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Abstract—Unlike conventional servers housed in a centralized
and secured indoor environment (e.g., data centers), Internet-of-
Things (IoT) devices such as sensor/actuator are geographically
distributed and may be closely located to the physical systems
where IoT devices are utilized. However, the resource-constrained
nature of IoT devices limits their capacity to deploy sophisti-
cated security solutions. The proposed approach assumes that
a device can be compromised and hence, the need to be able
to automatically isolate the compromised device(s). In order to
enforce security policies even when devices are compromised, we
propose using blockchain in the monitoring framework. Unlike
existing centralized or distributed security solutions (which do
not consider the possibility that the solutions themselves can
be compromised), the proposed blockchain-based framework
can enforce the security policies as long as a majority of the
devices are not compromised. By employing the permissioned
blockchain (Hyperledger Fabric) and add-on hardware modules,
the proposed framework offers significantly lower latency and
overhead compared to permissionless blockchain frameworks
(e.g., Ethereum) and allows existing IoT devices to join the
framework without modification.

Index Terms—Blockchain, Internet-of-Things (IoT), monitor-
ing, security.

I. INTRODUCTION

ADVANCES in semiconductor and communication tech-
nologies and the interconnectivity of our society have

partly contributed to the popularity of networked embedded
systems, which are often found in cyber–physical systems
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and Internet-of-Things (IoT) devices. As more IoT devices
are connected to different systems in our society (e.g., those
in the critical infrastructure sectors), it is important to secure
such devices, or isolate compromised devices, to prevent them
from being used as a launch pad for subsequent attacks. For
example, consumer IoT devices had reportedly been used to
commit a Distributed Denial of Service (DDoS) attack to
websites, such as Twitter, Netflix, Spotify, Airbnb, Reddit,
Etsy, SoundCloud, and The New York Times on October 21st,
2016 [1]. Recent studies from security organizations such as
Trend Micro [2], [3] have also suggested that IoT devices are
increasingly been targeted by cyber criminals.

It is challenging, however, to prevent IoT devices from being
compromised, particularly devices that are placed in publicly
accessible places (unlike servers that are typically maintained
in a secure place like a data center) [4]. Since the physical
security of IoT devices cannot always be guaranteed, they are
more easily compromised and consequently, fall under the full
control of an adversary. The resource-constrained nature of
these devices compounds the challenge of preventing attacks
to their firmware and hardware components.

Therefore, in this article, our proposed approach assumes
that any individual device can be compromised at some stage
and automatically isolates the device if this happens. This
approach differs from existing security frameworks, which are
generally focused on building a secure device. To enforce
security policies even when there exist compromised devices,
blockchain is employed as the underlying mechanism in our
proposed approach. In other words, as long as a majority of
the devices in the network are not compromised, the security
of the entire system can be guaranteed. Therefore, compared
to existing centralized or hierarchical approaches [5]–[8], this
blockchain-based approach offers a higher level of assurance.
Existing approaches such as those based on peer to peer [9]
may avoid the single-point failure, but they do not support
runtime policy updates since such approaches do not employ
a consensus protocol (unlike a blockchain-based approach).
Furthermore, the proposed approach monitors all network traf-
fic and automatically isolates a malicious device by blocking
all outgoing traffic from a particular device.

To apply blockchain to IoT systems, the following chal-
lenges must be addressed.
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1) (Challenge 1) Latency: In permissionless blockchain
frameworks, such as Bitcoin and Ethereum, it takes
between 1 and 10 min to reach consensus [10]. Unlike
blockchain-based currency, such latency is not accept-
able for time- and delay-sensitive applications such as a
smart grid.

2) (Challenge 2) Applicability: An IoT system generally
consists of different types of devices from different man-
ufacturers. Hence, it is not practical to assume that all
devices support the same blockchain framework.

3) (Challenge 3) Resource Constraints: For the blockchain
to be effective, there must be a sufficient number of
participating devices. However, due to the resource-
constrained nature of IoT devices, such as sensors and
actuators, they are unlikely to be suitable blockchain
client candidates.

In our approach, these three challenges are addressed by
employing Hyperledger Fabric and an add-on hardware mod-
ule to implement the proposed blockchain client. As a proof
of concept, we apply the proposed approach to the “build-
ing automation and control network” (BACnet). One example
security policy we implement for BACnet is a whitelisting
technique. Its average latency in IoTCop is 128.95 ms, whereas
it takes 9.6 s if the same whitelisting is implemented on the
Ethereum blockchain framework. In addition, the add-on hard-
ware modules allow existing commercial off-the-shelf (COTS)
devices to join the framework without modification. The com-
putation demand of Hyperledger Fabric is significantly less
than that of permissionless blockchain frameworks because
the former uses the practical Byzantine fault tolerance (PBFT)
protocol for consensus.

In other words, our proposed framework offers high flexibil-
ity, where resource-constrained devices may run only a part of
blockchain clients and resource-capable devices (e.g., servers
and desktops) can run blockchain clients on behalf of the
resource-constrained devices. We also remark that IoTCop is
the first attempt to introduce a general IoT monitoring frame-
work using blockchain. We also formally analyze the security
of IoTCop and demonstrate its efficiency by evaluating the
prototype and an analytical model.

The remainder of this article is organized as follows.
Section II presents our research motivations. After reviewing
the related literature in Section III, we present an overview of
proposed framework and its technical details in Sections IV
and V. A case study and its evaluation results are presented
in Sections VI and VII. Finally, Section VIII concludes this
article.

II. MOTIVATIONS AND BACKGROUND

A. Motivations

IoT systems are characterized by their capability to con-
tact with the physical world, for example, via sensors and
actuators. Sensors, actuators, and many other (inexpensive)
IoT devices usually have a small processor that handles con-
trol of such devices and their network connectivity. Thus,
such devices are susceptible to both hardware and software
(firmware) attacks, and their resource constraints limit the
adoption of full-fledged security solutions [11]–[13].

Attack scenarios can be classified based on their target,
as shown in Fig. 1 [11]. Countermeasures to these attack
scenarios often assume that the underlying components are
trustworthy. Secure boot [14], [15], for example, is a repre-
sentative countermeasure to malicious firmware attacks. This
approach typically assumes the underlying hardware cannot
be compromised. Another example is the encryption of a
network message. If the end-point devices (source and des-
tination) are compromised, the confidentiality of an encrypted
message cannot be guaranteed too. Therefore, the security of
devices is critical because it is the foundation of network
and system security. Here, devices refer to end-point sen-
sor/actuator devices, as well as all components in the network,
such as gateways, routers, access points, and edge devices
(e.g., local servers).

Unlike traditional computer networks, it is challenging to
guarantee the physical security of devices in IoT systems. As
previously discussed, servers may be maintained in a secure
place such as a data center, but IoT devices are located in
the environment they need to interact with. Furthermore, their
resource-constrained nature limits their defensive capability.

The assumption that an individual device can be compro-
mised and automated isolation of compromised device in our
approach is analogous to governments isolating individuals
convicted of a crime from the society (e.g., imprisonment).
Clearly, we still need to make every effort to prevent devices
from being compromised (malicious firmware or physical
attacks), although their limited resources and lack of physi-
cal security compound the challenge of securing such devices.
Not being able to fully trust individual devices in a network
will have implications on the overall security of the network.

Therefore, the proposed approach seeks to ensure that an
IoT system consists of only trusted devices by isolating
untrusted devices when they are detected. Here, a trusted
device means a device that complies with all security policies
of the system. Although we are primarily focusing on mitigat-
ing malicious firmware and physical attacks, our approach can
also address other security threats in a network and system.

If we assume an individual device that is part of a system
can be compromised, then naturally we need to determine how
to consistently enforce security policies. Many existing coun-
termeasures employ a centralized approach [5]–[8], where a
powerful central server (e.g., cloud or edge node) monitors
the behavior and network traffic of all devices. This central-
ized approach, however, has a risk of single-point failure. If
the central entity does not work for some reason (cyberattack,
network problem, sudden power failure, physical fault, etc.),
utilized security solutions will not be effective. In addition,
depending on the network architecture, they may not be able
to monitor all network traffic (e.g., ad hoc IoT network [16]),
especially if a device directly sends a message to another
device which is not supposed to do. Distributed hierarchical
approaches [17], [18] enable monitoring all network traffic by
distributing agents across the network. However, they are not
free from faults (compromised agents) because if any agent is
compromised, its assigned part of the system cannot be mon-
itored. It can be addressed by redundancy, but the number of
redundant agents is usually limited [19]. In other words, there
is a nonnegligible possibility that all redundant agents can be
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Fig. 1. Classification of attack scenarios in networked embedded systems, where selected representative examples are shown. The primary target of the
proposed framework is handling a device compromised by malicious firmware or physical attacks.

TABLE I
COMPARISON OF APPROACHES FOR IOT SECURITY

compromised at the same time. The peer-to-peer approach [9]
offers fault tolerance by employing a voting mechanism. Since
the decision is made collaboratively, it can guarantee security
policy enforcement as long as the majority of devices are not
compromised. However, it does not employ a consensus pro-
tocol, which limits its capability. If any information needs to
be shared by devices and the information needs to be updated
runtime, the existing peer-to-peer approach cannot support it.

The proposed approach enforces security policies using
blockchain. This allows us to enable trusted computing on
untrusted devices. As long as a majority of the devices in
the network are not compromised, the security of the entire
system can be guaranteed. Therefore, compared to existing
centralized and distributed approaches, this blockchain-based
approach offers a higher level of assurance. By using the con-
sensus protocol, the blockchain-based approach can support
the runtime update of shared information. Furthermore, the
proposed approach monitors all network traffic and automat-
ically isolates a malicious device by blocking all traffic from
it. Table I summarizes it.

The technical contribution of this article is the solution
to the three challenges posed in the previous section, which
should be addressed when blockchain is applied to the IoT
setup. We address them by employing Hyperledger Fabric and
add-on hardware modules.

Hyperledger Fabric [20] is designed to work with permis-
sioned private networks, where membership must be con-
trolled. Such an environment is typical of IoT systems.
One advantage of Hyperledger Fabric over the permission-
less blockchain is the order-of-magnitude lower latency since
the computationally expensive Proof of Work (PoW) is not
required. This allows us to address the latency limitation
(challenge 1).

In order to enable COTS devices that would not other-
wise support the proposed framework to be able to do so, an
add-on hardware module is introduced (challenge 2). By pair-
ing with an add-on module, an existing device can join the
framework without any modification to the actual device. The

Fig. 2. Hyperledger Fabric blockchain framework.

blockchain client is implemented on the add-on module; hence,
allowing us to mitigate the limitation of resource-constrained
devices (challenge 3). Employing Hyperledger Fabric also
helps reduce the resource demand because it uses a PBFT
protocol as a consensus protocol instead of PoW.

The existing blockchain-based IoT security
solutions [21]–[28] do not address these challenges. Thus,
they have been used for a secure firmware update, configura-
tion management, and energy trading that do not require to
address the challenges. To the best of our knowledge, IoTCop
is the first attempt to offer a general monitoring framework
that can be used to mitigate various attacks on devices.

Since the add-on module is an additional component in
the system, it may increase the cost of the system. However,
employing an alternative security solution is also not free. To
employ existing centralized or distributed solutions, we need
to employ additional devices or increase the capacity of exist-
ing devices. Since the add-on module can be used for any kind
of device, the cost of one module can be amortized by mass
production.

B. Hyperledger Fabric

The Fabric blockchain framework is one of the projects
in Hyperledger. Hyperledger includes various development
projects of frameworks and tools for business and industrial
blockchain applications. The Fabric project aims at providing a
permissioned blockchain framework for private or consortium
networks. Since the membership of participants is controlled,
it does not have to assume the harsh environment that permis-
sionless blockchain frameworks (e.g., Bitcoin and Ethereum)
operate in. Fabric employs the PBFT protocol as its consensus
protocol, which is less computationally demanding than PoW.

Fig. 2 shows the workflow of the Hyperledger Fabric frame-
work. When a new transaction is issued, it is broadcasted to
endorsing peers. Each endorsing peer executes a smart contract
that determines whether the transaction should be accepted
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based on its endorsement policy. If the transaction is endorsed
by endorsing peers, then it is sent to the orderer. The orderer
collects transactions and makes a block. Although the orderer
is shown as a single entity in the figure, it is implemented in
a distributed manner for fault tolerance. The presence of the
orderer prevents wastage of computing power to mine a block
that will not be used. Finally, the block is stored in committing
peers by using the PBFT protocol.

The distributed nature of the Fabric provides resilience to
faults (compromised peers). The consistency of the shared
information is guaranteed by the consensus protocol. The use
of the PBFT protocol (instead of PoW) offers low latency and
low-performance overhead. For these reasons, we select the
Hyperledger Fabric as the underlying blockchain framework to
ensure the security of IoT systems. However, we implemented
the framework from the scratch instead of using their imple-
mentation, as it includes many features that are not essential
for our purpose.

III. RELATED WORKS

This article is the first attempt to provide a blockchain-
based monitoring framework that detects and isolates compro-
mised devices under malicious firmware attacks or physical
attacks, at the time of this research. In prior IoT security
frameworks, to protect devices from firmware or physical
attacks, researchers generally focused on design methodolo-
gies that ensure security properties at design time with an
emphasis on hardware–software code sign [11], a holistic
framework encompassing process, people, technology, and
organization [29], [30], combining the security requirements
of an IoT ecosystem [31], and so on.

The threat we considered in this article is a malicious
firmware attack, where an adversary has the capability to
modify the firmware or add malicious code to the firmware
so that they can execute arbitrary code of their choice. The
firmware can be compromised statically or dynamically. A
static firmware attack compromises the firmware by replacing
the code in flash memory or working memory (e.g., DRAM).
It can be prevented by secure boot [14], [15] and attestation
of firmware [32]–[34]. A dynamic firmware attack exploits
the dynamic memory regions (stack and heap) to circum-
vent secure boot and attestation. Code injection [35] and code
reuse [36] attacks are representative examples. The other threat
considered is a physical attack targeting the hardware, which
includes fault injection, reverse engineering, microprobing,
and false data injection [37].

Despite efforts spent on designing firmware and hardware
compromise mitigation solutions, there are still possibilities
of devices being compromised. Existing security solutions for
general-purpose computers are not suited for deployment on
systems involving the resource-constrained nature and lack
of physical security in IoT devices. Our approach is also
compatible with existing prevention techniques but assumes
that a device can be compromised (rather than the typical
“honest-but-curious” adversary model).

If a device is compromised, then it can be detected by
checking for violation of the security policies. The proposed

framework enforces security policies using blockchain,
and the blockchain-based framework offers a higher
level of assurance than existing centralized or distributed
approaches [5]–[8], [38], which generally does not assume
that the security solutions themselves can be compromised.

There are IoT security solutions that employ blockchain.
These techniques ensure a certain security property of the IoT
system, such as firmware update [21], [24], configuration man-
agement [22]–[25], traceable data management [39]–[41], trust
model [42], and authentication [26], [43]. Blockchain has also
been used to facilitate energy trading in a smart grid [44]–[46].
More recently, in 2020, Liu et al. [47] presented a new
blockchain framework for the IoT environment. However,
the propagation delay in the proposed framework is longer
than 10 s for 30 nodes. While it is significantly shorter than
the delay of permissionless blockchain frameworks (which is
between 1 and 10 min [10]), it is still longer than what IoTCop
offers (which is up to 730.11 ms for 30 nodes).

IV. IOTCOP OVERVIEW

This section provides an overview of the proposed frame-
work, IoTCop. IoTCop is a blockchain-based monitoring
framework that monitors network messages of devices and
isolates (malicious) devices that do not comply with security
policies.

A. Threat Model

The primary goal of IoTCop is to isolate a device whose
network message violates security policies. The behavior of
a device may change after it has been infected by malicious
firmware or physical attacks. The changed behavior may not
be observable, for example, the device may eavesdrop on the
network traffic, without sending any unauthorized or malicious
messages to other devices. Hence, this is not the focus of
the proposed framework. If the compromised device attempts
to send information to an unauthorized device, however, it
will be blocked. IoTCop seeks to prevent a malicious device
from seeking to affect the system by sending unauthorized or
malicious messages.

IoTCop is tasked with enforcing the security policies, which
may be application dependent and must be provided by the
system administrators. The quality/effectiveness of security
policies (e.g., whether they are sufficiently effective to detect
all malicious behaviors) is beyond the scope of this article.

Denial-of-Service (DoS) attack is not considered by the cur-
rent version of IoTCop. However, though the DoS attack may
hinder normal operations of the framework and the system,
it cannot break the security properties guaranteed by IoTCop.
In other words, malicious devices are still isolated even under
the DoS attack, although benign devices may not be able to
perform normal operations due to the DoS attack.

B. Location

IoTCop works between the application layer and the
network layer, as shown in Fig. 3. The network layer is
required to facilitate communication. The framework monitors
the messages of the application layer to check whether devices
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Fig. 3. IoTCop is located between application and network layers. In the
absence of the network layer, it can work on top of the physical layer.

Fig. 4. IoTCop is implemented by IoTCop clients. The client may be placed
on the device if the device supports IoTCop. Even if a device does not support
it, the device can join the framework by pairing with an add-on hardware
module.

comply with the security policies. The framework is also inde-
pendent of the network and application layers. In other words,
the framework can work on top of any network protocols and
can monitor any application layer protocols. If the network
layer is not present, then it can also work on top of the physical
layer.

IoTCop is implemented using blockchain clients, as shown
in Fig. 4. A system may consist of different types of devices,
which may not directly support the framework. If the device
supports the framework, then it means the blockchain client
runs on the device. Devices that do not support the framework
can join the framework by pairing with an add-on hardware
module, where a blockchain client runs.

Pairing with an add-on module does not necessarily mean
physical attachment. An add-on module may be physically
attached to a device, but it can also be connected to a device
remotely over a network. An add-on module has two network
interfaces: one is for its paired device and the other is for
the blockchain network. The first interface for a paired device
should be configured so as to be connected only to its paired
device. The network interface may vary with devices. To be
applicable to a broader range of devices, the add-on module
should be equipped with various network interfaces for its
paired device.

C. Protocol

The protocol of IoTCop is illustrated in Fig. 5. All messages
of the application layer should go through the framework so
that compliance with security policies can be verified. When
a message is sent from a source device, it is handled by the
sender interface in its IoTCop client. The client may be located

Fig. 5. IoTCop client consists of sender and receiver interfaces, endorsing
peer, and committing peer. This figure shows how they interact.

either at the device itself or the paired add-on module. The
sender interface sends the message to all endorsing peers. Each
endorsing peer determines whether or not the message is com-
pliant based on its endorsement policy. The result is sent to
the receiver interface of the destination device. If the mes-
sage is accepted, then it is delivered to the destination device.
Depending on the result, the security policies may need to be
updated. The security policies are updated by committing peers
through the consensus protocol. The latter ensures the consis-
tency of the shared security policies. The technical details of
the protocol are presented in Section V.

D. Allocation

A blockchain client may not have all logical components
of the blockchain clients (see rounded boxes in Fig. 5) due
to resource availability. IoTCop offers flexible allocation of
components, but a pair of sender and receiver interfaces should
be allocated together, and a pair of endorsing and committing
peers should also be allocated together.

In Fig. 6, for example, device A is connected to the
framework through an add-on module. The blockchain client
running on the add-on module for device A includes all of
the sender/receiver interfaces and endorsing/committing peers.
The client for device B also has the same components, but the
client runs in device B itself. For device C, due to its resource
constraints, it runs only the sender/receiver interfaces.

It is also possible to utilize a device external to the system,
which does not send or receive any messages to/from devices
of the target system. For example, desktops and servers
can be utilized as endorsing and committing peers. Since
those devices do not exchange messages, the sender/receiver
interfaces are not necessary. If such devices are employed, then
an adversary will find it harder to locate and compromise such
devices. They also mitigate resource requirements for running
the blockchain clients.

V. IOTCOP FRAMEWORK

This section presents the technical details of the proposed
framework. The primitives of building IoTCop and the proto-
col definition are given in Sections V-A and V-B, respectively.
The security properties are discussed in Section V-C followed
by limitations in Section V-D.
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Fig. 6. Example allocation of blockchain clients.

A. Primitives

IoTCop employs a digital signature scheme to validate the
authenticity of messages. It consists of the following three
algorithms.

1) GEN(1λ): Given as input the security parameter 1λ, it
generates a pair of public and private keys (PK, SK).

2) SIG(SK, m): Given as input a private key SK and a
message m, it generates a signature σ .

3) VER(PK, m, σ ): Given as input a public key PK, a mes-
sage m, and a signature σ , it generates 1 if the signature
σ on the message m is successfully verified with the
public key PK, and 0 otherwise.

When an IoTCop client joins the framework, it generates
(PK, SK) by using GEN and publishes PK as its ID.

An IoTCop client is comprised of a sender interface,
receiver interface, endorsing peer, and committing peer. Their
algorithms are as follows.

1) SENDERINTERFACE(m): For the given input m, it gener-
ates M = (m, PKsender, q, σsender). PKsender is the public
key of the IoTCop client, where the sender interface
runs. q is a sequence number that increments whenever
this algorithm is executed. PKsender and q are included
in M to uniquely identify the message globally (across
the system) and prevent the replay attack. If q is reused
by an adversary, the previous message can be sent again.
This message can be used for false command/data injec-
tion. Thus, it is important to assign a unique q whenever
a message is generated. σsender is SIG(SKsender, m||q).

2) RECEIVERINTERFACE(R, M): R is a set of response
messages R from all endorsing peers for the same sender
and message, where R = (r, PKsender, q, σsender, σend).
All R in R have the same PKsender, q, and σsender. M
is received from the sender. RECEIVERINTERFACE gen-
erates 1 if R.r is 1 (which means accept), VER(PKpeer,
R.r||R.PKsender||R.q||R.σsender, R.σend) is 1, R.PKsender
is equal to M.PKsender, and R.q is equal to M.q, for
the majority (> n/2) of R in R. As mentioned above,
the public keys of IoTCop clients are published, which
means PKpeer is known. The signature of M should also
be validated [VER(M.PKsender, M.m||M.q, M.σsender)
should be 1]. Otherwise, it generates 0.

3) ENDORSINGPEER(M): M is the message gener-
ated from the sender interface of the source
device. Only if VER(M.PKsender, M.m||M.q,

σsender) is 1, it generates R; otherwise, M is
ignored. R = (r,M.PKsender,M.q,M.σsender, σend).
R.r = CHECKPOLICY(M.m,M.PKsender,M.q,T).
CHECKPOLICY is a user-defined function that gen-
erates 1 if M.m is accepted, and 0, otherwise.
T is the state shared by all peers. Its definition
should be given by the user. R.σend = SIG(SKpeer,
R.r||M.PKsender||M.q||M.σsender). SKpeer is the private
key of the IoTCop client where the peer runs. If the
shared state needs to be updated, it sends U to all
peers. U = (u,M.PKsender,M.q,M.σsender, σcom). u
is a user-defined message to update the shared state.
σcom = SIG(SKpeer, u||M.PKsender||M.q||M.σsender).

4) COMMITTINGPEER(U): U is a set of update messages
U from all endorsing peers triggered by the same sender
and message, where U = (u, PKsender, q, σsender, σcom).
All u in U have the same PKsender, q, and σsender. It
updates the shared state T , if u of U are the same, and
VER(PKcom, U.u||U.PKsender||U.q||U.σsender, U.σcom) is
1, for the majority (> n/2) of U in U. PKcom is the pub-
lic key of the peer who sent U. It ignores U, otherwise.
It updates the state by calling the user-defined function
UPDATESTATE(U.u, T).

The user provides the definition of the following two func-
tions and two data structures. They may be implemented by
using a smart contract, but its latency is order-of-magnitude
longer than that of IoTCop. We will evaluate the latency using
experiments in Section VII.

1) CHECKPOLICY(m, PKsender, q, T): It generates 1 if m
is accepted and 0, otherwise. It may check multiple
security policies.

2) UPDATESTATE(u, T): It updates T processing the
request u.

3) T: The user defines the data structure of the shared state.
4) u: The user defines how to update T .

B. IoTCop Protocol

The sequence diagram of the IoTCop protocol is depicted
in Fig. 7. The protocol begins when a source device sends an
application layer message, A = (m). The IoTCop protocol is
transparent to the application layer. Thus, the source device
sends A without being aware of the IoTCop framework.

For A to be delivered to the destination device, its compli-
ance is checked by IoTCop. To do so, the sender interface of
the IoTCop client broadcasts M to all other IoTCop clients.
When an IoTCop client receives M, it individually determines
whether or not A should be accepted. When it is determined,
R is sent to the receiver interface of the destination device.
The receiver interface sends A to the destination device if
RECEIVERINTERFACE returns 1. Otherwise, A is discarded.
In this way, the source device is isolated if its message is
against the security policy.

An IoTCop client may need to update the state depending
on the results of checking security policies. In this case, an
IoTCop client broadcasts U to other clients to update the state.

In the PBFT protocol, there is a commander who initi-
ates a message to all lieutenants. Each lieutenant forward the
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Fig. 7. Sequence diagram of the IoTCop protocol.

received message to others and receives forwarded messages
from others. If the majority of the received messages are the
same, a consensus is reached and the message is accepted.
In Hyperledger Fabric, an orderer plays as a commander, and
committing peers do as lieutenants. The orderer creates block
collecting transactions and initiates the block to all committing
peers. Each committing peer performs the same tasks that the
lieutenant does in the PBFT protocol to reach a consensus.

In IoTCop, the sender interface plays as a commander, and
other IoTCop clients do as lieutenants. The sender interface
triggers the protocol by sending M to all IoTCop clients.
Each IoTCop client generates U that is analogous to the for-
warded message. The difference is that U is generated only if
necessary. U is exchanged among IoTCop clients to reach a
consensus.

C. Security Properties

Let us suppose a probabilistic polynomial-time adversary A
and A succeeds in compromising an IoT device in a system.
The goal of A is to compromise or trigger the malfunction of
another device in the system by sending illegitimate messages.
A wins the game if A can send illegitimate messages that are
accepted by healthy devices, whereas the challenger C wins if
the device, which is already compromised by A, is isolated,
which means illegitimate messages sent by the compromised
device will not be accepted by healthy devices.
A can try to win the game by compromising endorsing

peers, committing peers, the sender interface, or the receiver
interface.
Theorem 1: The security policies are enforced as long as

the compromised endorsing peers are no more than n/2, where
n is the total number of endorsing peers.

Proof: A may try to compromise endorsing peers and
convince them to accept illegitimate messages, which is
against the policy. To succeed in this attack, A needs to

compromise the majority of endorsing peers because the
illegitimate messages are accepted only if the majority of
endorsing peers approve. In other words, illegitimate messages
are not accepted, if the number of compromised endorsing
peers is less than n/2.
Theorem 2: The shared state is maintained correctly as long

as the compromised committing peers are no more than (n −
1)/3, where n is the total number of committing peers.

Proof: A may try to compromise committing peers to
distort the decision by making illegal changes to the shared
state. Since Hyperledger Fabric employs PBFT, this type of
attack cannot succeed as long as the number of compromised
committing peers is less than (n − 1)/3.
Theorem 3: Compromising the sender interface only results

in isolation of the source device connected to the sender
interface.

Proof: The compromised sender interface may alter M =
(m, PKsender, q, σsender). If the sender interface replaces m with
an illegitimate one that does not comply with security policies,
the illegitimate message is discarded. As long as the sequence
number (q) is unique in a predetermined time window (defined
by timeout), any number can be used. If the sender interface
uses a number overlapping with previous messages, it only
causes both messages to be discarded. If the signature does
not match with m, PKsender, or q, M is ignored by endorsing
peers. If the sender interface sends M to a wrong destina-
tion device, it is discarded if it does not comply with security
policies. The sender interface may send different messages
to different IoTCop clients with the same sequence number,
which only results in discarding the messages. Therefore, even
if the sender interface is compromised, the security properties
are not affected.

If the receiver interface is compromised, illegitimate mes-
sages may be accepted by the destination device, which is
connected to the compromised receiver interface. This is
because it is the receiver interface of the destination device that
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makes the final decision of whether a message will be accepted
or not. It is a gray area where A wins, but C also wins in a
sense. A wins because illegitimate messages are accepted by
another device (the destination device whose receiver interface
is compromised). However, the impact is confined to only
the destination device. It is only the destination device that
accepts unauthorized or malicious messages when the receiver
interface is compromised. In other words, even if this happens,
the source device is still isolated because illegitimate messages
are rejected by all other devices, which means C also wins.

While the shared state is maintained by the blockchain,
no messages or user data are stored in the shared state.
Specifically, the content stored in the blockchain is not dic-
tated by IoTCop, rather it depends on the policy defined by
the user. In our context, only the whitelist is stored in the
blockchain.

D. Limitations and Future Works

It is assumed that device authentication and identification
are achieved securely by utilizing existing techniques. In other
words, the limitation of the current framework is identity theft.
If a device manages to steal identity of another device and
impersonates this device, the proposed framework may allow
the device to perform tasks it had not been authorized to (prior
to being stolen). Since the focus of this article is on enforcing
security policies, this feature is beyond our scope. However,
the proposed framework is compatible with existing device
identification techniques [48], [49]. By employing existing
techniques, the proposed framework can address identity theft.

If a device sends a message to a destination device that
does not belong to the target system, it is out of scope
because the goal of the proposed framework is to prevent a
malicious device from affecting the entire system by send-
ing unauthorized or malicious messages. In other words, if
the destination device is unknown, security properties are not
enforced. For some applications, it may raise a concern that
the proposed framework may not be able to block information
leakage to unknown devices. This is because it is the desti-
nation device that finally rejects illegitimate messages, in our
current implementation. If we allow other network compo-
nents (such as access points, switches, and routers) to reject
illegitimate messages, we can prevent information leakage to
unknown devices. To do so, it requires modification to network
components.

The current implementation of the framework does not
assume messages to be encrypted. Even if messages
are encrypted, endorsing peers may obtain all necessary
information. For example, for whitelisting, the only required
information is the ID of the source device. In contrast, to
check the communication policy, the message type is also
required. The IoTCop client can work only if the message
type is not encrypted. If it is encrypted, then the proposed
framework should be extended in the following way. When
the source and destination devices exchange a symmetric
key for encryption, their IoTCop clients should also have
the key. When an encrypted message is sent, the IoTCop
client of the source device decrypts the message and extracts

the required information for checking security policies. The
required information is encrypted with a different key and
broadcasted to other IoTCop clients. To do so, all IoTCop
clients need to maintain the same key for encryption, but the
key for source and destination devices can be kept only in the
source and destination IoTCop clients.

The current implementation of the framework does not
support strong memory consistency for the shared state. If
multiple committing peers initiate conflicting update requests
(triggered by different endorsing peers) at the same time, the
shared state may become inconsistent. What is guaranteed is
that the update information U is processed atomically, and the
order from the same committing peer is always maintained.
This suffices to implement the security policies of the case
study. However, if the order of U from different committing
peers matters, a stronger consistency model is necessary, which
is left as our future work.

If a majority of the devices are of the same type or con-
nected to the framework through the same type of add-on
hardware module, then the security of the proposed framework
could be weakened. In this situation, if there is a vulnerability
that can be exploited remotely, a majority of devices (or add-on
hardware modules) can be easily compromised. Therefore, in
a real-world environment, it is desirable to run IoTCop clients
on a variety of devices. There should also be multiple types
of add-on hardware modules so that any device type does not
dominate the system.

In IoTCop, the delay increases with the number of peers.
Thus, if the number of devices grows, scalability may
become an issue. To ensure scalability, we can employ
multithreading, hierarchical topology, and early termination.
The delay increases linearly because the receiver interface
or the committing peer needs to check the signature from
all endorsing peers (in case of the receiver interface) and
from other committing peers (in case of the committing peer).
Instead of checking the signature one by one serially, if we can
parallelize it by multithreading; thus, improving scalability.
The decision may also be made hierarchically. For example,
we can cluster devices into groups, and let the group leader
make an intermediate decision, and the receiver interface and
committing peer make the final decision from the intermediate
decisions. Finally, we may terminate receiving messages once
the consensus is reached. Therefore, once the consensus is
reached [i.e., if the majority of the response (R) or the update
request (U) are the same], the remaining R and U can be
ignored.

A device may be isolated not because it is compromised, but
because transient errors occurred. To handle this situation, we
may extend IoTCop to support an automated recovery mech-
anism. If the device proves itself to be benign, the IoTCop
framework allows it to rejoin the framework. We can use
remote attestation, self-healing, or simple rebooting (in case
of transient attacks) as a method of proof.

VI. CASE STUDY: BUILDING AUTOMATION AND CONTROL

For validation, we deploy the proposed framework using
the BACnet, a widely used protocol that works on existing IP
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TABLE II
EXAMPLES OF BACNET OBJECTS

Fig. 8. Example of a BACnet explicit service for reading room temperature.

network infrastructure [50]. The incorporation of IP networks
makes it easy and efficient to deploy, but also creates a large
attack surface [50]. However, most (if not all) of deployed
BACnet systems do not have security features because of
their high cost, and there is no known security module for
BACnet [51]. Therefore, we apply the proposed framework to
demonstrate how to protect a BACnet system.

A. BACnet Background

BACnet is an open data communication protocol to build
automation control networks. It provides methods by which
computer-based control apparatus from different manufactur-
ers can work together. It allows users to inflate, blend, and
match equipment to better fit different needs and design spec-
ifications in buildings. BACnet uses an “object model” to
represent the functioning of building automation and control
systems [52].

BACnet follows a client–server model, where a BACnet
client is a device that requests a service and a BACnet server
is a device that performs a service. It allows devices to inter-
act with each other using a common communication network
for sharing functionality and responsibility of different control
functions. Table II summarizes the object examples.

BACnet objects carry different properties. An object is
exemplified by a specific name. For instance, the analog
input object is exemplified with the name “ReadProperty.”
ReadProperty service is used by a BACnet device (client) to
request another BACnet device (server) to provide the value
of properties of an object. The server then responds with the
appropriate information for the requested object, indicating the
successful completion of an operation. Fig. 8 is an example
of the explicit service (request and response) associated with
the room temperature.

BACnet has many applications adopted for various network
topologies. It is hard to generalize them because they are
heavily dependent on applications. For the purpose of latency

Fig. 9. Network topology assumed for the case study. All devices are con-
nected over Wi-Fi networks and the access points are connected to a network
switch. The central controller is connected to the switch, and the system is
connected to the public Internet through a firewall and a router.

evaluation, the network topology shown in Fig. 9 is assumed
in our case study. The system consists of multiple Wi-
Fi networks, and all devices are connected over the Wi-Fi
networks. We assume there is a central BACnet controller that
communicates with all devices and this central controller is
directly connected to the switch. The system is connected to
the public Internet through a firewall and a router.

B. Security Policies

In this case study, we implemented two security poli-
cies: 1) communication policy and 2) whitelisting. The type
of endorsement policies (security policies) depends on the
systems and applications. In this article, two types of endorse-
ment are implemented as a proof of concept. They are chosen
because they can be applied to any system. Since endorsing
and committing peers are highly modular, they can easily be
reused for other applications. It should be noted that IoTCop
is not limited to these two examples and it can accommo-
date various types of security policies provided by the system
designer.

The communication policy is based on source, destination,
and object. Only when the source, destination, and object of
a message match, the message is approved. Fig. 10 shows an
example. Let us suppose that there are three devices (D1, D2,
and D3) and one central controller (C1). At a certain point, D1
sends AnalogInput to C1. Since the tuple of (D1, C1,
AnalogInput) is found in the communication policy, it is
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Fig. 10. Example of the communication policy. The first message AnalogInput from D1 to C1 is accepted but the second message Program from D1
to D3 is rejected because the second message cannot be found in the policy.

approved. If D1 tries to send Program to another device (D3),
it is rejected because (D1, D3, Program) is not found in
the policy. Therefore, any (unauthorized) message from com-
promised devices or unknown devices will be rejected and
compromised or unknown devices are isolated from the rest
of the system.

The policy is given at the installation time by an admin-
istrator and does not change dynamically during runtime. If
necessary (e.g., if a new device is installed), the administrator
may change it manually by triggering the update protocol (by
using U). The same policy is given to all IoTCop clients.

Recall that security policies CHECKPOLICY, the state of
IoTCop clients (T), and the update information UPDATESTATE

and u are application specific and given by the user. In this case
study, the communication policy is implemented in function
CHECKPOLICY, which looks up the policy table and returns
true if the message is found in the table. The table is a part
of T of IoTCop clients. Since the table is not updated during
runtime, u is not used for this policy.

Since the focus of this article is on validation of the frame-
work (how to enforce security policies), the above-mentioned
simple communication policy is employed. However, an
advanced policy is also applicable to the framework. An exam-
ple is the Bark language [53]. It allows the administrator to
specify a complex communication policy, which includes sub-
ject, object, action, and conditions. For example, the Bark
language can specify “device A is allowed to request data
from device B between 8 A.M. and 5 P.M. on weekdays.”
In the original paper [53], the policy is enforced by a gate-
way, which is a centralized approach. If it is employed as an
endorsement policy of the proposed framework, then the pol-
icy is enforced by multiple endorsing peers. Thus, it offers a
higher level of assurance than the centralized approach.

The second policy is whitelisting. When a system is
installed, a list of trusted devices (whitelist) is given by an
administrator. The whitelist is maintained by IoTCop clients,
and the initial whitelist is given to all clients. If the source
device of the message is found in the list, it is approved. If
a message is denied by the other security policies (communi-
cation policy in this case study), its source device is removed
from the whitelist so that the source device can be isolated
permanently. Each IoTCop client updates the whitelist if a
consensus is reached by PBFT.

TABLE III
HARDWARE SPECIFICATION OF DEVICES USED FOR PROTOTYPING

The whitelisting is also implemented in function
CHECKPOLICY, which approves if the source device of
the message is found in the list. The list is a part of T , and
u is used when a source device should be removed from the
list.

In this case study, we implemented that a suspicious device
is removed from the whitelist immediately. It should be noted
that it is just an example that is chosen to demonstrate how
IoTCop works. The use has the freedom to choose any kinds
of security policies and their implementation. As a variant of
our implementation, a suspicious device may be removed if it
violates security policies more than once (e.g., three times). It
is also possible for the administrator to confirm the removal
after manual investigation.

VII. EVALUATION

The evaluation of the IoTCop framework is twofold. We
first compare the latency of the IoTCop framework with that
of Ethereum using a small-scale prototype. The results are
given in Section VII-A. To extend the latency evaluation to
large-scale systems, we developed an analytical model by
characterizing the prototype. The methodology and results are
presented in Sections VII-B and VII-C. Finally, use case sce-
narios are discussed to evaluate the security level of IoTCop
compared with existing approaches in Section VII-D.

A. Prototype

The prototype is developed using four Raspberry Pi 3
boards. Their hardware specification is given in Table III. All
boards are connected to the same Wi-Fi network.

The latency is significantly affected by the digital signature
algorithm (DSA) used because the generation and verifica-
tion of a signature should be performed multiple times to
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Fig. 11. Average latency of IoTCop and Ethereum on the prototype. The aver-
age latency of endorsement and commitment of IoTCop is order-of-magnitude
lower than that of Rinkeby and Ropsten Ethereum test networks.

TABLE IV
RESOURCE OVERHEAD INCURRED BY AN IOTCOP CLIENT

process a message. We employ the popular elliptic curve
DSA (ECDSA) with the National Institute of Standards and
Technology (NIST) P192 curve as a DSA in this evaluation.
However, DSA is orthogonal to our framework. The IoTCop
framework can work with any DSA that may offer higher
performance and/or security than ECDSA.

We implemented both IoTCop clients and Ethereum clients
on the same platform to make a comparison. As a reference,
we implemented the same whitelisting technique on Ethereum
clients. We measured the average end-to-end latency of mes-
sage delivery as endorsement latency. As commitment latency,
the average of latency between when a message is sent from
the sender interface and when all committing peers reach a
consensus. In the case of Ethereum, the latency was measured
two test networks: 1) Rinkedy and 2) Ropsten.

Fig. 11 shows the results. On average, it takes 110.81 and
128.95 ms for endorsement and commitment, respectively, in
IoTCop. In contrast, it takes 15.0 and 9.6 s for the whitelist-
ing in Rinkeby and Ropsten, respectively. It is clear that
IoTCop offers order-of-magnitude lower latency compared to
Ethereum. Furthermore, the resource demand of IoTCop is
much less than Ethereum because IoTCop employs PBFT
as a consensus protocol instead of a computationally inten-
sive PoW. The resource demand for IoTCop is quantitatively
measured and summarized in Table IV.

B. Modeling Methodology

To evaluate IoTCop in large-scale systems, we developed
an analytical model to estimate the latency. The delay compo-
nents are illustrated in Fig. 12 and their definitions presented
in Table V. Since the computational intensity of the two types
of endorsement (communication policy and whitelist) is very
low, their computational delay is not measured separately.

The delay of endorsing a message Dend is calculated using
the following equation, where n denotes the total number of

Fig. 12. Delay components of the IoTCop framework.

TABLE V
DEFINITION OF DELAY COMPONENTS

IoTCop clients in the system:

Dend = DS + DE + n × DR + DN . (1)

The delay of committing a request from when a request is
sent from the sender interface is as follows:

Dcom = DS + DE + DC + n × DU + DN . (2)

The network delay (DN) is further broken down into the
delay within a Wi-Fi network (DN

W ) and the switch delay (DN
S ).

The network topology assumed for our case study is shown in
Fig. 9. If both source and destination devices are in the same
Wi-Fi network, then the network delay is 2 × DN

W . Otherwise
(i.e., not in the same network), a message sent from the source
should go through an access point where the source device
locates, the network switch, and another access point where
the destination device is. The network delay is 2 ×DN

W +DN
S .

We measure the delay components from our prototype as
shown in the last column of Table V. We plugged the measured
delay components to the analytical model and compared the
result with the actual measurement to validate the model. The
result is shown in Table VI. It confirms that the analytical
model correctly captures most of the major delay components.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 31,2021 at 22:06:52 UTC from IEEE Xplore.  Restrictions apply. 



SESHADRI et al.: IoTCop: BLOCKCHAIN-BASED MONITORING FRAMEWORK FOR DETECTION AND ISOLATION OF MALICIOUS DEVICES 3357

TABLE VI
VALIDATION OF THE ANALYTICAL MODEL

TABLE VII
NETWORK PARAMETERS OF FOUR NETWORKS USED

TO MEASURE THE LATENCY OVERHEAD

C. Large-Scale Evaluation

We measure the latency overhead of four network config-
urations (see Table VII). The findings are shown in Fig. 13.
As a reference, the comparison is made with “no security”
and “minimal security.” In no security, a message is delivered
without checking any security policy. In minimal security, a
signature is attached to a message by a sender and verified
by a receiver. It represents what is recommended by NIST as
minimal security for IoT systems. “Endorsement” means Dend
and “commitment” means Dcom, respectively.

The latency of IoTCop increases with the number of total
devices (n). Comparing Net2 and Net3, we can see that the
network configuration does not have a significant impact on
latency. The average endorsement latency (Dend) is estimated
as 261.77 ms, 460.67 ms, 460.57 ms, and 659.46 ms, for Net1,
Net2, Net3, and Net4, respectively. The average commitment
latency (Dcom) is 298.62, 514.42, 514.32, and 730.11 ms for
Net1, Net2, Net3, and Net4, respectively. Compared to no
security and minimal security, the latency of IoTCop is higher
and increasing with n while they remain the same. However,
it should be noted that compared to Ethereum, the latency of
IoT is still significantly lower (i.e., 730.11 ms versus 9.6 s).

When the number of devices grows, the latency also
increases. We can address this issue by employing a faster
DSA implementation. We notice that most of the latency is
incurred by DSA. For example, it takes 9.96 and 7.49 ms
on a mid-end device for signature generation and verifica-
tion, respectively. It corresponds to 46.21%, 41.14%, 75.31%,
49.92%, and 69.41% of DS, DE, DR, DC, and DU , respec-
tively. Therefore, if we use a faster DSA algorithm or reduce
its latency by employing a hardware accelerator, we expect that
the overall latency can be reduced drastically. We can achieve
and/or enhance scalability by using the methods discussed in
Section V-D.

D. Security Validation

Here, we will analyze the security of IoTCop.
False Command Injection: By exploiting vulnerabilities

of a device, an adversary may compromise its firmware.
Consequently, the private key may also be exposed. In other
words, using the malicious firmware attack, an adversary
may compromise a device to inject false commands to other
devices.

Fig. 13. Average latency of IoTCop. In no security, a message is deliv-
ered without checking any security policy. In minimal security, a signature is
attached to a message by a sender and verified by a receiver. Endorsement
means Dend and commitment means Dcom.

We evaluate this scenario by changing the behavior of a
source device in our evaluation. Specifically, the source device
sends commands that are against the predetermined secu-
rity policy and findings from the evaluation demonstrate that
IoTCop is able to successfully detect the source device and
isolate the attack.
Endorsing Peer Attack: An adversary may attempt to cir-

cumvent the security policy by compromising endorsing peers.
We evaluate this scenario by changing the behavior of one
endorsing peer, which allows it to grant any message without
checking the security policy. When the source device injects
false commands, findings from the evaluation demonstrate that
IoTCop is able to successfully isolate the source device as long
as the majority of endorsing peers are not compromised.
Committing Peer Attack: An adversary may attempt to

circumvent IoTCop by compromising committing peers. We
evaluate this scenario by erasing all security policies in a com-
mitting peer. When the source device injects false commands,
findings from the evaluation demonstrate that IoTCop is able
to successfully enforce the security policies as long as the
majority of committing peers are not compromised.

VIII. CONCLUSION

In this article, we proposed IoTCop, a blockchain-based IoT
monitoring framework, designed to detect and isolate a device
that has been compromised by malicious firmware attacks or
physical attacks. A malicious device is detected by check-
ing its behavior against the organization’s security policies.
To demonstrate how we address the three challenges (latency,
applicability, and resource constraints) using the proposed
Hyperledger Fabric blockchain framework and add-on hard-
ware modules, we evaluated the proposed framework in a
BACnet setting. The findings showed that the latency to deliver
a message is order-of-magnitude lower than the Ethereum
blockchain framework. For example, the add-on hardware
modules enable COTS devices to join IoTCop by pairing a
hardware module with a device, and the use of hardware mod-
ules offloads the burden of running blockchain clients from
the device. We expect that IoTCop is a practical and general
IoT monitoring framework that can be applied to various IoT
systems by addressing these three challenges.
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