensation. Furthermore, the set of the u-components

of C(G(s)) is partially ordered by the directed edges of
this graph. In the following, we shall work primarily with

the directed acyclic (multi-)graph (DAG) U(G(s)) that is

obtained by the condensation C(G(s)) by replacing each

u-component of C(G(s)) by a single vertex. Also, in order
to distinguish this graph structure from the previous ones,
we shall refer to the vertices of this DAG as “nodes” to be
denoted by n. And we shall associate a notion of “capacity”
with each node n of DAG U(G(s)) as follows:

Definition 3. For each node n of DAG U(G(s)) the cor-
responding capacity x(n) is defined as follows: For the

nodes n of U(G(s)) that correspond to simple vertices of
the original guidepath graph G, as well as for those nodes

n of U(G(s)) that correspond to simple u-components of
C(G(s)), the corresponding capacity x(n) is set equal to

zero. On the other hand, a node n of U(G(s)) represent-

ing a complex u-component C, of C(G(s)), will have its
capacity x(n) set equal to the number of free edges on
the cycles of the chained component that constitutes the
unique macro-vertex of C,. Furthermore, for the vertex ny,

of DAG U(G(s)) that contains the “home” edge h, we set
x(np) = o00. O

Finally, an even more compact representation of the DAG
U(G(s)) that is particularly convenient for the algorith-
mic developments that were pursued in Reveliotis and
Masopust (2020) and also for the developments to be
presented in the next section, can be obtained as follows:
(I) This representation recognizes as the “(major) nodes”
of DAG U(G(s)) those nodes that (i) either correspond to
a complex u-component, or (ii) have their in-degree or out-

degree greater than 1. (II) Furthermore, it replaces each
simple path 7 that connects a major nodal pair (ni,ns2)

and contains only non-major nodes of U(G(s)) as interior
nodes, by a single directed edge (n1,n2) weighted by the
number of edges in path m; in the following, we shall
denote the weight of such an edge (ny,n2) by w(ni,ns),
and unless stated otherwise, we shall assume that the

considered DAGs U(G(s)) are encoded according to this
more compact representation.

The work of Reveliotis and Masopust (2020) also provides
a detailed algorithm for the construction of the weighted
DAG U(G(s)) from the original PDG G(s) and for the
computation of the corresponding nodal capacities x(n).
The worst-case computational complexity of this algo-
rithm is O(|V| + |E|), where V and E are, respectively,
the vertex set and the zone set of the underlying guide-
path network. Therefore, the construction of this more
compressed representation of any given traffic state s is
very efficient.

Inference: The nodal capacities x(n) of the DAG U(G(s))
that are defined in Definition 3, denote the maximal num-
bers of additional agents that can be absorbed in the corre-
sponding nodes n from the incoming edges to these nodes,
without compromising the chained structure associated
with these nodes. In particular, given an edge (ni,ns)

of DAG U(G(s)) with w(ny,ne) < x(n2), it is possible
to advance all the agents on edge (ni,n2) into node na,
obtaining, thus, a new maximal chained component in the
resulting state s’ that contains the chained components of
both nodes n; and ng (now linked through the new pass
that is defined by the freed edge (n1,n2)). On the other

hand, terminal nodes of the DAG U(G(s)) with zero ca-
pacity indicate the development of unavoidable deadlocks
in any trace that emanates from the corresponding state
s. Furthermore, the presumed connectivity properties for
the guidepath network G imply that the condensation
C(G(sp)) for the “home” state s, will consist of a single

chained component, and the corresponding DAG U(G(s))
will consist of a single node nj, of infinite capacity. Finally,
the above remarks further imply that, in the semantics of
the DAG U(G(s)), the construction of an agent-advancing
event sequence that will collect all agents a € A to the

“home” edge h, reduces to the identification of a series of

“merging” operations on the DAG U(G(s)) that will keep

reducing the number of nodes of the DAGs U(G(s;)) that
correspond to the derived state sequence (sq,$a,...), by
reducing the maximal chained components in these states.

In order to ensure the computational efficiency of the
resulting algorithm, we are particularly interested in, so
called, “producer” mergers, i.e., merging operations that
when executed on the current DAG U(G(s)) will only
enhance the merging potential among the remaining nodes
of this DAG, and therefore, there is no need to backtrack
on these mergers during the search for a complete merging
sequence leading to the “home” state sj. Next, we present
two such “producer” mergers that have been identified in
Reveliotis and Masopust (2020).

Definition 4. Consider a DAG U(G(s)) and a path © =
(ny,e1,n9,€a,...,e5_1,n) in it. Furthermore, let x(n;)

denote the capacity of node n;, fori =1,...,k, and w(e;)
denote the weight associated with edgee;, 7 =1,...,k—1.
Then, we have the following definitions:

(1) Path 7w defines a feasible path-based merger of its
nodes n;,i = 1,...0k, ¢ff Vi = 1,...k — 1,
k k—1
Zj:iJrl x(nj) — Zj:i w(e;) > 0.
(2) Path 7 constitutes a minimal feasible path-based
merger emanating from node n; if, in addition to
(1) above, it also holds that Vi = 2,...,k — 1,
i i—1
i X(ny) = 325 w(e;) <0.
(3) Finally, path 7 is a minimal feasible path-based
“producer” merger if, in addition to (1) and (2)
above, it also holds that Vi = 2,... k&, Z?Zl x(n;) —

>5or wles) = x(ni). O

Definition 5. Consider a DAG U(G(s)) and two paths
w1 and mo with the same starting and ending nodes nq
and ne, and no other common nodes or edges among
them. Furthermore, assume that (at least) one of these
two paths is a feasible merger (according to part #l1
of Definition 4). Then, paths m; and 7o define a cycle-
generating “producer” merger. O

Definition 4 is self-explanatory. As for Definition 5, notice
that the clearance of (let’s say) path m; from its occupying
agents will lead to a new state s’ that will possess a new
cycle in the corresponding PDG G’(s’) consisting of the
undirected edges of the cleared path m; and the directed
edges of path m5. This newly formed cycle implies that the
freed edges of path 7 will be part of the nodal capacity
of the new node that will result from the effected merging,
and therefore, this merger can only improve the merging

potential of the remaining nodes of the DAG U(G(s)).

In Reveliotis and Masopust (2020), we focused on the
particular class of traffic states s € S for which the undi-
rected graph induced by the DAG U(G(s)) is a tree. These
states are not amenable to “cycle-generating” mergers.
Hence, we developed a greedy algorithm for the resolution
of the corresponding liveness-assessment problem, based
on a systematic detection and execution of feasible path-
based “producer” mergers that are interleaved with the
execution of some additional feasible (but not necessarily
“producer”) mergers which are unavoidable due to the

tree structure of DAG U(G(s)). In the next section we ex-
tend the original developments of Reveliotis and Masopust
(2020) to an algorithm that can assess the liveness of any
traffic state s € S from the considered transport systems.
At the core of this extension is a new methodology for
searching for feasible path-based “producer” mergers and
“cycle-generating” mergers in the DAG U(G(s)) that is
processed at each major iteration of the algorithm.

4. MAIN RESULTS

Preamble: As already stated in the previous section, the
algorithm to be presented in the following will take as
input a given traffic state s € S, and it will seek to
construct an agent-advancing event sequence that will lead
from the considered state s to the “home” state s;. This
will be attained by performing a sequence of mergers on

the DAGs U(G(s;)), where (s;,¢ = 0,1,2...) denotes the

sequence of traffic states with so = s and s;, i =1,2,.. .,
being the traffic states that result from the execution of
the aforementioned mergers.

At every state s;, i = 0,1,2,..., the algorithm will
construct the corresponding DAG U(G(s;)), and as in
the case of the corresponding algorithm in Reveliotis and
Masopust (2020), it will first check for paths in the DAG

U(G(s;)) that either

(1) are directed to the “home” node nj, and therefore,
the corresponding agents can be immediately ab-
sorbed into this node; or

(2) emanate from node nj and define minimal feasible
mergers (the infinite capacity of the starting node ny,
for these paths further implies that the corresponding
feasible mergers will also be “producers” — c.f. part
#3 of Definition 4).°

The search for the above two types of paths, and the
execution of the corresponding mergers, will be carried
out in an iterative manner, and the completion of this pre-
processing stage might either lead to the total absorption
of all agents into node ny, in which case, the current state
s;, and also the original state s, can be declared to be
live, or it will result in a new state s, where the node

ny, of the corresponding DAG U(G(s;)) will be a “source”
node of this DAG, and there will be no “producer” merger
originating from this node. At this point, the algorithm

will need to search for a pertinent feasible merger in

the new DAG U(G(s})), or infer the non-liveness of the
considered state s.

The search for a pertinent merger will be facilitated bAy the
imposition of a layering structure on the DAG U(G(s}))
that is defined through the following recursion:

(1) Nodes belonging into layer 1 are node n; and every
other node n that is reachable from node n;, through

a directed path of DAG U(G(s})). Also, the edges on
all those paths are labeled as “layer 1”7 edges.

(2) Assuming that layers 1,...,j are well defined, layer
7+ 1 is defined as follows:
(a) If 41 is an odd number, layer j + 1 contains all

nodes n of DAG U(G(s})) that are reachable from
some node n’ of layer j through paths consisting
of edges that do not belong in any of the layers
1,...,7; the edges of all these paths are also
labeled as “layer-(j + 1)” edges.

(b) If j+1 is an even number, layer j+ 1 contains all

nodes n of DAG U(G(s})) that are co-reachable to
some node n’ of layer j through paths consisting
of edges that do not belong in any of the layers
1,...,7; the edges of all these paths are also
labeled as “layer-(j + 1)” edges.

The above layering structure for the considered DAGs was
also used in Reveliotis and Masopust (2020), and it is
motivated by an intention to capture the orientation of
the agent motion on the various edges of these DAGs with
respect to their “source” node ny. More specifically, edges
with an odd “layer” number are occupied by agents that

5 An efficient method for searching for this second set of paths is
provided in a later part of this section.

are heading away from node n; in the underlying DAG
U(G(s})), while edges with an even “layer” number are
occupied by agents that are moving in the direction of
node ny. This understanding is important for the further
specification of the processing that will take place within
each of these layers.

The proposed algorithm will search for a pertinent merger
in the DAG L{(é’(sé)) on a layer-by-layer basis, starting
with the largest numbered layer. The detailed logic for
conducting this search is a novel development of this work
and the subject of the next paragraphs.

Searching for a feasible “producer” merger within
a single layer: As already discussed, a key concept
underlying the execution logic of the considered algorithm
is that of a feasible “producer” merger. In particular,
Definitions 4 and 5 characterize two such “producer”
mergers, respectively known as path-based and cycle-
generating. Next, we outline a procedure that will search

for such mergers in any given layer of the DAGs U(G(s}))
to be processed by the considered algorithm.
We start by noticing that the edges of some layer j of

DAG U(G(s})), together with their terminal nodes, define

an acyclic subnet of DAG U(G(s})); for further reference,
let us denote this subnet by G; = (N, &;).¢ Since G; is
acyclic, we can determine a topological ordering o,(-) of its
nodes, i.e., a bijective mapping from Nj to {1,...,|N;|}
such that any edge (n1,n2) € &; will have 0;(n1) < 0;(n2);
an efficient algorithm for the computation of o;(-) can
be found in Ahuja et al. (1993). Nodes n € N; will be
processed one at a time, in increasing value of o;(n),
searching for a minimal feasible path-based merger that
will emanate from node n and it will specify a “producer”
merger of one of the two categories mentioned above.

For any given node n € N, the aforementioned search
is organized as follows: First, we compute the subnet
S;j(n) of G; that consists of node n itself and all of its
successors in net G;; this computation can be performed
by a basic forward-reaching algorithm. Then, we execute
the following recursion on the nodes u of the net S;(n):
if wu=n then §(u)=0;
: !/ /
else d(u) = u/EImPrISil(I}L;Sj(n)){(S(u)+w(u',w)}—x(u). (1)
In the above equation, ImPred(u;S;(n)) is the set col-
lecting the nodes u' of Sj(n) with an edge (v, v) in this
net, i.e., the “immediate predecessors” of node u in S;(n).
Then, the reader can verify that, for any node u # n, §(u)
expresses the minimal capacity deficit for establishing a
feasible path-based merger spanning from node n to node
u; in particular, §(u) < 0 implies the presence of such a
feasible path-based merger for node wu.

Hence, the proposed algorithm will execute the recursion
of Equation 1 until it detects a node u # n with §(u) < 0.
At this point, the algorithm will check whether the de-
tected path-based feasible merger also implies the presence
of a “producer” merger. More specifically, the algorithm
will perform the following two tests:

6 For a complete understanding of this net, we also notice that the
undirected graph that is induced by it is not necessarily a connected
graph.

e Testing for a cycle-generating “producer”
merger: If it holds |ImPred(u;S;(n))| > 1 for the
aforementioned node wu, then, the feasibility of the
detected path-based merger implies the existence of
a cyclical merger between some node v’ on the path
7w that corresponds to aforementioned merger, and
node v itself. Node u' can be detected by scanning
the nodes of path =, starting from node n itself,
and searching for a node v’ for which there exists a
path 7/ (u’) from node ' to node u with no common
interior nodes with path .

e Testing for a path-based “producer” merger:
If |ImPred(u;S;(n))| = 1, the algorithm will check
whether the path 7 that corresponds to the detected
feasible merger is also a “producer”. This can be
checked through the conditions of item #3 of Defi-
nition 4. In the semantics of the considered algorithm
that were defined in the previous paragraphs, these
conditions can be expressed as follows:

Vu' € with o’ #n, x(n)—x@) > 6(u) (2)

As soon as one of the above two tests is satisfied, the algo-
rithm will execute the corresponding “producer” merger
on the underlying traffic state s}, and proceed with the
execution of a new major iteration on the resulting traffic
state s;11 (along the lines explained in the opening part
of this section). Otherwise, the algorithm will continue
the exploration of the current layer j, by continuing the
execution of the recursion of Equation 1, and possibly
initiating the processing of the next node n’, according
to the topological ordering o,(-), if the execution of the
recursion upon the net S;(n) has already been completed.
In this way, the algorithm will detect and execute any
possible “producer” merger in the considered layer j of
the DAG U(G(s))).

An outline of the entire algorithm: Having described
the complete processing of a single layer of the DAGs
U(G(s))) in an effort to detect the feasible “producer”
mergers in it, next we outline how this capability can define
a basis for a complete algorithm that will effectively assess
the liveness of any input traffic state s € S.

As already mentioned in the preamble of this section, the
algorithm will start with the DAG ¢(G(s)) and it will go
through a series of major iterations. Each such iteration
either (i) will terminate with an executed merger, or (ii)
will return a liveness assessment for the evaluated state s.

More specifically, the algorithm will terminate at its i-
th iteration declaring the considered state as live iff

the corresponding DAG U(G(s;)) or U(G(s;)) has been
reduced to a single node.

Furthermore, while processing a given layer j in the
current DAG U(G(s})), the algorithm will either manage
to eliminate this layer from the subsequent states, through
the execution of some “producer” mergers, or it will
execute all possible such mergers without eliminating this
layer. If this processed but non-eliminated layer is even-
numbered, then all agents located on the edges of this
layer are destined towards the “home” node nj, and
the algorithm will just maintain this layer structure in
the subsequent DAGs, recognizing that all these agents
eventually will reach the “home” node nj; under a positive

outcome of the processing of the remaining layers of the
DAG. In the meantime, by going through the processing
of this layer, the algorithm has extracted from this layer
the maximal possible capacity that can be utilized in the
processing of the remaining (smaller-numbered) layers.

On the other hand, if the processed but non-eliminated
layer is odd-numbered, then, the algorithm first must
check that the terminal nodes of this layer do not imply
any unavoidable deadlock. This will happen if there is a
terminal node with no adequate capacity to effect a merger
between this node and one of its immediate predecessors
in, both, the considered layer 57 and also in layer j + 1
(if such a layer is present). As soon as such a situation
is detected, the algorithm will exit declaring the original
state s as non-live. In the remaining cases, the algorithm
will proceed to check whether a terminal node n has
sufficient capacity x(n) to merge (i) simultaneously with
all its immediate predecessors in the considered layer, or
(ii) with only one particular immediate predecessor. If such
a node n is detected, the corresponding merger will be
executed immediately, and the algorithm will proceed to
its next major iteration. Finally, if all terminal nodes in the
considered layer can merge with some (more than one) of
their predecessors, but not all, then, the algorithm is faced
with “choice”, and this choice will be resolved through a
“branching” process; in particular, each possible merger of
a terminal node n with one of the immediate predecessors
n' will define a separate branch for the algorithm. For
each selected branch, the algorithm will pursue the entire
subtree of the underlying search process, and either it
will terminate with a positive decision within this subtree,
or it will return to this branching node and pursue an
alternative unexplored branch.

Next, we demonstrate the execution logic of the proposed
algorithm through a specific example.

Example: In this example we apply the presented algo-
rithm to a traffic state s possessing the DAG U(G(s))
that is depicted at the left-top part of Figure 2. In fact,
Figure 2 presents the complete execution of the algorithm.
For each depicted DAG in this figure, black labels within
each node n; denote the corresponding nodal capacity
X(n;), while black labels on the graph edges (n;,n;) denote
the corresponding weights w(n;, n;). Red labels denote the
layer number of each edge (and this information can be
used in order to deduce the layer number of each node in
the graph, as well).

Since node ny is a “source” node of the depicted DAG

U(G(s)), the algorithm starts its first iteration by search-
ing for “producer” mergers in layer 4. The blue numbers
that are reported next to each of the nodes ns, ng and
nz, that are the terminal nodes for layer-4 edges in DAG
U(G(s)), are the 6-values that are computed through the
recursion of Equation 1 during this first iteration of the
algorithm. From these values we can see that there is a
feasible path-based merger between node n; and node ns,
and this path-based merger is indicated with the green
arrows in this DAG. Furthermore, since node ns has two
incoming arrows in the Sy(ny) subnet, the presence of the
aforementioned merger further implies the presence of a
cycle-generating “producer” merger. Also, the presence of
the alternative path from node n; to node ns implies that

the newly generated cycle will involve all nodes nj, ng and

n7. Finally, the depicted DAG U(G(s)) also reveals the
internal structure of the u-component that corresponds to
node ny7, and we can see that there is an undirected edge on
the alternate path that links the macro-vertex correspond-
ing to the chained component of node n; with node ns.
Assuming that there is no further such “hidden” capacity
that will be introduced by the newly generated cycle, we
can compute the capacity of the resulting new node as the
sum of the original capacities of the merged nodes plus 1
(which accounts for the aforementioned edge); hence, the
total capacity of the new node nsg7 is 2+1+241=6.

Node nsgy; in the DAG that results from the cycle-
generating merger that was discussed above, is the single
terminal node in the largest-numbered layer of that DAG.
Furthermore, this node possesses adequate free capacity
to support a merger with any of its two predecessor nodes,
nz and nyg, but not with both of them. Hence, the algo-
rithm must “branch” at this point on this choice, and the
computation that will result from each of the two options
is presented in the next two parts of Figure 2.

As we can see, the execution of the algorithm in the case
that node nsg7 is merged with node ny, will result in a
DAG with two layers, no “producer” merger in layer 2, and
a terminal node for layer 1 (and for the entire DAG) where
all possible mergers are infeasible. The development of this
formation manifests the non-liveness of the traffic state
that corresponds to this DAG, and, therefore, the inability
of the currently pursued path to establish a “liveness”
certificate for the original state s. Hence, the algorithm
will backtrack at this point, in order to pursue the second
of the two merging options that was discussed above. The
second path does provide a merger sequence that leads

to a state s’ with a single node for the DAG U(G(s')),
or equivalently, a single maximal chained component for
the PDG G’(s’). Hence, state s’ can be pronounced as live,
which further implies the liveness of the original state s.

A “correctness” analysis of the considered algo-
rithm: The next theorem states the correctness and the
finiteness of computation of the proposed algorithm.

Theorem 1. When applied on any given traffic state s € S,
the liveness-assessment algorithm that was described in
the earlier parts of this section will terminate in finite time
and will return a correct classification of the considered
state s.

Proof (sketch): The imposed space limits for this document
do not allow for an expansive proof for this theorem.
But the finiteness of the computation of the proposed
algorithm can be seen from the following facts: (i) Every
major iteration of the algorithm in every direction of the
underlying search tree will strictly reduce the number of
the maximal chains in the underlying DAGs U(G(s;)).
(ii) The possible branches at each branching node of the
underlying search tree are finite. (iii) Each basic operation
executed by the algorithm is also a finite computation.

On the other hand, the correctness of the presented algo-
rithm results from the following elements: (i) the semantics

that are encoded in the deployed DAGs U(G(s;)); (ii) the
layered structure that is superimposed on these DAGs,

My ns Ng iy 3
33 1 I3 o)
q S35 \21\4 o 1) ‘L’}‘S‘/ 2 24 a
hag 3 _ 5 o 3 T - 2 S
N2 2D ™ 4 e o 122 (D e
nz Na T nx Na
I. Merging of nodes n, and nsgz:
ns
1
N Nz 33 o0
OS> S5
4. 2 Nh— -
Mk Q 1 4| 2 — =) 3 4//2
-3 - P 7
1 \@ Z 2) 1\“'\.&—L.lna\.roidal:ale deadlock
= 2 Maaser

Nase7

Il. Merging of nodes n3 and nsgy:

n
n 13567
Ny g MNaser A
o N (a
a b3 5 2/ ”‘4/v¥/’\\\
Nh 5 1 5T2 Mh ooy 5
I\Ofx;\g P — M\S‘/ﬁ\ > \I\
1 '\/-?\17) \nE) ;/
a

MNhi3assr
> MNhiz3ase7

o Ts T 5— (=35 (oo

Fig. 2. The execution of the presented algorithm on the example of Section 4. Arrows annotated in green correspond
to the feasible “producer” merger at each iteration that leads to the next DAG.

and the way that this structure is employed by the al-
gorithm in order to ensure that the free capacity in each
layer is utilized to the fullest possible extent in order to
facilitate pertinent mergers in the lower-numbered layers;
and (iii) the notion of the “feasible producer merger” that
is pursued during the processing of the various layers of
the DAGs U(G(s;)), and the way that this processing is
organized through the recursion of Equation 1 and the ac-
companying logic that was described in the corresponding
part of this section. O

Complexity considerations: When applied on a traffic
state s with a DAG U(G(s)) possessing the tree structure
of Reveliotis and Masopust (2020), the presented algo-
rithm essentially reduces to the algorithm that is presented
in that previous work and it runs with a polynomial
complexity with respect to the size of the underlying
transport system. But for more general traffic states s,
the branching that might take place during the execution
of the algorithm, and the backtracking that will ensue
from this branching, do not allow the claiming of such a
polynomial worst-case complexity. It is expected, however,
that the extent of this branching will be rather limited
during any particular run of this algorithm. Furthermore,
we remind the reader that the algorithm will exit as soon as
it gets a single search path with a positive outcome, which
alleviates even further the expected empirical complexity
of the algorithm. Finally, the DAGs U(G(s;)), which are
the primary objects that are processed by the considered
algorithm, are of a much smaller size than the size of
the guidepath graph G that determines the size of the
underlying transport system. Hence, even though not poly-
nomial in the strict sense, the presented algorithm is still
an efficient solution to the considered problem.

5. CONCLUSIONS

This work has presented a novel algorithm for assessing
the liveness of any traffic state s that will arise in a
class of guidepath-based transport systems that model the
operation of various contemporary MHS. The algorithm is
based on a pertinent representation and processing of the
qualitative dynamics of the underlying transport system

with respect to traffic liveness, and it is expected to have
a very benign empirical computational complexity with
respect to the size of the underlying guidepath network.
However, the worst-case computational complexity of the
algorithm might not be polynomially bounded with re-
spect to the size of this network. In fact, the worst-case
computational complexity of assessing the liveness of the
considered traffic states remains an open issue, and it is
part of our ongoing investigations.

Acknowledgement

The first author was partially supported by NSF grant
ECCS-1707695. The second author was supported by RVO
67985840, the Czech Science Found. grant GC19-06175J,
and the INTER-EXCELLENCE project LTAUSA19098.

REFERENCES

Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. (1993).
Network Flows: Theory, Algorithms and Applications.
Prentice Hall, Englewood Cliffs, NJ.

Cassandras, C.G. and Lafortune, S. (2008). Introduction
to Discrete Event Systems (2nd ed.). Springer, NY NY.

Fanti, M.P. (2002). Event-based controller to avoid dead-
lock and collisions in zone-controlled AGVS. Intl. Jrnl
Prod. Res., 40, 1453-1478.

Heragu, S.S. (2008). Facilities Design (3rd ed.). CRC
Press.

Reveliotis, S. (2017). Logical Control of Complex Resource
Allocation Systems. NOW Series on Foundations and
Trends in Systems and Control, 4, 1-223.

Reveliotis, S. and Masopust, T. (2019). Some new results
on the state liveness of open guidepath-based traffic
systems. In 27th Mediterranean Conference on Control
and Automation (MED 2019). IEEE.

Reveliotis, S. and Masopust, T. (2020). Efficient liveness
assessment for traffic states in open, irreversible, dynam-
ically routed, zone-controlled guidepath-based transport
systems. IEEE Trans. on Automatic Control, 65.

Reveliotis, S.A. (2000). Conflict resolution in AGV sys-
tems. IIE Trans., 32(7), 647-659.

Wu, N. and Zhou, M. (2001). Resource-oriented Petri nets
in deadlock avoidance of AGV systems. In Proceedings
of the ICRA 01, 64-69. TEEE.

