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Abstract—Many high-performance systems now include differ-
ent types of memory devices within the same compute platform to
meet strict performance and cost constraints. Such heterogeneous
memory systems often include an upper-level tier with better
performance, but limited capacity, and lower-level tiers with
higher capacity, but less bandwidth and longer latencies for reads
and writes. To utilize the different memory layers efficiently,
current systems rely on hardware-directed, memory-side caching
or they provide facilities in the operating system (OS) that
allow applications to make their own data-tier assignments. Since
these data management options each come with their own set of
trade-offs, many systems also include mixed data management
configurations that allow applications to employ hardware- and
software-directed management simultaneously, but for different
portions of their address space.

Despite the opportunity to address limitations of stand-alone
data management options, such mixed management modes are
under-utilized in practice, and have not been evaluated in prior
studies of complex memory hardware. In this work, we develop
custom program profiling, configurations, and policies to study
the potential of mixed data management modes to outperform
hardware- or software-based management schemes alone. Our
experiments, conducted on an Intel R© Knights Landing platform
with high-bandwidth memory, demonstrate that the mixed data
management mode achieves the same or better performance than
the best stand-alone option for five memory intensive benchmark
applications (run separately and in isolation), resulting in an
average speedup compared to the best stand-alone policy of over
10%, on average.

I. INTRODUCTION

Memory technologies with different performance and capa-

bilities than conventional SDRAM have emerged. Many high-

performance computing platforms now package conventional

memory DIMMs together with devices containing high band-

width, but limited capacity, “die-stacked” DRAM, such as

HBM [1], [2] or MCDRAM [3], or alongside large capacity,

non-volatile, memory modules, such as Intel R©’s OptaneTM

DCPMMs.1 These multi-layer memory architectures have dis-

rupted the traditional notion of memory as a single block

of volatile storage with uniform performance. Assigning data

with high amounts of reuse to the correct tier can improve

performance dramatically for applications that are too large to

fit within the fastest memory tier.

Propelled by this shifting architectural landscape, system

designers and researchers have developed new strategies to al-

1DCPMM stands for Data Center Persistent Memory Module.

locate and move data efficiently across the memory hierarchy.

One common approach is to exercise the faster, smaller capac-

ity tier(s) as a hardware-managed cache. For example, Intel R©’s

Cascade Lake platform includes a “memory-mode” option,

which applies this approach with DDR4 as a large direct-

mapped cache to Optane DC memory [4]. While hardware-

managed caching provides some immediate advantages, such

as software-transparency and backwards compatibility, it is in-

flexible, often less efficient, and reduces the system’s available

capacity.

Alternatively, software-based data tiering uses either the OS

by itself, or the OS in conjunction with the application to

assign data into different memory tiers, with facilities to allow

migrations of data between tiers as needed. Some multi-tier

memory systems also provide APIs that allow applications to

control the placement of their data objects through the use of

source code annotations [5], [6]. These finer-grained controls

permit the user to coordinate data-tier assignments with knowl-

edge of data allocation and usage patterns originating from the

application itself, potentially exposing powerful efficiencies.

While software-based data tiering can enable signifi-

cant speedups, it has some severe drawbacks compared to

hardware-based caching. Specifically, this approach requires

experts with knowledge of application data usage to update,

build, and distribute annotated binaries. Researchers have

recently developed custom compiler and runtime tools that can

reduce or eliminate much of these burdens [7]–[11], but these

approaches still require offline program profiling, analysis,

and recompilation in order to be effective. Another significant

limitation, which has not been addressed in practice or in

research, is that all of these software-based approaches employ

static tier assignments or only migrate data in very infrequent

intervals. Hardware-based strategies are typically much more

adaptive because there is no need to synchronize low-level

data movement with the upper-level software.

As both hardware- and software-directed data management

have their own advantages, many heterogeneous memory

platforms now include mixed or combined HW/SW data

management modes. Such mixed modes allow applications to

employ both hardware- and software-based data management

simultaneously, but for different portions of their address

space. For example, hybrid mode on the Intel R© Knights

Landing (KNL) architecture allows applications to allocate and
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2 of the capacity of the MCDRAM tier directly,

while the remaining capacity is managed as a hardware-

directed cache [12]. In this scheme, all data objects that are

not directly allocated to or cannot fit within the software-

reserved portion of MCDRAM are always accessed through

the MCDRAM cache. Alternatively, the mixed mode on the

Intel R© Cascade Lake platform uses the entire conventional

(DDR SDRAM) memory tier as a cache for data on the

storage class (Optane DCPMM) memory tier, but also allows

applications to withhold data objects from the in-memory

cache [4].

While such mixed data management modes provide an

opportunity to address the limitations of either hardware- or

software-directed data management alone, the task of design-

ing policies and strategies that use mixed mode approaches

presents some significant research challenges. In particular,

the system or application designer must determine which sets

of data will access the faster, smaller memory tiers through

hardware-directed caching, and which sets will be software-

managed. The best configuration depends on a variety of

parameters, including the performance, capacity, and caching

scheme of each memory hardware tier, as well as the data

allocation and usage patterns of each application. However,

the community currently lacks tools for understanding and

evaluating how these factors impact the effectiveness of mixed

data management modes.

This work examines the performance potential of mixed

HW/SW data management for heterogeneous memory sys-

tems. It presents a custom framework, based on the Simplified

Interface to Complex Memory (SICM) runtime system [13],

for evaluating application performance with mixed HW/SW

data management configurations. Our developed framework

also adopts and extends the MemBrain approach [10], [11]

(which has been previously integrated into SICM), and uses

it to automatically partition application data into different

sets for hardware- and software-based data management. We

deploy our framework Intel R© KNL platform with two memory

hardware tiers (MCDRAM and DDR). Using this platform,

we evaluate a simple mixed HW/SW data management con-

figuration with a set of five memory intensive applications

from the CORAL-2 [14] and SPEC CPU 2017 benchmark

suites [15]. Additionally, we develop and present a custom

profiling tool with potential to increase the performance of

mixed HW/SW data management by automatically identifying

sets of application data that can be managed effectively with

hardware-directed caching.

This study makes the following important contributions:

1) We find that even a simple mixed HW/SW management

configuration achieves the same or better performance

than the best standalone hardware- or software-based

management scheme for all of our benchmark appli-

cations on our experimental platform. On average, the

mixed HW/SW management approach outperforms the

best standalone approach by more than 10%.

2The exact amount is configurable at boot time.

2) We demonstrate a custom profiling tool that records the

distribution of accesses to the pages allocated by each

program allocation site. Sites that allocate small groups

of intensely accessed pages are better candidates for

management with hardware-based caching, while sites

that generate uniform bandwidth to a large set of pages

are better managed in software.

The rest of this paper is organized as follows. Section II

presents recent research in hardware- and software-directed

data management for multi-tier memory systems, and contrasts

these approaches with this work. Section III describes the

tools and framework we have adopted as the basis of this

work. Section IV describes the extensions that this work

makes to the adopted software framework and tools. Section V

describes our experimental platform and methodology and also

presents and analyzes our results. Section VI discusses several

directions for future work, and Section VII concludes the

paper.

II. RELATED WORK

A. Hardware-Managed DRAM Caches

Architecting DRAM as a large, hardware-managed cache

imposes some unpalatable design choices for hybrid memory

systems. In particular, the faster memory tier must either be

implemented as a tagless direct mapped cache or it requires

logic and storage for associative tags. These issues become

even more problematic as the capacity of the hardware-

managed tier(s) increases, and so scalability of this technique

is a concern.

Some works have proposed architectural strategies to ad-

dress these issues, for example, by: collocating tags and data

in DRAM to increase efficiency [16], [17], keeping track of

cache contents in TLBs and page tables to reduce metadata

traffic [18]–[20], or swapping data lines out of the cache

to preserve capacity [21], [22]. Mittal and Vetter provide a

(2016) survey of this research [23]. In contrast to these works,

this research does not propose any architectural modifications

or techniques. Our approach leverages existing architectural

capabilities to implement a framework that supports mixed

HW/SW data management.

B. Software-Directed Data Management

Research in software-directed data management has pri-

marily focused on building tools and techniques to facilitate

the assignment of data to memory tiers. Some prior works

integrate coarse-grained architectural profiling with page-level

management in the OS [24]–[26]. Other projects allow ap-

plications to tag and profile certain program data, and then

use classification heuristics to assign data to the appropriate

tier [27]–[30].

While these efforts demonstrate that application guidance

can be useful for certain usage scenarios, they require manual

source code modifications or expensive online detection to

attach recommendations to data objects. To address this limi-

tation, some frameworks, including the SICM and MemBrain

projects adopted in this work, employ static and lightweight
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Fig. 2: Application guidance workflow [10]. (a) Compile executable with source

code annotations at each allocation site, (b) Profile memory usage of each site in a

separate program run using architectural sampling, (c) Employ bin-packing/sorting

heuristics to assign data-tier recommendations to each site, (d) Apply data-tiering

recommendations during subsequent program executions

runtime tools to attach memory usage guidance to program

data automatically [10], [11], [31]. However, all of these

previous works, employ software-based data management

alone with static, or mostly static tier recommendations. Some

studies [8], [9], [31] have implemented adaptive placement

policies, but these approaches only migrate a small amount of

data at relatively infrequent intervals to manage overheads. In

contrast to all of these previous works, this work integrates

high-level application guidance with mixed HW/SW data

management. Hence, our framework enables applications to

bind data with stable and uniform usage to a specific memory

tier (using software guidance) with the ability to transparently

move application data with bursty or non-uniform usage into

and out of a large, hardware-managed DRAM cache.

III. ADOPTED RUNTIME FRAMEWORK

Our new tools extend the Simplified Interface to Complex

Memory (SICM) project, which is a unified software frame-

work, developed as part of the DOE Exascale Computing

Project [13], for automatically adapting applications to a vari-

ety of memory devices and configurations. Our work builds on

a recent extension of SICM that enables applications to guide

their own data management across heterogeneous memory

tiers through the use of low-overhead profiling and compiler-

assisted allocation site annotations [11]. In this section, we

provide an overview of these existing tools.

A. Simplified Interface to Complex Memory

The U.S. Department of Energy (DOE) is working towards

achieving new levels of scientific discovery through ever-

increasingly powerful supercomputers [32], [33]. Short-term

plans call for achieving exaFLOP performance by the year

2021. To make these computing environments viable, the DOE

has initiated a large effort titled the Exascale Computing

Project (ECP) [34], [35]. The project includes multiple thrust

areas to deal with the hardware and software challenges of

the most complex and high-performance supercomputers. For

such systems, the DOE spends hundreds of millions of dollars

to achieve the highest performance possible from available

hardware.

The Simplified Interface to Complex Memory (SICM), one

of the ECP projects, seeks to deliver a simple and unified

interface to the emerging complex memory hierarchies on

exascale nodes [13]. To achieve this goal, SICM is split into

two separate interfaces: the low-level and the high-level, as

shown in Figure 1. The high-level interface delivers an API

that allows applications to allocate, migrate, and persist their

data without detailed knowledge of the underlying memory

hardware. To implement these operations efficiently, the high-

level API invokes the low-level interface, which interacts

directly with device-specific services in the OS.

B. Portable Application Guidance for Complex Memory Sys-
tems

The SICM project was recently extended with new tools

and allocation strategies to implement a portable guidance-

based approach for assigning program data to heterogeneous

memory tiers [10], [11]. The approach, which they call Mem-

Brain, automates the use of data-tier guidance by associating

profiles of memory behavior (i.e., bandwidth and capacity)

with program allocation sites. Each allocation site corresponds

to the source code file name and line number of an instruction

that allocates program data (e.g., malloc or new) and

may optionally include part or all of the call path leading

up to the instruction. A separate analysis pass converts the

profiles into tier recommendations for each site prior to guided

execution. Figure 2 presents an overview of this approach. A

full description of SICM with the extended MemBrain toolset

is available in [11].

IV. COMBINED HARDWARE AND SOFTWARE DATA

MANAGEMENT WITH SICM+MEMBRAIN

This work extends the SICM+MemBrain framework de-

scribed in the previous section with two new capabilities:

1) New experimental configurations for systems with com-

bined HW/SW data management modes, and
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2) A custom profiling tool for estimating the cache effi-

ciency of data associated with each allocation site.

A. Experimental Configurations for Combined HW/SW Data
Management

To evaluate the potential of mixed HW/SW data manage-

ment, we deployed the SICM+MemBrain toolset on an Intel R©

Knights Landing platform booted into hybrid memory mode.

In this configuration, the KNL reserves half of its (16 GB) high

bandwidth (MCDRAM) tier for use as a software-managed

address space, while the other half is used as a hardware-

managed cache [12]. In this way, data allocated directly to

MCDRAM by software does not interfere with data in the

MCDRAM cache. Next, we updated the SICM+MemBrain

toolset to consider the physical addresses corresponding to the

software-managed memory as the upper (high-performance)

tier. We then applied the MemBrain approach, described in

Figure 2, to assign the data allocated at each allocation site

into the hardware- or software-managed sets during each ex-

perimental run. For these experiments, we employ the greedy

hotset approach [31] to select application data with the highest

bandwidth per unit capacity to be allocated directly to the non-

cached MCDRAM tier.

B. Custom Profiling for Estimating Efficiency of In-memory
Caching

While our new experimental configurations are useful for

evaluating existing guidance-based approaches on combined

HW/SW data management platforms, they do not consider the

cache efficiency of the data associated with each allocation

site. For example, the hotset approach may assign allocation

sites with a relatively large number of cold pages to the

uncached tier because the site contains a small number of

very hot pages. To estimate the cache efficiency of the data

associated with each allocation site, we extended the memory

usage profiling capabilities in SICM to measure the rate of

usage on each page associated with each allocation site. Our

offline profiling tool maintains a map of pages for each site,

and maps each memory access sample to each page. The tool

prints all of the accessed pages, along with their associated

allocation sites, and number of memory access samples to a

file on disk at the end of the run.

V. EVALUATION

A. Experimental Setup

The profiling and evaluations for this work were collected

on an Intel Knights Landing(KNL) platform equipped with

an Intel Xeon Phi with 64 cores, 256 hyper-threads, running

at 1.40GHz. The machine has 16GBs of MCDRAM and

96GBs of DDR4. The MCDRAM can operate in one of three

different modes, as a memory-side direct mapped cache, a

software-managed mode, or in a mixed mode exercising 8GB

of the MCDRAM as a hardware-directed cache and the other

8GB accessible through software-managed mode. We installed

Debian 9.12 with Linux Kernel version 5.2.

Fig. 3: Figure of merit for the limited (8 GB) cache mode,

hybrid Mode, and flat mode shown relative to the full cache

mode (16 GB) configuration (higher is better).

For this evaluation, we selected applications from the SPEC

CPU 2017 [15] and CORAL2 [14] benchmark suites with data

usage patterns which are known to stress memory bandwidth

and processor cache performance. Specifically, we employ

three proxy applications (LULESH, AMG, SNAP) and one full

scale application (QMCPACK) from the CORAL2 benchmark,

as well as the multi-threaded (6xx) version of the fotonik3d ap-

plication from SPEC CPU 2017. All applications use OpenMP

and are configured to use 256 software threads (one for each

hardware thread on our KNL platform). For the CORAL2

benchmarks, we employ the ’large’ input size from [11] which

requires between 80 and 90 GB of capacity for each workload.

To test fotonik3d with larger capacity requirements than the

default ref input (which requires less than 16GB of memory

capacity), we constructed a custom input file for a problem

size of Nx = 480, Ny = 1880, and Nz = 480 and 812 time

steps. Running fotonik3d with this input requires about 40GB

of memory capacity with the default cache mode configuration

on our KNL platform.

B. Performance Potential of Application Guidance with
Combined HW/SW Data Management Modes

Our first set of experiments aims to evaluate the perfor-

mance potential of existing application guidance-based ap-

proaches with combined HW/SW management modes. For

these experiments, we ran each of the selected applications on

the KNL platform in mixed HW/SW mode with the guidance

configurations described in Section IV-A. For comparison, we

ran each application with three additional configurations:

1) A full cache mode configuration, which uses the entire

16GB of MCDRAM as a hardware-directed cache,

2) A limited cache mode configuration, which only ac-

cesses MCDRAM through hardware-directed caching,

but uses the hybrid mode option on the KNL to limit

the MCDRAM cache size only 8GB of capacity, and

3) A fully software-directed flat mode configuration that

uses the hotset approach to assign application data to

the MCDRAM tier with the full 16GB capacity.

13

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on May 31,2021 at 21:35:10 UTC from IEEE Xplore.  Restrictions apply. 



(a) LULESH (b) AMG (c) SNAP

(d) QMCPACK (e) fotonik3d

Fig. 4: Distribution of memory accesses and peak resident set size (RSS) of data allocated at distinct allocation sites. The

violin plots, plotted on the left y-axis (log scale), show the sampled memory accesses per page for each site. The peak RSS

of each site (in GB) is plotted as an orange marker using the right y-axis.

Figure 3 presents the figure of merit (FoM)(throughput) of

each application with the limited cache mode, guided hybrid

mode, and guided flat mode configurations relative to the full

cache mode configuration. All results in this figure report the

median FoM of three application runs (higher is better).

The results show that hybrid mode performs at least as well

as the full cache mode in all cases, and is significantly faster

than full cache mode for both LULESH and AMG. Addition-

ally, while the fully guided flat mode performs as well or better

than cache mode for four of the five benchmarks, it exhibits

much worse performance for QMCPACK. Hence, hybrid mode

achieves the best performance of the four configurations we

tested, and outperforms the next closest configuration (i.e.,

guided flat mode) by more than 10%, on average.

C. Identifying Cache Efficient Program Data

Our next study aims to identify program allocation sites

that are likely to generate cache efficient program data and

distinguish these from sites that generate data with poor cache

utilization. For this analysis, we employ the profiling tool

described in Section IV-B to generate violin plots of the

distribution of accesses to each page allocated at selected

profiling allocation sites. Specifically, for each workload, we

use kernel density estimation to show the distribution of

accesses to pages within each site (e.g., a wider violin plot

indicates more pages with similar access counts)

Figure 4 shows the violin plots for each workload. For

presentation purposes, we display only those sites that allocate

at least 16MB of data corresponding to at least 1% of sampled

memory accesses. For each site, the violin plot is shown

vertically in blue with a logarithmic scale of accesses on

the left y-axis. The median and both extrema of each sites

distribution are also indicated with a darker blue line. We also

plot the peak RSS of that site, represented by an orange dot,

in GBs along the right y-axis. Sites are sorted along the x-axis

from hottest to coldest by accesses per byte.

The plots show that this collection of programs and al-

location sites generate a wide range of capacity and usage

distributions. Additionally, we find that the data generated by

certain allocation sites are likely to utilize memory caches

more efficiently than others. Consider sites 2 and 4 for the

AMG workload shown in Figure 4b. These sites show a clear

bimodal distribution and these would be potential candidate

sites to be excluded from the software managed upper-tier

and instead could be supported by the hardware memory-side

cache since most of their pages have a low number of accesses

with just a few pages contributing a large portion of that sites

total accesses. On the other hand, site 1 is better suited for the

software-managed flat mode of the KNL’s hybrid mode since

it has a low overall peak RSS and most of its pages have a

uniform number of accesses across them. We can see sites

exhibiting similar behavior across the other workloads. For

instance, site 2 of QMCPACK (4d) shows a similar bimodal

distribution as sites 2 and 4 from AMG. We also see a potential

reason for fotonik3d (4e) performing best with the guided flat

mode since most of its hottest sites have a uniform access

distribution across their pages.

VI. FUTURE WORK

The development of profiling tools for estimating the cache

efficiency of allocation sites for in-memory caches and the

analysis of this data are important steps towards understanding

how to leverage combined HW/SW data management modes.

The next direct step to take would be to evaluate the per-

formance of this model using the guidance data we have

gathered. We can extend the hot allocation site identification
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we discussed in Section IV-A to identify hot sites that should

be managed using the software-directed approach but we

can exclude sites that we expect to have good in-memory

cache performance based on access distribution to potentially

improve overall workload throughput even more.

It would also be interesting to explore how these tools can be

used on other memory platforms that support mixed HW/SW

data management, such as Intel R©’s Cascade Lake platform

with conventional DRAM as an in-memory cache for non-

volatile Optane DC memory devices.

VII. CONCLUSION

In this work we demonstrate that augmenting a combined

HW/SW memory management strategy with application guid-

ance obtains a 10% improvement on average over configura-

tions that use hardware-directed caching or software-directed

data placement alone. This work presented new extensions

to the SICM+Membrain framework to allow the profiling of

of data usage rates of physical pages associated with each

allocation site. Lastly, this work presents additional analysis

that shows the potential of this approach for guiding data

placement on complex memory systems with mixed HW/SW

data management modes.
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