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ABSTRACT Interactions between phytoplankton and heterotrophic bacteria funda-
mentally shape marine ecosystems by controlling primary production, structuring
marine food webs, mediating carbon export, and influencing global climate.
Phytoplankton-bacterium interactions are facilitated by secreted compounds; how-
ever, linking these chemical signals, their mechanisms of action, and their resultant
ecological consequences remains a fundamental challenge. The bacterial quorum-
sensing signal 2-heptyl-4-quinolone (HHQ) induces immediate, yet reversible, cellular
stasis (no cell division or mortality) in the coccolithophore Emiliania huxleyi; however,
the mechanism responsible remains unknown. Using transcriptomic and proteomic
approaches in combination with diagnostic biochemical and fluorescent cell-based
assays, we show that HHQ exposure leads to prolonged S-phase arrest in phyto-
plankton coincident with the accumulation of DNA damage and a lack of repair de-
spite the induction of the DNA damage response (DDR). While this effect is reversi-
ble, HHQ-exposed phytoplankton were also protected from viral mortality, ascribing
a new role of quorum-sensing signals in regulating multitrophic interactions.
Furthermore, our data demonstrate that in situ measurements of HHQ coincide with
areas of enhanced micro- and nanoplankton biomass. Our results suggest bacterial
communication signals as emerging players that may be one of the contributing fac-
tors that help structure complex microbial communities throughout the ocean.

IMPORTANCE Bacteria and phytoplankton form close associations in the ocean that are
driven by the exchange of chemical compounds. The bacterial signal 2-heptyl-4-quinolone
(HHQ) slows phytoplankton growth; however, the mechanism responsible remains
unknown. Here, we show that HHQ exposure leads to the accumulation of DNA damage
in phytoplankton and prevents its repair. While this effect is reversible, HHQ-exposed phy-
toplankton are also relieved of viral mortality, elevating the ecological consequences of
this complex interaction. Further results indicate that HHQ may target phytoplankton pro-
teins involved in nucleotide biosynthesis and DNA repair, both of which are crucial targets
for viral success. Our results support microbial cues as emerging players in marine ecosys-
tems, providing a new mechanistic framework for how bacterial communication signals
mediate interspecies and interkingdom behaviors.

KEYWORDS HHQ, Pseudoalteromonas, cell cycle, phytoplankton, quorum sensing,
virus-host interactions

Interactions between marine phytoplankton and bacteria have been shown to funda-
mentally shape marine ecosystems, particularly by mediating biogeochemical cycling,

regulating productivity, and trophic structure (1–3). Bacterium-phytoplankton interactions
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are complex, often being species specific (4) or temporally ephemeral (5), and can span
the spectrum from antagonistic to beneficial (6, 7). Increasingly, it is clear that these intricate
interkingdom interactions are facilitated by excreted chemical compounds that mediate a
suite of processes such as nutrient transfer, primary production, and shifts in community
composition. Linking chemical compound identity with a mechanism of action and ecologi-
cal consequences will strengthen our understanding of how these fundamental and multi-
faceted interactions govern marine ecosystem function.

First discovered in marine systems 4 decades ago (8), quorum sensing (QS) is a form
of microbial cell-cell communication through which marine bacteria use diffusible
chemical signals to facilitate coordinated and cooperative biogeochemically important
behaviors (9). Recent work finds that alkylquinolone-based QS signals can modulate
interspecies behavior, suggesting that these molecules may influence cellular commu-
nication at the interkingdom level (10). In particular, the alkylquinolone QS signal 2-hep-
tyl-4-quinolone (HHQ) functions as a messenger molecule able to modulate bacterial viru-
lence behavior, facilitating the emergence of the pathogen Pseudomonas aeruginosa
within polymicrobial communities (11, 12). Trafficking of hydrophobic alkylquinolones,
including HHQ, is aided by the release of outer membrane vesicles containing micromolar
concentrations of alkylquinolones that are produced by P. aeruginosa and serve as signal
delivery vehicles to neighboring recipient cells (13). Purified outer membrane vesicles iso-
lated from P. aeruginosa have also been shown to possess significant antimicrobial activ-
ity, inhibiting the growth of adjacent Gram-positive bacteria (13). Additionally, HHQ has
also been implicated in antagonizing fungal biofilm formation (12); downregulating eu-
karyotic host immune responses via the suppression of a key transcription factor, NF-κB
(10); and activating receptors found to play a role in innate immune signaling in airway
epithelia (14). These findings support the influence of alkylquinolones in mediating host-
microbe interactions.

Recently, HHQ was isolated from marine gammaproteobacteria (Pseudomonas sp.
and Pseudoalteromonas sp.) and was observed to cause significant shifts in both natural phy-
toplankton and microbial communities (15), including species-specific static phytoplankton
growth (no growth or mortality) at nanomolar concentrations (16). Static growth in phyto-
plankton has been observed previously, in relation to both bacterial exudates (17, 18) and
nutrient stress (19–22). However, the underlying molecular mechanism(s) by which HHQ
influences phytoplankton fitness and the outcomes of ecological interactions remains
unknown. For example, host physiology has been demonstrated to be an integral factor in
the success of viral infection of phytoplankton, with infection success and burst size being
influenced by host conditions (23). However, the role that HHQ plays in mediating microbial
interactions beyond phytoplankton growth alterations has yet to be investigated.

To better understand how HHQ alters molecular function and ecological interac-
tions in marine microbes, ultrastructural observations and diagnostic biochemical
assays were integrated with transcriptomic and proteomic studies to link the persistent
but reversible physiological impact of nanomolar concentrations of HHQ on a model
marine phytoplankton, Emiliania huxleyi. Furthermore, we examined if HHQ could dis-
rupt virus-induced mortality in E. huxleyi, thereby ascribing a new role for bacterial
quorum-sensing signals. E. huxleyi plays a central role in mediating ocean carbon (24)
and sulfur (25) cycling; thus, the results presented here emphasize the importance of
considering the ecological consequences of chemically mediated bacterium-phyto-
plankton interactions on global primary production and biogeochemical cycles.

RESULTS AND DISCUSSION
Response to HHQ exposure. Following 96 h of exposure to 100 ng ml21 of HHQ,

batch cultures of axenic E. huxleyi (CCMP2090) exhibited cellular stasis (no cell division
or mortality) concomitant with a significant increase in forward scatter, red fluores-
cence, and side scatter, proxies for cell size, chlorophyll content, and cell granularity,
respectively (P value of ,0.01 for all comparisons by repeated-measures analysis of
variance [ANOVAR]) (Fig. 1). The photosynthetic efficiency (Fv/Fm) did not change in
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response to long-term HHQ exposure (ANOVAR). Additionally, after only 24 h of HHQ
exposure, phytoplankton cells were observed to have enlarged chloroplasts with dis-
tended thylakoid membranes containing numerous intraorganelle vesicles, abundant
cytoplasmic vesicles/vacuoles, homogeneous nucleus staining lacking defined euchro-
matin/heterochromatin regions with disintegrated nuclear envelops, and osmium-rich
puncta within and adjacent to the chloroplasts, likely indicating enhanced lipid storage
(see Fig. S1 in the supplemental material). To examine if the physiological effects
induced by HHQ exposure were reversible, 96-h-exposed HHQ cultures were diluted
roughly ;80-fold with f/2 medium without silica (26) to a final concentration of
1.25 ng ml21 HHQ, a concentration demonstrated not to influence E. huxleyi growth.
Cells previously exposed to HHQ showed recovery mirroring paired vehicle control cul-
tures (ANOVAR) (Fig. S2). Taken together, HHQ-treated E. huxleyi cells appear to mirror
previous studies in which cellular arrest has been observed in phytoplankton in
response to bacterially derived chemical exposure (17, 18, 27–29) as well as nutrient li-
mitation (20–22). In order to elucidate if the observed cellular stasis is mechanistically
similar to those observed previously in the literature, we conducted cell cycle, tran-
scriptomic, and proteomic analyses of HHQ-exposed E. huxleyi.

Evidence for S-phase arrest. The DNA content of E. huxleyi cells following HHQ ex-
posure was tracked for 96 h via flow cytometry, and cells treated with HHQ ceased the
typical diurnal cell cycle progression within 24 h of HHQ addition (Fig. 2). Over 96 h,
the proportions of HHQ-exposed cells in both G1 and G2 phases were shown to steadily
decrease, whereas the proportion of cells in S phase significantly increased (P. 0.01
by ANOVAR) (Fig. 2c through e). Additionally, HHQ-exposed cells found in G1 phase

FIG 1 Exposure to HHQ halts cell division and alters cell morphology. (a through d) E. huxleyi
cultures (n= 3) were exposed to HHQ or the vehicle control (DMSO) at the 0-h time point (T0) and
monitored by flow cytometry for cell abundance (a), red fluorescence in relative fluorescence units
(RFU) (695/50 nm) (a proxy for chlorophyll a intensity) (b), forward scatter (a proxy for cell size) (c),
and side scatter (a proxy for cell granularity) (d) over 96 h. Means 6 standard deviations are shown.
In 100-ng ml21 HHQ-exposed cells, all parameters measured were significantly different from those
for the vehicle control (P, 0.05 by repeated-measures analysis of variance). Note that in panel a, data
for HHQ-treated cells at 1 ng ml21 sit directly beneath data for the vehicle control (DMSO). (e and f)
Transmission electron microscopy micrographs of E. huxleyi cells exposed to the vehicle control
(DMSO) (e) or 100 ng ml21 HHQ (f) for 24 h. Subcellular structures include the chloroplast (c), lipid
droplet (l), mitochondria (m), nucleus (n), and vacuoles (black arrowheads).
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demonstrated a significantly higher DNA content per cell than their paired vehicle con-
trols (P value of ,0.05 by Welch’s approximate t test) (Fig. 2f). These results suggest
that HHQ-exposed cells are attempting to duplicate their genome but are stalling in
early S phase.

Whole-cell transcriptomic and proteomic analyses were performed on E. huxleyi
cells exposed to HHQ concentrations of 1 ng ml21 (low), 10 ng ml21 (medium), and
100 ng ml21 (high), with samples taken at 24 h (transcripts) and 72 h (transcripts and
proteins) (Fig. S3). E. huxleyi cultures demonstrated unique transcriptomic and proteo-
mic profiles in response to each HHQ concentration, with the greatest numbers of dif-
ferentially expressed genes being found in higher-HHQ treatments, compared to the
dimethyl sulfoxide (DMSO) vehicle control (Table 1; Fig. S3a and b). After 24 h of HHQ
exposure, 39.8% of transcripts in high-HHQ samples were differentially expressed
relative to the DMSO vehicle controls (q value of ,0.05 by a Wald test) (Table 1).
Similarly, after 72 h of exposure, replicate high-HHQ samples continued to appear
distinct from the DMSO vehicle control samples (Fig. S3a and b), with 37.6% of tran-
scripts (q value of ,0.05 by a Wald test) and 15.9% of proteins (q value of ,0.05 by
Welch’s approximate t test) significantly changing in relative abundance and abun-
dance, respectively (Table 1). When examined together, a total of 665 genes and cor-
responding proteins were found to significantly change in abundance at 72 h under
high-HHQ treatment relative to the vehicle control (Fig. 3) (see Supplemental Data
File 1 at https://doi.org/10.6084/m9.figshare.14414285.v1). In general, processes associated
with DNA replication and repair, aerobic respiration, and protein catabolism yielded higher
relative transcript and protein abundances under high-HHQ treatment, while

FIG 2 HHQ triggers stalling in S phase. (a and b) The cell cycle stage was quantified by profiling the
fluorescence (575/25 nm), a proxy for DNA content, of propidium iodide-stained E. huxleyi cultures
(n= 3) exposed to either the vehicle control (DMSO) (a) or 100 ng ml21 HHQ (b) for 96 h. (c through
e) The proportion of cells in each cell stage was determined from density plots of the distribution of
cells with various DNA contents ranging from 2N (G1) to 4N (G2) at T0, T24, T48, T72, and T96. Cells with
intermediate DNA content were denoted as S phase, as the genome replicated. Each plot represents
the mean 6 standard deviation for triplicate samples (P, 0.05 by ANOVAR). (f) Mean fluorescences
(575/25 nm) of G1- and S-phase cells treated with the vehicle control (DMSO) or 100 ng ml21 HHQ for
96 h and stained with propidium iodide were compared via Welch’s approximate t test (P, 0.01). As
DNA replication occurs only in S phase, the increase in the mean fluorescence for HHQ-treated cells
that fall within the G1 gate suggests that these cells are currently in S phase but stall early in the
process of DNA synthesis and are unable to synthesize enough additional DNA to fall within the S-
phase region.
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photosynthetic components/processes were detected at lower relative transcript
and protein abundances (Fig. 3a) (see Supplemental Data File 1 at https://doi.org/10
.6084/m9.figshare.14414285.v1). Far fewer genes and proteins were found to be dif-
ferentially expressed in the low- and medium-HHQ treatments (Table 1), which is
likely related to the observed recovery of cell growth in these treatments (Fig. S3c).
The growth of cells exposed to low HHQ concentrations was nearly identical to that
of the DMSO control throughout the experiment. By 72 h, no genes or proteins in
the low-HHQ treatment were differentially expressed compared to the control.
While the medium-HHQ treatment demonstrated some growth inhibition over the
first 24 h, by 72 h, the population had largely recovered (Fig. S3c). For cell popula-
tions exposed to medium HHQ concentrations at 24 h, transcripts related to cell
cycle progression, cytoskeletal regulation, and mitosis demonstrated increased rela-
tive abundances compared to the control (see Supplemental Data File 1 at https://
doi.org/10.6084/m9.figshare.14414285.v1). By 72 h, there was no clear trend
observed in functions related to differentially expressed transcripts in the medium-
HHQ samples. For the purposes of elucidating the molecular target(s) of HHQ, we
therefore focused our efforts on the analysis of the high-HHQ transcriptomic and
proteomic data.

Indeed, at the physiological level, the response of E. huxleyi to HHQ parallels phospho-
rus (P) limitation in phytoplankton (i.e., S/G2-phase arrest, decreased growth rate, and
increased chlorophyll content, forward scatter, and side scatter) (19–21, 30). However, the
canonical response in P-limited cells of the upregulation of both alkaline phosphatase
and phosphodiesterases (31–33) was not observed in cells exposed to HHQ, nor did we
see a significant induction of acid phosphatases, pyrophosphatase, phosphorus transport-
ers, or ATP-sulfurylase enzymes known to be induced following P limitation in HHQ-
exposed cells, indicating the lack of phosphorus stress (see Supplemental Data File 1 at
https://doi.org/10.6084/m9.figshare.14414285.v1). Therefore, while the patterns of cell
cycle arrest are similar between HHQ-treated E. huxleyi and nutrient limitation, the under-
lying mechanisms are distinct.

In phytoplankton, cellular arrest is often accompanied by the induction of autocata-
lytic or programmed cell death (PCD) responses such as increased reactive oxygen pro-
duction or caspase-like activity (34), and previous findings in mammalian cells indicate
that HHQ has the ability to activate PCD pathways (35). However, no evidence of PCD/
apoptosis was observed in HHQ-exposed E. huxleyi cells using a series of diagnostic flu-
orescence assays (i.e., membrane permeabilization, caspase activity, and reactive oxy-
gen species [ROS] and nitrous oxide [NO] production) (Fig. S4). Additionally, no tran-
scripts or proteins associated with PCD increased in abundance with exposure to HHQ
(see Supplemental Data File 1 at https://doi.org/10.6084/m9.figshare.14414285.v1). The
lack of PCD induction in HHQ-exposed cells may stem from E. huxleyi’s arrest in early S
phase (Fig. 2d), as cellular arrest during S phase does not induce apoptotic pathways

TABLE 1 Summary of differentially expressed transcripts and proteins following HHQ exposurea

HHQ concn
(ng/ml)

No. of transcripts or proteins

24 h 72 h

Upregulated Downregulated Unchanged Upregulated Downregulated Unchanged
Transcripts
1 13 20 31,476 0 0 31,549
10 2,702 1,990 26,817 382 159 31,008
100 5,948 6,605 18,956 6,166 5,698 19,685

Proteins
1 NA NA NA 0 0 5,528
10 NA NA NA 3 0 5,525
100 NA NA NA 628 375 4,525

aExpression with each HHQ treatment was compared to expression with the vehicle control (DMSO) treatment (q value of,0.05 by Welch’s approximate t test). NA, not
applicable.
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but rather curtails DNA replication, thereby dramatically extending the cell cycle (36).
The transcriptomic profile of HHQ-exposed cells demonstrates an increased relative
abundance of canonical transcripts facilitating the G1/S transition, including cell divi-
sion control protein 6 (CDC6), origin recognition complex subunit 1 (ORC1), and cyclins
A, B, E, and K (Fig. 3b). Moreover, significant increases in relative transcript abundances
of DNA replication fork machinery (i.e., DNA polymerases a, « , and d ; DNA primase;
replication protein A; topoisomerases [TOPO]; the minichromosomal maintenance
complex; proliferating cell nuclear antigen; and replication factor C) (Fig. 3c) 72 h after
HHQ exposure suggest an intent to replicate DNA, a hallmark of S phase (37). Yet

FIG 3 Molecular and proteomic changes as a result of HHQ exposure. (a) Comparison of log2 fold
changes in transcript (x axis) and protein (y axis) expression from E. huxleyi cultures (n= 4) following
exposure to 100 ng ml21 HHQ for 72 h compared to the vehicle control (DMSO). Only shared
differentially expressed transcripts (q value of ,0.05 by a Wald test) and proteins (q value of ,0.05
by Welch’s approximate t test) are shown for a total of 665 genes/proteins. Transcripts and proteins
with similar functions are colored via gene ontology (GO) annotation according to the curated
groupings shown in Supplemental Data File 1 at https://doi.org/10.6084/m9.figshare.14414285.v1.
Genes and proteins without GO annotations or annotations outside the selected groupings are
shown in gray. Selected outliers are labeled in black. (b and c) Heat maps displaying putative
homologs of E. huxleyi protein-coding genes associated with cell cycle regulation (b) and the DNA
damage repair response (c) after 72 h of HHQ exposure. Black boxes indicate proteins that were not
detected in the proteomic analysis. Names in boldface type indicate those protein-coding genes
found within the scatterplot in panel a. Dendrograms indicate hierarchical clustering based on the
similarity of gene/protein expression levels. FC, fold change.
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despite this observed induction of DNA replication machinery, DNA synthesis was
severely curtailed following HHQ exposure (Fig. 2), suggesting that HHQ exposure
interferes with the ability of E. huxleyi cells to correctly complete the DNA replication
process.

Disruption of DNA replication induces DNA damage response (DDR) pathways, acti-
vating effector kinases such as Chk1 and Chk2 necessary for halting DNA synthesis and
the induction of cell cycle arrest to allow time for repair (38). We observed transcripts
for Chk1 and Chk2 to be differentially expressed under HHQ treatment (Fig. 3b).
Furthermore, a significant decrease in relative histone transcript and protein abundan-
ces, a hallmark of DNA synthesis disruption, was observed (see Supplemental Data File
1 at https://doi.org/10.6084/m9.figshare.14414285.v1) following HHQ exposure. As
DNA replication and histone production are coupled, cells experiencing DNA replica-
tion stress will remove histone transcripts (39).

Possible protein targets of HHQ. During S phase, a cell must tightly regulate the
availability of nucleotides to ensure faithful DNA replication (40). Therefore, S-phase
cells rely on de novo nucleotide synthesis pathways to produce enough materials for
complete genome replication (41). Several transcripts and proteins involved in de novo
purine (amidophosphoribosyltransferase, trifunctional purine biosynthetic protein adeno-
sine 3, phosphoribosylformylglycinamidine synthase, bifunctional purine biosynthesis pro-
tein, adenylosuccinate synthase, IMP dehydrogenase, and GMP synthase) and pyrimidine
(carbamoyl phosphate synthase II, aspartate carbamoyltransferase, and CTP synthases) nu-
cleotide synthesis increased in abundance with HHQ exposure (see Supplemental Data
File 1 at https://doi.org/10.6084/m9.figshare.14414285.v1). Increased nucleotide synthesis
may indicate the need to produce the necessary materials to replenish nucleotide pools
during replication. However, only partial replication of the E. huxleyi genome following
HHQ exposure was observed (Fig. 2), suggesting that HHQmay disrupt nucleotide produc-
tion, thereby limiting nucleotide availability.

Select alkylquinolones are known to inhibit a key rate-limiting enzyme directly
involved in pyrimidine synthesis, dihydroorotate dehydrogenase (DHODH) (42).
DHODH inhibition in eukaryotes may induce intra-S-phase arrest due to severely
diminished cellular nucleotide pools that can disrupt DNA replication, stall replication
forks, and increase the frequency of genomic DNA lesions, including strand breaks,
during S phase (43, 44). Indeed, after 46 h of HHQ exposure, a significant increase in
DNA strand breaks was observed in culture (P=0.032 by Welch’s approximate t test)
(Fig. 4a) and was not observed when HHQ was directly exposed to genomic E. huxleyi
or lambda DNA (Fig. S5). This indicates that DNA strand breaks are not caused directly
by HHQ but are caused indirectly through other mechanisms. It has been previously
observed that following the induction of DNA damage during S phase, cells will enter
intra-S-phase arrest that drastically decreases the rate of DNA replication to allow the
DDR to resolve any DNA lesions (36). With the exception of preliminary work in
Chlamydomonas reinhardtii and dinoflagellates, the DDR has not been well character-
ized in phytoplankton (45, 46). Of the 57 mammalian DDR protein homologs in the E.
huxleyi genome (E value of #10220), 41 were significantly differentially expressed (at
the transcript and/or protein level), of which 37 increased in relative abundance at 72
h under high-HHQ exposure (Fig. 3c), indicating that the cell is attempting to repair
DNA lesions. However, DNA damage induced by the inhibition of DHODH is known to
activate apoptotic pathways through the hyperactivation of the DDR (47). No apoptotic
pathway activation was observed with HHQ exposure, suggesting that the DDR itself
may also be impacted by HHQ.

A master regulator of the DDR involved in chromatin remodeling, nucleolar struc-
ture, and genome stability is poly(ADP-ribose) polymerase (PARP) (48). PARP binds to
sites of DNA damage and stalls replication forks, producing negatively charged ADP-
ribose polymer scaffolds that attract repair proteins (49). PARP homologs in E. huxleyi
were found to be increased in both relative transcript abundance and protein abun-
dance under HHQ treatment (Fig. 3c). Under high levels of DNA damage or if repair
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mechanisms are compromised, PARP can become overactivated and deplete cellular
NAD1 and ATP pools, thereby initiating apoptotic pathways (50). However, no apopto-
tic activity was observed in E. huxleyi cells following HHQ exposure (Fig. S4), indicating
that HHQ may inhibit PARP activity. Indeed, HHQ was found to significantly inhibit
human PARP activity (P=0.0002 by Welch’s approximate t test) (Fig. 4b), while a closely
related alkylquinolone, 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), did not possess
PARP-inhibitory activity, nor did it impact E. huxleyi growth (Fig. 4b and Fig. S6a).
Interestingly, the genomes of phytoplankton species unaffected by HHQ (16) did not
reveal the presence of any PARP homologs, further implicating PARPs in the response
of phytoplankton to HHQ.

Inhibition of PARP activity in the presence of DNA damage drastically reduces the
effectiveness of the DDR and is known to induce cellular arrest in the S phase (51).
Together, our observations of prolonged S-phase arrest (Fig. 2), the upregulation of
the DDR in HHQ-exposed cultures (Fig. 3c), the conserved nature of the mammalian
and E. huxleyi PARP catalytic sites (Fig. S6b through d), and the chemical structural sim-
ilarities of HHQ to known inhibitors of both PARP and DHODH with core benzimidazole
moieties (52) collectively suggest that HHQ may function simultaneously to inhibit
both PARP and DHODH activity in E. huxleyi. Additional experiments using E. huxleyi
enzymes are needed to fully characterize whether PARP and DHODH are molecular tar-
gets of HHQ.

HHQ impacts on energy production. To facilitate DNA synthesis and repair, the
cell requires large ATP pools (53). In HHQ-exposed cells, the increased relative tran-
script abundance of enzymes in the tricarboxylic acid (TCA) cycle (i.e., isocitrate dehy-
drogenase, a-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase, and
malate dehydrogenase) (see Supplemental Data File 1 at https://doi.org/10.6084/m9
.figshare.14414285.v1) may signal the overproduction of reducing equivalents for ATP
production via oxidative phosphorylation. Additionally, the increase in the relative
transcript abundance of metabolic efficiency controllers, sirtuin-like deacetylases (54),
observed following HHQ treatment (see Supplemental Data File 1 at https://doi.org/10
.6084/m9.figshare.14414285.v1) may be a direct result of PARP inhibition. Sirtuins com-
pete with PARPs for NAD1, and the expression of deacetylases is dependent on NAD1

availability (55). PARP inhibition is known to drastically increase cellular NAD1 pools,
thereby promoting sirtuin expression and activity (56). Increased sirtuin activity in
HHQ-exposed cells may also explain the increase in the relative transcript abundance
of manganese superoxide dismutase (Mn-SOD) (see Supplemental Data File 1 at
https://doi.org/10.6084/m9.figshare.14414285.v1), an antioxidant enzyme that protects
the cell from ROS-induced damage, as sirtuins are known to induce the production of

FIG 4 Exposure to HHQ leads to cellular DNA damage and inhibition of human PARP. (a) Cultures
(n= 4) of E. huxleyi were exposed to 100 ng ml21 HHQ or the vehicle control (DMSO) for 46 h before
pigments were removed and cells were stained using an in vivo TUNEL assay to detect the presence
of DNA ends, a proxy for DNA breaks. (b) Inhibition of the human PARP-1 enzyme by 50mM HHQ
and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS). Percent PARP inhibition was measured using the PARP
universal colorimetric assay kit (R&D Systems). The absorbance values for quadruplicate wells
containing HHQ or PQS were compared to those of the vehicle control, and this ratio was subtracted
from 100% to determine PARP inhibition. Points represent individual replicates. Asterisks indicate a
significant difference between the treatment and the vehicle control (P value of ,0.05 by Welch’s
approximate t test).
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Mn-SOD proteins (57). Finally, increased relative transcript abundance of the trypto-
phan-mediated de novo NAD1 synthesis pathway was also observed, potentially in an
attempt to increase NAD1 availability (see Supplemental Data File 1 at https://doi.org/
10.6084/m9.figshare.14414285.v1). Taken together, these results suggest that HHQ ex-
posure promotes increased energy production in E. huxleyi, which can fuel various cel-
lular biosynthesis and repair pathways while staving off the induction of PCD.

Increased cellular demand for ATP would necessitate the induction of glycolytic
enzymes. However, following HHQ treatment, there was a significant decrease in the
relative transcript abundance of hexokinase (see Supplemental Data File 1 at https://
doi.org/10.6084/m9.figshare.14414285.v1), the first step in glycolysis, consistent with
previous work demonstrating that alkylquinolones suppress the induction of this gly-
colytic enzyme through direct targeting of transcription factor hypoxia-inducible factor
1 (HIF-1) protein degradation via proteasomal pathways (58). Furthermore, we
observed a shift to the Entner-Doudoroff glycolytic pathway in HHQ-treated cells (see
Supplemental Data File 1 at https://doi.org/10.6084/m9.figshare.14414285.v1), which
can conserve amino acid resources due to a low protein demand in comparison to
other pathways (59). Moreover, we observed increases in relative transcript abundan-
ces leading to the production of aspartate (i.e., the TCA cycle, the aspartate-arginosuc-
cinate shunt, glutamic oxaloacetic transaminase [GOT], and C4-like photosynthesis) in
parallel with decreases in transcripts for aspartate utilization pathways, with the excep-
tion of nucleotide synthesis (see Supplemental Data File 1 at https://doi.org/10.6084/
m9.figshare.14414285.v1). Aspartate is known to rescue cells from S-phase arrest by
fueling de novo nucleotide synthesis (60).

HHQ impacts on photosynthesis and redox. HHQ-induced cell cycle arrest in E.
huxleyi did not significantly alter the photosynthetic energy conversion efficiency; how-
ever, the majority of light-harvesting complexes and transcripts of the Calvin cycle
decreased in relative abundance under HHQ exposure (Fig. 3a). These findings parallel
those described previously for the diatom Phaeodactylum tricornutum undergoing
chemically mediated cell cycle arrest (61). In plants, the coordinated downregulation of
transcripts involved in photosynthesis, electron transport, and the Calvin cycle is
thought to allow for the reallocation of resources toward defense against bacterial and
viral pathogens (62). However, a decrease in transcript abundance does not always cor-
relate with a loss of protein function, as photosynthetic proteins have a long functional
half-life in the cell, with the exception of ferredoxin (Fd) and ferredoxin NADP1 oxidor-
eductase (FNR), both of which are involved in maintaining the cellular redox state fol-
lowing pathogen infection (62). Together, both ferredoxin and the isofunctional flavo-
doxin (Fld) participate in electron shuttling, preventing electron misrouting that can lead
to ROS accumulation and restoring chloroplast redox homeostasis under environmental
stress (63). Indeed, the genes and proteins with the most significant differential expres-
sion levels under HHQ exposure in E. huxleyi were Fd (58-fold increase in transcript and 3-
fold increase in protein abundances), FNR (85-fold increase in transcript abundance), and
Fld (38-fold increase in transcript and 186-fold increase in protein abundances) (Fig. 3a)
(see Supplemental Data File 1 at https://doi.org/10.6084/m9.figshare.14414285.v1), which
may explain the observed lack of ROS production (Fig. S4). Additional reduction systems,
including FAD/NAD(P)-binding oxidoreductase, ferredoxin nitrite reductase (Fd-NR), and
glutathione reductase (GR), in HHQ-treated E. huxleyi cells were also significantly induced,
which could ameliorate NADPH buildup (see Supplemental Data File 1 at https://doi.org/
10.6084/m9.figshare.14414285.v1). Moreover, increased relative expression of vitamin B6
(VitB6) transcripts following HHQ treatment could protect against oxidative stress in chlor-
oplasts (64), while increased relative expression levels of transcripts encoding proline oxi-
dase (POX), pyrroline-5-carboxylate reductase (P5CR), and manganese superoxide dismu-
tase (Mn-SOD) could explain the lack of mitochondrial ROS toxicity (Fig. S4) (see
Supplemental Data File 1 at https://doi.org/10.6084/m9.figshare.14414285.v1). Together,
these results suggest that HHQ-exposed E. huxleyi uniformly decreased the relative abun-
dance of photosynthetic gene transcripts in support of a coordinated induction of
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defense responses aimed at maintaining cellular redox homeostasis without debilitating
photosynthetic capacity.

Consequences of HHQ-induced cellular stasis. Given that viral replication requires
the hijacking of host replication machinery and HHQ exposure inhibited DNA replica-
tion and repair in E. huxleyi, the impact of HHQ on host-virus dynamics was investi-
gated. When E. huxleyi cells were exposed to HHQ and Emiliania huxleyi virus (EhV)
strain 207 concurrently, virus-induced cellular death was significantly reduced (P value
of ,0.0001 by ANOVAR) (Fig. 5a). This outcome was observed regardless of whether
viruses were added simultaneously with HHQ (Fig. 5a) or 72 h after HHQ treatment
(Fig. 5b). However, if HHQ addition was delayed even by 24 h, virus-induced mortality
occurred in E. huxleyi (Fig. 5c). These results indicate the possibility that HHQ exposure
early in viral infection critically impacts the effectiveness of the virus. There are numer-
ous mechanisms by which HHQ may inhibit virus-induced mortality of E. huxleyi
(Fig. 6). For example, HHQ may impact the entry of the virus into the cell. Significant
morphological restructuring occurred following 24 h of HHQ exposure, which may pre-
vent viral recognition, attachment, and/or endocytosis. Previous work has demon-
strated that within 24 h of E. huxleyi viral infection, the virus requires the induction of
host DNA replication machinery (65). Thus, HHQ may either inhibit the virus’ ability to
manipulate DNA replication or acquire necessary nucleotides for transcription, thereby
stalling infection success. HHQ may also stall the induction of ROS production, which
has been demonstrated previously to be necessary for successful E. huxleyi viral infec-
tion (66). In the transcriptomic and proteomic data presented here, significant upregu-
lation of a variety of antioxidants, including Fd, FNR, Fld, Fd-NR, GR, Mn-SOD, POX, and
VitB6, may counteract virus-induced remodeling of the host antioxidant network essen-
tial for viral replication. Likewise, the expression and activation of caspase and meta-
caspase proteases during infection are critical for enabling virus-induced lysis in E. hux-
leyi (67). However, these proteases were not upregulated and did not show activity in
HHQ-exposed cells (Fig. S4) (see Supplemental Data File 1 at https://doi.org/10.6084/
m9.figshare.14414285.v1), further suggesting that HHQ exposure may disrupt these
critical processes in viral infection. Attenuation of viral mortality would theoretically
permit increased survival of phytoplankton and allow bacteria to continue to take
advantage of coordinated nutrient exchange, common between bacteria and phyto-
plankton (68). Thus, the impacts of HHQ exposure on phytoplankton may have ecologi-
cal consequences beyond shifts in algal physiology, to impacts on large-scale biogeo-
chemical cycles.

Summary. Our laboratory findings demonstrate that a quorum-sensing signal pro-
duced by a marine bacterium significantly, but reversibly, leads to DNA lesions and cell
cycle arrest in a eukaryotic phytoplankter, which can influence interkingdom virus-host
interactions. In the eastern tropical South Pacific, .1-ng liter21 surface concentrations
of HHQ were found to correlate with areas of enhanced phytoplankton biomass
(Fig. S7). These low concentrations of HHQ in bulk seawater are not surprising, as N-
acyl homoserine lactones (69), vitamins (70), and other highly labile, trafficked com-
pounds fundamental for growth and signaling are often found in low concentrations
in bulk seawater. We anticipate that the primary abiotic sink for HHQ will be photooxi-
dation by sunlight; however, the rate of photooxidation in seawater will strongly
depend on a myriad of factors (e.g., depth, day length, and dissolved organic matter
[DOM] concentrations, etc.). Previous work showed that the half-life of quinoline, the
parent compound of HHQ, varied between 8 and 53 days using solar simulations (71).
Furthermore, these measured bulk concentrations likely do not represent the effective
concentration that a marine microbial cell would experience in the phycosphere (72).

Previous work has demonstrated that HHQ can significantly alter natural microbial
community composition and growth rates (15), and here, we find that detectable in
situ HHQ concentrations correlated with enhanced phytoplankton biomass. Together,
these findings suggest that alkylquinolone signaling may play a significant role in
structuring complex microbial communities, ultimately influencing primary production
and biogeochemical cycles. In addition, our findings highlight the functional duality of
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bacterial cues that serve as diffusive messengers used as a communication tool in mi-
crobial communities but also as chemical mediators of marine microbial interactions.

MATERIALS ANDMETHODS
General cultivation conditions. For all experiments, axenic Emiliania huxleyi (CCMP2090, non-lith

forming) (from the National Center for Marine Algae and Microbiota, East Boothbay, ME) was grown in
natural seawater-based f/2 medium without silica (26). Cultures were maintained on a 14-h/10-h light
(80 6 5mmol photons m22 s21)/dark cycle at 18°C, with a salinity of 35. These conditions are referred to
here as general culturing conditions. Strain purity was confirmed using f/2 MM and f/2 MB purity test
broths and visually confirmed by epifluorescence microscopy (73). Cultures (20ml) were transferred
weekly to maintain exponentially growing cultures.

Phytoplankton cells were enumerated by a hemocytometer or using a flow cytometer (Guava;
Millipore). Via the flow cytometer, cell abundance was determined by using species-specific settings,
including their forward scatter, side scatter, and red fluorescence (695/50-nm) emission characteristics
for evaluating chlorophyll intensity. All samples were run at 0.24ml s21 for 3min, either live or fixed with

FIG 5 HHQ can inhibit E. huxleyi virus-induced mortality. The abundance (cells per milliliter) of E.
huxleyi over time (hours) after being exposed to either the vehicle control (DMSO), HHQ (100 ng
ml21), EhV 207, or HHQ plus EhV 207 (MOI = 80) was determined. (a) HHQ and the virus were added
together. (b) HHQ was added at T0, and the virus was added after 72 h. (c) Virus was added at T0,
and HHQ addition was delayed for 24 h (n= 3 for each treatment in each experiment). Means 6
standard deviations are shown.
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glutaraldehyde (0.5% final concentration). A correction factor was applied to fixed cell abundances to
account for cell loss due to preservation.

Growth experiments. The HHQ concentration resulting in 50% growth inhibition (IC50) was deter-
mined using triplicate, 2- or 20-ml cultures of E. huxleyi (;100,000 cells ml21) exposed to HHQ (between
0.25 and 512 ng ml21), PQS (0.5 to 530mg ml21), or the vehicle control (0.1% DMSO) for 72 h. Growth
rates were calculated using an exponential growth equation and were plotted against the HHQ concen-
tration to determine the IC50 at 72 h postexposure as described previously (16). Concentrations of DMSO
below 0.5% (vol/vol) have no impact on axenic E. huxleyi growth. DMSO was used as the solvent vehicle
for HHQ and PQS.

To examine the impacts of HHQ, triplicate flasks of 30-ml cultures of E. huxleyi (;50,000 cells ml21)
were exposed to either 1 or 100 ng ml21 HHQ or a vehicle (0.1% DMSO) control. The experiment mixture
was sampled daily for 96 h to monitor E. huxleyi abundance, forward scatter, side scatter, red fluores-
cence (695/50 nm), and photosynthetic efficiency (Fv/Fm). Fv/Fm was measured using a fluorescence
induction and relaxation (FIRe) system (Satlantic). Samples were dark adapted for 30min, and photosys-
tem II kinetics were measured from the average of 10 iterations of an 80-ms single-turnover event and
1,000ms of weak modulated light.

To measure recovery, after 96 h of HHQ exposure, triplicate 2-ml aliquots of an HHQ-exposed culture
were transferred into 198ml of fresh medium, effectively diluting HHQ to 1 ng ml21. The same dilution
was made with the vehicle control treatment, and the experiment mixture was sampled daily for E. hux-
leyi growth rate, forward scatter, side scatter, and red fluorescence (695/50 nm).

To investigate viral infection dynamics, triplicate 50-ml cultures were prepared for the following
treatments: E. huxleyi (;40,000 cells ml21) plus the vehicle control (0.1% DMSO), E. huxleyi plus EhV 207
(3.2� 106 EhV particles ml21), E. huxleyi plus HHQ (100 ng ml21), and E. huxleyi plus HHQ and EhV 207.

FIG 6 Proposed model for the role of HHQ in influencing viral success in E. huxleyi. (a) During the infection of
a phytoplankton cell, viruses are recognized via specific surface receptors and will enter the cell via endocytosis
through distinct lipid rafts. Once inside the cell, the virus hijacks host replication machinery to produce
additional viral particles. This replication is dependent on functional de novo nucleotide synthesis enzymes,
such as dihydroorotate dehydrogenase (DHODH), to provide the cell with sufficient nucleotide materials.
Likewise, functional DNA repair, often mediated by poly(ADP-ribose) polymerase (PARP), is necessary to ensure
that replication can continue. Successful viral replication then generates intracellular reactive oxygen species
(ROS) and nitric oxide (NO) signaling, which in turn activates caspase proteases, allowing the release of
replicated viral particles via programmed cell death (PCD)-induced cell lysis. (b) In HHQ-exposed phytoplankton
cells, virus-induced mortality was not observed, but the mechanism by which HHQ impacts viral cycling
remains unclear. HHQ may directly inhibit (shown as red lines) the activity of DHODH and PARP, which would
prevent the production of viral particles via the collapse of DNA replication machinery. HHQ may also indirectly
impact parts of the virus cycle (shown as dotted lines) by changing host physiology to disrupt recognition,
nucleotide production, ROS production, caspase activation, or PCD.
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The multiplicity of infection (MOI) was 80, to ensure successful viral infection potential. Samples were
taken daily to monitor E. huxleyi abundance.

For all growth experiments, excluding the IC50 calculation, significant differences between treat-
ments were determined by comparing abundances over time using ANOVAR, followed by Dunnett’s
multiple-comparison test (74). All data were tested to ensure that they passed the assumptions for nor-
mality and sphericity prior to running the ANOVAR.

Physiological assays. Propidium iodide (PI) was used to quantitatively discriminate cell cycle stages
in HHQ-exposed phytoplankton cultures over 122 h. Three replicate 2-liter cultures at ;33,000 cells
ml21 were dosed with either 100 ng ml21 HHQ or the vehicle control (0.002% DMSO). Fixed cells were
enumerated every 24 h via flow cytometry. Every 2 h, approximately 106 cells were subsampled, pel-
leted, and washed twice via centrifugation at 3,214� g for 15 min at 18°C. The dry cell pellets were
resuspended in 1ml of ice-cold liquid chromatography-mass spectrometry (LC-MS)-grade methanol,
transferred to microcentrifuge tubes, and stored at 280°C. For reading, methanol-fixed cells were centri-
fuged at 16,000� g for 10 min at 4°C, methanol was removed, and pellets were resuspended in 1ml of
1� Dulbecco’s phosphate-buffered saline (DPBS) before repelleting by centrifugation at 16,000� g for
10 min at 4°C. The pellet was resuspended in 0.5ml of FxCycle PI/RNase solution (Thermo Fisher), incu-
bated for 30 min in the dark, and then measured via flow cytometry (583/26-nm emission).

Diagnostic fluorescent dye assays were used to measure indicators of cell stress and programmed
cell death (PCD) following HHQ treatment. Intercellular reactive oxygen species (ROS) and nitric oxide
(NO) production, mitotoxicity, cytotoxicity, and caspase protease levels and activity in whole-cell lysates
were measured in E. huxleyi (starting cell concentration of ;100,000 cells ml21) following HHQ treat-
ment (70 ng ml21 or 100 ng ml21) at various time points up to 72 h postexposure. See Text S1 in the sup-
plemental material for detailed protocols.

E. huxleyi DNA integrity was examined using a modified protocol for the Click-iT terminal deoxynucleotidyl-
transferase-mediated dUTP-biotin nick end labeling (TUNEL) Alexa Fluor 488 imaging assay kit (Thermo Fisher).
Four replicate E. huxleyi cultures (;250,000 cells ml21) were assayed according to the manufacturer’s protocol
and sampled after 46 h of HHQ exposure, with tagged cells being enumerated via flow cytometry (512/18-nm
emission). See Text S1 in the supplemental material for detailed protocols.

Transmission electron microscopy (TEM). Replicate 20-ml cultures of exponentially growing E. hux-
leyi cells (;100,000 cells ml21) were exposed to either 100 ng ml21 HHQ or the vehicle control (0.2%
DMSO) for 24 h. Samples were concentrated by filtration on a 0.45-mm polycarbonate filter, transitioned
out of f/2 medium via three sequential washes with 10ml of 0.2 M sodium cacodylate buffer (pH 7.2),
and then fixed in 2% glutaraldehyde in 0.2 M sodium cacodylate buffer (pH 7.2). Samples were postfixed
in 2.0% osmium tetroxide for 1 h at room temperature and rinsed in double-distilled water (ddH2O) prior
to en bloc staining with 2% uranyl acetate. After dehydration through a graded ethanol series, the cells
were infiltrated and embedded in Embed-812 (Electron Microscopy Sciences). Thin sections were stained
with uranyl acetate and lead citrate and examined with a JEOL 1010 electron microscope fitted with a
Hamamatsu digital camera and AMT Advantage NanoSprint500 software.

Transcriptomic and proteomic analyses. A large-scale culturing experiment was performed with
axenic E. huxleyi cells treated with either three concentrations of HHQ (1 ng ml21, 10 ng ml21, and
100 ng ml21) or the vehicle control (0.002% DMSO) for 72 h. Following HHQ/DMSO exposure, 400-ml
subsamples were taken from each quadruplicate 2-liter bottle at both 24 and 72 h for total RNA isola-
tion, and an additional 1,200-ml subsample was taken at 72 h for total protein isolation. Total RNA and
protein were isolated and quantified as described in Text S1 in the supplemental material.

For transcriptome sequencing (RNA-seq) analysis, the Kapa stranded mRNA-Seq library preparation
kit (Kapa Biosystems) was used to prepare library samples, and the samples were sequenced on the
NextSeq platform (Illumina) to generate 75-bp paired-end reads. Low-quality reads and adaptor sequen-
ces were trimmed using Trimmomatic (V0.38) (75). Transcript abundances were determined using Salmon
(V0.12.0) (76) and the Ensembl (77) gene predictions for E. huxleyi CCMP1516 (the nonaxenic form of
CCMP2090 [ftp://ftp.ensemblgenomes.org/pub/protists/release-41/fasta/emiliania_huxleyi/cdna/]) as a tran-
script target index (k-mer size = 23). Normalization and determination of significantly differentially
abundant transcripts were performed using the DESeq2 R package (V1.22.1) (78). Tests for differential
expression were carried out with the Wald test using a negative binomial generalized linear model.
Logarithmic fold change (LFC) estimates were shrunken using the apeglm package (V1.6.0) (79)
within DESeq2. The resulting P values were adjusted using the Benjamini-Hochberg (BH) procedure
(80) (see Text S1 in the supplemental material).

For proteomic analysis, proteins were solubilized in urea, reduced, alkylated, and trypsin digested as
described previously (81). The resulting peptide samples were desalted with a minicentrifugal C18 col-
umn according to the manufacturer’s instructions (Nest Group). Peptides were chromatographically sep-
arated (precolumn, 3-cm by 100-mm internal diameter [ID]; analytical column, 30-cm by 75-mm ID; resin,
3-mm C18-AQ) with a nanoAcquity ultraperformance liquid chromatography (UPLC) system (2 to 35%
acetonitrile [ACN] and 0.1% [vol/vol] formic acid; 250 nl min21 for 90 min) directly in line with a Fusion
Lumos Orbitrap Tribrid mass spectrometer (Thermo Fisher Scientific) operated in the data-independent
acquisition (DIA) mode according to methods described previously (82). To generate a peptide spectral
library, 1mg of a pooled sample containing equal parts from each peptide digest was analyzed with six
gas-phase fractions covering m/z 400 to 1,000 in increments of 100 m/z (4 m/z staggered MS2 windows
and 2 m/z overlap). Each bioreplicate was then quantified in single DIA analyses (MS1, m/z 400 to 1,000;
8 m/z staggered MS2 windows and 4 m/z overlap).

In order to generate absolute abundance measurements of detected proteins, raw MS data files
were processed using msconvert (ProteoWizard) for demultiplexing and peak picking. EncyclopeDIA
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(V0.7.4) was used to (i) search the resulting fragmentation spectra against the UniProt E. huxleyi
CCMP1516 protein and contaminant database (10.0-ppm precursor, fragment, and library tolerances), (ii)
provide peptide-level area under the curve (AUC) data, and (iii) generate quantitative reports of identi-
fied peptides and proteins for each HHQ MS experiment (1% false discovery rate). Significant changes
(q, 0.05) in protein abundances between HHQ treatments and the vehicle control were calculated as
log2 fold changes between treatments. Complete details of protein sample preparations, chromato-
graphic separations, mass spectrometry detection, and quantification can be found in Text S1 in the sup-
plemental material.

Proteomic data were matched to the transcriptomic data utilizing the corresponding NCBI accession
numbers. As many of the genes and proteins were uncharacterized, potential homologs of known pro-
teins of interest were identified by querying the amino acid sequences of selected human proteins
against the translated E. huxleyi (CCMP2090) genome, utilizing a significance threshold of an E value of
,1� 10220. Combined data were visualized utilizing the ggplot2 and pheatmap packages in R.

PARP inhibition and homology modeling. To examine the impact of alkylquinolone exposure on
mammalian PARP activity, an inhibition assay was performed using the PARP universal colorimetric assay
kit (R&D Systems) according to the manufacturer’s instructions. Human PARP enzyme (0.5 U) was
exposed to 50mM HHQ (n= 4), 50mM PQS (n= 4), or the vehicle control (0.25% DMSO) (n= 4) for 15min
prior to the addition of PARP activity buffer. See Text S1 in the supplemental material for a detailed
protocol.

The E. huxleyi sequence under GenBank accession number XP_005783504.1 was aligned to the
Protein Data Bank (PDB) database to determine the closest structural homolog with a small molecular in-
hibitor, veliparib, in the active site that could lend insight into HHQ binding.

Detection of HHQ in environmental samples. Seawater samples were collected along a cruise track
from Manta, Ecuador, to Tahiti from October to December 2013 (U.S. GEOTRACES EPZT GP16) as
described previously (83). Briefly, seawater was collected at a 3-m depth by a tow fish and pumped at a
flow rate of 250ml min21 through a 0.2-mm filter and a polytetrafluoroethylene column packed with 20
g of polystyrene resin (Bondesil ENV; Agilent). Each sample represents an integrated average of 400 to
600 liters of water across a wide region. Samples were frozen onboard at 220°C. Prior to analysis,
thawed columns were rinsed with 500ml of 18.2 MX-cm ultrahigh-purity water (qH2O) and eluted with
250ml of LC-MS-grade methanol. The extracts were concentrated by rotary evaporation and brought up
in a final volume of 6ml of qH2O that was stored at 220°C. The organic extracts were separated by a
high-pressure liquid chromatography system (Dionex Ultimate 3000) coupled to an Orbitrap Fusion MS
instrument (Thermo Scientific). The specific methodology can be found in Text S1 in the supplemental
material.

Data availability. Sequences from this study have been deposited in the Gene Expression Omnibus
(GEO) and are accessible through GEO series accession number GSE131846. The raw mass spectrometry
proteomics data and subsequent spectral libraries have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository under accession number PXD011560 (https://www.ebi.ac
.uk/pride/archive/projects/PXD011560).
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