Efficient Liveness Assessment for Traffic States in
Open, Irreversible, Dynamically Routed,
Zone-Controlled Guidepath-based
Transport Systems

Spyros Reveliotis and Tomas Masopust

Abstract—Open, irreversible, dynamically routed, zone-
controlled guidepath-based transport systems model the oper-
ation of many automated unit-load material handling systems
that are used in various production and distribution facilities.
An important requirement for these systems is to preserve the
system liveness — i.e., the ability of each system agent to reach
any location of the underlying guidepath network — by blocking
those traffic states that will result in deadlock and/or livelock.
The remaining set of traffic states are characterized as “live”.
The worst-case computational complexity of the decision problem
of assessing the state liveness in the considered class of transport
systems is an open issue. As a first contribution of this work,
we identify an extensive subclass of these traffic states, defined
through the topology of an abstracting graphical representation
of the “traffic state” concept, for which the corresponding
problem of liveness assessment admits a polynomial solution,
and we present the relevant algorithm for this assessment. But
the development of the aforementioned results has also led to a
new methodological framework for representing and analyzing
the qualitative dynamics of the considered transport systems with
respect to the reachability and the liveness problems that are the
focus of this work. This framework can enable an effective and
efficient (but maybe not polynomial-complexity) resolution of the
state liveness even for those traffic states that do not belong in the
primary state class that is considered in this work; we highlight
this additional possibility in the closing part of the paper.

Keywords: Guidepath-based traffic systems; traffic liveness
and its enforcement; deadlock avoidance; discrete event sys-
tems

I. INTRODUCTION

This work deals with reachability problems in a class of
transport systems that are modeled as a fleet of “agents”
circulating over the nodes and/or the edges of a connected
graph that is known as the underlying “guidepath network”.
At any time point, the nodes and/or the edges of the guidepath
network are allocated exclusively to their occupying agents,
and an agent can advance to a neighboring location only when
this location is currently free. Furthermore, this advancement
must be coordinated by a traffic controller, and it must adhere
to an allocation protocol that is defined by the physical
attributes of the guidepath network itself, the maneuverability
of the circulating agents, and further safety considerations.

S. Reveliotis is with the School of Industrial & Systems Engineering, Geor-
gia Institute of Technology, email: spyros@isye.gatech.edu. Tomds
Masopust is with the Institute of Mathematics, Czech Academy of Sciences
and with the Department of Computer Science, Palacky University, Olomouc,
Czechia, email: masopust@math.cas.cz. S. Reveliotis was partially
supported by NSF grant ECCS-1707695 and T. Masopust by RVO 67985840
and the Czech Science Foundation grant GC19-06175J.

Guidepath-based transport systems of the type that were
outlined in the previous paragraph have been used extensively
for modeling the operations taking place in some classes of
automated material handling systems (MHS) [1], [2], [3],
[4], [5], [6], [7], [8] and in other robotics applications [9],
[10], [11], [12]. They have also been used for the modeling
and the analysis of the physical operations that implement
the elementary computations that are supported in quantum
computing [13], [14], and for the programming of the fancy
animations that are supported by the current video game
industry [15].

A primary concern in all the aforementioned applications
is the coordination of the agent traffic over the underlying
guidepath network in a way that maximizes some measure
of the productivity of the underlying system, while ensuring
safe and collision-free operations for the traveling agents. But
some additional important concerns that can arise from the
constricted nature of the underlying guidepath network and
the limitations that it enforces upon the generated traffic, are
(i) the assessment of the feasibility of the posed requirements
for the various agent trips, and (ii) the control of the system
traffic in a way that preserves this feasibility.

In fact, some of the earliest and most interesting inves-
tigations on the traffic that takes place in guidepath-based
transport systems, concern some feasibility problems that are
motivated by a popular game that is known as the “15-
puzzle” and is defined as follows: Given 15 pebbles labelled
uniquely with labels from 1 to 15 and located on a 4 x 4
grid, rearrange these pebbles in row-major order through a
sequence of “pebble-sliding moves” that place into the single
free vertex of the grid one of its neighboring pebbles. The
work of [16] addressed a generalized version of the “15-
puzzle” where n — 1 uniquely labelled pebbles, placed on
the vertices of an m-vertex biconnected graph GG, must be re-
arranged through a sequence of “sliding” moves to a given
“target” configuration. Treating the different placements of
the marked pebbles on the vertices of the underlying graph
as permutations, and using permutation group theory [17],
the work of [16] established that as long as graph G is
not bipartite, the addressed generalization of the “15-puzzle”
will always be feasible. On the other hand, if graph G is
biconnected and bipartite, then, the “reachability” relationship
that is defined on the pebble permutations, partitions the
entire permutation set into two equivalence classes. The work
of [18] extended the results of [16] to problem instances

involving less than n — 1 pebbles (and, therefore, more than
one empty vertices in the supporting graph G), and provided a
polynomial-time algorithm for assessing the feasibility of any
given problem instance, and for constructing a “pebble-move”
sequence for feasible problem instances. On the other hand,
in [19], the results of [18] were customized and streamlined
for the particular case where the involved graph is a tree.

In all of the works that were mentioned in the previous
paragraph, the difficulty of the addressed reachability problems
was defined by the need to relocate simultaneously all the
system agents, under the restrictions on the agent motion that
are defined by the presence of the remaining agents in the
guidepath network. On the other hand, each agent can move
freely from its current vertex in the guidepath network, to any
neighboring vertex that is available. In particular, an agent can
“undo” its last move into its current vertex, by executing the
“reverse” move, assuming that its previous location is still
free, and this “reversibility” of the agent motion is at the
core of analyzing the dynamics of the resulting traffic through
permutation group theory.

But there are many guidepath-based transport systems
where the aforementioned reversibility of the agent motion will
not hold. More specifically, in many guidepath-based transport
systems that abstract the operations of unit-load automated
MHS, like the automated guided vehicle (AGV) systems and
the overhead monorail systems that are used in various produc-
tion and distribution facilities [2], [20], the traveling vehicles
maintain a sense of direction for their motion with respect
to (w.r.t.) their longitudinal axis, that cannot be reverted, due
to physical constraints or other safety considerations. Such
guidepath-based transport systems will be characterized as
“irreversible” in the following. Irreversible guidepath-based
transport systems are susceptible to “deadlock” and “livelock”™;
a deadlock formation taking place in the context of an AGV
system is depicted in Fig. 1.

Deadlocks and livelocks will prevent, or, more generally,
restrict the future motion of the agents involved, and will
impair the ability of these agents to complete their “mission”
trips. Hence, an important task of any traffic controller that
is deployed for these environments, is the preservation of the
traffic “liveness”; i.e., the traffic controller must proactively
prevent the development of deadlock and livelock by further
restricting the admissibility of the possible agent moves in the
underlying guidepath network, and preserve, in this way, the
ability of every agent to reach every location of the underlying
guidepath network.

The problems of (i) formally defining the notion of “live-
ness”, and (ii) developing “liveness-enforcing supervisors
(LES)” for the aforementioned transport systems, have been
investigated more systematically within a group of the Discrete
Event Systems (DES) community that deals with broader
problems of complex resource allocation [3], [4], [5], [6],
[7]1, [8]. These studies, and the corresponding results, have
been substantially qualified, and facilitated, by some additional
operational attributes of the underlying MHS, and of the
guidepath-based transport systems that abstract these opera-
tions.

One of these attributes concerns the presence of a location
in the underlying guidepath-network that will hold all those

] /7 Dockinz

ps

~
wa
o " Statiom

Fig. 1: An AGV deadlock involving three vehicles located
at a junction of the underlying guidepath network: In the
considered AGV systems, vehicles move through the edges
— or “zones” — of the underlying guidepath network, being
granted exclusive occupancy of these edges by a coordinat-
ing controller, one edge at a time. Furthermore, the system
vehicles cannot reverse the direction of their motion in any
given edge, and therefore, upon reaching a certain junction of
the underlying guidepath network, the only way that they can
advance is by transitioning to another free edge that is incident
to the considered junction. But in the depicted case, all the
edges that are incident to the considered junction are currently
occupied by one vehicle heading towards this junction. Hence,
all three vehicles will be permanently stalled at this junction.

agents that are not on an active trip; such a location is
characterized as the “home” location of the network, and
guidepath-based transport systems that possess such a “home”
location are characterized as “open”.

A second important attribute concerns the specification of
the trips that are executed by the different agents. If the routes
for these trips are completely defined upon the trip initiation,
then, the corresponding routing scheme is characterized as
“static”. If, on the other hand, the agent trips are specified
as a sequence of destinations that must be visited by the
corresponding agents, and the agents are free to select their
routes between two consecutive destinations in real-time, then,
the resulting routing scheme is characterized as “dynamic”.

Finally, in the corresponding DES literature, the locations
that are allocated exclusively to the traveling agents, are
represented by the edges of the guidepath network, and, in
line with the relevant MHS terminology, they are referred to
as the “zones” of this network. Also, the restriction of allowing
no more than one agent at any given zone is known as “zone
control”.

This work deals with the notion of “liveness” and “liveness
enforcing supervision (LES)” in the context of open, irre-
versible, dynamically routed, zone-controlled guidepath-based
transport systems. As already mentioned, this sort of problems
for the considered transport systems have been tackled in the
past by a group of researchers in the DES community, who
have tried to adapt to these problems some broader results
concerning efficient LES synthesis for complex, sequential
resource allocation systems; the works of [3], [4], [5], [7] are
some characteristic examples of these endeavors. On the other
hand, a more complete and systematic characterization of the
notion of “liveness” for open, irreversible, dynamically routed,
zone-controlled guidepath-based transport systems, was pro-

vided recently in [8]. That work abstracted the traffic dynamics
of the considered transport systems through a pertinent Finite
State Automaton (FSA) ®, and it showed that, in the con-
sidered class of transport systems, liveness can be enforced,
in a maximally permissive manner, by restricting the system
operation to those states of the aforementioned FSA & that
are co-reachable! to the state s, where all agents are located
in the “home” zone h. State s;, is known as the “home” state
of FSA @, and states s of ® that are co-reachable to state s,
are characterized as “live” in [8].

In [8] it was also shown that, for statically routed, open,
zone-controlled guidepath-based transport systems, assessing
the liveness of any given traffic state s of the aforementioned
FSA ® is an NP-complete problem in the strong sense. On
the other hand, for open, irreversible, and dynamically routed,
zone-controlled guidepath-based transport systems, the work
of [8] was able to establish that liveness assessment for
totally congested states — i.e., states s where every edge of
the guidepath network is occupied by an agent — can be
performed with linear worst-case computational complexity
w.r.t. the size of the guidepath network. But the worst-case
computational complexity of assessing the liveness of any
arbitrary state s that comes from the class of open, irreversible,
dynamically routed, zone-controlled guidepath-based transport
systems, remains an open problem.

This work seeks to contribute to the aforementioned liter-
ature on guidepath-based transport systems, along the three
following lines:

A) At a first, more immediate and more practical level, the
work extends the results of [8] by identifying an additional
class of traffic states in open, irreversible, and dynamically
routed, zone-controlled guidepath-based transport systems that
admits liveness assessment of polynomial computational com-
plexity w.r.t. the size of the underlying guidepath network, and
it is defined through an abstracting graphical representation
of these states. For this class of states, it also provides the
necessary algorithm for performing their liveness assessment.

B) The second contribution of the considered work is of a
more methodological nature. More specifically, the technical
results that have led to the developments that are claimed in
item #1 above, also introduce a novel formal framework for
representing and analyzing the qualitative — or “untimed” —
dynamics of the considered guidepath-based traffic systems
which is instrumental for these developments. In fact, the
representational basis of this methodological framework was
originally introduced in [6] for investigating issues related
to the liveness of closed, irreversible, dynamically routed,
zone-controlled guidepath-based transport systems (i.e., zone-
controlled guidepath-based transport systems that do not pos-
sess a “home” location, and each agent circulates perpetually
over the primary zones of the underlying guidepath net-
work). But in this work we augment substantially the original
developments of [6] by (i) enhancing the representational
content of the framework itself, and (ii) complementing this
representational capability with a number of operations on the
maintained representation of the system state that facilitate

I'We remind the reader that, in a given FSA @, a state s is co-reachable to
a state s’ if and only if state s’ is reachable from state s; i.e., there exists a
transition sequence o leading from state s to state s’.

analysis and inference w.r.t. the reachability and liveness
properties of the underlying traffic systems.

C) Besides enabling all the technical developments that
were claimed in item #1, the representational and analytical
capabilities of the methodological framework that is delineated
in item #2, can also support effective and efficient (but not nec-
essarily polynomial-complexity) liveness assessment of traffic
states that transcend the particular classes of traffic states
and guidepath-based transport systems that are the primary
focus of this work. The imposed space limitations for this
document do not allow a complete coverage of these additional
possibilities. But in the last part of the paper, we highlight
these possibilities and we provide pointers to some recent
work that has undertaken a more systematic treatment of these
possibilities.

From an organizational standpoint, the rest of the paper is
structured as follows: The next section provides a more formal
characterization of the considered transport systems and their
generated traffic, and it introduces the aforementioned FSA
d that enables the “(state) liveness” characterizations of [8],
which are at the core of this work. Section III introduces
the alternative representation of the dynamics of FSA @ that
is borrowed from [6], and establishes certain properties for
these dynamics that are necessary for the main results of
the paper. These main results are presented in Section 1V;
namely, Section IV presents the class of traffic states that
is the focus of this work, and the corresponding polynomial
algorithm for the liveness assessment of these states. The tech-
nical developments of this section are further highlighted by
some elucidating examples. Section V provides the discussion
regarding the possible extension of the presented results so
that they can effectively assess the liveness of all the traffic
states that can arise in the considered class of open guidepath-
based traffic systems, and even the liveness of the traffic states
that arise in the closed counterparts of these systems. Finally,
Section VI concludes the paper and suggests some directions
for future work.

II. THE CLASS OF GUIDEPATH-BASED TRANSPORT
SYSTEMS CONSIDERED IN THIS WORK AND THE
CORRESPONDING NOTION OF STATE LIVENESS

In this section, (i) first we provide a detailed description
of the structure and the operation of the guidepath-based
transport systems that are considered in the rest of this work,
and subsequently (ii) we overview some results from [8] that
concern the notion of “liveness” in this class of transport
systems. We organize the corresponding material into two
separate subsections.

A. A formal modeling of the considered transport systems

An instance of the particular sub-class of the guidepath-
based transport systems considered in this work can be for-
mally defined by a pair (A, G), where the elements of this
pair denote, respectively, (a) the set of the system vehicles
(or “agents”) circulating in it, and (b) the guidepath graph
G = (V,E U {h}) that is traversed by these agents.

Graph G is assumed to be undirected, connected, and with
a minimum vertex degree of 2.> The edges e € E of GG model
the “zones” of the underlying guidepath network. These edges
can be traversed by a traveling agent a € A in either direction,
and they can hold no more than one agent at a time. On the
other hand, edge h models the “home” zone of the guidepath
network. This edge is connected to the rest of the guidepath
network through a single vertex (i.e., edge h is a self-loop of
(3), and it can hold an arbitrary number of agents that either
have not initiated or have completed their assigned missions.
Furthermore, in the following, we shall denote by v}, the vertex
of graph G that is the single terminal vertex for the self-loop
edge h. Finally, in the considered application context, it is also
natural to assume that two vertices v1, vy of graph G may be
connected by more than one zones, and therefore, in stricter
terms, graph G is actually a multi-graph; but this feature does
not impact substantially our subsequent developments, and we
shall keep referring to G as a graph in the sequel.

A “mission” trip for an agent a € A is defined by a sequence
of edges X, = (e; € E'\ {h}) that must be visited by agent a
in the specified order.> Furthermore, edge h can be perceived
as an implicit last edge in sequence X,, a fact that signifies
the requirement of retiring those agents a that have completed
their mission trips to the “home” location.

While traversing an edge e € E with e = {v;,v,}, an
agent a will have a certain direction of motion that will
be indicated by the corresponding ordered pair (v;,v;) or
(vj, v;). Furthermore, we stipulate that agents cannot switch
the direction of their motion in the edges that are currently
allocated to them; hence, an agent a entering edge e = {v;, v;}
from vertex v; must leave this edge through vertex v;, and vice
versa.

An additional stipulation for the dynamics of the underlying
traffic is that an agent a will move from its current edge e to
a neighboring edge ¢’ # h only after it has been granted
permission by the traffic controller, and such a permission
can be granted by this controller only if the requested edge
e’ is free of any other agents. Besides preventing agent
cohabitation in the different zones of the guidepath network,
this last stipulation further implies that a set of agents cannot
simultaneously swap their current locations.

B. The notions of “Liveness” and “State Liveness” in the
considered transport systems

As remarked in the introductory section, the impossibility
of edge-swapping among the traveling agents, when com-
bined with the arbitrary topology of the underlying guidepath
network, can be a source of deadlock and livelock in the
considered class of transport systems [3], [6]. Such formations
will prevent, or, more generally, restrict the future motion
of the agents involved, and will impair the ability of these
agents to complete their “mission” trips. Hence, an important

2The imposed requirement of a minimal vertex degree of 2 is necessitated
by the presumed irreversibility of the agent motion, since an agent a that
reaches a vertex v of degree 1 will deadlock at that vertex.

3In order to obtain a more concrete feeling of these “mission” trips, the
reader can think of an AGV that, setting out from the “home” edge h, must
perform a sequence of transports, where each transport involves the pick up
of some material from the zone that is represented by edge e; in sequence
3, and the deposition of this material to the zone represented by edge e;41.

task of the traffic controller is the preservation of the traffic
“liveness”; i.e., the traffic controller must proactively prevent
the development of deadlock and livelock by further restricting
the admissibility of the “zone” allocations that are requested
by the traveling agents.

In [8], it was shown that, in the considered traffic systems,
“liveness” can be enforced in a maximally permissive manner
by abstracting the operation of the underlying system through
an FSA @, and restricting this operation in a subset of states
of FSA @ that are characterized as “live”. In the rest of this
subsection, we review these results of [8]. However, due to
space considerations, the corresponding exposition is kept at
the minimum set of concepts and results that are necessary
for a systematic development of the subsequent results of
this paper; the reader is referred to [8] for a more complete
exposition of this material.

The FSA ® = (S, Q, f, s, Sar) abstracting the traffic dynam-
ics of the considered transport systems: The aforementioned
FSA @ of [8] that enables the liveness characterizations that
are necessary for this work, is defined as follows:

The state s of FSA & is defined by the two following
elements: (i) The placement of the system agents a € A on
the edges of the guidepath network G. (ii) For agents a € A
that are not located at the “home” edge h, state s also encodes
the direction of their motion in their allocated edges.

Clearly, the set of states, S, that results from all the possible
placements of the agents a € A on the edges of the guidepath
graph G, is finite, and therefore, the considered automaton
® is finite. Also, in the following, we shall use the function
e(;8) : A — (EU{h}) to express the edge occupied by
agent a at state s.

The event set () that advances the state s of FSA @, is also
finite, and it contains all those events ¢ that advance a single
agent a € A from its current edge €(a; s) to a free neighboring
edge ¢’. These advancements must also be compatible with the
direction of motion of the corresponding agent a on its current
edge €(a; s).

The state transition function f : S x @ — S of the
automaton ® provides a formal representation of the transi-
tional dynamics that are implied by the above definition of
state s and the event set (). Furthermore, following [21], we
assume f to be a partial function that is defined only for
those (s, q) pairs for which the corresponding state transition
is feasible within the scope of the aforestated operational
assumptions. We also extend f in the set S x Q* in the natural
manner, and we use the notation R(s) to denote the states
s’ of ® that are reachable from a given state s, through the
dynamics that are defined by the extended function f; i.e.,
Vs'e S, s € R(s) < JoeQ*:5 = f(s,0).

Finally, the initial state, sp, and the set of marked states,
S, for the considered FSA & are defined by setting sg = sy,
and Sy; = {sp}; as discussed in the introductory section, state
sy, itself is defined as the “home” state of FSA ® where all
of the system agents are idling in the “home” zone h.

State liveness: In the operational context of FSA &, the notion
of a “live state” can be defined as follows [8]:

Definition 1: A state s € S of FSA @ is live iff the
corresponding subspace R(s) contains a strongly connected

component ¥(s) that satisfies the following condition:
V(a,e) € Ax (EU{h}), 35’ € V(s) : e(a;8') =e¢

(]

Clearly, by driving, and eventually confining, the considered
traffic system in the strongly connected component ¥(s) of
Definition 1, we can establish the ability of bringing any agent
a € Ato any edge e € EU{h} ad infinitum, which constitutes
the essence of liveness for the considered traffic systems.
On the other hand, initiating the operation of the considered
transport system at a traffic state s where the corresponding
subspace R(s) does not contain a strongly connected compo-
nent U(s) with the property that is specified in Definition 1,
there will exist agent-zone pairs (a,e) € A x (E U {h}) for
which agent a will not be able to visit zone e in a repetitive
manner; hence, the considered transport system will not be
live. In [8], we also have the following result:

Theorem 1: In the class of open, zone-controlled guidepath-
based traffic systems that are considered in this work, a state
s € R(sp) is live iff it is co-reachable to the “home” state sy,.

As discussed in the introductory section, for irreversible,
dynamically routed, open, zone-controlled guidepath-based
transport systems, the computational complexity of assessing
state liveness is an open issue. Nevertheless, in the next two
sections of this paper, we shall use the result of Theorem 1
for developing an algorithm that can assess efficiently state
liveness for a particular sub-class of traffic states of these
transport systems. Furthermore, in Section V we also discuss
a possible extension of the results of Sections III and IV in
order to develop a streamlined (but maybe non-polynomial-
complexity) algorithm for assessing the liveness of any traffic
state of the considered class of transport systems.

III. AN ALTERNATIVE REPRESENTATION OF THE
DYNAMICS OF FSA @

In this section we provide an alternative representation of
the qualitative dynamics modeled by the FSA @ that was
defined in the previous section. This new modeling paradigm
is at the core of the algorithmic developments of Section IV
regarding the assessment of the state-liveness condition of
Theorem 1. The subsequent material was initially developed
in [6] for the investigation of the notion of liveness in closed,
irreversible dynamically routed guidepath-based transport sys-
tems, and it is based on the following graphical representation
of the traffic state s that is employed by FSA &.

Representing the traffic state s as a labelled, partially
directed digraph: The definition of state s for the FSA &
that models the traffic dynamics of the considered guidepath-
based transport systems, implies that state s can be naturally
represented by means of a labelled, partially directed graph®
(PDG) G(s) that is induced by state s and the undirected
guidepath graph G. The vertex set of G(s) is the same with

4As suggested by its name, a partially directed graph (PDG) contains both
types of edges, undirected and directed. Undirected and directed graphs can
be considered as special cases of a PDG where one of the two types of edges
is missing, and all the structural concepts that are defined in the following
extend to these special cases, as well.

the vertex set of the original graph G. The undirected edges of
G (s) are the unoccupied edges e € E of the guidepath graph
G in the considered state s, plus the “home” edge h, which, as
stated in Sectior} I, constitutes a self-loop of G. The directed
edges of PDG G(s) correspond to the edges e € E of G that
are allocated to some agent in state s; the direction of this
last set of edges in PDG (/(s) is defined by the direction of
motion of the corresponding agents that occupy these edges.
Finally, each directed edge e € E is also labelled by the agent
a € A that occupies this edge in state s; in the following, we
shall denote these labels by [(e) € A, and we can also use
the notation [(e) = null for the unoccupied, and therefore,
undirected edges of G(s).

_Some useful structural concepts and properties of PDG
G(s): Next we review some important additional concepts
and properties regarding the PDG G (s), that were originally
introduced in [6] and are essential for the efficient assessment
of state liveness that is pursued in this work.

Given a PDG G‘(s), we define a path 7 in this graph as
a sequence ™ = (vg,€1,V1,€2,...,€n,0,), n > 0, where,
for ¢ = 0,...,n, the elements v;, belong to the vertex set
V of G’(s) and each element e; appearing in this sequence
is an edge connecting the vertices v;_; and v;. Furthermore,
if an edge e; is a directed edge in G(s), then its direction
must be from vertex v;_1 to vertex v;; hence, the sense of
direction that is induced for path 7w by the ordering of its
vertices v;, ¢ = 0,...,n, is consistent with the direction of
motion that is implied by the directed edges of the PDG G(s).
A path 7 is simple iff all of its vertices are distinct. A cycle
¢ of PDG G(s) has a structure similar to that of a simple
path, but it contains at least one edge and the starting and the
ending vertices, vy and v, are coinciding.6 A joint between
two cycles ¢ and ¢’ is a simple path 7 that belongs to both
cycles. A pass between two cycles ¢ and ¢’ is a simple path
7 such that its first vertex lies on c, its last vertex lies on ¢/,
and all of the edges of 7 are undirected and do not belong on
either ¢ or ¢/, or on any other (directed) cycle of PDG G (s).
Finally, an edge e of the original guidepath graph G is (on)
a bridge of this graph iff it does not belong on any of its
cycles; hence, the removal of a bridge-edge disconnects the
entire graph into two subgraphs.’

Example: We highlight the above definitions by means of
the top part (part (a)) of Figure 2. This part depicts a state s
of a guidepath-based transport system with a guidepath graph
G = (V,E) corresponding to the undirected graph that is
induced by the depicted PDG G(s).® The agents a € A that
are not located on the “home” edge h in the considered state
s are represented by the directed edges of the PDG G(s);
this representation defines, both, the particular edge that is

3Since, in the co-reachability problem that defines “state liveness”, all
agents are destined to the “home” edge h, the labeling scheme that is defined
by the function [(e), e € E will not play any substantial role in the following.

%Hence, according to this definition of the “cycle” concept, an edge that
constitutes a “self-loop” (like the “home” edge h) is a cycle, but a single
vertex is not.

7A “bridge”-edge of an undirected graph is also called a “cut-edge” in some
part of the corresponding literature [22].

8The reader should notice that the “home” edge h has not been depicted in
this figure, since its inclusion would complicate the accompanying discussion
without adding anything substantial to it.

pass © -

(a) A PDG C/\‘i(s) and the "chain" structure that is
reccognized in it.

Cu
An unavoidable deadlock 1’/ 5 /Ch;\-
Cus AT
////;\%‘\\fl / Cu'%
kA S o
\—Vf \Ch ! = (ch;/

(b) The condensation C(é(s)) of the above PDG
G(s) and its u—connected components

Fig. 2: The content of this figure is adapted from [6], and it
exemplifies the definitions and the technical results that are
provided in Section III.

occupied by the agent in state s and the direction of its motion
in this edge.

The considered PDG has five cycles annotated by c1, . .., ¢s5;
the reader can check that these are indeed the only closed
paths of PDG G(s) that preserve the sense of direction for
their directed edges. The (directed) edge labeled as “joint” in
the figure constitutes a path belonging to both cycles ¢4 and
cs. The edge marked as “pass” in the figure is a path that
consists of undirected edges only, and links cycles ¢; and ¢
while possessing no common edges with any of these two
cycles. On the other hand, the edge of PDG G(s) that links
cycles c2 and c5 does not constitute a pass for these two cycles
because it is directed (and, therefore, occupied by an agent).
Finally, this last edge, and also the edge that constitutes the
pass between cycles ¢ and co, are the only two bridges for
the undirected graph G that is the guidepath network for the
considered transport system. []

The concepts that are introduced in the next definition play
a very central role in the subsequent developments.

Definition 2: A chain ch of PDG G(s) is the subgraph that

is induced by the sequence ch = (c1, 72,2, T3, .., Tn,y Cn)s
n > 1, where: (i) ¢;, ¢ = 1,...,n, are cycles; (il)) 7;, ¢ =
2,...,n, are simple paths; and (iii) each path 7; is a joint or

a pass between cycles ¢;_1 and c;.

Furthermore, two edges e,¢’ € F will be characterized as
chain-connected (or, more simply, as chained) iff there exists
a chain ch that contains both e and €.

Finally, graph G(s) will be characterized as chained iff
every two edges e, e’ € E are chained. [J

Example: According to Definition 2, each of the cycles
c1,...,c5 of the PDG G(s) that is depicted in part (a) of
Figure 2, constitutes also a chain for this PDG. But this PDG
also possesses the additional chains annotated by ch; and
chs in this figure. Chain ch; consists of cycles ¢; and ¢y
linked by the corresponding pass that was discussed in the
previous example, and chain chjz consists of the cycles ¢4 and

cs which are linked by the annotated joint. On the other hand,
the depicted chain chy comprises cycle cs only, which is the
only remaining cycle that is not contained in the other two
chains. [J

More generally, it is easy to see that chain connectivity
is symmetric and transitive, and therefore, we can consider
the maximal chains of a given PDG G(s). The subgraphs of
PDG (i(s) that are induced by these maximal chains are char-
acterized as the chained components of G(s). Furthermore,
the PDG C(G(s)) that is obtained by replacing each of the
chained components of G/(s) by a simple vertex, is called the
condensation of G(s). Vertices of C(G(s)) that correspond
to chained components of é(s) will be characterized as the

macro-vertices of the new PDG C(G(s)), while the remaining
vertices of C(G/(s)) will be characterized as simple.

Example: Tt should be clear from the discussion in the
last example that chq, C}}Q and chs constitute the chained
components of the PDG G(s) of Figure 2. The condensation
C(G(s)) that results from the reduction of each of these
chained components to a single macro-vertex (with the same
label), is the PDG that is depicted in part (b) of Figure 2. J

The next proposition highlights two important structural
properties of the condensed PDG C(G(s)).

Proposition 1: By its construction, condensation C(G(s))
is an acyclic PDG. Furthermore, each path 7 in C(G(s)) that
connects two different macro-vertices ny and ns, contains a
directed edge. U

Formal proofs for the results of the above proposition are
provided in [6]. Here, we point out that the acyclic structure
of C(G(s)) parallels the acyclic structure of the digraph that
is obtained by “collapsing” the communicating classes of any
connected digraph to single “macro-nodes”. For the second
part of Proposition 1, the reader should notice that if the
considered path contained no directed edge, then it would
constitute a pass between its terminal macro-vertices, and
therefore, the chained components corresponding to the macro-
vertices of the considered condensation C(G/(s)) would not
represent correctly the maximal chains of the original PDG
G(s).

For the needs of the subsequent analysis, it is also pertinent
to distinguish the subgraphs of C(G(s)) that (i) contain no
directed edges, and (ii) are connected to the complement part
of C(G(s)) by directed edges only.

Definition 3: An undirected component (or, more simply, u-

component) in condensation C(G(s)) is a maximal connected
subgraph C,, of C(G(s)) that contains no directed edges. The
edges of C(G(s)) that point to C, are the inputs of C,,
and those that point away from C, are the outputs of C,.
C, is a source if it has no inputs, and a sink if it has no
outputs. Finally, C, is a complex u-component if it contains
a macro-vertex of the condensed PDG C(G(s)), and a simple
u-component otherwise. [J

Example: Part (b) of Figure 2 highlights also the u-
components of the depicted condensation C(G(s)); these u-
components are labelled C',1, . . ., Cy4 in the figure. The reader
should notice that the further compression of each of these u-
components into a single node in PDG C(G(s)), results in a
reduced multi-graph that is (completely) directed. In particular,

the directed edges of this last graph will be (Cy1,C\y2) with

a multiplicity of 3, (Cy1,Cys) with a multiplicity of 2, and
(Cus, Cy1) with a multiplicity of 1. O

The next proposition results straightforwardly from all the
above definitions. The results that are claimed in it can be
verified in the graph that is depicted in part (b) of Figure 2,
while formal proofs for these results can be found in [6].

Proposition 2: A u-component, C,,, in condensation C(G(s))
is an undirected tree and it contains at most one macro-vertex
of thisAcondensation. Furthermore, the set of the u-components
of C(G(s)) is partially ordered by the directed edges of this
graph. [

Chain capacity and its role in the analysis of the qualitative
dynamics of the considered transport systems: In the follow-
ing, we shall associate with each chain ch of the PDGs G(s),
s € S, an attribute that constitutes a notion of “capacity” for
chain ch; a formal definition of this concept is as follows:

Definition 4: For any traffic state s € S, the capacity of a
chained component ch of the PDG G(s) will be denoted by
¢(ch) and will be set equal to the number of free edges of
ch that are located on its cycles (or, equivalently, they are not
“bridge” edges in the undirected graph that is induced by the
chained component ch).

Furthermore, we shall use the notation chj, to denote the
chain of the PDG G(s) that contains the “home” edge h of the
underlying guidepath graph G, and we shall set {(chp) = 0.
O

The significance of the notion of the “chain capacity” is
revealed by the following propositions.

Proposition 3: If the condensation C(G(s)), of a traffic state
s € S, contains a simple sink u-component C,, then state s is
not live. [J

Proof: According to Proposition 2, the considered u-
component C,, is an undirected tree. Hence, it can be easily
checked that the vehicles in the input edges of C,, are headed
to some unavoidable deadlock. []

Proposition 4: Consider a complex sink u-component C,, of
the condensation C(G(s)) with macro-vertex ch, and an agent
a located on one of the input edges of C,. The tree structure
of C,, implies that, in the underlying state s, there is a unique
path p of free edges through which agent a can access the
macro-vertex ch. Then, the following two statements are true:

1) If ¢(ch) = 0, then, any effort to advance agent a on an

edge of the subgraph G(ch) of the guidepath graph G
corresponding to chain ch, through the aforementioned
path p, will lead to an unavoidable deadlock.

2) If ¢(ch) > 1, then, it is possible to advance agent a on

an edge of the subgraph G/(ch), through path p, in a way
that, at the resulting state s’, the part of the PDG G(s’)
corresponding to the subgraph G(ch) will be chained.

Proof: First, we establish the validity of the first statement in
Proposition 4. For this, we start by noticing that while agent a
is advancing on path p towards the macro-vertex ch, no agent
a’ that is located in (the chain corresponding to) the macro-
vertex ch in the original state s can move on one of the free
paths linking node ch with some input edge e of C,, since
such a move will generate an unavoidable deadlock between
agent o’ and the agent o’ that is located on edge e.

To complete the proof of this part, we need to consider the
following two cases:

Case 1: The acyclic subgraph G(ch) that is induced by
chain ch has no “bridge” edges. Then, since ((ch) = 0 in
the considered state s, all edges of chain ch are occupied by
agents, and, as argued above, these agents cannot leave chain
ch without causing deadlock. Hence, agent a cannot enter node
ch.

Case 2: The acyclic subgraph G(ch) that is induced by
chain ch contains some path 7 consisting of “bridge” edges.
First, the reader should notice that, according to Definition 2,
path 7 must be a pass of chain ch, and, thus, every edge of 7
will be a free edge at the considered state s.

So, in this case, it is possible to accommodate agent a in
some cycle ¢ of ch, by relocating an agent a’ in ch on path 7.
But the placement of agent a’ on path 7 destroys the chained
structure of ch, and induces a new complex sink u-component
C!, with agent a’ being on an input edge of C/,. Furthermore,
since the macro-vertex ch’ of C!, is obtained from ch, it does
not have any free edges on its cycles. Hence, following a
similar line of argumentation as in the case of the macro-
vertex ch, we can conclude that the only way that ch’ can
accommodate one of the agents directed to it is by splitting
itself through a path 7’ that consists of “bridge” edges of the
corresponding undirected graph that is induced by ch’. Since,
however, the number of such paths in ch is finite, it is clear
that this chain splitting will unavoidably lead to a complex
sink u-component with a chain that contains no such paths
and it is fully allocated. But as we saw in the earlier parts of
this proof, this last structure implies an unavoidable deadlock.

The second statement of Proposition 4 can be established
through a line of argumentation that is very similar to that
used in [6] for the establishment of Theorem 2 in that work;
the reader is referred to [6] for the corresponding details. [

Propositions 3 and 4 connect the PDG-based representa-
tion of the dynamics of the considered transport systems to
the notions of “deadlock” and “(non-)live traffic state” that
were defined in the previous sections. More specifically, the
combination of these two propositions implies that a state
s € S with its condensation C(G(s)) containing some sink u-
components can be live only if (i) each of these u-components
is complex, and (ii) its macro-vertex ch contains adequate
capacity to absorb in it all the agents that are located on a
path of C(G/(s)) that links macro-vertex ch to some other
upstream chain ch’ of C(G(s)). Such an absorption will lead
to a new state s’ where chains ch and ch’ are merged to a
new chain ch”. Repeating the above remarks on state s’, and
recognizing the finiteness of the chains in PDG G(s), we can
see that if the considered state s is live, then there will exist
an event sequence o leading from state s to a state § where
the corresponding PDG G(8) is chained. The next theorem
establishes that this co-reachability of the considered state s
to a chained state s provides, in fact, an alternative complete
characterization of the liveness of s; this characterization will
be at the core of the algorithmic assessment of state liveness
that is developed in the next section.

Theorem 2: In the considered transport systems, a state
s € S is live iff it is co-reachable to a state s for which
the corresponding PDG G(3$) is chained.

Proof: To establish the necessity of the new condition of
Theorem 2 for state liveness, we notice that, according to

Theorem 1, every live state s € S is co-reachable to the
“home” state sj,. According to the definition of the PDG G(s)
that was provided at the beginning of this section, the PDG
G(sp) has no directed edges. This fact, when combined with
Definition 2 and the additional fact that the minimal vertex
degree of the guidepath graph G is 2, imply that the PDG
G(sp) is chained.

Next, suppose that state s is co-reachable to a state $ for
which the corresponding PDG G/(3§) is chained. If § = s, then,
s is live. Otherwise, consider an agent a1 € A with €(aq; §) #
sp. Through an argumentation similar to that pursued in the
proof of Theorem 2 in [6], we can establish that there exists a
state s; € R(§) such that (i) €(a1;s1) = h, and (ii) the PDG
G(s1) is chained. Furthermore, the infinite buffering capacity
of the “home” edge h implies that we can obtain the sought
state s; without having to relocate the agents that are on edge
h at state §; i.e., Va € A, €(a;5) = h = €(a;s1) = h.

But then, a repetitive invocation of the above result, together
with the finiteness of the agent set .4, imply that the considered
state s is co-reachable to state sy, and therefore, live. [J

We also notice, for completeness, that the unique chain of
any chained state s € S will contain the “home” edge h; i.e.,
this chain will be the corresponding chain chy, of s and it will
have infinite capacity (c.f. Definition 4).

The digraph U(G(s)): In the next section, we shall work

with a further abstraction of the condensation C(G(s)) that

is obtained by replacing each u-component of C(G(s)) by a
single vertex; this graph will be denoted by U(G(s)), and it
should be clear from its definition that it is a directed acyclic
(multi-)graph (DAG) (c.f. also the discussion in the last part
of the example on Figure 2 that was presented in the earlier
parts of this section).

Furthermore, each vertex v of DAG U(G(s)) will be asso-
ciated with a capacity x(v) that is defined as follows: For the
vertices v of U (G(s)) that correspond to simple vertices of the
original guidepath graph G, as well as for those vertices v of
U(G(s)) that correspond to simple u-components of C(G(s)),
the corresponding capacity x(v) is set equal to zero. On the

other hand, a vertex v of U(G(s)) representing a complex
u-component C, of C(G(s)), will have its capacity y(v) set
equal to the capacity ((ch) of the chained component that
constitutes the unique macro-vertex of C,.

A special node of DAG U(G(s)) is the node containing
the “home” edge h and the corresponding chain chy. This
node will be denoted by ny, and, according to the previous
definitions, we shall also have x(n,) = oco.

Finally, an even more compact representation of the DAG
U(G(s)) that is particularly convenient for the algorithmic
developments that are pursued in the next section, can be

obtained as follows:

o This representation recognizes as the “(major) nodes” of
DAG U(G(s)) those vertices that (i) either correspond
to a complex u-component, or (ii) have a degree larger
tharl 2 (and, therefore, are “branching” vertices in DAG
U(G(5)))-

« Furthermore, it replaces each simple path 7 that connects
a major nodal pair (n1,ns) and contains only non-major

vertices of U(G(s)) as interior vertices, by a single

Algorithm 1 An efficient algorithm for determining the con-
densation C(G/(s)) of any given PDG G(s) — borrowed from
[6].

Input: The PDG G(s)

Output: PDGs f)i, i = 1,...,k, corresponding to the
maximal chains of the input PDG

Convert the input PDG G(s) to a digraph D, by replacing
each undirected edge e of G(s) with two directed edges €’
and ¢” of opposite directions;
Extract the strongly
D1,Ds,...,Dy, of digraph D;
for i :=1to k do
Convert the digraph D; to the PDG D;, by replacing
each edge pair {¢/, ¢’} introduced in Step 1 with a single
undirected edge e;
Remove iteratively all one-degree vertices and their in-
cident edges from PDG ﬁi, until no such vertex is left,
obtaining the corresponding PDG Di;
end for
return the PDGs D;, i =1,...,k;

connected components,

directed edge (n1,n2) weighted by the number of edges
in path 7; in the following, we shall denote the weight of
such an edge (ni,n2) by w(ny,ny), and unless stated
oth(;rwise, we shall assume that the considered DAGs
U(G(s)) are encoded according to this more compact
representation.

Complexity considerations: Concluding the developments of
this section, we also notice that, fgr any given state s € 5,
the corresponding condensation C(G(s)) can be obtained with
a linear computational cost w.r.t. the size of the PDG G’(s)
that represents state s. An algorithm for this computation has
been provided in [6], and it is re-stated in this document
as Algorithm 1 for the reader’s convenience; the complete
derivation and justification of the algorithm logic can be found
in [6].

On the other hand, the capacity ((ch;) for each maximal
chain ch;, i = 1,...,k, that appears in C(G(s)), can be
obtained by further executing the following two steps:

1) First we find the bridge edges of the undirected graph
D, that is induced by the corresponding PDG D; in the
output of Algorithm 1.

2) Once these edges have been identified, then, we can set
the chain capacity ((ch;) equal to the number of the

remaining free edges in the PDG D,;.

It is easy to see that the complexity of the above computation
is determined by the task of identifying the bridges of the undi-
rected graph D;. This last task can be performed efficiently
through the algorithm of [23]; the worst case complexity of
this algorithm is O(|V;| + |E;|), where V; denotes the set of
vertices of the graph D; and FE; denotes the set of its edges.

Finally, once the condensation C(G(s)) and the capacity
function ¢(-) have been computed, the DAG U (G(s)) and the
corresponding capacity function x(-) can be obtained from
those two elements in a straightforward manner.

IV. THE MAIN RESULTS

In this section we focus on a class of traffic states of
the considered transport systems that satisfy the following
condition:

Condition 1: The undirected graph that is induced by DAG
U(G(s)) is a tree.’

For this class of states, we provide an algorithm for as-
sessing their liveness that has polynomial worst-case compu-
tational complexity w.r.t. the size of the underlying guidepath
graph G. This algorithm is based on the state-liveness charac-
terization of Theorem 2, and it constitutes an iterative “greedy”
scheme that, at each iteration, tries to identify with polynomial
effort a set of agent advancements that will result in the
merging of two or more chains in the graphical representation
of the system state that is maintained by the algorithm. For any
initial state s, these iterations will either result in a chained
state s’ or they will reach a point where it will be possible to
recognize the non-liveness of state s.

Furthermore, in order to facilitate a more systematic expo-
sition of the presented results, we organize the subsequent
developments in two subsections, with the first subsection
functioning as a “preamble” to the main algorithmic devel-
opments that are presented in the second subsection. More
specifically, the first subsection defines a ‘“pre-processing”
phase that should be executed at each of the main iterations
of the presented algorithm. The computation that is pursued
during this pre-processing phase (a) will recognize and resolve
some ‘“‘easy cases”, and for the remaining cases, (b) it will
reduce the original decision problem to an equivalent one
where the induced state s’ satisfies certain structural properties
for the corresponding DAG U(G(s')). Furthermore, a second
part of this first subsection also defines some elementary
operations on DAG U(G(s’)) that will constitute some of the
main “building blocks” of the presented algorithm. The second
subsection provides the complete algorithm for assessing the
liveness of a given state s that satisfies Condition 1. This
section also establishes the polynomial complexity of the
derived algorithm w.r.t. the size of the guidepath graph G of
the underlying transport system.

A. Preamble

A first processing stage in the iterations of the presented
algorithm: We start this subsection by presenting some sim-
plifying steps for the considered algorithm. These steps should
be executed at the beginning of each major iteration of the
algorithm. Furthermore, as we shall see, the execu}ion of these
steps guarantees a certain structure for the PDGs G/(s), and the

corresponding DAGs U(G(s)) that are eventually processed
at each major iteration of the algorithm. This structure is
important because it facilitates the detailed definition of the
algorithm and the analysis of its correctness.

9We remind the reader that an undirected graph is a tree iff it is connected
and acyclic [22]. Also, we notice that a necessary and sufficient condition
for the presence of states satisfying Condition 1 in a given transport system
of the type considered in this work, is the presence of (paths of) “bridge”
edges in the underlying guidepath networtk G. In such a case, Condition 1
will be satisfied by a given state s when each maximal 2-edge-connected
component of G — i.e., the maximal components of G that are obtained by
removing all of its “bridge” edges — belongs in a single chained component
of the corresponding PDG C(G(s)).

The proposed simplifying steps that were mentioned in the
previous paragraph recognize the fact that, at any given state
s, there might be some agents a € A that can be advanced to
the “home” edge h without disturbing the remaining agents.
More specifically, we are looking for agents a € A that can
reach the “home” edge h using only the free edges of the PDG
G(s) and their currently allocated edge €(a; s). The detection
of these agents can be performed by a simple reachability
analysis on the subgraph that is defined by the free edges
of G(s), and the complexity of the involved computation is
polynomial w.r.t. the size of G‘(s) Clearly, the advancement
of the aforementioned agents to edge h increases the available
free edges of the underlying guidepath network, and therefore,
it enhances the prospects of the remaining agents to reach the
“home” edge h. Hence, if the original state s is live, then the
state s’ that results from the proposed advancements should
also be live. And if s’ is not live, then, s cannot be live either.

In fact, the simplifying step that was outlined in the pre-
vious paragraph should be performed in an iterative manner,
terminating only when either all agents a € A have been
brought to edge h, or a state S is reached where no agent a
with €(a; §) # h can be brought to h through a path consisting
only of free edges in § and the edge €(a; §). In the first case,
we have established the liveness of the considered state 5.!° In
the second case, we need to proceed with the further execution
of the considered algorithm.

Finally, for the detailed specification of the subsequent steps
of the presented algorithm, it is important to notice that the
state 5 obtained through the aforementioned iterations, will

have a DAG U(G(5)) where the node n, will be a “source”
node. Unless indicated otherwise, all the DAGs U/(G(3)) that
we shall consider in the following, will be assumed to possess
this particular property regarding node ny,.

Some elementary operations defined on DAG U(G(S)):
As outlined in the discussion that precedes Theorem 2 in
Section III, the computation of an event sequence that leads
from a live state s to the “home” state s;, can be perceived
as a sequence of simple-path clearances in the underlying
condensation graphs that result to the merging of two (or
maybe more) of their nodal chains. This sort of clearances
will constitute the main “building blocks” of the presented
algorithm. We formalize the corresponding operations through
the following definition.

Definition 5: Consider a DAG U(G(s)) that possesses
the structural properties that were defined in the previous
paragraph, and an edge (n1,n2) connecting two major nodes
of this DAG. Furthermore, let w(nj,ns) denote the corre-
sponding weight of edge (n1,n2) and x(n1), x(n2) denote
the nodal capacities. Then, we have the following definitions:

1) The merging of the (chains corresponding to) nodes n
and ng is feasible iff x(n2) > w(ny, na). The execution
of a feasible merger will substitute the edge (n1,n2) in

the underlying DAG U(G(s)) with a single node n of
capacity x(n) = x(n1) + x(n2) — w(n1, n2).

10[n fact, the detection of the liveness of state s through the iterative
computation that is outlined in these paragraphs is essentially the logic that
has been proposed in [3] for adapting Dijkstra’s Banker’s algorithm to the
considered transport systems.

2) The merging of nodes n; and ny is a “producer” iff
x(n) > x(n2), where n denotes the node that will result
from this merging. Otherwise, it is a “consumer”.

The first part of Definition 5 is motivated by Definition 4,
the result of Proposition 4, and the discussion that accom-
panied that proposition. For a complete understanding of the
second part, we further notice that for a feasible merging of a
nodal pair (ny,ng), it will also hold that x(n) > x(n1), since
X(n) = X(n1) + x(n2) — w(ng, na) and x(ns) = w(ng, n2);
hence, when x(n) > x(nz2), as stipulated in this part of
Definition 5, the new node n that results from the considered
merger will have no less capacity than any of the two nodes
that it replaces in the underlying condensation. But then, this
merging operation can only enhance the feasibility of the
potential mergers that are defined by the remaining edges of
the underlying condensation graph, and therefore, we have the
following result:)

Proposition 5: Consider the DAG U(G(s)) of some traffic
state s that satisfies Condition 1, and let the edge (ni,n2)
of this DAG define a feasible merger that is also a producer.
Then, the state s’ that corresponds to the execution of this
merger will be live iff the original state s is live.

Proof: Clearly, if s’ is live, it is co-accessible to the home
state s;, and, therefore, the original state s is live, as well. The
fact that the liveness of s implies the liveness of s’ results from
the remarks that precede the statement of this proposition. [J

The practical implication of Proposition 5 is that any
feasible “producer” merger in the condensations that are
maintained by the considered algorithm, can be executed
immediately without compromising the correctness of the
overall computation. It is also possible to extend the notion
of a “producer” merger and the result of Proposition 5 so that
they address the clearance of an entire path (n1,na,...,ng)
in DAG U(G(s)) and the collapse of this path into a new
single node n. The next proposition defines this operation
and establishes its correctness in the context of the considered
algorithm. A

Proposition 6: Consider a DAG U(G(s)) of some traf-
fic state s that satisfies Condition 1, and a path m =
(n1,n2,...,nk)'" in it. Furthermore, let x(n;) denote the
capacity of node n;, for i = 1,...,k, and w(n;,n;+1) denote
the weight associated with edge (n;,n;41). Finally, suppose
that path 7 satisfies the following three sets of conditions:

D) Vi=2,... k=1, > o x(n;) = > pw(nj_1,n;) <

0

2) Yo x(ny) = X5 w(ng—1,n;) >0

3) Vi = 23 ceey ka Z;:1 X(nj) - Z;;ll w(njvanrl) >
x(ni)

Then, path 7 defines a feasible (generalized) “producer”
merger and it can be substituted in DAG U(G(s)) by
a single node n with capacity x(n) = ZI;:1 x(nj) —
Zf;ll w(n;,n;11). Furthermore, the traffic state s’ that will
result from this substitution will have the same “liveness”
status as the original state s.

Proof: First, we notice that the conditions in items #1 and #2
in Proposition 6 characterize the feasibility of the considered

Since we are dealing with tree structures, in the rest of this section we
have opted to represent a path 7 by listing only its nodes and omitting the
interconnecting edges.

merger. More specifically, these conditions imply that the
nodal capacities in each of the subpaths w; = (nq,...,n;),
i =2,...,k — 1, are not adequate for clearing the edges of
these subpaths from their occupying agents, but this clearance
is possible once node k is added.

On the other hand, the conditions of item #3 establish that
the merger defined by each subpath m;, ¢ = 2,...,k, is a
potential “producer” w.r.t. the corresponding terminal node
n; (irrespective of the feasibility of these mergers). Next,
we show that these last conditions, when considered together
with the conditions of items #1 and #2, further imply that
the merger resulting from the collapse of path @ = my
is a (feasible) “producer” for all nodes n; of path ; i.e.,
Vi=1,...,k, x(n) > x(n;).

To establish the above result for node m;, we notice
that x(n) = S x(ny) — 0L w(ng,nen) = x(nn) +
i x(ny) = YT w(ng,nji1) > x(na), where the last
inequality is due to the condition of item #2 in Proposition 6.
For nodes n;, ¢« = 2,...,k — 1, the combination of the
corresponding inequalities in items #1 and #3 of Proposition 6
implies that x(n1) > x(n;), and we already showed that
x(n) > x(n1). Finally, the inequality x(n) > x(nk) is
obtained directly from item #3 in Proposition 6 by setting
1= k.

With the feasibility and the “producer” nature of the con-
sidered merger well established, we can also argue the last
part of Proposition 6 — i.e., that the state s’ that will result
from this merger, will have the same “liveness” status with
the original state s — as in the proof of the corresponding
result in Proposition 5. [J

In the next subsection, the results of Propositions 5 and 6
will be embedded in a complete algorithm for resolving state
liveness for those traffic states s that satisfy Condition 1.

B. A polynomial-complexity algorithm for assessing the live-
ness of states that satisfy Condition 1

A first positioning and motivation of the presented results:
Without any loss of generality, in the following discussion
of this subsection, we shall consider that the tree mentioned
in Condition 1 is “rooted” at node nj.'? Furthermore, under
the working assumptions regarding state s that were stated in
the earlier parts of this section, every edge incident to node
np, in DAG U(G(s)) will have a direction leading away from
this node. Consider a path m = (np,n1,...,n,) originating
from node nj, in DAG U(G(s)). Then, since the starting node
of this path has infinite capacity, the merger corresponding
to the collapse of the path into a single node n will always
be a “producer”, according to the relevant definitions of the
previous subsection. Hence, such a merger can always be
performed by the considered algorithm, as long as it is feasible,
and it will lead to a new state s’ with the same liveness status
as the original state s and a smaller number of chains in the
corresponding PDG G(s').

Next, we focus on the case where the potential merger that
is defined by each path m emanating from node nj, is not

12We remind the reader that node ns, of DAG U(G(s)) is the node that
contains the “home” edge h of the guidepath network, and therefore, its
corresponding capacity is infinite.

Fig. 3: A DAG U(G(s)) that is used for the motivation
and the demonstration of the algorithmic developments of
Section IV-B.

feasible. The situation is demonstrated in Figure 3. In the DAG
that is depicted in this figure, the numbers within each node
define the corresponding capacities, and the black numbers on
the DAG edges are the labels w(n1,n2) that were introduced
in the previous subsection; for edges where these numbers are
not reported, they are assumed to have the “default” value of
‘1.

The reader can easily verify that, in the depicted case, it is
not possible to clear the directed path emanating from node
np, from the agents located on its edges by simply utilizing the
free capacity of the path nodes. But, on the other hand, it might
be possible to generate further capacity for the nodes of such
a path by performing a series of mergers on the subtrees that
hang from these nodes. For instance, in the DAG of Figure 3,
the edge (ns3,ms) is a feasible “producer” merger, and the
node nojg that results from this merger has capacity x(n23) =
x(n2) + x(n3) — w(ng,n2) = 1+ 3 — 1 = 3. Furthermore,
the combined capacity of nodes ni and ne3 is equal to 4,
and therefore, the merger defined by the path (n,,n1,nos) is
feasible. Next, we provide a complete algorithm for detecting
and effectively exploiting all these additional possibilities.

A “layering” structure on the DAG U(G(s)) that is em-
ployed by the presented algorithm: The presented algorithm
will seek to identify and execute constructive mergers that will
provide the maximal possible capacity that is attainable at each
node n of the considered DAG U(G(s)). The corresponding
computation will advance from the leaves of the “tree” struc-
ture that is associated with DAG U(G(s)), towards the root
(which is node ny). To further systematize (and also motivate)
this nodal processing, we need to introduce an additional
“layering” structure on the considered DAG U(G(s)). This
structure will assign a “layer” number to each node and edge
of the DAG U(G(s)) according to a recursive scheme that is
defined as follows:

Definition 6: Consider the DAG U(G(s)) of a traffic state s
that satisfies Condition 1. The “layering” structure imposed on
this DAG by the algorithm that is presented in this subsection,

is defined by the following recursion:

1) Nodes belonging into layer 1 are node n; and every
other node n that is reachable from node nj through a
directed path of DAG U(G(s)). Also, the edges on all
those paths are labeled as “layer 17 edges.

2) Assuming that layers 1, ..., ¢ are well defined, layer 41

is defined as follows:

a) If i +1 is an odd nurpber, layer 7 + 1 contains all
nodes n of DAG U(G(s)) that are reachable from
some node n' of layer ¢ through paths consisting
of edges that do not belong in any of the layers
1,...,7; the edges of all these paths are also
labeled as “layer-(i + 1)” edges.

b) If ¢ +1 is an even number, layer 7 + 1 contains all
nodes n of DAG U(G(s)) that are co-reachable to
some node n’ of layer ¢ through paths consisting
of edges that do not belong in any of the layers
1,...,7; the edges of all these paths are also

labeled as “layer-(i + 1)” edges.

Example: For the DAG of Figure 3, the layers defined by
the recursion of Definition 6 are indicated by the edge labels
that are annotated in red. On the other hand, in order to
avoid an “over-loading” of this figure, we have omitted the
corresponding labeling of the DAG nodes. In the considered
case, the only nodes that are accessible from node nj, through
a directed path, are nodes n; and ns, and these two nodes
together with node n;, define the first layer of the considered
DAG. In order to define layer 2, we notice that the only node
that is co-accessible to any of the nodes n, n and ns through
edges not belonging to layer 1, is node ng; hence layer 2
contains node ns and edge (ng,ns). Also, since the only
node reachable from node nj3 through edges not belonging
in layers 1 and 2 is node ny4, layer 3 contains node n4 and the
corresponding edge (ns,n4). Finally, the co-accessible nodes
to node n,4 through edges not belonging in layers 1, 2 and 3,
are nodes n5 and ng; these nodes and the corresponding edges
define layer 4. Since every node and edge of the considered
DAG have been assigned to a layer at this point, the definition
of the corresponding layering structure is complete. [

From the presented layering structure to the proposed al-
gorithm: The definition of the above layering structure for the
considered DAGs is motivated by an intention to capture the
orientation of the agent motion on the various edges of these
DAGs w.r.t. their “root” node nj. More specifically, edges with
an odd “layer” number are occupied by agents that are heading
away from node ny, in the underlying “tree” structure. On the
other hand, edges with an even “layer” number are occupied
by agents that are moving in the direction of node nj. This
understanding subsequently suggests the following logic for
the processing of any given “leaf” node in the considered
DAGs:

1) Processing of a “leaf” node n that belongs in an
odd layer: In this case, node n is connected to its parent
node n’ by an edge (n’,n). The only way that the agents
on edge (n’,n) can advance, is by being absorbed in node
n in the spirit of Proposition 4. Hence, if the merger that is
defined by the edge (n',n) is feasible, it is executed by the
considered algorithm, and subsequently the algorithm proceeds
to its next major iteration, that will repeat the entire logic that
is described in this subsection to the state s’ that results from
the aforementioned merger. If, on the other hand, the merger
that is defined by edge (n/,n) is not feasible, the algorithm
infers the non-liveness of the considered state s.

2) Processing of a ‘“leaf” node n that belongs in an
even layer: In this case, node n is connected to its parent

M, N /n\z N, n, n, My Ny n
2 2 (207 N2
‘ (2)27 (2 2y
g : 1 !) Y 1 1 & N 1 1
2 g 2 2
(o)—()= ()2 ~
0 1) [g —! (o
4 3\ T\ /A
Ns 4] Ne Ny n Ny n, n Nyge
2)ng
Mg 15 ﬁ!\ /”1\345 Ns /"E\ /n_l\ My345
N 7N PR 2
(o —= 0) «—— 3
Y ({0 — (]

2
0

U3

Fig. 4: The execution of the algorithm that is presented in

Subsection IV-B on a traffic state s with its DAG U(G(s))
being the DAG of Figure 3.

node n’ by an edge (n,n’). If this edge defines a feasible
merger that is also a “producer”, then the algorithm will
execute the corresponding merger, obtaining a state s” with a
smaller number of nodes in the corresponding DAG U (G(s'))
and with improved accessibility to the nodal capacities (c.f.
Proposition 5). Furthermore, the algorithm will start a new
major iteration focusing on the processing of the obtained state
s'. More generally, for a given “leaf” node n that belongs in
an even layer, the algorithm will try to identify and execute
a generalized feasible “producer” merger that is defined by
an entire directed path 7 emanating from this node.!> On the
other hand, if it is not possible to find such a feasible merger,
the node will be marked as “processed”, and the algorithm
will proceed to process another unprocessed node of DAG
U(G(s")) that is either a “leaf” node or an interior node with
all of its children already processed.

Example: Next, we demonstrate the execution of the above
logic on the example DAG of Figure 3. The two “leaf” nodes
in this case are nodes ns and ng; any of them can be used
as a starting point for the execution of our algorithm. Hence,
starting with node ns, we see that it belongs in an even layer,
and its parent node is node n4. The merger defined by the
edge (ns,n4) is feasible, but the resulting node will have a
capacity of 1 40 — 1 =0, and therefore, this merger is not a
“producer”. Therefore, node ns is declared “processed”, and
we proceed with the processing of node ng. This node also
belongs in an even layer, and it has node n4 as its parent
node. In this case, the merger defined by the edge (ng,n4)
is feasible and “producer”; the node n4¢ resulting from this
merger has capacity x(n4) =1+ 2 — 1 = 2. Also, we shall
denote the state that results from this merger as s;, and the
corresponding DAG, U(G(s1)), is depicted in Figure 4.

In DAG U(G(s1)), the only “leaf” node is node ns. This
node still belongs in an even layer, its parent node is n4g, and
the merger that is defined by edge (n5, n46) is feasible but not

13The previous definitions and assumptions further imply that such a
directed path 7 will be on the undirected path that leads from node n to
the “root” node np, in the underlying tree.

a “producer”. Hence, the algorithm proceeds to process node
n46, Which is the only interior node that has all of its children
already processed. This node belongs in an odd layer. Its parent
node is node ng, and the edge (ns,n4s) defines a feasible
merger. The algorithm executes this merger, and the resulting
node is node n346 with capacity x(nsss) = 2+3—2 = 3. Also,
the state that results from this merger will be denoted as state
2, and the corresponding DAG U(G(s2)) is also depicted in
Figure 4. .

In DAG U(G(s2)), the only “leaf” node is node ns, with
node ns4¢ as its parent node. Both of these two nodes are
in layer 2. Once again, edge (ns,nss6) defines a feasible but
“consumer” merger. Hence, node ns is declared “processed”,
and the algorithm proceeds to process its parent node n34¢.
The parent node of ngyg is node ng, and the edge (ng46,n2)
defines a feasible “producer” merger. The execution of this
merger returns the node mno346 With capacity x(nasss) = 1+
3 — 1 = 3. Furthermore, the resulting state will be denoted
by s3, and the corresponding DAG U(G(s3)) is depicted in
Figure 4. .

In DAG U(G(s3)), the only “leaf” node is again node ns.
This node is in layer 2, and the edge that connects this node
to its parent node no34 defines a feasible but “consumer”
merger. Hence, the algorithm proceeds to process node nas346
which is a layer-1 node. The parent node in this case is node
ny, and the edge (n1,nos4s) defines a feasible merger. The
node resulting from this merger is node n12346 With capacity
X(n12346) = 3+ 1 — 2 = 2. Also, the resulting state will be

denoted as s4, and the DAG U(G/(s4)) is depicted in Figure 4.

DAG U(G(s4)) also has node ns as the only “leaf” node.
This node remains a layer-2 node, and its processing gives the
same results as in the previous iterations. Hence, the algorithm
proceeds to process node ni2346, Which is in layer 1, and
defines a feasible merger with its parent node ny. The node
Nnp12346 resulting from this merger has infinite CapacitAy, the
corresponding state is denoted as s5, and the DAG U(G(s5))
is depicted in Figure 4.

In DAG U(G(s5)), the only node other than the “home”
node nji12346 1S node ms, and the two nodes are connected
through edge (ns,npi12346). But then, the liveness of state
s5 will be identified through the execution in this iteration
of the “pre-processing” stage that was described in the first
part of Subsection IV-A. Hence, the entire algorithm concludes
declaring the liveness of the original state s that corresponds

to the DAG of Figure 3.

Correctness and complexity analysis of the algorithm that
is presented in this subsection: A complete statement of the
algorithmic logic that was developed in the earlier parts of this
subsection, is presented in the pseudo-code of Algorithm 2.
Furthermore, the next two theorems establish the correctness
of this algorithm and its polynomial complexity w.r.t. the size
of the underlying transport system.

Theorem 3: When executed on a traffic state s that satisfies
Condition 1, Algorithm 2 will terminate in a finite number of
steps, assessing correctly the liveness of state s.

Proof: First, we notice that when applied on a traffic state
s with a PDG G(s) satisfying Condition 1, Algorithm 2
will generate, through its various preprocessing and merging
operations, a sequence of states sg,k = 0,1,2,..., with

Algorithm 2 Assessing the liveness of traffic states s satisfying
Condition 1 with polynomial computational complexity w.r.t.
the size of the underlying guidepath network.

Input: The PDG G(s) of a traffic state s satisfying
Condition 1.
Output: A binary variable LIV E indicating whether state s
is live or not.

G := U(G(s)) of the considered state s;
LIV E := TRUE,;
repeat
G := PREPROCESS(G);
IF G consists of a single node RETURN LIV E;
Compute the layers of G;
Mark all nodes of G as “UNPROCESSED”;
BREAK := FALSE;
while 3 unprocessed nodes AND -BREAK do
Pick a node n of G which is either a “leaf” node or
has all its children processed;
n' := PARENT(n);
if node n is in an odd layer AND the merger defined
by edge (n’,n) is feasible then
Execute the merger defined by edge (n/,n) on DAG
g
BREAK := TRUE;
else if node n is in an odd layer AND the merger
defined by edge (n’,n) is infeasible then
RETURN —-LIV E;
else if node n is in an even layer AND 3 a path 7 in
DAG G emanating from n that defines a generalized
feasible “producer” merger then
Execute the merger defined by path m on DAG G;
BREAK := TRUE;
else
mark node n as “PROCESSED”;
end if
end while
until FALSE

s0 = s and the PDGs G‘(sk) satisfying Condition 1. The last
result can be established through an inductive argument on the
index k that further discerns the different types of operations
that lead from state sj, to state si41; the corresponding details
are quite straightforward, and they are left to the reader.

Next, we notice that each major iteration of Algorithm 2
that is defined by the “Repeat”-loop, will either result in
the termination of the algorithm through one of the two
“RETURN” commands that appear in_it, or in the merging
of two or more nodes of the DAG U(G(s)) that is computed
at the beginning of the algorithm. Since each major iteration
involves a finite computation, and the DAG U(G(s)) has a
finite number of nodes, eventually the condition in the second
line of the “Repeat”-loop will be satisfied, and the algorithm
will terminate, indeed, in a finite number of steps.

The correctness of the liveness assessment for the input state
s that is returned by the algorithm, can be argued as follows:

First, we notice that the validity of the various merging

operations that are performed during the execution of the
algorithm, is guaranteed by Propositions 4-6. Furthermore, in
the context of the presumed structure for DAG U(G(s)) that is
implied by Condition 1, the generalized merger that is defined
by the three conditions of Proposition 6, is the only type of
merger for the nodes in the even layers of DAG U(G(s))
that is necessary for utilizing effectively any available nodal
capacity in these nodes. Indeed, as discussed in the proof
of Proposition 6, the conditions of the inequalities (1) and
(2) in that proposition are necessary for characterizing the
feasibility of the smallest possible such merger that starts at
node n; and develops along the considered path. On the other
hand, the relaxation of the inequalities of the third type in that
proposition, let’s say for some node ¢ with 2 < ¢ < k — 1,
would imply that the merger defined by the path (nq,...,n;)
is a “consumer” that will result in a “capacity deficit” for
node n;. Hence, in this case, the execution of the merger that
is defined by the sub-path (n;,...,ny) instead of the merger
that corresponds to the entire path (nq,...,ng), will result in
a node of higher capacity, and will enhance the ability of the
algorithm to advance its computation towards the root node
ny, on the corresponding path.

Also, by working all the aforementioned mergers from the
leaves of the underlying tree towards the root, while utilizing
the layering structure of Definition 6, the algorithm does
account for the maximal capacity that can become available at
every node before attempting the corresponding mergers. This
fact, together with Propositions 3 and 4, ensure the correctness
of the “NON-LIVE” outcome that might be returned by the
algorithm.

To complete the “correctness” part of the proof, we also
need to show that when the algorithm returns a “LIVE”
outcome, the assessed state s is indeed live. This fact can
be established through the following remarks:

One first possibility to reach a “LIVE” outcome is by
reducing the entire DAG U(G/(s)) during the initial execution
of the preprocessing step of the algorithm. But then, the
discussion provided in the “preamble” part of this section

implies that the considered state s is live.

On the other hand, if the algorithm advances past this first
preprocessing stage, then, at the state s’ that will result from
this preprocessing stage, the “home” node ny, is connected to
the rest of the corresponding DAG U(G(s')) through a set
of edges that emanate from node n; and belong to the first
layer of this DAG. Furthermore, in order to obtain a “LIVE”
outcome, every merger attempted on an odd-layer node n of
the DAG U(G(s’")) must be successful (otherwise, the algo-
rithm would return a “NON-LIVE” outcome). Therefore, the
algorithm computation across all paths 7 of the underlying tree
that corresponds to DAG U(G(s')) will consist of sequences
of (generalized) “producer” mergers performed on the even-
numbered layers of DAG U(G(s)), interleaved with mergers
corresponding to odd-layer nodes. This merging process will
advance across each path 7 of the supporting tree until it hits
the root node ny. At this point, either the entire path 7 has
been merged into node ny, or, if there is any remaining part of
the considered path 7 that has not been merged yet with node
np, all the edges on this path will be pointing towards node ny;

in the second case, the remaining part of path 7 will be merged

with node nj, during the execution of the preprocessing step in
the next iteration. Figure 4 provides a concrete demonstration
of the described computation. Furthermore, according to all the
previous developments, this computation implies the existence
of a vehicle-advancing event sequence o € Q* that will bring
all vehicles a € A to the “home” edge h; hence, the considered
state s is live, which further implies the liveness of the original
state s. [

Theorem 4: Algorithm 2 has worst-case computational
complexity O(n?), where n is the number of nodes of the
guidepath network G of the underlying transport system.

Proof: We start by noticing that according to (i) the com-
putational logic that is listed in Algorithm 1, and (ii) the
accompanying discussion to that algorithm, that are provided
in the closing part of Section III, the computational cost of
constructing the DAG U(G(s)) from the input PDG G(s) is
O(|V|+|E|), and since |E| is O(|V|?), this cost is eventually
O(n?) according to the definition of n that is provided in the
statement of Theorem 4.

AAlso, it is clear that the number of nodes of the DAG
U(G(s)) can be no larger than n, the number of nodes of
the guidepath network G of the considered transport system.

F}lrthermore, since the number of nodes of the DAG
U(G(s)) is reduced at least by one at each iteration of
the repeat-loop of Algorithm 2, the remark of the previous
paragraph further implies that the number of executions of the
while-loop of Algorithm 2 is upper-bounded by n+ (n—1)+
o+ 2=0(n?).

Finally, the worst-case computational cost of a single iter-
ation of the while-loop of Algorithm 2 is defined by the cost
of the search for a feasible generalized “producer” merger at
some leaf node n of the current DAG U (G(s)). This search
involves the testing of the three inequalities of Proposition 6
in an iterative manner, by advancing through the path that
connects node n with the root node n;, one node at a
time; this advancement will proceed until such a feasible
generalized “producer” merger is detected, or one of the
required inequalities is violated. Hence, the overall search for
such a merger is O(n).

The result of Theorem 4 results from the straightforward
combination of all the above remarks. [J

V. DISCUSSION

In this section, we shift attention to states s of the FSA
® of Section II-B that will not satisfy Condition 1. It should
be clear to the reader that all the results of Section IV-A,
and also the liveness-preservation by any nodal merger of a
“producer” nature w.r.t. the merged nodes, will hold for this
set of states, as well. But the traffic dynamics that are defined
by this new set of states, involve some additional possibilities
that require a careful reconsideration of the concept of the
“producer” merger and the evaluation of the capacity of the
resulting node, and prevent the straightforward application
of Algorithm 2 to this state set. Next, we briefly discuss
those additional possibilities that we have identified as the
major sources of further complexity for the considered liveness
assessment problem when addressed in this broader class of
traffic states, and we also outline an extension of Algorithm 2
that can effectively cope with this increased complexity.

Fig. 5: A “cycle-generating” merger.

“Cycle-generating” mergers: One of the primary complica-
tions that are encountered when we move to states s of the
FSA & that do not satisfy Condition 1, is depicted in Figure 5.
The graph on the left side of Figure 5 depicts a DAG U(G(s))
where the node ns is expanded to reveal the internal structure
of the complex u-component that corresponds to this node. The
reader can check that all three directed edges in this DAG de-
fine feasible mergers of their incident nodes, but none of these
mergers is a “producer”. Nevertheless, executing the merger
that is defined by edge (n1,n3) results in a state s’ that pos-
sesses the graphical representation that is depicted in the mid-
dle part of Figure 5. The important feature of this new graph,
for the state-liveness-assessment problem that is pursued in
this work, is the presence of the cycle that is defined by the
nodal sequence (n1, na, va, chs, vy, ny); this is a newly formed
cycle, that resulted from the clearance of the edge (ni,ns)
(and the corresponding path (nq, (n1,v1),v1, (v1, chs), chs)).
The creation of this cycle further implies that the entire graph
depicted in the middle part of Figure 5, can be collapsed into
the single node that is depicted in the right side of this figure.

Furthermore, the capacity of the node n123 that results from
the aforementioned mergers, is equal to 5, that is larger than
the capacity of any of the three nodes n1, ne and ng that are
involved in these mergers. A straightforward calculation of
this capacity can be obtained from the graph depicted in the
middle part of Figure 5, as the two units of capacity in each of
the nodes n9 and chg, plus the three free edges on the newly
formed cycle. Alternatively, the capacity of node n123 can be
obtained from the left graph of Figure 5 as the sum of the
capacities of nodes n1,n9 and ng that are merged in the new
node, plus the number of the free edges in the underlying PDG
C(G(s)) of the considered DAG U(G(s)) that will belong on
the newly formed cycle(s); this last calculation explains more
clearly the dominance of the capacity of the resulting node
ni23 W.L.t. the capacities of the original nodes ni,no and ngs.

Generalizing the above example, we can see that, in states
s of the FSA ® not satisfying Condition 1, we can have an
additional type of “producer” merger that results from the
establishment of new cycles in the PDG G/(s) that represents
the state considered s. Therefore, an algorithm for assessing
the liveness of an arbitrary state s of FSA ® must possess
additional logic for detecting and exploiting this additional
possibility. This logic can be defined by means of the corre-
sponding DAG U(G(s)), but space limitations do not allow
its inclusion in this document; some recent developments on
this issue can be traced in [24].

Dealing with a new form of “critical choice”: An additional
complication that arises when considering states s of the FSA

Fig. 6: A traffic state s involving “critical choice” in the
advancement of the traveling agents.

@ that do not satisfy Condition 1, is demonstrated through
the example DAG U(G(s)) that is depicted in Figure 6. It
should be clear from all the previous discussion on the traffic
dynamics that are encoded by DAG U(G(s)), that for the
particular case depicted in Figure 6, any possible advancement
to a chained state must involve one of the two mergers that
are defined by edges (ns,ns) and (n4,ns) according to the
logic of Definition 5. We invite the reader to verify that the
execution of the merger (n4,ns5) at the depicted state s will
lead to a non-live state s’, while the state s” that results from
the execution of the merger (n3,ns) at state s, is live. Yet,
currently, we do not avail of any algorithmic logic that will
resolve correctly the corresponding choice (i.e., it will select
the merger (n3, ns) at state s) and it will execute in polynomial

time w.r.t. the size of the underlying guidepath network G.

Towards an efficient algorithm for assessing state liveness
for traffic states of the considered transport systems that will
not satisfy Condition 1: The example of Figure 6 that was
discussed in the previous paragraph, and our current inability
to resolve efficiently the critical choice that arises in the con-
text of this example, imply that the worst-case computational
complexity of assessing state-liveness for any arbitrary state
coming from an open, irreversible, dynamically routed, zone-
controlled guidepath-based transport system, remains an open
issue.

Nevertheless, the compactness of the state representation
that is provided by the DAG U/(G(s)) that has been developed
in this work, together with the various merging operations with
a “producer” nature that have been identified for this DAG,
provide the “seed” for an efficient search-based algorithm
for assessing the state liveness of traffic states of open,
irreversible, dynamically routed, zone-controlled guidepath-
based transport systems that might not satisfy Condition 1. As
in the case of Algorithm 2, this new algorithm will execute
in an iterative manner, with each (major) iteration consisting
of (i) a “pre-processing” stage that will seek to identify and
execute “easy” transfers of traveling agents to the “home” node
np, and (ii) a second stage that will seek to further advance the
progress of the algorithm when such an advancement is not
further possible through the reductions that are performed in
the “pre-processing” stage. This second stage will be supported
by the imposition of a layering structure on DAG U(G(s))
similar to that employed by Algorithm 2, but the possible
outcomes of this stage in the context of this new algorithm
will be (a) the identification and execution of a feasible
“producer” merger, (b) the resolution of the non-liveness
of the considered state s, or, eventually, (c) the branching
upon a terminal node of an odd-numbered layer, as in the

case of Figure 6. The “backtracking” that is involved in this
“branching” logic implies that the resulting algorithm might
be of super-polynomial worst-case computational complexity;
but the empirical computational complexity of the algorithm
is expected to be very benign. A more thorough development
of the ideas that are outlined in this paragraph, can be found
in [24].

Efficient assessment of state liveness in the “closed” counter-
parts of the considered transport systems: In [6] it has been
shown that the result of Theorem 2 applies also to the class
of the closed, irreversible, dynamically routed zone-controlled
guidepath-based transport systems; i.e., a traffic state s from
this class of transport systems is live iff it is co-reachable to a
chained state s’. Furthermore, the basic logic of Proposition 4
for constructing a chained state s’ from a given traffic state s
through the chain-merging operations that were developed in
the earlier parts of this work, applies also to this new class of
transport systems, but with one caveat: Since these transport
systems do not possess a “home” edge, the corresponding
DAG U(G(s)) will possess no nodes of infinite capacity.
Nevertheless, it is still possible to execute the algorithms that
were presented in the previous parts of this document, in an
iterative manner, that treats each of the “source” nodes of the
DAG U(G(s)) as the “home” node nj. The specification of
such a “home” node is important for defining the layering
structure to be used by the considered algorithms. But once the
“home” node nj, and the corresponding layering structure have
been determined in a given iteration, the rest of the algorithm
steps during this iteration will be similar to the case of “open”
transport systems. Furthermore, the algorithm will exit with a
positive outcome as soon as one of these iterations leads to
a chained state s’; otherwise, the algorithm will exhaust all
possible choices for node n; among the “source” nodes of

the DAG U(G(s)), and it will return a negative result.

VI. CONCLUSIONS

This work has revisited the problem of determining the
worst-case computational complexity of the decision problem
of assessing state-liveness in open, irreversible, dynamically
routed, zone-controlled guidepath-based transport systems.
The study of this problem was originated in [8], and the
results of this work have identified a new class of states that
admit liveness assessment of polynomial complexity w.r.t. the
size of the underlying guidepath graph G. But an additional
important contribution of the presented results is the provision
of a novel representational framework for the qualitative
traffic dynamics of the considered transport systems w.r.t. the
issue of liveness-enforcing supervision, that is based on the
original developments of [6], and can support an effective
and more efficient analysis of these dynamics than the more
standard representational frameworks that are provided by the
current DES theory. This framework was instrumental for the
derivation of the main algorithmic results of this paper, while
its enhanced analytical and computational potential has been
further highlighted in the last part of the paper that discussed
how the considered framework can also support effective and
efficient liveness-assessment for additional classes of traffic
states that transcend the particular class of traffic states that is
the primary focus of this work.

A first part of our future work in this area will seek to further
detail and assess the potential of the new methodological
framework for the considered transport systems that was
discussed in the previous paragraph. The developments that are
presented in [24] is a first step in this direction. Furthermore,
another task of considerable theoretical interest that remains
open and needs further attention, is the complete resolution
of the worst-case computational complexity of the decision
problem of assessing state-liveness in the considered transport
systems. Finally, a third part of our future work will seek
to integrate the results that were derived in this paper, and
their potential extensions through [24] and the various other
research lines that were discussed in the earlier part of this
paragraph, to a broader control framework that will seek
to address not only the liveness of the underlying transport
system, but also its operational efficiency in terms of time-
based performance criteria like the maximization of some
notion of “throughput” and the minimization of the delays
and the congestion to be experienced by the traveling agents;
some preliminary results on this last problem can be found in
[25].

Acknowledgement

The authors want to acknowledge all the constructive com-
ments that they received during the review process and have
helped them enhance the thoroughness and the presentational
quality of the paper.

REFERENCES

[1] W. L. Maxwell and J. A. Muckstadt, “Design of automatic guided
vehicle systems,” IIE Trans., vol. 14, pp. 114-124, 1982.

[2] S. S. Heragu, Facilities Design (3rd ed.). CRC Press, 2008.

[3] S. A. Reveliotis, “Conflict resolution in AGV systems,” IIE Trans., vol.
32(7), pp. 647-659, 2000.

[4] N. Wu and M. Zhou, “Resource-oriented Petri nets in deadlock avoid-
ance of AGV systems,” in Proceedings of the ICRA’01. 1EEE, 2001,
pp. 64-69.

[5] M. P. Fanti, “Event-based controller to avoid deadlock and collisions in
zone-controlled AGVS,” Inlt. Jrnl Prod. Res., vol. 40, pp. 1453-1478,
2002.

[6] E. Roszkowska and S. Reveliotis, “On the liveness of guidepath-based,
zoned-controlled, dynamically routed, closed traffic systems,” [EEE
Trans. on Automatic Control, vol. 53, pp. 1689-1695, 2008.

[7]1 S. Reveliotis and E. Roszkowska, “On the complexity of maximally
permissive deadlock avoidance in multi-vehicle traffic systems,” IEEE
Trans. on Automatic Control, vol. 55, pp. 1646-1651, 2010.

[8] S. Reveliotis and T. Masopust, “Some new results on the state live-
ness of open guidepath-based traffic systems,” in 27th Mediterranean
Conference on Control and Automation (MED 2019). 1EEE, 2019.

[9] T. Standley, “Finding optimal solutions to cooperative pathfinding prob-

lems,” in Proc. AAAI 2010, 2010.

Q. Sajid, R. Luna, and K. E. Bekris, “Multi-agent path finding with

simultaneous execution of single-agent primitives,” in 5th Symposium

on Combinatorial Search, 2012.

[11] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:

Complete algorithms and effective heuristics,” IEEE Trans. on Robotics,

vol. 32, pp. 1163-1177, 2016.

H. Ma, C. Tovey, G. Sharon, S. Kumar, and S. Koenig, “Multi-agent path

finding with payload transfers and the package-exchange robot-routing

problem,” in AAAI 2016, 2016, pp. 3166-3173.

G. Daugherty, “Multi-agent routing in shared guidepath networks,” Ph.D.

dissertation, Georgia Tech, Atlanta, GA, 2017.

G. Daugherty, S. Reveliotis, and G. Mohler, “Optimized multi-agent

routing for a class of guidepath-based transport systems,” IEEE Trans.

on Automation Science and Engineering, vol. 16, pp. 363-381, 2019.

P. Surynek, “Towards optimal cooperative path planning in hard setups

through satisfiability solving,” in Proc. 12th Pacific Rim Int. Conf. Artif.

Intell., 2012, pp. 564-576.

[10]

[12]

[13]

[14]

[15]

[16] R. M. Wilson, “Graph puzzles, homotopy, and the alternating group,”
Journal of Combinatorial Theory, B, vol. 16, pp. 86-96, 1974.

T. Barnard and H. Neill, Discovering Group Theory: A Transition to
Advanced Mathematics. Boca Raton, FL: CRC Press, 2017.

D. Kornhauser, G. Miller, and P. Spirakis, “Coordinating pebble motion
on graphs, the diameter of permutation groups, and applications,” in
Proc. IEEE Symp. Found. Comput. Sci. 1EEE, 1984, pp. 241-250.

V. Auletta, A. Monti, M. Parente, and P. Persiano, “A linear-time
algorithm for the feasibility of pebble motion on trees,” Algorithmica,
vol. 23, pp. 223-245, 1999.

D. Pillai, “The future of semiconductor manufacturing: Factory in-
tegration breakthrough opportunities,” IEEE Robotics & Automation
Magazine, vol. 13-4, pp. 16-24, 2006.

C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems (2nd ed.). NY,NY: Springer, 2008.

D. B. West, The Art of Combinatorics - Volume A: Introduction to Graph
Theory. Urbana, IL: Preliminary Version - Dept. of Mathematics, UIUC,
1993.

R. E. Tarjan, “A note on finding the bridges of a graph,” Information
Processing Letters, pp. 161-162, 1974.

S. Reveliotis and T. Masopust, “Efficient assessment of state liveness in
open, irreversible, dynamically routed, zone-controlled guidepath-based
transport systems: The general case,” School of Industrial & Systems
Eng., Georgia Tech, Tech. Rep. (submitted for publication), 2019.

S. Reveliotis, “An MPC scheme for traffic coordination in open and
irreversible, zone-controlled, guidepath-based transport systems,” in 15th
IEEE Inlt. Conf. on Automation Science and Engineering (CASE 2019).
IEEE, 2019.

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Spyros Reveliotis received the Diploma degree in
electrical engineering from the National Technical
University of Athens, Greece, the M.Sc. degree in
computer systems engineering from Northeastern
University in Boston, and the Ph.D. degree in in-
dustrial engineering from the University of Illinois
at Urbana-Champaign.

He is a Professor with the School of Industrial and
Systems Engineering, Georgia Institute of Technol-
ogy, in Atlanta, GA. His main research interests are
in discrete-event systems theory and its applications.

Dr. Reveliotis is an IEEE Fellow and a member of INFORMS. He has
served on the editorial boards of many journals and conferences on his
areas of interest. Currently, he serves as a Senior Editor for the IEEE
TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, an
Associate Editor for the Journal of Discrete Event Dynamic Systems, and the
Editor-in-Chief of the Editorial Board at the IEEE Conference on Automation
Science and Engineering (CASE). He has also served as the Program Chair
at the 2009 IEEE CASE Conference, and the General Co-Chair of the 2014
edition of the same conference. Finally, he has been a recipient of a number of
awards, including the 2014 Best Paper Award of the IEEE TRANSACTIONS
ON AUTOMATION SCIENCE AND ENGINEERING.

Toma$ Masopust received an M.Sc. degree in
computer science from Masaryk University, Brno,
Czechia in 2004, and a Ph.D. degee in computer
science from Brno University of Technology, Brno,
Czechia in 2007.

Dr. Masopust has worked at CWI Amsterdam, the
Netherlands, in the Systems and Control Group, at
University of Bayreuth, Germany, in the Theoreti-
cal Computer Science Group, and at TU Dresden,
Germany, in the Knowledge-Based Systems Group.
Since 2017 he is a researcher at Institute of Mathe-
matics, Czech Academy of Sciences, Brno, Czechia. Furthermore, since 2018
he is also an Assistant Professor at Palacky University, Olomouc, Czechia.

Dr. Masopust’s research interest includes verification and control of
discrete-event systems and theoretical computer science. He is an editor of
Kybernetika journal.

	Introduction
	The class of guidepath-based transport systems considered in this work and the corresponding notion of state liveness
	A formal modeling of the considered transport systems
	The notions of ``Liveness'' and ``State Liveness'' in the considered transport systems

	An alternative representation of the dynamics of FSA
	The main results
	Preamble
	A polynomial-complexity algorithm for assessing the liveness of states that satisfy Condition 1

	Discussion
	Conclusions
	References
	Biographies
	Spyros Reveliotis
	Tomáš Masopust

