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Abstract
Ransomware is a self-propagating malware encrypting file systems of the compromised computers to extort victims for
financial gains. Hundreds of schools, hospitals, and local government municipalities have been disrupted by ransomware that
already caused 12.1 days of system downtime on average (Siegel 2019). This study aims at developing a deep learning-based
detector DeepRan for ransomware early detection and classification to prevent network-wide data encryption. DeepRan
applies an attention-based bi-directional Long Short Term Memory (BiLSTM) with a fully connected (FC) layer to model
normalcy of hosts in an operational enterprise system and detects abnormal activity from a large volume of ambient host
logging data collected from bare metal servers. DeepRan also classifies abnormal activity as one of the candidate ransomware
attacks by extending attention-based BiLSTMwith a Conditional Random Fields (CRF) model. The Term Frequency-Inverse
Document Frequency (TF-IDF) method is applied to extract semantic information from high dimensional host logging data.
An incremental learning technique is used to extend the model’s existing knowledge to prevent DeepRan quality degradation
over time. We develop a testbed of bare metal servers and collect normal host logs of two users for 63 days (IRB-approved).
17 ransomware attacks are executed on the victim hosts, and the infected host logging data is used for validating DeepRan.
Experimental results present that DeepRan produces 99.87% detection accuracy (F1-score of 99.02%) for ransomware
early detection. The detector also achieves 96.5% accuracy to classify abnormal events as one of 17 candidate ransomware
families. The application of incremental learning is validated as an efficient technique to enhance model quality over time.

Keywords Ransomware detection · Classification · Testbed design · Dataset collection · Deep learning

1 Introduction

Ransomware, a type malware enabling cyber extortion for
financial gain, is normally distributed and propagated by
using social engineering (e.g., malspam and USB drop)
techniques, exploiting network protocol vulnerabilities
(e.g., SMB and RDP) and initiating drive-by downloads
from compromised websites (Challita 2018). A total of
850.97 million ransomware infections were detected in
2018 (Dobran 2019). In contrast to the 2017 ransomware
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WannaCry that infected 300K machines across the globe,
the majority of ransomware attacks in 2018 targeted small
businesses (Davis 2019), and approximately two-thirds of
2019 ransomware attacks in the U.S. have targeted state and
local governments (Shi 2019). According to Coveware’s Q3
Ransomware Marketplace report (Siegel 2019), the average
size of the companies that were attacked by ransomware in
Q3 of 2019 was 645 employees, which is down from 925 in
Q2 of 2019.

Modern ransomware utilizes advanced and sophisticated
encryption algorithms, which are hard or impossible to
regain access to data if victims refuse to pay the ransom.
It is reported that nearly 40 percent of victims paid
a relatively smaller amount of ransom to unlock their
data than spending thousands to millions of dollars to
rebuild their information systems and infrastructure (Cook
2019). In particular, we observed that critical infrastructure
sectors such as healthcare and communication (i.e., local
government) sectors had no choice but to pay off criminals
to end the attacks. For example, three Alabama hospital
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computer systems were compromised by Ryuk ransomware
attacks in October 2019, which resulted in diverting existing
patients (expect the most critically ill patients) and turning
away new patients. The hospital normal operation has been
disrupted by the ransomware attack for more than a week
before the hospitals paying off the ransom (Andone 2019).
Big cities such as Atlanta and Baltimore can afford more
than $10 million costs to recover their computer servers
from ransomware attacks. Small cities usually face stricter
financial constraints (e.g., Lake City and Riviera City in
Florida (Cimpanu 2019)) quickly resumed their operations
by paying the criminals.

Moreover, the highly profitable cyber extortion has
brought forward the ransomware-as-a-service (RaaS) busi-
ness model. Ransomware authors sell their malware for
the criminals who are technically unable to develop their
variants. Nowadays no enterprise systems are immune to
those intensive and sophisticated ransomware attacks. Ran-
somware normally conducts a series of activity (e.g., check-
ing keyboard layout, escalating privilege, changing registry,
and loading dll files) before encrypting victim’s data, which
begs the question, “How to detect ransomware attacks as
early as possible to prevent data loss and to stop ran-
somware self-propagation?” Ransomware’s rapid evolution
reveals that a newly found ransomware attack is possible
to be a variant of existing (known) ransomware families.
These specific properties of ransomware attacks motivate
this study to develop a ransomware early detection and clas-
sification tool. To our knowledge, no methods for extracting
the footprint of ransomware attacks from the ambient and/or
bare metal server-generated host logging data is known.
Such a ransomware early detection and classification tool is
needed in practice to benefit three primary use cases—(1) to
expedite currently timely (hundreds of man-hours) manual
analysis of host logs used to identify malware events, (2) to
detect ransomware activities timely and correctly from log-
ging data of bare metal servers, and (3) to determine families
of newly discovered ransomware samples.

The contributions of the present paper are three-fold.
First, from a conceptual point of view, we motivate the new
problem of ransomware early detection and classification,
which could assist information technology (IT) operators
to identify few infected hosts immediately before the self-
propagating ransomware attack infecting the entire network.

Second, to realize ransomware early detection and clas-
sification, we develop a Deep-learning based Ransomware
detector (or DeepRan) uses the Term Frequency-Inverse
Document Frequency (TF-IDF) approach as an information
relative term-weighting scheme to extract semantic infor-
mation from time series host logs that are collected from
bare metal servers. Attention-based BiLSTM, a specialized
Recurrent Neural Network (RNN) is used to model the host
normalcy. Host activity that is deviated from the normal

region is identified as anomalies. The DeepRan classifier
is deployed using the BiLSTM-CRF technique to classify
the abnormal activity as one of the candidate ransomware
attacks. DeepRan is an easy tool for IT operators to use
can fulfill some needs as identified in paper (Bridges et al.
2018).

Third, the existing host logging datasets have many limi-
tations and are not capable of developing an advanced cyber
threat detector. In this paper, we design an experimental
testbed for host log data collection from bare metal servers.
We recruit two users in a large enterprise network to collect
63 days of host logs for modeling normalcy. We also exe-
cute 17 ransomware samples on the bare metal servers to
evaluate DeepRan efficiency. We compare DeepRan, which
is trained by the attention-based BiLSTM-FC model with
another five commonly used deep learning models. Exper-
imental results validate attention-based BiLSTM-FC is the
most efficient model for ransomware early detection, which
produces detection accuracy of 99.87%. DeepRan applying
the BiLSTM-CRF model classifies 17 different ransomware
attacks with an accuracy of 96.5%.

This paper is organized as follows: Section 2 introduces
background information of this study. Section 3 illustrates
research questions and methodologies for developing an
early detection and classification tool. Section 4 presents
a case study, experiment and results. Section 5 introduces
related prior work, and we conclude the paper and discuss
future work in Section 6

2 Background

2.1 Host Logs

Host logs (or host logging data) are records of computer
events, either triggered by a user or by a running process.
Compared with the traditional network-based intrusion
detection systems, which fail to provide a full picture of end-
to-end activity that occurs for an event, the host logs can be
used to facilitate malware forensic efforts, early detection
of malicious activities, and determine the breadth of a
compromised operational enterprise network. In particular,
the events in which behaviors deviate from normal regions
might indicate an initial attack vector (e.g., external threat or
insider threat). IT operators should be alerted immediately
to protect their operational enterprise networks from cyber
attacks. These events and the interrelated nature between
a series of malicious events are unique patterns for IT
operators to discover new threats that bypass traditional
network intrusion detection mechanisms. Moreover, IT
operators can use host log to compare network data
indicating potential compromise with host logging data to
confirm or refute the previous evidence.
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2.1.1 Existing Host Log Dataset and Limitation.

The very few existing and public cybersecurity relevant
datasets have many limitations as summarized in Los
Alamos National Laboratory’s (LANL) recent publica-
tion (Turcotte et al. 2017). For instance, many datasets
are collected from specific and pseudo real-world events
rather than daily operational environments. Most datasets
are synthetic and created using models intended to represent
specific phenomenons of relevance. Some commonly used
datasets are egregiously outdated; their underlying systems,
networks, and attacks represented are 30 years old, which
can no longer represent cyber phenomenon under modern
computing environments.

In particular to LANL open-sourced host logging
dataset, 20 events are captured from 13,000+ hosts located
in LANL’s operational network over 90 days. The 20
events record the host and user’s activities such as log
on, log off, computer shut down and some selected
processes. As discussed by the authors, the dataset aims
at providing “a thorough understanding of the context,
normalization processes, idiosyncrasies and other aspects
of the data (Turcotte et al. 2017).” The LANL’s dataset
is not sufficient for us to model normal behavior of end-
to-end activity in an operational enterprise network. To
create a detector that could identify malicious activities of
ransomware attacks in the early stage and facilitate malware
forensics efforts, it is necessary to collect our data.

Windows Logging Service. In this study, host logging data
is collected from each computer (or bare metal server)
running Microsoft Windows 7 OS by the software called
Windows Logging Service (WLS) (Windows Logging
Service 2020). WLS is a Windows service installed on
the Windows host, which augments traditional logging and
forensic analysis (i.e., host event logs and network traffic)
with real-time reporting of contextual OS information. This
collected OS information of each host is sent to one (or
more) Linux syslog server(s) via standard syslog messages.
In addition to event logs, WLS monitors a variety of
system details such as CertificateMonitor, DeviceMonitor,
RegistryMonitor, FileMonitor that are often cited in incident
reports as indicators of compromise (IoC) (Campus 2017).

Host Logging Data Pre-Processing. The collected syslog
messages of each host are first separated by network traffic
and host logs. We further on filtering out the host logging
data that have no EventID field. The processed host logging
dataset is stored in JSON files, where objects contain
information about events. Event information is described by
a number of string: value pairs, where “string” is the event
information field, and “value” is the value of such field.
All events in the processed host logging dataset contain the

“EventID” field, which represent the processes triggered
by users or computer programs. Hundreds of unique
“EventID” values have been collected, and the number of
unique “EventID” values vary by user’s activity (or the
different running processes). For example, a sequence of
five events have EventID values 4624 → 4672 → 4798
→ 4798 → 4634, meaning that (1) the user successfully
logon (EventID = 4624); (2) special privileges are
assigned to new logon (EventID = 4672); (3) a user’s
local group membership is enumerated by “chrome.exe,”
the Google Chrome application (EventID = 4798);
(4) the user’s local group membership is enumerated by
“svchost.exe, ” a Windows system process to host from
one to many services (EventID = 4798); and (5)
the user is logged off (EventID = 4634). In this
sequence, events (3) and (4) have the same “EventID”
values (i.e., EventID = 4798), but these two events have
different values for the field “CallerProcessName,” such
as “chrome.exe” and “svchost.exe” for events (3) and (4),
respectively.

Therefore, to develop an efficient anomaly detectors
from host logs requires us to analyze each field of
events. The number of fields and the type of fields are
different for each event. For example, the unique number
of fields collected from our host logs are more than 3,000.
The number and type of fields for the same event (i.e.,
the events that have the same “EventID” value) are the
same. Figure 1 presents two events of JSON structured
host logs as examples. Figure 1a presents the first event
information, in which “EventID” value is 4672. Besides
the “EventID” field, this event has the other 18 fields (i.e.,
Chanel, Computer, ..., Task, Version). Figure 1b illustrates
information about the second event, in which the value of
“EventID” is 4634. Although the second event also has 19
fields, some field types are different from the first event’s.

2.2 Threat Model: Ransomware Attacks

In contrast to the 2017 ransomware WannaCry that
infected 300K machines globally, the majority of ran-
somware attacks are targeting small businesses (Davis
2019). These crypto-ransomware attacks usually use Win-
dows API function calls to read, encrypt and delete files.
Ransom messages are displayed on the screen after the ran-
somware infecting the host. This study selects and analyzes
the 17 disruptive ransomware attacks/families that were first
observed between 2015 and 2019.

1. Vipasana(2015, 2016) encrypts files with the public
key in a hybrid approach of symmetric and asymmetric
encryption. Vipasana deployment does not require
Internet connectivity, but sends the private key for
decryption to the attack server. The private key is
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Fig. 1 Sample of Host Logging Data in JSON Format

given back to victims after the ransom is paid (Olbrich
2016).

2. Xorist (2016) is a Ransomware-as-a-Service (RaaS)
attack which propagates via a JS file (i.e., a text file
containing JavaScript code) of an email attachment.
Once the victim executes the malicious JS file
containing the obfuscated code, Xorist’s payload is
automatically downloaded and saved to %temp%
folder of the victim PC. Xorist initiates the encryption
process by filtering and matching their extension
criteria to modify registry. After encrypting data,
Xorist drops ransom notes in all scanned drives and
folders (Meskauskas 2019; Detailed technical analysis
of xorist ransomware (ransomware report) 2018).

3. TeslaCrypt (2015, 2017) is a member of Xorist
family that encrypts game-play data of specific
computer games (Teslacrypt ransomware attacks
2020). This attack is distributed by the popular
Angler browser exploit kit, encrypts files using AES-
256 encryption algorithm and extorts victims for a
ransom of $250 to $1000. The malware uses the
Tor anonymity network for command and control
(C2) without requiring network connectivity for data
encryption (INTELLIGENCE 2015).

4. Fantom (2016) displays a fake Windows Update
screen to fool victims while secretly encrypting the
victim hosts’ file system. Fantom generates a random
AES-128 key, and encrypts the key with the RSA
encryption algorithm. The key is uploaded to the C2
server. The extension of the encrypted file names are
“.locked4”, “.fantom” or “.locked”. After completely
encrypting the files, Fantom changes the wallpaper
and keeps a “DECRYPTYOURFiles.html” ransom
note on the desktop and in folders of encrypted
files(Meskauskas 2017).

5. JigSaw (2016) has spread around the globe via
malicious spam emails. It encrypts files with the AES
cipher. JigSaw has more than 45 versions, and some
variants delete files every 60 minutes (Morparia 2016;
Kiguolis 2019).

6. WannaCry (2017) is a ransomware attack with
historic world-wide effect that launched on May 12,
2017 (Perlroth and Boeing possibly hit by ’wannacry’
malware attack 2018). The WannaCry dropper is a
self-contained program consists of three components,
an application for data encryption and decryption; an
encryption key file; and a copy of Tor. WannaCry
exploits vulnerabilities in Windows Server Message
Block (SMB) and propagates malicious code to infect
other vulnerable machines in connected networks.

7. Petya (2016, 2017) self-propagates by exploiting
Windows EternalBlue and SMB vulnerabilities. Petya
is initially executed via rundll32.exe, removes itself
from the infected system, and then creates the C:/
Windows/perfc as a flag to indicate the host has been
infected. Petya encrypts specific file types in user-
mode, and the encryption key is further on being
encrypted with an embedded public key and being
appended to the README.TXT file (Team 2017).

8. GoldenEye (2016, 2017) is a combination of MIS-
CHA and Petya (Meskauskas 2018), and disguises
itself as a Trojan with a .xls extension. GoldenEey is
widely distributed via phishing emails, which installs
its copy in the %APPDATA% directory under the name
of a random application found in the system. The
high-level attack (MISCHA) is deployed to encrypt
the files and drop TXT format ransom notes. The
attack bypasses UAC and elevates its own privileges
to make the second attack at a low-level by installing
Petya at the beginning of the disk. After Petya is
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deployed, the system crashes and starts with a fake
CHKDSK (Sponchioni 2016; Labs 2017).

9. BTCware (2017) is one of the ten most common
ransomware families in 2017. It brute-force weak
passwords of the Windows Remote Desktop Protocol
(RDP) . The attackers break into the compromised
hosts and execute the ransomware executable file
manually. Some variants of BTCWare also distributes
by spam emails or campaigns through attached files
containing JS or malicious macro (Anand Ajjan 2018).

10. Defray (2017) propagates via phishing emails with
an attached Word document embedded on an OLE
package object. The attack has targeted healthcare,
education, manufacturing and technology industries 6
(Threat Spotlight 2017). Once the victim executes the
OLE file, the Defray payload is dropped in the %TMP%
folder and disguises itself as a legitimate executable
(e.g., taskmgr.exe or explorer.exe). Defray
encrypts the file system but does not change file names
or extensions, and also deletes volume shadow copies
of the encrypted files (Crowe 2017).

11. nRansom (2017) blocks access to the infected
computers rather than encrypting victim’s data (This
Ransomware Demands Nude instead of Bitcoin -
Motherboard 2017). It demands ten nude photos of the
victim instead of digital currency to regain access. As
recovery from nRansom is relatively easy, it is not a
sophisticated malware but a “test” or a “joke”.

12. RedEye (2018), is a member of the same ransomware
family as Annabelle and JigSaw (Arghire 2018).
RedEye is distributed through spam email messages,
encrypts files using AES-256, and wipes out the
MBR (Master Boot Record). The encrypted files
are appended with the RedEye extension, and are
overwritten with zeros entirely.

13. Saturn (2018) is an RaaS attack that terminates
itself if the victim host is detected running in a
virtual machine environment. The ransomware deletes
volume shadow copies, disables Windows startup
repair, and clears the Windows backup catalog of the
victim hosts. .saturn is appended to the names of
encrypted files (Abrams 2018).

14. Scarab (2017-2019) uses AES-256 encryption, and
appends various extensions to the names of the
encrypted files. Necurs botnet is used by Scarab to
spread malicious software in November 2017. More
than 20 variants of the ransomware continue to appear
until early 2019 (McAfee 2019; Hioureas 2018).

15. GandCrab (2018, 2019) is also an RaaS attack that
has rapidly spread across the globe since January,
2018. In 2019 a newer version of GrandCrab uses
Salsa20 stream cipher to encrypt files offline instead
of applying RSA-2048 encryption or connecting to

the C2 server (Salvio 2018). GandCrab scans logical
drives from A: to Z:, and encrypts files by appending
a random Salsa20 key and a random initialization
vector (IV) (8 bytes) to the contents of the file. The
private key is encrypted in the registry using another
Salsa20 key. IV is encrypted with an RSA public
key embedded in the malware. This new encryption
method makes GandCrab very hard to decrypt, and
only GandCrab creators can decrypt the files (Mundo
and Gandcrab ransomware puts the pinch on victims
2018).

16. Ryuk (2018, 2019) is a highly targeted attack that
has detrimental effects to data centers and enterprises
globally. The victim PCs are first infected by Emotet
or Trickbot Trojan. Afterward, the threat actors
map and assess the victim’s network; deliver Ryuk
ransomware to encrypt files and network drives using
AES and RSA encryption techniques; kill hundreds
of processes and services; drops ransom notes; and
deletes shadow copies, backups and the encryption
key(Itay Cohen 2018; Infoblox 2019). Three Alabama
hospital IT networks were attacked by Ryuk in
October 2019, forcing the victim hospitals to turn
away non-critical patients and obliging ambulances.

17. Sodinokibi (2019) is a huge risk to businesses and
organizations after its initial attacks in Asia and
Europe. The ransomware is distributed via phishing
emails containing a malicious link. It downloads a
zip file of the Sodinokibi payload containing an
obfuscated JS file, which can bypass the detection
of the majority of antivirus vendors. The malware
module is loaded into memory functions, and the
payload is injected into an AhnLab antivirus process.
The ransomware iterates through all folders on the
victim machine encrypt files with the RC4 encryption
technique and leaves a ransom note in each folder.
After encryption, the ransomware changes the desktop
wallpaper, and all shadow files are deleted (Fakterman
2019; Nocturnus 2019).

2.3 LanguageModeling Using Recurrent Neural
Networks

Host logging data containing time series host activity/events
is similar to natural languages. This motivates us to create
a detector to identify malicious activity timely by applying
natural language models.

Recurrent Neural Network (RNN) has been validated as
an efficient method to model natural language (Brown et al.
2018). RNN is a class of artificial neural sequence model
that learns from historical input information and uses its
internal state to process sequences of inputs to predict the
next input from the previous observation. RNN consists of
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the input layer, hidden units, and the optional output layer.
Let xt denote the current step of the input sequence, ht−1

denote the previous hidden state. The next hidden state ht

can be calculated as follows (Chen et al. 2017).

ht = f (Axt + Wht−1) (1)

where f is a non-linear activation function (e.g., softmax
function). A and W represent weight matrices of the current
input vector xt and the previous hidden state ht−1.

Although RNN performs well in time series analysis,
the vanishing gradient problem makes RNN models hard
to train. It is a time consuming procedure to get the
final results of model training or updated weights. Long
Short Term Memory (LSTM) is a type of RNN network
that uses gate functions to solve the vanishing gradient
problem (Hochreiter and Schmidhuber 1997). LSTM has
similar control flow as RNN, but LSTM’s cell operation
is different from RNN networks’. The LSTM network has
many LSTM cells. Cell states (in a block) are regulated
(i.e., protected and controlled) by input, forget and output
gates (Hochreiter and Schmidhuber 1997). The LSTM
network captures temporal information from a sequence of
inputs and creates a directed graph in the time domain.

Bidirectional recurrent neural networks (BiLSTM) is a bidi-
rectional variant of LSTM that connects two hidden layers
of opposite directions to the same output. Compared with
LSTM, the hidden layer of BiLSTM is split in two direc-
tions, forwards (from past to future) and backwards (from
future to past) (Huang et al. 2015). The BiLSTM network
is selected for this study to train the host logging data
as the BiLSTM network model can facilitate information
extraction from host logging data sequential vectors in both
directions. Fig. 2 illustrates the functional diagram of BiL-
STM. One LSTM network processes the sequence from the
top to the bottom (forwards) and the other processes the
sequence from the bottom to the top (backwards). At each
time step t , the forward pass calculates the hidden state ht by
considering the previous hidden state ht−1 and the new input
sequence xt . At the same time, the backward flow calculates
the hidden state ht considering the future hidden state ht+1

and the current input xt . Afterward, the forward ht and the
backward ht are concatenated to obtain the combined vector
representation.

As we introduced above, event information captured in
host logging data has multiple fields, and some fields might
have a higher impact on identifying an anomalous event
than others. Therefore, we employ attention mechanism
to give different focus to the information outputted from
the hidden layers of BiLSTM. BiLSTM includes the
attention mechanism that can prioritize the significance of
the important fields while penalizing the “noise” fields.
The attention mechanism assigns weights to the event

Fig. 2 Functional Diagram of BiLSTM

fields according to their significance using a fully
connected layer (or FC layer). Each hidden state ht

at the time step t ∈ [1, T ] of the BiLSTM network is passed
through the FC layer to obtain an individual trainable weight
αt at time step t as:

αt = tanh(wα
t · ht ) (2)

where wα
t is the weight of the attention layer at time step t .

A large αt value means the input event field at time step t is
more important. Therefore, we can obtain a trainable weight
vector α=[α1, · · · , αT ].

Finally, the model predicts the input event sequence as
normal behavior or attacks (anomaly detection) depending
on the output attention score. The attention score can be
obtained by applying a softmax to the alignment score
vector Walign · α, where Walign is a vector of alignment
weights (Zhang et al. 2019). The attention score is calculate
as follows.

AttentionScore = softmax(Walign · α) (3)

The model detects ransomware attacks if the predicted
AttentionScore value is lower than the pre-defined
threshold (i.e., 0.5) that is obtained by training normal
behavior.

When the FC layer output indicates the input event
sequence are abnormal, we can apply an attention-
based BILSTM-CRF model by adding a Conditional
Random Field (CRF) layer on the top of the attention-
based BiLSTM model for multi-class classification.
Attention-based BILSTM-CRF is a type of discriminative
undirected probabilistic graphical model (Chen et al. 2017;
Ma and Hovy 2016), which passes the context based infor-
mation output from the original attention-based BiLSTM
model to its sequential CRF layer. The structured output
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of attention-based BiLSTM-CRF is represented as a sin-
gle log-linear distribution as a function of each observation
sequence (Ma and Hovy 2016). Using the maximum con-
ditional likelihood estimation (i.e., the logarithm of the
likelihood), the attention-based BILSTM-CRF predicts the
input event sequence to the output classes that have the
highest conditional probability. The output of our BILSTM-
CRF model predicts the input events as one of the known
ransomware attacks.

3 Research Questions andMethodologies

This study aims at developing a high-accuracy malware
detector to identify abnormal host behavior from a large
volume of ambient (un-attacked) host logs as early as
possible. Once the detector detects the host is compromised,
it will further on classifying the malicious behavior to one of
the known malware families. The following constraints and
research questions must be addressed to develop an efficient
detector for malware early detection and classification.

1. Host logging data is a sequential ordering of host events
in plain text format. These host events are initiated
by users or computer processes, and some events
are a consequence of successive response of related
processes. The detector should be able to process
massive amounts of raw text and perform well in time
series analysis and prediction.

2. Host logging data is very sparse as most fields only
occur with a given value of the EventID field. The
number of unique fields can be hundreds or even
thousands, depending on the types and numbers of
different host activities initiated by (il)legitimate users.
Also, some fields can have thousands of different
values. The detector, therefore, must be capable to
discover the interrelated nature of the events and their
specific fields and parameter values.

3. Host logging data of an operational enterprise network
normally contains much fewer infected hosts than
normal hosts. The detector must identify the abnormal
events or the sequence of abnormal events induced
by malware from a few hosts that are infected with
malware.

4. The proposed early detection function requires the
detector to immediately and accurately determine the
host security status. The detector, therefore, should
achieve a high detection accuracy in time.

5. The detector should also be highly efficient for multi-
class classification to classify abnormal host events into
known/existing malware families.

We explore answers to these questions by develop-
ing a specific ransomware detector using deep learn-
ing techniques. Deep-learning based Ransomware detec-
tor (or DeepRan) uses Term-Frequency-Inverse-Document-
Frequency (TF-IDF) as an information relative term-
weighting scheme to extract semantic information from
each event in the host logging data and trains semantic
information using an attention-based BiLSTM, a special-
ized Recurrent Neural Network (RNN) to model normalcy.
The events that are deviated from the normal region are
anomalies. DeepRan will also predict abnormal events as
one of the candidate ransomware attacks. Fig. 3 presents the
framework of DeepRan. Details of DeepRan components
and methodologies are described as follows.

3.1 Log Parser

Log Parser converts the host logs of a JSON structured text
to the semantic information vector format. The output event
vectors are training data or test data, which are inputs to
deep learning models for ransomware early detection and
classification.

Host Logging Data Processing: Tokenization and Vectoriza-
tion. In a similar fashion to Natural Language Processing
(NPL) that converts a group of sentences into tokens, the
events in the host logs can be converted to tokens T =
[t1, t2, · · · , tN ]. As presented in Fig. 1, in a host logging
file, the “string” (or fields) of the dictionary structure (e.g.,
Channel, Computer) are the tokens, and the number of
unique tokens selected from the event fields are N . Param-
eter values of these selected tokens are converted to word
vectors. The multi-dimensional events in a host logging file,
therefore, can be converted to a sequence of event vectors
V = [V1, V2, · · · , VK ], where K represents the K − th

events (entries) at the time step K . Every event vector Vi

Fig. 3 DeepRan Framework

305Inf Syst Front (2021) 23:299–315



(i ∈ [1, K]) has a fixed number of N tokens. An event
vector can be represented as Vi = [v1, v2, · · · , vN ]. It is
possible that one or more tokens’ values are not available
for some events. In this scenario, the default value “N/A”
is assigned to the token. It is also possible that some events
have more than N keys/fields. In this scenario, these event
fields and values are ignored as the fields are not in the set
of the selected tokens.

Word Embedding and Featurization. We use the FastText
model, an extension to Word2Vec, for word embedding due
to the value of tokens in the host logs are not formal English
words. For example, the token/field “SubjectLogonID” of
the event which EventID = 4672 (as presented in
Fig. 1) has a hex value “0x3e7” in a string format. Models
such as a one-hot vector or Word2Vec may not have a
good performance of rare word representations. FastText,
an embedding model using character-level information can
appropriately represent rare words such as token parameter
values of host events. Therefore, each token parameter value
vj (j ∈ [1, N]) of host events can be converted to a d

dimension vector uj (i.e., vj → uj = [a1, a2, · · · , ad ]). If
we transpose of Vi as V

(T )
i , where i ∈ [1, K] then V

(T )
i can

be converted as Ui , which is a N × d matrix. Thus, V is
converted to U = [U1, U2, · · · , UK ].

Weights of Words. Not all words equally represent the
meaning of a particular sentence (or event information).
TF-IDF is a weighting method that identifies the relative
importance of a word in a particular document out of
a collection of documents (Salton and Buckley 1988).
“Given two sets of documents, and let f (t, d) denote
the frequency of term t in document d , and M is the
size of the corpus. The TF-IDF weight of a word is the
product of the Term Frequency, tf(t, d) = ft,d/

∑
t ′∈d ft ′,d

(giving the likelihood of t in d) and the Inverse Document
Frequency, idf(t, D) = log[M/(1 + |{d ∈ D : t ∈
d}|)] (giving the Shannon’s information of the document
containing t). Intuitively, given a document, those terms that
are uncommonly high frequency in that document are the
only terms receive high scores (Chen and Bridges 2017;
Chen et al. 2019).”

By applying the TF-IDF approach, the numerical weight
vector of an event word vector Vi = [v1, v2, · · · , vN ] (i ∈
[1, K]) is converted as Wi = [w1, w2, · · · , wN ], where wi

is the TF-IDF score of vi . The semantic information vector
X = [X1, X2, · · · , XK ] is the output of Log Parse, and
Xi = 1

N

∑
i∈[1,N] Wi ∗Ui . Fig. 4 illustrates the workflow of

Log Parsing that converts host logs (plain texts) to numerical
semantic information vectors.

Fig. 4 Log Parsing Workflow

3.2 Anomaly DetectionModel for Ransomware Early
Detection

We use attention-based BiLSTM with a fully connected
(FC) layer shown in Fig. 2 to create training models because
sequential information in the host logging data can give
away ransomware abnormal patterns. This study aims at
detecting ransomware infected hosts as soon as possible, but
training input semantic information of event vectors only
cannot detect ransomware abnormal behavior immediately.
Therefore, we train the attention-based BiLSTM-FCmodels
with two sliding window sizes. The input of the first
model (BiLSTM-FC model 1) is a sequence of event’s
semantic information vectors, and its sliding window size
is N (the size of the vector). The input of the second
model (BiLSTM-FC model 2) is a sequence of previous N

components (or event fields), and its sliding window size is
1. Both BiLSTM-FC models predict the next component’s
(or field’s) AttentionScore based on the input sequences.

As presented in Fig. 5, the true event sequences Vi are
host logging data captured by WLS at time step i ∈ [1, K].
Xi = [xi,1, · · · , xi,N ] is semantic information of the true
event Vi that has N selected components (or event’s fields).
Fig. 5 gives three events’ semantic information vectors
X1, X2, X3 as an example. From the time step 2 onward
the host is compromised by a ransomware attack. As we
discussed in Section 2.1, the same event has the same
number and type of fields, but the values of the same fields
may be different when the host performs normally and when
the host is attacked by ransomware. The red components of
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the vectors X2 and X3 in Fig. 5 such as [x2,2, · · · , x2,N ] and
[x3,1, · · · , x3,N ] represent the fields’ semantic information
is abnormal caused by the ransomware attack. BiLSTM-
FC model 1 is in the orange block below the True Event
Sequences, which illustrates the model with the sliding
window size N predicting normal behaviors of the host at
time step 2. The model predicts the host behaves abnormally
at time step 3 because of the input of the model is the true
and abnormal vector X2. From the analysis, we observe that
the BiLSTM-FC with the N sliding window size has some
delays of detection, and at least one-time step delay.

On the other hand, the black block above the True Event
Sequences in Fig. 5 illustrates the BiLSTM-FC with the
sliding window size 1 can predict the host’s abnormalcy at
time step 2. This is because the majority of the predicted
AttentionScores of X2 components are abnormal when
comparing the predicted values with the normalcy threshold
0.5. (The host is normal if the majority of the component’s
AttentionScores are greater than or equal to the threshold;
otherwise, the host is predicted as abnormal.) Thus, we
use BiLSTM-FC with the sliding window 1 to predict the
host’s abnormal behaviors immediately, and use the sliding
window N to keep the track of each event for ransomware
early detection.

3.3 Ransomware Attack Classification

Polymorphic malware constantly changes its identifiable
features to evade antivirus detection. Ransomware attacks
usually apply the same technique to continuously evolve
and generate multiple variants before the end of its
lifespan. We also observed that most ransomware attacks
belong to the same ransomware families or inherit
encryption/propagation mechanisms from their ancestors.
To facilitate malware forensics efforts, the DeepRan
detector should also perform as a multi-class classifier that
is capable to classify the detected anomalies to appropriate
ransomware families. The correct classification of system
abnormal events can facilitate forensics efforts, which
will help the IT operators to make decisions in malware
protection and mitigation.

When the BiLSTM-FC model predicts the input
sequence of events are abnormal, DeepRan passes the out-
put of the BiLSTM network to a new CRF layer (instead
of the FC layer) to predict which ransomware attacks are
compromising the host. The BiLSTM-CRF model deter-
mine the class of ransomware attacks (or families) from the
candidate classes based on the predicted conditional prob-
ability of each class. The abnormal events are classified
as the candidate that has the highest probability. Algo-
rithm 1 presents how DeepRan detects anomalies from host

logging data, and then determines the compromised host
is under which ransomware attacks from the 17 candidate
ransomware attacks/families.

4 Case Study

We design the following experiments to collect training data
and test data, and validate the efficiency of DeepRan.

4.1 Testbed Design and Bare Metal Host Log
Collection

As described in Section 2.1.1, the existing datasets have
many limitations and are not capable of developing an
advanced cyber threat detector. In this study, we design
an experimental testbed for (1) providing a realistic and
isolated environment to deploy malware executable; (2)
collecting real-time bare metal host logs when the physical
machines operate normally and/or infected by malware
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Fig. 5 Attention-based
BiLSTM-FC for Ransomware
Early Detection

(i.e., ransomware); and (3) processing raw logs to harvest
reproducible and shareable host logging data.

As presented in Fig. 6, the testbed has three
physical/bare-metal machines: one Linux server (the PC
on the left side of the figure) and two Windows 7 clients,
Host1 and Host2. The Linux server has two functionalities
such as (1) performs as a Fog Server (FOG Project 2020) to
re-image associated OS for its clients (Host1 and Host2).
We conduct experiments to collect host logging data when
the host is under different ransomware attacks. After exe-
cuting one ransomware sample, the host is re-imaged by
the Linux Server to assure the host configuration is always
the same and the host security status is normal before
the host is infected by another ransomware sample again.
(2) The Linux server also performs as a system message
logging server, which receives real-time logging data that
are sent from its clients (Host1 and Host2) via the Win-
dows Logging Services (WLS) software installed on the
clients.

Fig. 6 Testbed: Real-Time Host Log Collection

Host Log Collection—Normal Activity. We recruit two
legitimate users from a large enterprise network and collect
their working PCs’ host logs over 63 days (IRB-approved).
User’s normal activity includes reading, writing and
deleting files, opening websites, watching video streams,
uploading/downloading files into cloud storage, sending and
receiving emails, (un)installing software. The host logs are
collected by WLS installed on the two client PCs, and
we obtain 126 JSON files (one file per user per day) of
normal host logs that contain more than one million logged
events. Among the one million logged events, we observe
250 unique values of EventID. Fig. 7 lists the 20 most
frequently seen events and their frequency. Note that the
number of unique fields of the one million logged events is
more than 3,000.

Host Log Collection—Ransomware Activity. The 17 ran-
somware executables are fully deployed on two Windows 7
physical machines for us to collect infected host logs. The
infected hosts are re-imaged by the Fog Server to assure
the host performs normally before deploying the next ran-
somware samples. Therefore, the initial state of the victim
host is always normal, and we continuously collect host logs
for 10 minutes after ransom notes display on the screen.
We obtain 17 JSON files of infected host logs, and each
file contains the host behavior of one ransomware sam-
ple. More than 4,800 events have logged, and 79 events are
unique. Note that, not all of the events are abnormal. For
example, the events representing host reboot/start before the
ransomware samples are executed are normal. These num-
bers of normal events are much fewer than ransomware
events in each file. To simplify the labeling process, we label
all events in the 17 ransomware host logs as abnormal. The
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Fig. 7 Most frequently
Occurred Events

top 20 most frequent events captured in ransomware logs
are presented in Fig. 7.

4.2 Training and Test Datasets

DeepRan can early detect ransomware attacks compromised
the victim host, and then classify the abnormal events into
one of the known ransomware families. To detect anomalies,
we use the unsupervised attention-based BiLSTM-FC
algorithm to model the normal region of host behavior,
which is trained by 10% of total normal events (i.e.,
103k+ events). The test dataset consists of the rest 90%
of normal events and 100% ransomware logged events. If
the test events deviate from the normal region, DeepRan
continuously classifies the events into one of the 17
ransomware attacks. The classifier adopting the supervised
BiLSTM-CRF model is trained and tested by 50% of
logged events of every ransomware attack. Table 1 lists the
event numbers of the training and test data for validating
DeepRan detection and classification efficiency. Note that
we evaluate detection and classification models offline
separately. Therefore, the number of ransomware events for
testing the detector and classifier is different in size.

4.3 DeepRan Implementation

1. Token Numbers: The top 50 most frequently seen
fields out of total 3,000 unique fields of the training data

Table 1 Normal and ransomware host log dataset

Host Logs Detection Classification

Training Testing Training Testing

No. of Normal Events 103,330 929,967 0 0

No. of Ransomware Events 0 4,820 2,410 2,410

are selected as tokens (N = 50) to form the parameter
value vectors.

2. Word Embedding Dimension: The value d = 100
is passed to the FastText model to featurize and
embed word parameter value vectors to semantic
information vectors, which are the inputs of the
attention-based BiLSTM model. The training data of
the detector contains 103,330 normal events. Each event
is converted to a 50 × 100 matrix. The size of training
data, after being converted to semantic information
vectors is (103, 330 ∗ 50) × 100

3. Attention-based BiLSTM Model Deployment:
We use the open source machine learning library
pytorch (Pytorch: From research to production 2020)
to train the BiLSTM model by selecting the minibatch
stochastic gradient descent (SGD) algorithm with
Adam optimizer on an NVidia Tesla K80 GPU server.
We set the minibatch size to 128, and the initial learn-
ing rate as 0.001. During training the model we used
cross-entropy as the loss function(LeCun et al. 2015).

4.4 Experimental Results

Anomaly Detection. We compare DeepRan with another
five commonly used deep learning models (i.e., CNN,
LSTM, GRU-FC, BiLSTM-FC, and attention based
BiGRU-FC) to validate its accuracy in ransomware attack
detection. The six models are trained with normal events
only, and the test dataset contains a large volume of nor-
mal events and very few ransomware events. The evaluation
results are presented in Table 2, and we observe that Deep-
Ran yielding 99.87% detection accuracy, 100% precision,
98.06% recall, 99/02% F1-score and 0.98 Matthews corre-
lation coefficient (MCC) is better than the other five models
for ransomware attack detection. This experimental result
validates DeepRan is a high-accuracy detector that can be
leveraged to detect few ransomware infected hosts from a
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large number of normal hosts in an operational enterprise
system.

Early Detection. One of the contributions of DeepRan is to
detect ransomware attacks before they are fully deployed on
the victim host or before ransomware encrypts the victim’s
data. This is primarily because DeepRan selects sliding
window lengths of 1 and 50 to predict the token value
for the next event and the next event vector (a sequence
of events). These numbers of sliding window lengths are
selected as they perform the best among our experiments. If
DeepRan detecting anomalies only relies on predicting the
next event vector (i.e., sliding window length of 50), it may
fail to identify abnormal events if the majority token values
of the test event vector are predicted as normal. DeepRan,
yielding higher than 99.94% accuracy for detecting 17
ransomware events in the test dataset, proves that DeepRan
can help the IT operators/victim users to determine current
security status and identify abnormal host behavior since the
beginning of the ransomware deployment. Victim users of
the infected host and the IT operators of the compromised
enterprise network can respond to the ransomware attacks
timely to prevent ransomware maliciously encrypts data of
the entire network.

DeepRan’s efficiency for detecting the hosts that are
infected by the 17 ransomware attacks is presented in
Table 3. We also provide a bar chart as shown in Fig. 8
for visualizing DeepRan anomaly detection efficiency. The
majority of the Matthews Correlation Coefficient (MCC)
scores of detecting ransomware attacks are higher than

Table 3 DeepRan Anomaly Detection Results for 17 Ransomware
Attacks

Ransomware Accuracy Precision Recall F1-Score MCC

BTCware 0.994 1 0.762 0.865 0.873

GandCrab 0.999 1 0.842 0.914 0.918

Defray 0.997 1 0.979 0.989 0.989

Fantom 0.999 1 0.88 0.936 0.938

Goldeneye 0.999 1 0.841 0.914 0.917

Jigsaw 0.999 1 0.812 0.896 0.901

nRansom 1 1 1 1 1

Petya 0.999 1 0.782 0.877 0.884

Redeye 0.997 1 0.923 0.96 0.96

Saturn 0.999 1 0.96 0.979 0.979

Scarab 0.999 1 0.945 0.972 0.972

TeslaCrypt 0.998 1 0.763 0.865 0.873

Vipasana 0.997 1 0.858 0.923 0.926

WannaCry 0.999 1 0.932 0.965 0.965

Xorist 0.998 1 0.96 0.979 0.979

Ryuk 0.999 1 0.89 0.942 0.944

Sodinokibi 0.998 1 0.845 0.916 0.919
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Fig. 8 Visualization of
DeepRan Anomaly Detection

0.9, which validates the early detection of DeepRan has
a relatively high quality. Additionally, DeepRan produces
no false positive (i.e., precision=1), meaning the events
predicted as ransomware activity by DeepRan are all
labeled as ransomware from the collection of ground truth
data (ransomware host logs). DeepRan recall rates vary
between 0.72 to 1, which means that not all events in the
ransomware host logs are detected as “abnormal” events.
This is mainly because (a) the labels of some ransomware
events inaccurately represent the ground truth. As described
in Section 4.1, we label all events captured from the infected
hosts as “attacks.” These host logs are collected during the
period when the victim host was booting and until one of
the ransomware samples are fully deployed on the victim
host. Therefore, the events collected from the host before the
host executes the ransomware samples should be labeled as
“normal”. (b) The events collected from the victim hosts that
describe a ransomware attack’s runtime behaviors are not all
abnormal. For example, the attack may read/write/copy files
like normal operations. Since DeepRan aims at detecting
few ransomware infected hosts from a large number of
normal hosts in the operational enterprise network, the
quality and efficiency of DeepRan are not influenced by the
model recall rates, but highly dependent on the accuracy and
precision metrics.

Ransomware Attack Classification. DeepRan classifies
abnormal events as one of the 17 candidate ransomware
attacks to assist IT operators in identifying known
ransomware and their new variants. The DeepRan classifi-

cation engine is trained with 50 percent of total ransomware
events. We evaluate DeepRan classification accuracy using
a test data of the other 50 percent ransomware events.
DeepRan classification evaluation results are presented
in Table 4. The average classification accuracy of the 17
ransomware attacks is 96.5%. The highest and lowest clas-
sification rates are 99.8% (JigSaw) and 93.2% (Defray),
respectively. We also observe that DeepRan yields the
highest recall value (0.909) for classifying the nRansom
attacks. This is because nRansom is a malicious blocker,
which has different runtime patterns to the other 16 crypto
ransomware attacks’. The efficiency of the DeepRan clas-
sification results are lower than the anomaly detection’s.
According to the confusion matrix as presented in Fig. 9,
the average false positive rate is 1.8% and the false negative
rate is 34.5%.

Misclassification indicates that DeepRan’s efficiency is
impacted if two (or more) ransomware attacks have similar
behaviors. For example, these misclassified ransomware
attacks may exploit the same vulnerabilities, use similar
technical strategies to infect the host, and/or apply the same
encryption mechanisms to encrypt the file systems. The
misclassified ransomware attacks illustrate their similarity,
which can help IT operators to discover new variants of
the same ransomware families to facilitate ransomware
forensics efforts. As we illustrate that Goldeneye and
WannaCry exploit the same Windows vulnerability for
attack propagation and deployment. From the confusion
matrix, we observe that 11 out of 125 Goldeneye test data
is classified as WannaCry. We also observe that DeepRan
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Table 4 DeepRan Ransomware Classification Scores

Ransomware Accuracy Precision Recall F1-Score

BTCware 0.963 0.753 0.44 0.555

GandCrab 0.994 1 0.681 0.81

Defray 0.932 0.917 0.882 0.899

Fantom 0.986 0.666 0.638 0.652

Goldeneye 0.967 0.688 0.672 0.68

Jigsaw 0.998 1 0.7 0.823

nRansom 0.982 0.338 0.909 0.493

Petya 0.961 0.288 0.612 0.392

Redeye 0.969 0.964 0.614 0.75

Saturn 0.99 0.406 0.812 0.541

Scarab 0.942 0.478 0.583 0.525

TeslaCrypt 0.961 0.21 0.54 0.303

Vipasana 0.963 0.622 0.326 0.428

WannaCry 0.943 0.558 0.59 0.574

Xorist 0.946 0.193 0.763 0.308

Ryuk 0.947 0.849 0.656 0.74

Sodinokibi 0.956 0.824 0.695 0.754

misclassifies three ransomware attacks: Defray, Redeye
and Xorist. For instance, 55 (or 6.7%) of Defray
test data is mis-classified as Xorist; 9 (or 23.7%) of
Xorist test data is mis-classified as Defray, and 45 (or
25.1%) of Redeye test data is mis-classified as Xorist).
Similar patterns among the three ransomware attacks can be
extracted from the mis-classified events, which are normally
difficult and too tedious for manually static analysis to
investigate.

Fig. 9 Confusion Matrix for 17 Ransomware Classification

4.5 DeepRan Quality Degradation Assessment

Usually, models trained by host logging data are unstable
due to the system evolution and unknown/new host behavior
produced by legitimate users or cyber attackers. To solve
the issue of model quality degradation, DeepRan trains
host logging data with incremental learning technique
by applying gradient descent of the backpropagation
algorithm (Schalkoff 1997) to frequently update underlying
models with new observations. Therefore, DeepRan can
maintain its quality over time without requiring large
computation or storage to retrain the model.

To validate the robustness of DeepRan over time, we
compare the DeepRan’s early detection efficiency when
DeepRan is developed with and without applying the incre-
mental/online learning technique. Fig. 10 illustrates that
DeepRan’s BiLSTM-FC model applying online learning
technique has better anomaly detection performance than
the training model without applying the online technique.
The accuracy of the two models is 99.67% vs. 99.87%; pre-
cision is 100% vs. 100%; recall is 98.80% vs. 97.88%; and
F1-score is 99.39% vs. 98.93%.

5 RelatedWork

5.1 Ransomware Training Data Collection

The state-of-the-art ransomware detectors are trained by
either system network traffic or victim host logging data
collected in a virtualized/virtual environment (e.g., sandbox
or virtual network platform). For example, four ransomware
attacks (i.e., WannaCry, Petya, BadRabbit and PowerGhost)
propagation network traffic (Fernandez Maimo et al.
2019) is collected from the integrated clinical environment
platform, where the victim devices are configured with
Windows 7, 10 and Ubuntu 16.04 OS. Humayoun et
al. (Homayoun et al. 2017) execute Locky, Cerber and
TeslaCrypt samples on Windows 10 virtual machines to
collect host logs as training data. Cuckoo Sandbox has also

Fig. 10 Assessment of DeepRan Quality Degradation
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been utilized for harvesting reproducible and shareable host
logs (Takeuchi et al. 2018; Chen and Bridges 2017).

5.2 Machine learning for anomaly detection

Machine learning techniques have been widely used for
anomaly detection, and model selection is critical for
obtaining an efficient detector. Depending on behavior
patterns of normal/abnormal system status and indicators of
the given datasets, appropriate unsupervised or supervised
models have been used to develop high quality anomaly
detectors (Bridges et al. 2019). invariant mining (IM),
principal component analysis (PCA) and logistic regression
are commonly used unsupervised models for anomaly
detection. IM determines the linear relationship among
system log events by counting the number of events in the
datasets(Lou et al. 2010), and malicious log sequences could
be identified from the abnormal invariants. PCA divides
system log count vectors into normal and abnormal space
(Xu et al. 2009), and logistic regression generates a binary
regression function based on the count vector of system logs
to detect anomaly (Liang et al. 2007). Supervised models
such as support vector machine, decision tree and Naive
Bayesian are also applied for anomaly detection. However,
these stable machine learning models are less efficient
for modeling host behavior normalcy in an operational
enterprise network because the small variations of input host
events can result in a completely different prediction.

Recently, unstable deep learning approaches have been
applied to model normalcy from system logs of network
traffic to build anomaly detectors. Featurization techniques
must be first applied to convert system logs to a numerical
vector as the input of deep learning algorithms. RNN
models are normally used to develop high accuracy anomaly
detectors for time-series input data. For example, Zhang et
al. (Zhang et al. 2016) convert system logs to numerical
vectors with NPL techniques and filter less significant terms
using the TF-IDF method. Afterward, the processed data
is trained by an LSTM model to predict malicious logs.
An attention-based BiLSTM model that extracts contextual
information from the system logs has been validated the
efficiency for malware early detection(Zhang et al. 2019).

5.3 Ransomware Attack Detection and Classification

In recent three years, a variety of automated ransomware
dynamic analysis and ransomware pattern-based solutions
have been developed to facilitate forensics efforts and
ransomware detection. For example, the study(Ahmadian
and Shahriari 2016) models registry activity to detect ran-
somware. UNVEIL (Kharaz et al. 2016) and CloudRPS(Lee
et al. 2017) detect and identify ransomware attacks by mod-
eling file system activity. Ahmadian et al. (Ahmadian and

Shahriari 2016) use Bayesian Network to correctly detect
20 ransomware samples (i.e., F-measure is 0.93). Humay-
oun et al. (Homayoun et al. 2017) apply the sequential
pattern mining method to find maximal frequency patterns
(MSP) of ransomware malicious activities instead of gener-
ating behavioral features directly from the host. This study
compares four machine learning models to classify four
ransomware attacks. Experimental results present that the
atomic Registry MSPs are the most important sequence of
events to detect ransomware attacks with 99% detection
accuracy.

Verma et al. (Verma and Bridges 2018) embed host logs
into a semantically meaningful metric space. The represen-
tation is used to build behavioral signatures of ransomware
attacks from host logs for ransomware pre-encryption detec-
tion. Morato et al. introduce REDFISH (Morato et al.
2018), a ransomware detection algorithm that identifies ran-
somware actions when the attack begins to encrypt shared
files. REDFISH analyzes SMB traffic and uses three param-
eters of traffic statistics to detect malicious activity. 19
different ransomware families can be detected by REDFISH
in less than 20 seconds. Hardy et al. (Hardy et al. 2016)
manually select features from Windows API calls to detect
ransomware activity by developing an unsupervised mal-
ware detector using deep Stacked AutoEncoders (SAEs).
Humayoun et al. (Homayoun et al. 2019) develop a highly
accurate ransomware detector called DRTHIS. DRTHIS is
a deep ransomware hunting and intelligence model that is
designed by using both LSTM and CNN networks. Rhode
et al. (Rhode et al. 2018) proposed a RNN-based ran-
somware early prediction algorithm to predict the host’s
behavior is benign or malicious. The dataset including both
network data and OS process logs are collected by exe-
cuting benign and malicious executables in a virtualization
environment. In contrast, our IRB-approved study collects
normal datasets from two users’ host logging data over 60
days. The host logging data is also collected on bare metal
servers by executing 17 ransomware samples.

6 Conclusion and FutureWork

This study uses deep learning technique to develop Deep-
Ran for ransomware early detection and classification. An
attention based BiLSTM-FC model is validated its effi-
ciency for modeling normalcy of an operational enterprise
network using host logging data collected on bare metal
servers. DeepRan can also classify the ransomware events
to existing ransomware families using an attention based
BiLSTM-CFR model. Experimental results validate Deep-
Ran can maintain its efficiency and quality over time.
DeepRan can be used for ransomware early detection as it
analyses spatial relation of event fields along with temporal
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relation of time series events. Though DeepRan can detect
ransomware before encrypting system resources we didn’t
included the early detection times in this paper. Future
research will extend DeepRan for online malware detection
and classification along with early detection time analysis
in a real-world large-scale operational enterprise networks.
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