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Abstract—As increasingly more vehicles are connected to the
Internet, cyber attacks against vehicles are becoming a real threat
with devastating consequences. This highlights the importance of
detecting vehicle cyber attacks before fatal accidents occur. One
natural method for tackling this problem is to adapt existing
approaches for detecting attacks in enterprise networks, but
which has achieved limited success. In this paper, we propose a
new approach to treat vehicles as cyber-physical-human systems,
leading to a novel framework called Exploiting Human, Physical
and Driving Behaviors to detect vehicle cyber attacks (ExHPD).
The framework has 4 detectors: a human detector, a physical
behavior-based detector, a driving behavior-based detector, and
an integrated physical and driving behavior-based detector. As
proof of concept, we recruited 50 drivers to conduct IRB-
approved simulation-based driving tests. Experimental results
show that ExHPD is effective to detect vehicle cyber attacks
and avoid deadly crashes by offering drivers adequate time to
safely pull over their compromised vehicle. The impact of driver’s
impulsiveness (one aspect of human factors) on the detectors’
effectiveness and limitations of the present study are discussed.
Future research directions towards an ultimately usable solution
are outlined.

Index Terms—Cyber-Physical-Human System and Vehicle Cy-
bersecurity.

I. INTRODUCTION

The vehicle industry is increasingly adopting the Internet
of Things (IoT) techniques to provide important functions
such as smart mobility [1]. Some researchers also believe
that the use of IoT techniques can improve transportation
safety by reducing 400k-600k crashes each year [2]. Achieving
this would be a significant contribution because 1.25 million
people are killed by vehicle crashes around the world each year
[3], including 37k fatalities in the United States that incur $242
billion economic loss in productivity, property damage and
medical costs, and $594 billion in the loss of life, the pain and
decreased quality of life [4], [5]. Adopting the IoT technology
is a double-edged sword as it renders vehicles vulnerable to ve-
hicle cyber attacks, such as the following. (i) A cyber attacker
can remotely control a compromised vehicle and make profits
by extorting the driver (e.g., turning off their engines [6]),
similar to ransomware attacks against computers. Although
a compromised vehicle may be repaired by re-installing its
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software system, a driver may prefer to pay a relatively small
ransom to “unlock” the vehicle rather than paying a larger
amount of fees or waiting for a long time for software re-
installation. (ii) A cyber attacker can also obstruct traffic
by commanding compromised vehicles under their control to
benefit the attacker. For example, by manipulating the GPS
services of the compromised vehicles to route those vehicles
to specific (e.g., heavy traffic) roads while possibly making
profits by instructing subscribing drivers to avoid such specific
roads [7]. (iii) A cyber terrorist can abuse compromised
vehicles as weapons to attack pedestrians, deliver explosive
devices, or breach physical security barriers [8]. Although
some cyber attacks mentioned above have yet occurred, the
number of vehicle cyber attacks is increasing rapidly: 60
attacks among the documented 170 incidents occurred in 2018,
and 51 attacks in the first quarter of 2019 (i.e., 300% more
than what occurred in the first quarter of 2018) [9].

Vehicles are important for society and vehicle cyber attacks
would become inevitable. It important to detect those cyber
attacks before devastating consequences occur. This research
problem has started receiving attention. Several studies have
focused on leveraging physical behaviors of Electronic Control
Units (ECUs) and In-Vehicle Network (IVN) to detect vehicle
cyber attacks.

Our contributions. We make three contributions. First, dif-
ferent from most of previous cyber security research which
considers a vehicle as a cyber-physical system, we propose
viewing vehicles as cyber-physical-human (CPH) systems,
where cyber means the IoT-enabled data communication and
processing components, physical means the mechanical and
electrical components, and human means the vehicle driver.
Due to legal and ethical concerns, this CPH view will remain
valid even after the level 5 self-driving is available. Human
driver is the ultimate detector who would stop driving a
vehicle when diagnosing any problems. However, a driver
cannot and is not capable of detecting small changes of the
vehicle incurred by cyber attacks, which calls for automated
detectors to detect vehicle cyber attacks timely, ideally before
crashes occur. The involvement of a driver makes it imperative
to understand the impact of human factors on vehicle cyber
security that distinguish vehicle cyber security from other
application settings.
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Second, we propose Exploiting Human, Physical and
driver’s Driving behaviors to detect vehicle cyber attacks
(ExHPD for short). The ExHPD framework has 4 detec-
tors: the driver as a Human Detector (HD); the vehicle
Physical Behavior-based Detector (PBD); the driver’s Driving
Behavior-based Detector (DBD); and an integrated Physical
and Driving Behavior-based Detector (PBDB). We hypothesize
that human factors impact the detectors’ effectiveness in
detecting vehicle cyber attacks. As human factors are very
broad topics, in this work we focus on driver’s impulsiveness
or more specifically its quantifiable manifestation known as
delay of gratification or Delay Discounting (DD). In psy-
chology, DD rates correspond to how quickly a reward loses
value as a function of time; a high DD rate implies quick
reward devaluation. Inspired by the fact that DD rates are
related to risk-taking car driving [10], and impulsive drivers
produce more driving errors [11], we propose investigating
the relationship between drivers’ impulsiveness to the driver
whose vehicle is crashed by cyber attacks.

Third, as a proof of concept, we design a simulated a
hardware-in-the-loop driving simulation testbed that is ex-
tended from OpenDS [12]. The testbed design and driving
simulation test source code will be open sourced, which have
independent value. 50 college-age drivers are recruited to
conduct IRB-approved simulated driving tests, during which
we wage simulated cyber attacks against the testbed (vehicle)
by modifying its input signals. We find that low-DD drivers
are more effective HD than high-DD drivers, but HD does
not detect crashes until it is too late. We show that PDB,
DBD, and PDBD using both supervised and unsupervised
machine learning approaches are effective, including detecting
19 attacks that cause crashes and offering (in most cases)
at least 4 seconds surviving time for drivers to safely stop
the compromised vehicles to avoid crashes. The driver’s im-
pulsiveness has no significant impact on PBD’s effectiveness.
DBD and PDBD are more effective for less impulsive drivers
in detecting vehicle cyber attacks.

Paper outline. Section II introduces related prior work. Sec-
tion III describes the ExHPD framework. Section IV presents
a case study with experimental results. Section V discusses
the limitation of this study and future research directions.
Section VI concludes the paper.

II. RELATED WORK

We divide related prior studies into three categories: those
which investigate how to detect and protect from vehicle cyber
attacks, those which investigate how to use human’s driving
behavior to identify different drivers (including information
of driving testbed, simulated/real-world driving tests and ma-
chine learning detection models), and those which investigate
human’s impulsiveness via DD rates.

A. Vehicle Cyber Attack Detection and Protection

The problem of detecting vehicle cyber attacks has been
investigated by Cho and Shin [13], who propose leveraging
clock skews to fingerprint a vehicle’s transmitter Electronic

Control Units (ECU) and model vehicle clock behaviors.
The compromised or alien ECUs can also be detected by
leveraging time and frequency domains of ECU signals [14].
Kneib and Huth [15] develop a signal characteristics-based
sender identification and detection mechanism to detect attacks
from infiltrated ECUs or additional devices. Choi et al. [16]
propose detecting attacks by leveraging voltages of in-vehicle
network (IVN). Nowdehi et al. [17] learn the normal behavior
of IVN dynamics from historic data to detect deviations in
IVN traffics. These studies leverage physical behaviors of
ECUs and IVNs to detect attacks. By contrast, we propose
leveraging vehicle physical behaviors and driver’s driving
behaviors to detect attacks, while investigating the impact of
driver’s impulsiveness on our detectors’ effectiveness.

Kerrache et al. [18] consider the human factor and their
impacts to assure trustiness among inter-vehicle communica-
tion using Online Social Networks (OSNs). Towards realizing
intervehicle trust, the researchers combine the calculation
of intervehicle trusts with and without considering Human
Honesty Factor (HHF) using Advogato1 classification. Using
the map of Laghouat city in Algeria (via 4km2), where the ex-
perimental region has 4 randomly deployed RSUs and testing
on different vehicles and their drivers, this approach achieves
95% detection rate and also reduces the detection error ratio
by about 3%. The researchers later improve their previous
work, and propose TACASHI in the following paper [19] to
prevent malicious drivers from provoking unwanted situations
such as stolen vehicles using location-related honesty (LRH).
By using the NS-2.35 simulator and a benchmark dataset,
the experimental results also provide a 95% confidence for
misbehavior detection as the previous work. Moreover, even
under the worst-case scenario, TACASHI takes only 5 seconds
for honesty estimation, which can timely prevent terrorist
attacks or stolen vehicles.

Mekki et al. [20] apply evolutionary game theory (EGT)
to dynamically select appropriate access technology for coop-
erating or accessing the conventional cloud through the 4G-
LET link. Vehicles can change access strategies according to
different conditions until reaching equilibrium. Using the NS
3 simulator, researchers evaluate the EGT algorithm by a case
study of downloading services. The experimental results indi-
cate that EGT is better suited for highways, vehicles traveling
to the same destination, or simply vehicles with low mobility.
However, it suffers from scalability issues in comparison with
their previous work [21], where the Q-learning algorithm was
used to provide the same service. Yahiatene et al. [22] propose
a blockchain-based architecture to improve the security of the
software-defined vehicular network (SDVN) while protecting
user privacy in a fully distributed network by ensuring data
anonymity. The transactions in the blockchain consist of
shared content between the vehicular social network (VSN)
entities. This study also introduces a miner selection algorithm
distributed miners connected dominating set (DM-CDS) based
on a trust model and network parameters. The trust model
identifies misbehavior in VSN leveraging connectivity, fitness,
and satisfaction measures of the nodes.

The efficient vehicle cybersecurity solutions development
and deployment require high quality of experience (QoE) and
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quality of service (QoS) networks. Abar et al. [23] introduce
a fog computing-based high throughput information-centric
networking (ICN), which contains cloud-based computing,
storage, and networking facilities. Specifically, the new archi-
tecture is efficient to enhance QoE sensitive applications such
as multimedia content delivery for future communication net-
works. Jabri et al. [24] propose a new decentralized vehicular
fog architecture and use fuzzy logic-based gateway selection
module to solve the challenges of a large amount of vehicular
cloud access traffic. The multi-objective optimized gateway
selection module reduces communication cost in terms of
bandwidth consumption and cellular link usage. Fabian et al.
develop an original architecture and a programmable objective
function to improve QoS in the IoV [25]. This new architecture
significantly improves QoS such as packet delivery ratio,
packet loss, and energy consumption.

B. Driving Tests and Driver Identity Detection

The problem of identify driver identity has been investigated
by Hallac et al. [26]. The research team recruits 64 drivers to
operate 10 Audi vehicles for 2,098 hours covering 110,023
kilometers on real roads in Ingolstadt, Germany. The driving
behavior dataset is composed of sensor signal values of
single-turns and straight ways to build driver identification
models using the random forest, SVM and multinomial logistic
regression methods. The experimental results show that turns
are better than straight ways for detecting variations across
drivers.

Nagoya University and Toyota Central R&D Labs model
drivers’ behavior via spectral analysis. They recruit 12 partic-
ipants who complete a driving test on a driving simulator that
shows a two-lane expressway following a lead vehicle [27].
Twelve drivers conduct the five-minute long test four times.
Three of the four driving test behavior datasets are used for
training a Gaussian Mixture Model, which is tested by the
other dataset. The research shows that (i) velocity, following
distance, gas or brake pedal angles and their their dynamics
provide a 89.6% driver identification rate, and (ii) a model
taught with the gas/brake pedal feature outperforms a model
taught from the other two features.

Later improvements in papers [28] and [29] show that using
features like brake and gas pedal angles can achieve a higher
drive detection accuracy. Van Ly et al. [30] investigate the bi-
nary classification of drivers, which is useful when identifying
two family members who share a car. Their experiment uses
a 2008 Volkswagen Passat Variant 3.6L modified to include
sensors and vision systems at different times of the day to
increase driving variation in congested and non-congested
traffic. They show that using inertial sensors to capture driving
behavior and using machine learning to classify driving events
can reduce driving danger. Jafarnejad et al. uses 19 dynamic
signals currently available in production cars to detect 75% of
the drivers in less than 65 seconds in a 5 drivers scenario [31].

Meseguer et al. [32] develop a mobile platform called
DrivingStyle to classify driving styles and vehicle fuel con-
sumption of different drivers. This platform can promote eco-
style driving to reduce fuel consumption fuel economy and

enhance driving safety. The architecture of DrivingStyle is
comprised of an Android app that collects data from an OBD-
II Bluetooth device; a data center to store all collected data;
a neural network that is trained by the most representative
routes for in-situ analysis, and another neural network for off-
site analysis. 534 drivers’ driving data was used to evaluate the
efficiency of DrivingStyle. The experimental results illustrate
that when a drive adopts an efficient driving style, at least 15%
fuel consumption can be reduced.

Our driving test and driving simulation environment are
different from all these prior efforts as we designed driving
simulation tests focused on collecting human psychology data,
vehicle physical behaviors, and human driver’s driving behav-
iors when the vehicle (i.e., simulator) was operated normally as
well as when it was under various cyber attacks. We also used
both supervised and unsupervised machine learning and deep
learning methods to predict and detect these attacks efficiently.

C. Prior Work on DD Research
While we are the first to investigate the impact of driver’s

DD rate on the effectiveness of vehicle cyber attack de-
tectors, DD is known as a trans-disease process [33], [34],
whereby findings from one disorder (e.g., cigarette use) can
inform other seemingly unrelated disorders (e.g., pathological
gambling). We hypothesize that individuals who are more
impulsive during a DD task is also more impulsive during
a driving task.

In psychology, DD describes how quickly a commodity
loses value as a function of time, and DD is one aspect of
impulsiveness. Previous research shows that DD exhibits both
state and trait-like properties, depending on the individual’s
context [35]. For example, there is a robust literature showing
DD state-like properties for individuals who quit smoking [36],
whereby smokers are more impulsive (i.e., devalue hypothet-
ical monetary outcomes more quickly) than former smokers
and nonsmokers. That is, DD seems to be malleable depending
on different individual states. In addition, evidence shows that
positive correlations between DD tasks completed at different
times and use as a prospective measure, suggesting more
trait-like properties. DD has been shown to be useful as
a prospective measure for smoking cessation success across
many different studies [37].

There is also a large body of research that suggests DD is
a trans-disease process, whereby findings from one disorder
(e.g., cigarette use) can inform other seemingly unrelated
disorders (e.g., pathological gambling). If DD were domain-
specific, then the previous literature would have little relevance
for driving behavior. However, this trans-disease process pre-
dicts that individuals that are more impulsive during a DD task
will also be more impulsive during a simulated driving task.
In addition, the variation in driver errors during the driving
simulation suggest a novel application to driver authentication.
Previous DD research has also shown that people discount real
and hypothetical rewards at similar rates and hypothetical re-
wards are a valid proxy [33], [34]. Therefore, a DD task using
hypothetical rewards is a cost-efficient behavioral method to
differentiate between drivers who are more or less likely to
make driving errors.
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In the present study we proposed to leverage drivers’ DD
rates as a feature to design more accurate detectors to protect
the vehicles from cyber attacks. We also investigated which
drivers are more vulnerable to vehicle cyber attacks using the
DD rate as a measurement.

III. THE EXHPD FRAMEWORK

A. Model, Human Factor, and Design Objective

System model. Figure 1 shows the vehicle system model
with (i) a cyber sub-system, such as an in-vehicle network
and IoT-enabled vehicle-to-everything (V2X) communications
(e.g., for downloading music or other Internet-based entertain-
ment services); and (ii) a physical sub-system, which consists
of vehicle safety-critical functionalities such as braking and
steering. We consider the setting that each vehicle is operated
by a driver, rather than self-driving vehicles.

Figure 1: The CPH system model of vehicles.

Threat model. We consider cyber attacks against the vehicle’s
cyber sub-system to control safety-critical functions such as
the steering wheel, brake, and accelerator. Only one type
of vehicle cyber attack each time. Physical attacks against
the physical sub-system and attacks against the driver are
excluded.

Vehicle cyber attacks vs. vehicle failures. Vehicle cyber
attacks are different from common vehicle failures. Vehicle
mechanical failures such as worn brake lines, engine, and
transmission problems or tires blowout normally have some
signals for drivers to notice (e.g., noise and dashboard warning
lights). These signals last a while before the vehicle break-
ing down or causing a traffic accident/crash. Vehicle cyber
attackers aim at undermining the safety of the people in
and around the car, usually immediately disable/malfunction
vehicle safety-critical systems. The vehicle system therefore is
not allowed to provide in-time warnings or noticeable signals
to drivers before crashes occurring. The levels of vehicle cyber
attacks that compromise vehicle safety-critical functions can
be defined as severe or high that depend on how quickly a
crash occurs since such vehicle cyber attack is launched. The
vehicle cyber attacks are severe if they lead to car crashes
immediately after being performed.

Easy/hard noticed vehicle cyber attacks. During the time
period when the vehicle cyber attacks start to perform until
the attacks stops, severe/high level attacks can cause vehicle
crashes if drivers uses the vehicle’s malfunctioning compo-
nents to control the vehicle. These attacks are easy noticeable
by human drivers. However, the same attacks can be “tempo-
rally elevated”, which will not result in crashes if drivers do

not use compromised safety-critical components. In this case,
the vehicle still performs normally, and these attacks are hard
to notice or not noticeable by human drivers.

Human factor. We need to consider the driver’s human factors
and their impact on this CPH vehicle system. Human factors
are a broad area and in this paper, we focus on one specific
human factor, namely impulsiveness. Impulsiveness is a hu-
man personality trait and a multidimensional psychological
construct that describes when individuals cannot inhibit a
response, do not plan before an action is taken, and/or have
difficulty delaying gratification [38]. In Psychology, one aspect
of impulsiveness is quantified by the Delay Discounting (DD)
rate, which describes how quickly a commodity loses value
as a function of time. Figure 2 highlights our insight into
the relationship between impulsiveness and driving behavior,
which has not been investigated until now.

Figure 2: The connection between impulsiveness and driving
behavior, which we propose to investigate and is broader than
the driving errors investigated in the literature.

Design objective. We propose treating vehicles as cyber-
physical-human systems because a human driver is a natural
detector for determining whether or not a vehicle is safe to
drive. When a driver notices that something goes wrong with
the vehicle (e.g., changes in physical behaviors like brake
malfunctioning), the driver would stop driving it before an
accident occurs. The design objective is to create a framework
for detecting vehicle cyber attacks as early as possible (or
before crashes occur) and alerting the driver to stop the vehicle
immediately to save human lives from potential accidents.
Moreover, the detectors should be practical, meaning that they
make realistic assumptions and are applicable to a wide range
of scenarios (e.g., accommodating driver differences).

B. Framework
As highlighted in Figure 3, the framework has 4 detectors:

(i) manual Human Detector (HD), which is the driver that
may be able to detect attack-caused vehicle malfunctions.
(ii) automatic Physical Behavior-based Detector (PBD), which
aims to detect vehicle cyber attacks by leveraging attack-
caused changes in a vehicle’s physical behaviors; (iii) auto-
matic driver’s Driving Behavior-based Detector (DBD), which
aims to detect vehicle cyber attacks by leveraging attack-
caused driving behavior changes; (iv) automatic integrated
Physical and Driving Behavior-based Detector (PDBD).

Human Detector (HD). The driver can detect a vehicle’s
physical behavior changes that are caused by cyber attacks,
such as the vehicle going around in a circle; the vehicle steer-
ing is uncontrollable; the vehicle’s engine emits strange sounds
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and/or vibrations; the vehicle’s battery drains abruptly; the
vehicle steering, brake, and/or accelerator is less sensitive than
normal; the vehicle navigation system gives wrong directions.
Humans can recognize these matters, although they are hard to
formalize. This compels us to investigate the impact of human
factors on the effectiveness of HD. While it is intuitive that a
careful driver would recognize many cyber attacks, this has to
be (in)validated by experiments.

Physical Behavior-based Detector (PBD). Cyber attackers
may not incur substantial physical behavior changes until
causing crashes, meaning that some attacks are not noticed
by a driver until it is too late to avoid an accident. This
reiterates the importance of designing automatic detectors to
detect vehicle cyber attacks that cannot be recognized by HD.
We propose detecting cyber attacks by leveraging the vehicle’s
physical behavior changes that may not be noticed by human
drivers, such as: steering, brake and/or accelerator sensitivity,
which may only make a vehicle slightly move to the right/left
or cause slightly slower or faster speed than usual but may not
be noticed by the driver. We define the following features to
measure vehicle physical behavior changes.
F1 Vehicle longitudinal position, namely the distance be-

tween the starting point and the current vehicle location
on the trajectory map. This feature is measured by the
GPS tracking system.

F2 Vehicle lateral position, namely the distance between the
center of a vehicle and the center of the driving lane.

F3 Vehicle speed, can be measured by the GPS tracker.

Driving Behavior-based Detector (DBD). Vehicle cyber at-
tacks may cause a driver’s driving behavior to change, such
as the following. (i) The driver steers the wheel more/less
frequently and/or with a higher/lower degree than usual, for
example when the steering wheel drifts/pulls slightly or when
the steering wheel is harder/easier to turn. (ii) The driver
presses the brake/accelerator more frequently than usual, for
example when the brake and accelerator are less sensitive.
(iii) The driver takes a substantially longer time to drive over
a certain distance, for example when driving from home to
school under similar traffic situations. (iv) The driver makes
more driving errors than usual, for example by running red
lights and/or crossing lanes. For measuring these driving
behavior changes, we define the following features.
F4 Steering angle, namely the angle between the front of the

vehicle and the steering wheel direction.
F5 Brake pedal position, namely the pressure transferred

from the brake pedal to the brake pads to stop the vehicle.
F6 Accelerator pedal position, namely Deflection Angle of

the electronic throttle control to vehicle speed.
F7 Reaction time, namely the time interval between a driver

is instructed to start a driving task (e.g., lane changing)
and when the driver finishes the driving task.

F8 DD Rate, which measures a driver’s impulsiveness and is
representative of the driver’s human factor.

Integrated Physical and Driving Behavior-based Detectors
(PDBD). The preceding three detectors can be collectively
used together to achieve higher effectiveness. It is also reason-

Figure 3: The ExHPD framework with 4 detectors: HD, PBD,
DBD and PDBD

able to treat alerts from the three detectors seriously, meaning
that drivers should stop driving a vehicle immediately when
they receive an alert from these detectors. With measurement
data of the eight features, PBD, DBD, and PDBD can be
trained using machine learning techniques. Note that F7 is
affected when drivers encounter new situations corresponding
to vehicle cyber attacks [39]. F8 is relevant as more impulsive
drivers produce more driving errors [40].

C. Detector Effectiveness Metrics

Detector effectiveness is evaluated using standard metrics
[41], [42]: (i) accuracy, the percentage of correct predictions
among all predictions; (ii) true-positive rate (TPR), the per-
centage of correct predictions for attacks; (iii) false-positive
rate (FPT), the percentage of normal behaviors that are pre-
dicted as attacks; (iv) false-negative rate (FNR), the percentage
of attacks that are predicted as normal behaviors; (v) precision,
the percentage of true-positive among positive predictions; and
(vi) area under the curve (AUC), the percentage of the area
below the receiver operating characteristic (ROC) curve in
the ROC plot. We also define (vii) detection delay, the time
between when an attack is waged and when the attack is
detected; (viii) # crashes avoided, the number of crashes that
are avoided, assuming a driver can immediately and safely
stop driving a vehicle upon receiving the detector’s alert; and
(ix) surviving time, the time a detector offers to a driver to
safely stop the vehicle before it crashes.

IV. CASE STUDY

We recruit drivers to conduct simulation-based driving tests
to show the usefulness of the ExHPD framework, which are
approved by the local Institutional Review Board (IRB).

A. Simulation-based Driving Testbed

Our driving testbed is extended from OpenDS [12], which
is an open source driving simulator software built upon
the Java video game engine called jMonkeyEngine (jME).
OpenDS contains multiple pre-defined driving tasks, such as
the reaction test that requires drivers to reduce vehicle speed
or change lanes when signals are presented on the screen. We
extend the pre-defiend reaction test to incorporate our driving
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tasks. Figure 4 highlights the testbed. As shown on the left,
a computer monitor runs the extended OpenDS software and
a Logitech G29 driving force racing wheel and pedal [43] for
a driver to control the vehicle. On the right are two pictures
indicating a driver unsuccessfully vs. successfully finishing a
driving task.

Figure 4: Experimental testbed with a computer running the
extended OpenDS software.

Figure 5 is a package UML diagram that high-
lights our extensions to OpenDS. The extensions in-
clude 2 added classes to the trigger package and
13 modified classes in packages main, niftyGUI,
reactionCenter, jasperReport and drivingTask,
where a dashed arrow indicates a dependency relationship
between a pair of packages (i.e., A pointing to B means
package A imports or accesses package B). The modifications
are: 3 classes of package niftyGui are extended to display
instructions to drivers and shutdown the GUI; 1 class of pack-
age reactionCenter is extended to set up a brake timer,
hold speed, and add a sound effect to notify drivers when they
succeed or fail a driving task; 3 classes of package trigger
and 3 classes of package drivingTask are extended as well
as another 3 classes are added into package drivingTask
to reset the driving simulation test, open the driving simulation
test GUI, and shutdown the driving test; 1 class of package
main and 1 class of package jasperReport are extended
to reflect and support modifications in the other classes. Also,
the default simulator launching interface is extended to support
anonymous participation, such that a driver is only asked for
an index number.

To collect feature measurements F1-F8, we build a five-lane
straight road driving test model and remove the hundreds of
small segments provided by OpenDS. This is reasonable as
OpenDS’ default reaction test has a poor graphics performance
(lower than 30 frames per second or FPS), even if we run
it on a high-end computer with a modern GPU. This poor
performance is inherent to OpenDS’ design of driving track
loading. In the pre-defined driving simulation test, the 1.1-
kilometer straight driving track is composed of a large number
of small road segments whose lengths are the same as the
length of the simulated vehicle; when hundreds of driving test
models are loaded from the scene XML file into the memory,

human driver’s reactions to situations are significantly delayed.
As a side-product, two bugs of software are found and fixed
by changing the shape of the road model to match roadside
barriers. This change can prevent the vehicle from driving
away, and reaction time collection failures caused by vehicles
move around gantries.

Figure 5: Illustrating our extension to OpenDS, including 2
added classes and 13 modified classes.

B. Driving Tests, Attacks and Data Collection

Driving tests. Three driving tests dubbed Test 1, 2, and 3 are
designed as mentioned above. Test 1 is designed for practice
(i.e., making drivers familiar with the testbed) with no cyber
attacks. Test 2 is normal driving with no cyber attacks. Test 3
has cyber attacks waged against the simulated vehicle, but the
drivers have not been told about these attacks. Data collected
in Test 2 is used as the normal physical and driving behaviors,
and the data collected in Test 3 can reflect the physical and
driving behaviors under cyber attacks. In any test, no other
vehicles are on the track when a driver takes a driving test. A
driver drives on a 22-gantry and 1.1 kilometers (km) straight
road comprised of 10 lane-change and 10 speed-change tasks,
where the distance between two gantries is set to be 50 meters
and is divided into 200 units (i.e., 0.25 meters per unit). A
driver is given one driving task every gantry (50 meters).

Table I lists 20 driving tasks. A one-lane-change task asks
a driver to change one lane to the left or right; a two-lane-
change task asks a driver to change two left/right lanes at a
time. After finishing any lane-changing tasks, a vehicle should
be driven back to the middle lane, and the driver should operate
the vehicle in the middle lane until the next change-lane task
is given. A speed-change task asks a driver to decrease the
vehicle speed to 20 km/h from 60 km/h in 10 seconds. The
speed is accelerated back to 60km/h when speed-change tasks
are finished. A driver typically finishes a driving test within 5
minutes when no cyber attacks against the vehicle. At the end
of Test 3, the driver is asked to complete a post-test survey.

Simulated attacks. 3 vehicle cyber attacks are simulated
in Test 3 such that each is waged twice. Attacks 1 and 4
are waged against the steering system leading to the vehicle
to turn the opposite direction. The attacks are simulated by
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the newly added OpenDS class KeyBindTriggerAction,
which reverses the OpenDS’s input signals received from the
vehicle’s steering system (i.e., the vehicle’s Logitech G29
driving force racing wheel). Attacks 2 and 5 are waged against
the vehicle’s brake. Attacks 3 and 6 are waged against the
vehicle’s accelerator. These two kinds of attacks are simulated
by modifying OpenDS’ class KeyBindTriggerAction to
respectively set the signals received from the vehicle’s brake
and accelerator to 0, meaning that the brake/accelerator stops
functioning immediately. As shown in Table I, each attack is
waged 50 units (or 12.5 meters) before the corresponding task
starts. The attack finishes 50 units before the task ends, and
the duration of each attack is 200 units.

These three attacks are all severe/high levels which can
cause vehicle crashes when the driver using the malfunctioning
steering system, break or accelerator to control the vehicle.
However, these attacks will not lead to crashes if drivers do not
use malfunctioning components when they are compromised.
For example, when the vehicle’s brake is compromised, if
drivers do not press the brake during that period of time (200
units), the vehicle still performs “normally” at that time, and
the vehicle cyber attacks would not be noticed by drivers.
Therefore, to create a driving test containing both human
noticeable and not noticeable vehicle cyber attacks, we launch
these the three types of cyber attacks when drivers perform
different driving tasks. Attack 1 and Attack 4 are easy noticed
attacks, but the other four attacks are hard noticed attacks.

Data collection and pre-processing. In Test 3, we observe
crashes caused by cyber attacks. A driver’s test is terminated
when the vehicle crashes or when the driver cannot operate
the vehicle back to the five-lane roadway. We collect data by
measuring the 8 features F1-F8 mentioned in the framework
during the aforementioned Tests 2 and 3. Features F1-F6 are
collected by OpenDS’ software sensors 20 times per second
(i.e., sampling time—one measurement per 0.05 seconds). F7

is counted from the point in time at which a driving task sign
appears on the screen (near each gantry) to the point in time
at which the driver finishes (or fails) the task in question; F7

is in the range of 0 to 10 seconds (precision: millisecond),
where the value of 10 seconds means the driver fails to finish
a driving task. Since there are 20 driving tasks during each
test, there are 20 reaction times for each driver, assuming the
driver finishes the driving test. For each driver, F8 is derived
from a driver’s impulsiveness (elaborated below). In Test 2
(absence of attacks), a driver is represented on average by
5,300 feature measurements F1-F6, 20 measurements for F7

and 1 measurement for F8; there is no significant variance in
the number of measurements for the 50 drivers because they all
finish the driving test within a similar period of time. In Test 3
(presence of attacks), some vehicles crash, and the drivers have
to terminate the driving test, which causes a large variance
in the number of measurements between the 50 drivers. On
average, each driver has 7,000 measurements for F1-F6, 20
measurements for F7 and 1 measurement for F8.

For machine learning purposes, we pre-process the data
by using measurement-centered data representation. Consider
driving test c, where c P t2, 3u. For the d-th (1 ď d ď

50) driver, the `-th (1 ď ` ď 20) driving task is repre-
sented by a sequence of mc,d,` measurements of features
F1-F8, where the value of mc,d,` depends on the mea-
surement frequency (which further depends on the driver’s
driving speed) and there being accidents or not. The data
corresponding to the d-th driver is represented as Nc,d “
tpnc,d,`,i,1, . . . , nc,d,`,i,8qu1ď`ď20,1ďiďmc,d,` where nc,d,`,i,j is
the value of the j-th feature (Fj where 1 ď j ď 8) obtained at
the i-th measurement during the `-th driving task of the d-th
driver in driving test c. Since feature F7 is measured once per
driving task, the same value is used for every measurement
during the task, namely nc,d,`,1,7 “ . . . “ nc,d,`,md,`,7. Since
each driver only has one DD rate (i.e., there is only one
measurement for feature F8), the same value is used for
each measurement, meaning that nc,d,`,i,8 is the same for
1 ď ` ď 20 and 1 ď i ď mc,d,`. Given Nc,d for 1 ď d ď 50,
the entire dataset corresponding to driving test c is represented
by Nc “ Y1ďdď50Nc,d. The entire dataset corresponding to
driving Tests 2 and 3 is defined as N “ N2 YN3.

Machine learning algorithms and hardware. We use the
Random Forest algorithm to train supervised PBD, DBD and
PDBD detectors on a computer with Intel Core i-7 and 8GB-
Ram because random forest can handle high dimensional and
unbalanced data, and provide quick prediction and training
speed with a high variance but low bias. We use Long Short-
Term Memory (LSTM) Autoencoder [44] to train unsuper-
vised PBD, DBD and PDBD detectors to model sequence data
because LSTM is good for predicting time-series training/test
datasets. We use 4 hidden layers with each layer having 4
nodes, and 16 nodes respectively for the input and output
layers. These numbers are selected as they perform the best
among our experiments. The ReLU activation function and
the Mean Absolute Error (MAE) loss function are used to
train for 100 epochs. Since normal (or abnormal) is specific
to individual drivers, we create one LSTM Autoencoder-based
unsupervised detector for each driver from Test 2 measure-
ments, and use these detectors to predict driver behaviors in
Test 3. Each unsupervised detector is trained on an Nvidia
Tesla K80 GPU server within 2 minutes.

C. Recruiting Drivers

We recruit 50 drivers from the campus of a large university
in the U.S. to conduct the IRB-approved experiment. The
recruitment method is to post the project flyers on campus
and send digital flyers via email and social media. Interested
drivers contact the lab coordinator to make an appointment
for measuring their DD rates and conducting the experiments.
The 50 drivers are between 18 and 50 years old, (A mean
value of 23.2 and a standard deviation of 6.6), with 34%
female. Among these 50 drivers, 47.3% are Hispanic, 32%
are Caucasian and another 34% are Asian, African American
and others. The mean age of these drivers when they start
driving is 17.5 years (with a standard deviation of 1.6). We
choose to recruit college student drivers for the following
reasons: (1) traffic accidents are the leading cause of deaths
among college students [45]; (2) college-age drivers account
for a disproportionately high percentage of traffic accident
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Table I: The 20 driving tasks in driving Test 1 and Test 2 (no cyber attacks). In Test 3, cyber attacks are waged against the
brake (indicated by “Brake”), the accelerator (indicated by “Accelerator”), or the steering system (identified by “Steering”),
and “NA” means no attack is waged.

Task # Test 1-2 (Normal) Test 3 (Attack) Task # Test 1-2 (Normal) Test 3 (Attack)
1 speed-change NA 11 1-lane-right Attack 4.

Steering2 2-lane-right Attack 1.
Steering

12 2-lane-left
3 speed-change 13 speed-change NA
4 speed-change NA 14 2-lane-left Attack 5.

Brake5 speed-change Attack 2.
Brake

15 speed-change
6 1-lane-left 16 1-lane-right NA
7 speed-change NA 17 speed-change Attack 6.

Accelerator8 2-lane-left Attack 3.
Accelerator

18 1-lane-left
9 speed-change 19 speed-change NA
10 2-lane-right NA 20 2-lane-right NA

deaths than other groups of drivers [46]; (3) alcohol and drug
usage increase the risk of traffic crashes[45], and DD has been
repeatedly linked to drug and alcohol abuse [47], we expect
to find significantly different DD rates among the college-age
group which helps us to understand whether or not DD (or
impulsiveness in general) would have an impact on the driving
behavior changes and detector effectiveness.

D. Measuring Drivers’ DD Rates

DD is often measured through a series of choices where an
individual is presented with two mutually exclusive options.
One option is for a smaller but sooner reward. The other option
is for a larger but delayed reward. For example, an individual
is asked to choose between either 5 dollars immediately or
10 dollars after two weeks. Waiting two weeks will double
the amount, but increasing the delay between when the choice
is made and when the reward is received decreases (i.e., dis-
counts) the subjective reward value. This reward discounting
is quantifiable and appears to be stable for individuals.

The DD rate or k value in the psychological litera-
ture is a metric for quantifying impulsiveness. 90% in-
dividual’s k value P r0.00016, 0.25s, and a larger k
value means the individual is more impulsive [48]. This
interval is discretized into a 9-dimension vector ~x “

r0.00016, 0.00040, 0.0010, 0.0025, 0.0060, 0.016, 0.041, 0.10,
0.25s, denoted by ~x “ rx1, . . . , x9s, where x1 “ 0.00016,. . .,
and x9 “ 0.25. Correspondingly, the psychological commu-
nity defined an ordered set of delays (of days), denoted by
~g “ r7, 14, 21, 30, 60, 90, 120, 150, 180s, where g1 “ 7, . . .,
and g9 “ 180.

The psychological community designed the Monetary
Choice Questionnaire (MCQ) [48] to measure an individual’s
DD rate. The basic MCQ contains 27 questions, denoted by
Qi for 1 ď i ď 27. Question Qi (1 ď i ď 27) asks a driver to
choose between (0), namely receiving a smaller but immediate
reward Vi, and (1), namely receiving a larger reward Ai in
some Di days, where Vi is a discounted value of Ai. For
question Qi where 1 ď i ď 27, i “ 3pα ´ 1q ` β where
1 ď α ď 9 and 1 ď β ď 3; then, Vi, Ai, and Di are determined
as follows.
‚ Ai PR r$25, $35s if β “ 1, Ai PR r$50, $60s if β “ 2,
Ai PR r$75, $85s if β “ 3, where “PR” means choosing
a value from a set uniformly at random.

‚ Di “ g10´α, meaning that the three questions corre-
sponding to the same α have the similar delay value.

‚ Vi “
Ai

xαDi`1 , meaning that each question has a different
Vi as it depends on both α (via xα and Di) and β (via
Ai). Vi ă Ai explains that Vi is a discounted value of
Ai.

The 27 questions are ascending ordered according to their
xi. The three questions with the same xi are ascending ordered
according to their Ai. We call it original order. These questions
are presented to a driver in a random order; after collecting
the responses from a driver, these questions are re-organized
into the original order.

For reference, the 27 questions are summarized in Table VII
of the Appendix. For question Qi (in the original order), if
the driver chooses (0), meaning the driver chooses to receive
a smaller but immediate reward Vi, we denote it by ri “
0; if the driver chooses (1), meaning the driver chooses to
receive a larger but delayed reward, we denote it by ri “
1. The responses of a driver formulate a binary vector ~r “
rr1, . . . , r27s.

Algorithm 1 that has never been explicitly written in the
psychological literature for calculating DD rates based on
answers to the basic MCQ 27 questions [48], is a side-product
of the computer science community. It computes the DD rate
of a driver by taking ~x and ~r as inputs. As shown in Lines
2-5, if ~r “ ~1, meaning the driver always chooses the delayed
but larger reward Ai, then the driver’s DD rate is set to
x27, namely maxi xi; if ~r “ ~0, meaning the driver always
chooses the immediate but smaller reward Vi, then the driver’s
DD rate is set to x1, namely mini xi; otherwise, we need
to determine if the responses of a driver are consistent (i.e.,
useful in deriving the driver’s DD rate; see Lines 7-15). Given
the response vector ~r, for each 1 ď i ď 27 the consistency
score, denoted by ConsistencyScoreris and defined in Line 9,
reflects (i) the driver’s consistency in selecting the immediate
but smaller reward with respect to Q1, . . . , Qi, and (ii) the
driver’s consistency in selecting the delayed but larger reward
with respect to Qi`1, . . . , Q27. The driver’s responses are
consistent if one ConsistencyScoreris is greater than or equal
to the consistency threshold 0.75.

This is important because low consistency scores indicate
that the driver does not pay due attention to the questionnaire;
as a consequence, the reliable DD rate cannot be derived
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for the driver. Suppose the responses of a driver are deemed
consistent, there are two scenarios. If the highest consistency
score S has multiple appearances at some indices i’s, then the
driver’s DD rate is the geometric mean of the corresponding
xi’s (Line 19-23); otherwise, S corresponds to a unique index
i and the DD rate of the driver is defined as the geometric
mean of xiˆxi´1 (Line 24-28). Note that in any test, the DD
rate of a driver who gave consistent responses falls into the
internal rx1, x27s “ r0.00016, 0.25s.

The DD Rate column in Table IV summarizes driver’s DD
rates. Based on this measurement result, we evenly split the
50 drivers into high DD and low DD groups (i.e., top 50% vs.
bottom 50%) according to the drivers’ median DD rate, which
is 0.00972. This means that the low-DD drivers’ DD rates fall
into the interval r0.00016, 0.00971s and the high-DD drivers’
DD rates fall into the interval r0.00972, 0.24837s.

E. Consequences of Vehicle Cyber Attacks

In Test 3 we observe that Attacks 1 and 4 cause fatal
vehicle crashes leading to the loss of life in the real world.
Vehicles unexpectedly slow down due to Attacks 2-3 and 5-
6, but no crashes occur. This because no other vehicles are
in the driving test, which would not be true in practice. Also,
these vehicle cyber attacks may cause accidents when vehicles
do not keep a safe distance between each other. Table II
summarizes the 19 crashes among the 50 drivers and the time
interval between when an attack is waged and when a crash
occurs. The 19 crashes include 18 crashes caused by Attack
1 and 1 crash caused by Attack 4. This hints that drivers
surviving a certain attack (if their vehicles are not crashed)
might survive the same kind of cyber attacks in the future.
A crash can occur at most 29.9 seconds after an attack is
waged (8.11 seconds on average); thus there is adequate time
to detect attacks and alert drivers to stop their vehicles. The
19 drivers whose vehicles crash have an average 7.37-years of
driving experience, whereas the other 31 drivers (not crashing)
have an average 4.81-years of driving experience. Among the
19 drivers whose vehicles crash, drivers #13, #20, #27, #32
and #38’s surviving time is longer than 10 seconds. These 5
drivers have an average 3.6-years of driving experience, which
contrasts with the other 14 crashing drivers’ average of 8.71-
years of driving experience. Among these 19 drivers, 11 are
high-DD drivers and 8 are low-DD drivers; 3 of the 5 drivers
who show a long surviving time are high-DD drivers and the
other 2 are low-DD drivers. These suggest that the driver’s
experience may be a factor for surviving cyber attack-caused
crashes.

Insight 1: The driver’s experience might play a big role in
surviving drivers from cyber attacks-caused crashes.

F. HD and Its Effectiveness

In order to see HD effectiveness, we ask each driver to
answer the following post-survey questions:
Q1 Did you experience any problems during your 3rd driving

test (i.e., Test 3)?
Q2 If yes to Q1, what do you think caused those problems?

Table II: The time interval between when an attack occurs and
the victim’s vehicle crashes.

Attack # Driver # Surviving Time
(Second) Driver # Surviving Time

(Second)

Attack 1

3 3.2 28 2.1
13 29.86 32 19.35
16 4.35 35 5.6
17 4.78 36 5.15
19 6.85 38 10.34
20 12.32 44 1.5
25 5.75 46 7.75
26 5.5 47 4.0
27 13.85 48 3.05

Attack 4 12 4.05

Table III: Summary of the 50 driver’s post-survey answers

Questions Answers # Low-DD
drivers

# High-DD
drivers

Q1.
Problems

Steering
Inversion

Attack 1 24 22
Attack 4 7 2

Acceleration Attack 2 11 8
Attack 5 0 0

Braking Attack 3 9 10
Attack 6 0 0

Q2.
Reasons

Cyber Attack 1 1
Software Bug 8 3
Mechanical 10 10

Human 5 13
Road Condition 3 2

Q3.
Reaction

Better Control
Vehicle (Pullover) 22 22

Q4. Vehicle
Cyber Attack

Likelihood (%) 28.28% 26.76 %
Likelihood ą“ 60% 7 4

Q3 What would you do when the aforementioned problems
occur in real-world driving?

Q4 What is the likelihood (%) someone would hack into your
vehicle to disable a critical function (e.g., brake)?

Table III summarizes drivers’ answers to the post-test sur-
vey. In regards to Q1, we observe that attacks against the
steering system are easier for a driver to detect than attacks
against brakes and accelerators, perhaps because the attack
to steering system changed vehicle physical behavior more
significantly. In regards to Q2, most drivers are neither aware
of vehicle cyber attacks, nor aware that cyber attacks can
cause vehicle malfunctions. In regards to Q3, 44 (out of the
50) drivers try to maintain control of their vehicles and/or
immediately stop their vehicles, highlighting that drivers desire
to avoid accidents. Drivers’ answers to Q4 further confirm that
they are not aware of vehicle cyber attacks. In terms of the
impact of a drivers’ impulsiveness on HD effectiveness, we
observe that low-DD drivers may be able to detect more cyber
attacks than high-DD drivers. However, there is no significant
difference between low-DD and high-DD drivers in terms of
Q2-Q4 except that more low-DD drivers anticipate vehicle
cyber attacks. Most of the 19 drivers whose vehicle crashes
believe that the accidents are caused by mechanical issues.

Insight 2: HD is effective in detecting substantial vehicle
behavior changes, highlighting the importance of automatic
detectors to detect attack-caused small changes that cannot be
observed by drivers.
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Algorithm 1 DD Rate(~x,~r)

Input: ~x “ rx1, . . . , x27s; ~r “ rr1, . . . , r27s
Output: DD Rate of a participant (k value)

1: k Ð ´1 Ź default DD rate indicating the responses of a participant are inconsistent or useless
2: if ~r “ ~1 then Ź the participant always chooses delayed, but larger, reward Ai
3: k Ð x1 Ź lowest DD rate x1 “ 0.00016; least impulsive
4: else if ~r “ ~0 then Ź the participant always chooses an immediate, but smaller, reward Ai
5: k Ð x27 Ź highest DD rate x27 “ 0.25; most impulsive
6: else Ź if the responses are consistent, participant DD rate belongs to r0.00016, 0.25s
7: S Ð 0; P Ð 1; ConsistencyScorer1..27s Ð ~0; Indexr1..27s Ð ~0; nÐ 0 Ź initializing intermediate variables
8: ConsistencyScorer1s Ð pthe number of 1’s in rr1, . . . , r27sq{27
9: for i “ 2 to 27 do

10: ConsistencyScoreris Ð(the number of 0’s in rr1, . . . , ri´1s + the number of 1’s in rri, . . . , r27sq{27
11: S Ð maxi ConsistencyScoreris Ź the highest consistency score
12: for i “ 1 to 27 do
13: if ConsistencyScoreris “ S then
14: Indexris Ð 1
15: nÐ n` 1 Ź the number of appearances of the highest consistency score
16: if S ě 0.75 then Ź the threshold indicating one’s responses are consistent or not
17: if n ą 1 then Ź the highest consistency score has multiple appearances
18: for i “ 1 to 27 do
19: if ConsistencyScoreris “ 1 then
20: P Ð P ˆ xi
21: k Ð n

?
P Ź geometric mean of the xi’s corresponding to the i’s that lead to highest consistency score S

22: else Ź S ě 0.75 but n “ 1, meaning S has exactly one appearance
23: for i “ 1 to 27 do
24: if ConsistencyScoreris “ 1 then
25: P Ð xi ˆ xi´1

26: k Ð
?
P Ź Geometric mean of xi and xi´1

27: return DD rate k Ź ´1 means inconsistent or useless

G. PBD and Its Effectiveness

Confirming physical behavior changes. Figure 6 plots tra-
jectories of driver #22 in Test 2 (no attack) vs. Test 3 (under
attack; no crash), where the x-axis represents the vehicle’s lon-
gitudinal position (in terms of the 20 driving tasks T1, . . . , T20)
and the 6 attacks (Attacks 1-6) as well as their duration, the
y-axis represents the vehicle lateral position in 5 lanes (y “ 0
is the middle lane). A vehicle drives from the left to the right
and is supposed to stay in the middle lane when no lane-
change tasks are given to the driver. We observe that the two
trajectories overlap during tasks T1 and T2, but exhibit large
differences when Attacks 1 and 4 are waged and continue
after these attacks are terminated; we also observe significant
differences when the other 4 attacks are waged.

In order to see the value of designing automated vehicle
physical behavior-based detector (rather than human as de-
tector), we observe that the cyber attack to disable the brake
and accelerator waged at 50 units before T6, T9 , T15, and
T18, which do not cause dramatic physical behavior changes,
meaning that they might not be detected by the driver (i.e.,
failure of human as detector). It is even more interesting to see
that when the same attack waged 50 units before T3 is waged
again 50 units before T12, we observe that when the driver tries
to finish T12 (i.e., changing from lane 0 to lane 2 on the left),

Figure 6: Trajectories of driver #22 in Test 2 (no attack) vs.
Test 3 (under attack) in the simulated driving test.

the vehicle actually drifts to the rightmost lane owing to the
attack. The abnormal behavior can be immediately recognized
by the driver. Unlike the attack waged 50 units before T3 where
the driver loses the control of the vehicle and the vehicle’s
physical behavior changes continue until the end of T5, the
attack against the vehicle at T12 does not prevent the vehicle
from getting back to lane 0 (i.e., getting back to no attack)
at T13. This highlights the importance of detecting the attack
before T12 so that the driver can be alerted to pull over the
vehicle to minimize the chance of fatal consequence of the
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attack (i.e., drifting to the rightmost lane in this test).

Supervised PBD. To train a supervised PBD for all drivers,
we label each measurement of pF1, F2, F3q in Test 3 during
an attack as “attack” and each measurement in any other case
as “no attack” (i.e., every measurement in Test 2 and every
measurement in Test 3 in the absence of attack). There are
627,813 total measurements for the 50 drivers: 69.63% are
labeled “no attack” and 30.36% are labeled “attack”. We split
the dataset into two parts: 66% for training a Random Forest-
based PBD and 34% for testing. Experimental results show
that the detector achieves a 96.37% detection accuracy, 92.46%
TPR, 1.93% FPR, 7.54% FNR, 95.4% precision, 95.26%
AUC, 0.05 seconds detection delay (time spent on applying
the PBD detector), 19 crashes avoided, and an average 7.71
seconds surviving time (time interval between when the first
feature vector measurement corresponding to an attack is
predicted as attack and when the vehicle crashes). We split the
dataset in two; one corresponding to the 25 high-DD drivers
and the other corresponding to the 25 low-DD drivers. For
each dataset, we train a Random Forest-PBD as mentioned
above. PDB learned from high-DD drivers vs. the low-DD
drivers achieves the following: 97.07% vs. 96.82% in accu-
racy, 94.28% vs. 92.61% in TPR, 1.53% vs. 1.59% in FPR,
5.72% vs. 7.39% in FNR, 96.87% vs. 95.64% in precision,
and 96.37% vs. 95.51% in AUC. PBD’s effectiveness is not
impacted by impulsiveness significantly.

Unsupervised PBD. An unsupervised PBD is trained by
using LSTM Autoencoder with on average 5,300 vectors of a
sequence of feature vectors pF1, F2, F3q. The predicted output
is compared with the input to calculate the MAE value, where
a large MAE value means a large deviation from the normal
behavior and therefore is interpreted as an attack. Different
drivers have MAE thresholds as their vehicle physical behav-
iors are different. The training data is captured when there are
no attacks, and the maximum MAE value corresponding to the
training data is selected as the MAE threshold to distinguish
between normal behaviors and abnormal ones.

Table IV summarizes driver’s MAE thresholds for anomaly
detection and unsupervised PBD’s effectiveness in detecting
the 6 attacks. We make two observations for the 82 attacks
against the steering system (i.e., 50 Attack 1 and 32 Attack
4 against the vehicles that are not crashed by Attack 1).
First, 56 attacks involving 46 vehicles are detected. Among
these detected attacks, 46 are Attack 1 and 10 are Attack
4. Among the 46 detected Attack 1, 10 are detected before
the attack occurs, 5 are detected when it occurs, and 31 are
detected after it occurs; among the 10 detected Attack 4, 2
are detected before the attack occurs and 8 are detected after
it occurs. However, driver’s impulsiveness is not a significant
factor influencing unsupervised PBD’s effectiveness. Among
the 46 detected vehicles, 24 are high-DD and 22 are low-DD
drivers. The # of crashes avoided by PBD is 19 with an average
surviving time of 7.76 seconds.

For the 63 brake attacks against uncrashed vehicles, PBD
detects 6 attacks against 6 vehicles, where 3 are Attack 2
and 3 are Attack 5. Among the 3 detected Attack 2, 1 is

detected before the attack occurs, and 2 are detected after
it occurs; among the 3 detected Attack 5, 2 are detected
before they occur and 1 is detected after it occurs. Among
the 6 vehicles that detect attacks, 4 are operated by high-DD
drivers and 2 are operated by low-DD drivers, hinting that
a driver’s impulsiveness has no significant impact on PBD’s
effectiveness. Although no crashes in the tests, these attacks
can cause crashes in the real world, justifying the value of
PBD.

For the 63 attacks against the accelerator, PBD detects 14
attacks against 14 vehicles. Among these 14 attacks, 5 are
Attack 3 and 9 are Attack 6; the 5 Attack 3 are detected after
attacks occur, the 2 Attack 6 are detected before they occur,
and the other 7 are detected after they occur. Among the 14
vehicles that detect attacks, 8 are high-DD drivers and 6 are
low-DD drivers, also showing that driver’s impulsiveness has
no significant impact on PBD’s effectiveness.

Insight 3: PBD is effective in detecting vehicle cyber attacks
before crashes occur, and the driver’s impulsiveness does not
have a significant impact on PBD’s effectiveness.

H. DBD and Its Effectiveness

Confirming driving behavior changes. Figure 7 plots the
driving behaviors of driver #22 in Test 2 (no attacks) vs.
Test 3 (under attacks but no crash), where driving behaviors
are measured by features F5 (brake position), F6 (gas pedal
position), and F7 (reaction time). The x-axis represents the
vehicle’s longitudinal position (in terms of the 20 driving
tasks T1, . . . , T20) and the 6 attacks (Attacks 1-6); the y
axis of Figure 7a represents percentage of F5 and the y-
axis of Figure 7b represents F6. The value of F5 and F6 are
between 0% and 100%, where 0% means brake/accelerator is
inactive and 100% means the driver presses the brake/gas pedal
with highest force to stop/accelerate vehicle speed as soon
as possible. Table V summarizes the measurements of driver
#22’s feature F7 in Test 2 vs. Test 3, where we use bold fonts
to highlight the sharp contrast in the driver’s reaction time in
Test 2 vs. Test 3. This hints at the importance of feature F7.
Supervised DBD. In order to train a supervised DBD for
all drivers, we label the driving behavior measurements of
features pF4, . . . , F8q during an attack as “attack” and each
measurement in any other case as “no attack” (as in the case
of PBD). There are 627,813 measurements in total for the 50
drivers. We split this dataset into two parts: 66% for training a
Random Forest-based DBD and 34% for testing. Experimental
results show that DBD achieves: 97.97% accuracy, 96.28%
TPR, 1.3% FPR, 3.72% FNR, 96.99% precision, 97.49%
AUC, 0.05 seconds in detection delay, 19 crashes avoided, and
on average the surviving time is 8.84 seconds. In order to see
if this detector is sensitive to a driver’s impulsiveness, we split
the datasets into two (i.e., one for the 25 high-DD drivers and
the other for the 25 low-DD drivers) and train Random Forest-
based DBD. Experimental results show the effectiveness of
high-DD vs. low-DD drivers as follows: 98.17% vs. 97.96%
in accuracy, 96.7% vs. 95.72% in TPR, 1.09% vs. 1.2% in
FPR, 3.3% vs. 4.28% in FNR, 97.8% vs. 96.79% in precision,
97.8% vs. 97.26% in AUC, 0.05 seconds vs.0.05 seconds in
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Table IV: The 50 drivers’ DD rates and effectiveness of unsupervised PDB vs. DBD vs. PDBD, where ‘NA’ means a vehicle
crashes because of Attack 1 (orange row) or Attack 4 (blue row), ‘x’ means the detector fails to detect the attack as an anomaly,
a numerical value ˘s represents the detection delay (unit: second) in detecting an anomaly as attack (a positive value means
the delay, and a negative value means the forecast, of an attack with respect to an attack’s start point).

detection delay, 11 vs. 8 in # crashes avoided, and 7.05 seconds
vs. 8.84 seconds in surviving time on average. This means that
the driver’s impulsiveness does not have a significant impact
on the DBD’s effectiveness.

Table V: Driver #22’s driving behavior measured by F7, where
a red Ti means that the value of F7 is affected by an attack.

Driving
Task #

F7

Test 2 (s)
F7

Test 3 (s)
Driving
Task #

F7

Test 2 (s)
F7

Test 3 (s)
T1 2.352 1.736 T11 2.91 2.801
T2 10 10 T12 3.673 10
T3 2.466 1.779 T13 1.723 2.725
T4 1.743 1.986 T14 3.588 4.193
T5 1.873 10 T15 1.659 10
T6 2.553 2.395 T16 3.103 3.094
T7 1.925 2.419 T17 1.553 1.261
T8 3.712 3.451 T18 2.169 2.346
T9 2.004 2.104 T19 1.451 1.603
T10 10 10 T20 4.752 4.266

Unsupervised DBD. Similar to unsupervised PBD, we use
LSTM Autoencoder to train 50 DBD detectors from Test

2 to predict attack-caused driving behavior changes in Test
3. Each detector is trained on average using 5,300 vectors
of a sequence feature measurements pF4, . . . , F8q. Table IV
summarizes driver’s MAE thresholds and the DBD’s capability
in detecting the 6 attacks. For the 82 attacks against the
vehicle’s steering system (i.e., Attack 1 against 50 drivers
and Attack 4 against the 32 drivers that are not crashed by
Attack 1) the detector detects 77 attacks involving 50 vehicles,
and 50 are Attack 1 whereas 27 are Attack 4. Among the 50
detected Attack 1, 8 are detected before attacks occur, 11 are
detected when they occur, and 31 are detected after they occur;
among the 27 detected Attack 4, 4 are detected before they
occur, 15 are detected when they occur, and 8 are detected
after they occur. Among the 50 detected Attack 1, 25 are
high-DD and 25 are low-DD drivers. Among the 27 detected
Attack 4, 11 are high-DD and 16 are low-DD drivers. This
hints that impulsiveness has a marginal impact on the DBD’s
effectiveness.In sum, DBD offers an average 7.84 seconds in
surviving time to avoid 19 crashes caused by Attack 1 and
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(a) Values of F5 (brake pedal position)

(b) Values of F6 (gas pedal position)

Figure 7: Driver #22’s driving behaviors in features F5 and
F6: no attack vs. attack.

Attack 4.
For the 63 attacks against the brake, DBD detects 40 attacks

against 30 vehicles that do not crash. Among these 40 detected
attacks, 12 are Attack 2 and 28 are Attack 5. Among the 12
detected Attack 2, 2 are detected before it occurs 2 are detected
when it occurs, and 8 are detected after it occurs; among the
28 detected Attack 5, 8 are detected before it occurs, 16 are
detected when it occurs, and 4 are detected after it occurs.
Among the 40 vehicles that detect attacks, 14 are high-DD
and 16 are low-DD drivers, hinting that impulsiveness has no
significant impact on DBD.

For the 63 attacks against the accelerator, DBD detects 31
attacks against 27 vehicles. Among these 31 detected attacks,
23 are Attack 3 and 8 are Attack 6. Among the 23 detected
Attack 3, 3 are detected before it occurs and 20 are detected
after it occurs; among the 8 detected Attack 6, 2 are detected
before it occurs, 1 is detected when it occurs, and 5 are
detected after it occurs. Among the 27 vehicles that detect
attacks, 10 are high-DD and 17 are low-DD drivers, hinting
that low-DD drivers lead to more effective DBD.

Insight 4: DBD is effective in detecting attacks. The ef-
fectiveness of supervised DBD is not affected by a driver’s
impulsiveness, but the unsupervised DBD is more effective
for low-DD drivers.

I. PDBD and Its Effectiveness

Having showed that DBD (using features F4, . . . , F8) is
more effective than PBD (using F1, F2, F3), now we inves-
tigate the effectiveness of PDBD (using F1, . . . , F8).

Supervised PDBD. To Train a supervised PDBD we label
each measurement of pF1, . . . , F8q in Test 3 during an attack
as “attack” and each measurement in any other case as “no
attack”. There are 627,813 measurements in total for the 50
drivers, where 69.63% are labeled as “no attack” and 30.36%
are labeled as “attack”. We split this dataset into two parts:
66% for training a Random Forest-based PDBD and 34% for
testing. Table VI summarizes the effectiveness of PDBD vs.
PBD vs. DBD. We observe that PDBD achieves a significantly
higher effectiveness in detecting the 6 attacks (e.g., FPR is
0.02% vs. 1.93% vs. 1.2%). Supervised PDBD also detects the
19 attacks that cause crashes and offer an averaged surviving
time 7.84 seconds to the drivers (over the 19 drivers) to pull
over and avoid crashes. The time spent on training supervised
PDBD is still less than 50 seconds and the detection time
is 0.05 seconds (averaged over the 50 drivers). We split the
dataset into two (i.e., one for the 25 high-DD drivers and the
other for the 25 low-DD drivers) to train two Random Forest-
based PDBD in order to see if PDBD is sensitive to a driver’s
impulsiveness. Table VI summarizes the experimental results.
We do not observe substantial differences (e.g., FPR is 0.01%
vs. 0.02%), except that 11 high-DD drivers vs. 8 low-DD
drivers crash. This means the driver’s impulsiveness does not
have a significant impact on supervised PDBD’s effectiveness.

Unsupervised PDBD. Similar to unsupervised PBD and DBD,
we use LSTM Autoencoder and the data collected in Test 2
to train 50 unsupervised PDBD detectors, one for each driver.
Each detector is trained on average by using 5,300 vectors
of pF1, . . . , F8q. Figure 8 plots the MAE loss distribution of
driver #2, where the x-axis represents MAE value and the y-
axis represents the number of training examples with a certain
MAE. In this case, 0.31 is selected as the threshold, meaning
that a measurement of pF1, . . . , F8q leading to a higher MAE
value is detected as an anomaly and interpreted as an attack.

Figure 8: MAE distribution and threshold value obtained when
training unsupervised PDBD for Low-DD driver #2.

Table IV summarizes driver’s MAE thresholds and the ef-
fectiveness of unsupervised PDBD. For the 82 attacks against
the vehicle’s steering system (i.e., Attack 1 against 50 drivers
and Attack 4 against the 32 drivers who did not crash during
Attack 1), we make two observations. First, PDBD detects 77
attacks against 50 vehicles. Among these 77 detected attacks,
50 are Attack 1 and 27 are Attack 4. Among the 50 detected
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Table VI: The effectiveness of PBD, DBD, and PDBD.

Evaluation
Metrics

PBD DBD PDBD
High
DD

Low
DD All High

DD
Low
DD All High

DD
Low
DD All

Accuracy (%) 97.07 96.82 96.37 98.17 97.96 97.97 99.95 99.92 99.93
TPR (%) 94.28 92.61 92.46 96.7 95.72 96.28 99.88 99.78 99.84
FPR (%) 1.53 1.59 1.93 1.09 1.2 1.3 0.01 0.02 0.02
FNR (%) 5.72 7.39 7.54 3.3 4.28 3.72 0.12 0.22 0.16

Precision (%) 96.87 95.64 95.4 97.8 96.79 96.99 99.97 99.94 99.95
AUC (%) 96.37 95.51 95.26 97.8 97.26 97.49 99.93 99.88 99.91

# Crashes Avoided 11 8 19 11 8 19 11 8 19

Average
Detection
Delay (s)

Unsupervised
Detector 0.09 0.19 0.14 0.01 0.03 0.02 0.04 0.08 0.06

Supervised
Detector 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Average
Surviving
Time (s)

Unsupervised
Detector 7.02 8.78 7.76 7.14 8.82 7.84 7.1 8.89 7.86

Supervised
Detector 6.97 8.73 7.71 7.09 8.77 7.79 7.05 8.84 7.81

Attack 1, 12 are detected before the attack occurs (owing to the
forecasting capability of LSTM Autoencoder), 9 are detected
when the attack occurs, and 29 are detected after the attack
occurs; among the 27 detected Attack 4, 6 are detected before
the attack occur, 12 are detected when the attack occurs, and
9 are detected after the attack occurs. Among 27 vehicles that
detect Attack 4, 11 high-DD drivers with an average of 0.04
seconds in detection delay and 16 low-DD drivers with an
average of 0.08 seconds in detection delay. This hints that
PDBD is more effective for low-DD drivers. Second, Attack 1
causes 18 crashes and Attack 4 causes 1 crash. Figure 9 plots
the surviving time for each of the corresponding 19 drivers,
where the start time for each attack is marked as 0 (second).
The ‘‚’ (Ĳ) indicates when Attack 1 (4) is detected, a ‘ˆ’
(İ) indicates when a vehicle crashes, the length of the dashed
(solid) lines represents the surviving time. We observe that the
surviving time is 1.5 seconds for driver #44, 2.1 seconds for
driver #28, 3.2 seconds for driver #3, 3.05 seconds for driver
#48, at least 4 seconds for the other 15 drivers.

Figure 9: The surviving time offered by PDBD to the 19
drivers to pull over and avoid crashes.

For the 63 attacks against the brake system (i.e., Attack
2 against the 32 vehicles that did not crash by Attack 1 and
Attack 5 against the 31 vehicles that did not crash by Attack 4),
we observe that PDBD detects 37 attacks against 31 vehicles.
Among these 37 detected attacks, 10 are Attack 2 and 27 are
Attack 5. Among the 10 detected Attack 2, 4 are detected
before the attack occurs (owing to the forecasting capability
of LSTM Autoencoder), 2 are detected when the attack occurs,
and 4 are detected after the attack occurs; among the 27

detected Attack 5, 13 are detected before the attack occurs, 12
are detected when the attack occurs, and 2 are detected after
the attack occurs. Among the 31 vehicles detecting attacks,
15 drivers have a high-DD rate and 16 drivers have a low-
DD rate, hinting that a driver’s impulsiveness does not have a
significant influence on the effectiveness of PDBD.

For the 63 attacks against the accelerator (i.e., Attack 3
against the 32 vehicles that did not crash by Attack 1 and
Attack 6 against the 31 vehicles that did not crash by Attack
4), we observe that PDBD detects 36 attacks against 27
vehicles. Among these 36 detected attacks, 21 are Attack 3
and 15 are Attack 6. Among the 21 detected Attack 3, 3 are
detected before the attack occurs and 18 are detected after
the attack occurs; among the 15 detected Attack 6, 4 are
detected before the attack occurs and 11 are detected after
the attack occurs. Among the 27 vehicles detecting attacks,
12 drivers have a high-DD rate and 15 drivers have a low-DD
rate, hinting that a driver’s impulsiveness somewhat affects
PDBD’s effectiveness.

Insight 5: PDBD is more effective than PDB and DBD in
detecting attacks and its effectiveness is somewhat affected by
the driver’s impulsiveness.

V. LIMITATIONS AND FUTURE DIRECTIONS

A. Limitations

The present study has several limitations, which represents
significant gaps between the experimental environments and
real-world situations. The first gap is caused by the notion of
driving tasks, which plays an important role in our driving
tests. Although these driving tasks are meant to mimic real-
world situations (e.g., response to traffic lights and/or lane
changes), their counterparts in the real world are not well-
defined or cannot be measured yet. The second gap is caused
by the simplified conditions in our driving tests, including the
use of straight roadways in the driving test and no other vehi-
cles on the road, and the way of simulating the effect of cyber
attacks on a vehicle’s physical and mechanical behaviors. The
third gap is determining which aspect(s) of impulsiveness or
other human factors (e.g., attention) meaningfully contribute
to vehicle cyber attack detection. The fourth gap is the
ExHPD’s scalability because of the range of different driving
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behaviors which may also be impacted by different vehicle
make/model. In what follows we outline research directions
towards bridging these gaps.

B. Towards bridging the first gap

We observe that driving task-based features may not be easy
to measure. In what follows we consider feature F7 (reaction
time) as an example for illustrating what research needs to
be done in the future. The measurement of F7 would need
the support of smart transportation infrastructure (e.g., smart
traffic lights/stop signs) and connected vehicles. This motivates
us to investigate whether or not feature F7 is necessary for
creating highly accurate vehicle cyber attack detectors. In
order to answer this question, we contrast the effectiveness
of supervised and unsupervised PDBDs trained from dataset
corresponding to features pF1, . . . , F8q vs. pF1, . . . , F6, F8q.

We train a Random Forest-based supervised PDBD using
the dataset corresponding to pF1, . . . , F6, F8q, in the same
fashion as using the dataset corresponding to pF1, . . . , F8q.
Experimental results show that the resulting PDBD achieves
99.34% accuracy (in contrast to 99.93% when using F7),
98.39% TPR (in contrast to 99.84%), 0.24% FPR (in con-
trast to 0.02%), 1.61% FNR (in contrast to 0.16%), 99.44%
precision (in contrast to 99.95%), 99.07% AUC (in contrast to
99.91%), 0.05 seconds in detection delay (same as before), 19
crashes avoided (same as before), and 7.81 seconds of average
surviving time (same as before). This means that supervised
PDBD without using F7 is still reasonably effective, but not
as effective as when using F7.

We train LSTM Autoencoder-based PDBD detectors for
the 50 drivers as in the case of using features pF1, . . . , F8q.
Experimental results show that the resulting PDBDs detect
100 cyber attacks in total (in contrast to 150 when using F7).
The # of detected attacks drops from 72.12% (when using F7)
to 48.08% (when not using F7); the detection delay remains
at 0.02 seconds for detecting Attack 1, increases from 0.19
to 0.5 seconds for detecting Attack 2, reduces from 0.61 to
0.47 seconds for detecting Attack 3, increases from 0.13 to
0.22 seconds for detecting Attack 4, increases from -0.09 to
0.1 seconds for detecting Attack 5, reduces from 0.6 to 0.28
seconds for detecting Attack 6; the detector still detects the
19 crashes. This means that the effectiveness of unsupervised
PDBD without using F7 is significantly reduced.

The preceding discussion suggests two future research di-
rections. One is to investigate the feasibility of having the
future intelligent transportation infrastructure to provide a
driving task-like service to measure the relevant features (e.g.,
F7). The other is to identify alternate features that can replace
those driving task-based features before they can be measured
by intelligent transportation infrastructure.

C. Towards bridging the second gap

The driving simulation environment should be enhanced to
accommodate more realistic roadway situations, such as real-
world traffic. Systematic cyber attacks should be conducted
against vulnerable vehicles. This suggests two future research
directions. One is to investigate how to leverage Augmented

Reality/Virtual Reality for the driving tests. The other is to in-
vestigate realistic attack effects on vehicle physical properties.

D. Towards bridging the third gap

In order to identify the human factors about different
aspects of impulsiveness and in addition to impulsiveness
that would have a significant impact on the effectiveness
of HD/PBD/DBD/PDBD, which leverage drivers and their
driving behaviors to detect vehicle cyber attacks, we plan
to measure different impulsiveness aspects via different tasks
(e.g., BART [49] and Go/No Go [11]) concurrently in each
driver. These measurements can be compared using the similar
methodology employed in the current study. Additionally,
many of these impulsiveness measures use hypothetical money
as the main commodity for which drivers make their decisions.
This may be a less powerful predictor for differences in
driving behavior, especially during cyber attacks, compared to
decisions about driving behavior (e.g., the trade-off between
engaging in a risky driving behavior and getting in an acci-
dent [40]). Lastly, other human factors outside of impulsive-
ness, such as overall attention via eye tracking technologies,
need to be measured and incorporated in to these predictions
to determine the most important human factors.

E. Towards bridging the fourth gap

A much larger population of drivers should be recruited to
conduct the aforementioned enhanced driving tests to identify
representative driving behaviors and driver impulsiveness in
their DD rates. It is important to investigate whether or not
a detector learned from some vehicles’ historic data can be
applied to other vehicles that may or may not be manufactured
by the same maker. It is interesting to investigate whether re-
inforcement learning (other than supervised and unsupervised
learning) can help alleviate the scalability issue.

VI. CONCLUSION

In this study, we considered a vehicle as a cyber-physical
system and treated vehicles as CPH systems. Afterward, we
proposed the novel ExHPD framework for exploiting human,
physical, and driving behaviors to detect vehicle cyber attacks.
As proof of concept, we designed a hardware-in-the-loop
driving simulation testbed and recruited college-age drivers
to conduct a case study. Experimental results have validated
the efficiency of ExHPD. We also discussed the limitations of
the present study and future research directions.
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APPENDIX A
THE 27-ITEM MONETARY CHOICE QUESTIONNAIRE AND TWO DRIVER’S RESPONSES

Table VII lists the Monetary Choice Questionnaire (MCQ) survey we give to the 50 drivers as well as two driver #22 and
#35’s responses (as examples). The 1st column “Random Order Q #” lists the randomized question order given to each driver.
The 2nd column “Original Order Q #” presents the sorted 27 questions in ascending order. The 27 questions are first sorted
based on their respective k values (one k value per question). Three questions having similar k values are grouped into one
“dimension”, meaning that the 27 questions are split into 9 “dimensions” (α) as presented in the 7th column. The questions
within a dimension are sorted based on their respective reward magnitude (β) as shown in the 8th column (in ascending order).
The 3rd, 4th and 5th columns respectively present the values of the small but immediately monetary rewards (SIR) V , the
larger but delayed monetary rewards (LDR) A, and the delays (unit: day) D. The last two columns present drivers #22 and
#35’s response (r) to the 27 questions, where 0 means the driver selects LDR and 1 means the driver selects SIR. These two
driver’s DD rates (k values) are derived according to Algorithm 1 and are presented at the bottom of the table.

Table VII: 27-item Questionnaire for Measuring DD Rates and Two Examples

Random
Order Q #

Original
Order Q # (Q) SIR (V ) LDR (A) Delay Day (D) k Value

(x)
Dimension

(α)
Reward Magnitude

(β)
Response (r)

Driver #22 Driver #35
13 1 $34 $35 186 0.000158128 1 Small 0 0
1 2 $54 $55 117 0.000158278 1 Medium 0 0
9 3 $78 $80 162 0.000158278 1 Large 0 0

20 4 $28 $30 179 0.000399042 2 Small 0 0
6 5 $47 $50 160 0.000398936 2 Medium 0 0

17 6 $80 $85 157 0.000398089 2 Large 0 0
26 7 $22 $25 136 0.001002674 3 Small 0 0
24 8 $54 $60 111 0.001001001 3 Medium 0 0
12 9 $67 $75 119 0.001003386 3 Large 0 0
22 10 $25 $30 80 0.0025 4 Small 0 0
16 11 $49 $60 89 0.002522357 4 Medium 0 0
15 12 $69 $85 91 0.002548176 4 Large 0 0
3 13 $19 $25 53 0.005958292 5 Small 1 0

10 14 $40 $55 62 0.006048387 5 Medium 0 0
2 15 $55 $75 61 0.005961252 5 Large 0 0

18 16 $24 $35 29 0.015804598 6 Small 1 0
21 17 $34 $50 30 0.015686275 6 Medium 1 0
25 18 $54 $80 30 0.016049383 6 Large 1 1
5 19 $14 $25 19 0.041353383 7 Small 1 0

14 20 $27 $50 21 0.040564374 7 Medium 1 1
23 21 $41 $75 20 0.041463415 7 Large 1 1
7 22 $15 $35 13 0.102564103 8 Small 1 1
8 23 $25 $60 14 0.1 8 Medium 1 1

19 24 $33 $80 14 0.101731602 8 Large 1 1
11 25 $11 $30 7 0.246753247 9 Small 1 1
27 26 $20 $55 7 0.25 9 Medium 1 1
4 27 $31 $85 7 0.248847926 9 Large 1 1

DD Rate (k) 0.009706451 0.025515352
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