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Abstract. We develop interior penalty discontinuous Galerkin difference methods for the wave
equation in second-order form. The new schemes are energy conserving or energy dissipating de-
pending on the simple choice of centered or upwind fluxes and are superconvergent away from
boundaries. Unlike analogous methods using standard piecewise polynomial bases, we find that no
mesh-dependent penalty parameters are needed to guarantee stability and time step stability con-
straints for explicit time-marching have a mild dependence on method order. Basic properties of the
proposed discretizations are illustrated with numerical experiments in one and two space dimensions.
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1. Introduction. Galerkin differences (GD) [4, 5, 14] are a relatively new class
of finite element approximation based on Galerkin projection into a piecewise polyno-
mial space. Unlike traditional FEM, however, high-order polynomial representations
are obtained without the introduction of new degrees of freedom (DoFs) and instead
use neighboring DoF's define the polynomial approximation over a given element. In
this way, the underlying discrete space is defined using profitable ideas from the finite
difference literature, while the overall approach retains many benefits of having built
the discretization around a Galerkin projection of the weak form of the equations. In
particular, away from the boundaries the method yields a uniform compact difference
stencil similar to a compact or Padé-type scheme [17]. At the same time, since the
approach is of finite element type, standard arguments can be used to show energy
stability. The end result is a scheme with excellent properties, e.g., time step restric-
tions that grow only slowly (or not at all) as the order of the method is increased,
and superconvergence behavior at grid points, e.g., [4, 5] show order O(h?P) where p
is the order of the polynomial reconstruction.

Upwind numerical methods are commonly employed in the solution of hyperbolic
PDEs due to the presence of natural dissipation induced by the construction. This is
typically achieved by incorporating characteristic information from the PDE into the
numerical method, often by imposing the exact or approximate solution to a Riemann
problem at cell or element boundaries. Upwind dissipation has been extremely use-
ful, particularly for hyperbolic PDEs. For example, in nonlinear conservation laws,
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shocks are known to form in finite time even from smooth initial data, and upwind
dissipation is found to naturally stabilize numerical approximations. Similarly, for
problems with discontinuous material coefficients, upwind dissipation has been prof-
itably applied in order to reduce or remove unphysical high-frequency oscillations
in the solution. In these (and other) examples, numerical dissipation is added nat-
urally based on the formulation of the upwind method without the need for user
intervention via tunable parameters. Classical upwind schemes include many pow-
erful approaches such as Godunov’s method and its extension [11, 2], flux-corrected
transport [7], semi-Lagrangian methods [24], the piecewise-parabolic method [9], es-
sentially nonoscillatory schemes [13], weighted essentially nonoscillatory methods [15],
and discontinuous Galerkin (DG) methods [8].

The amalgamation of finite elements and upwind methods are DG methods, which
are finite element methods in which continuity is not imposed at the boundaries be-
tween elements. There are many advantages to DG methods, one of which is that the
flux at element boundaries, which arises after integration by parts over each element,
provides a natural algorithmic hook where characteristic information from the PDE
can be incorporated to yield an upwind method. When applied to wave equations,
there are essentially two approaches in the literature for upwind DG methods. The
most common is conversion into a system of first-order PDEs so that classical DG
methods can be applied. However, this approach can have drawbacks including the
fact that conversion to first-order form typically introduces new dependent variables
and compatibility constraints that are needed to ensure equivalence of solutions from
the first- and second-order forms of the equations. The second approach, first de-
scribed in [1], retains the second-order form of the equations but uses a nonstandard
approach that tests against the derivative of the Lagrangian of the test function,
rather than the test function itself.

The current paper introduces an upwind DG-like method for the second-order
wave equation within the GD framework. This new scheme takes the form of an
interior penalty Galerkin (IPG) method, and both symmetric and incomplete interior
penalty methods [23] (called SIPGD and ITPGD, respectively) are considered. The
IPG formulation enables stable discretization of the Laplacian without the need for
conversion to first-order form or testing against the Lagrangian. Natural choices
for the numerical flux at element boundaries yield either a centered dissipation-free
discretization or an upwind-style scheme with natural dissipation. For the latter, the
core development from [6] is applied, which embeds the solution of a local Riemann-
like problem at the element faces to determine an upwind flux that is compatibile
with the IPG formulations. The resulting schemes are high-order accurate and energy
stable and are found to have only minor time step restrictions as the order of accuracy
increases. The SIPGD scheme also exhibits superconvergence at the grid points of
order O(h?P) as in [4].

GD methods have some similarities to methods which combine elementwise vari-
ational formulations with polynomial approximations computed on an extended col-
lection of neighboring elements, as in the least squares reconstruction of [10], or the
(global) variational reconstruction of [18] which is used to compute the fluxes. How-
ever, these methods differ from GD in that they abandon the Galerkin framework to
avoid a globally connected mass matrix. In the present work we are able to retain
the advantages of a true Galerkin formulation and leverage a tensor-product mesh to
maintain linear complexity when applying the inverse mass matrix. One disadvan-
tage of our approach is that its extension to fully unstructured meshes may involve
inversion of mass matrices without a tensor-product structure, although extension to
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block-structured or mapped grids is still possible.

The structure of this paper is as follows. Section 2 discusses the construction
of the discontinuous basis functions in the GD framework. Section 3 explains the
discretization of the wave equation, the determination of the upwind flux, the treat-
ment of boundary conditions, and the extension to higher dimensions. Section 4
gives an analysis of the scheme, including an energy estimate, dispersion analysis
that demonstrates the superconvergence of the scheme at the grid points, and spec-
tral computations that verify the stability and upwind properties of the discretization
operators with boundary closures. Section 5 presents results verifying the conver-
gence properties and demonstrating the robustness of the various schemes applied to
classical and nonclassical problems. Some concluding remarks are given in section 6.
Finally Appendix A provides a discussion of the coercivity of the bilinear operator.

2. Basis functions. As in prior GD work, the approximations discussed here
are built around a piecewise polynomial interpolant, for which there exists a classical
and well-known convergence theory. Unlike prior GD work, however, the interpolant
here is built on a dual grid, which naturally leads to discontinuous reconstructions.
Once the interpolation is defined, basis functions associated with DoF's can be derived
following the basic approach outlined in [4, 5, 14]. The basis can then be used in a
Galerkin discretization.

To describe the discontinuous basis used in this work, consider a uniform mesh
in one space dimension defined by z; = jh, with h being the mesh size, and j =
...,—1,0,1,.... Denote u; ~ u(x;) as the discrete approximation of the function
u(x) at the grid points. A piecewise polynomial interpolant, @(z), is then defined on
the dual grid. Considering a generic interval on this dual grid, (z,_1/2, Tx41/2), @(2)
is defined to be the degree p polynomial interpolating the solution at the p + 1 grid
points xy_p /2, .., Tpyp/2- Note here that p is assumed even. The approximation on
the interval (z4_1 /2, Tp41/2) is given by

k+p/2

(2.1) i)=Y ul?(x),

Jj=k—p/2

where l;p ) (x) is the Lagrange basis polynomial of degree p. It is clear that each u;
appears as a linear coefficient in exactly p + 1 intervals surrounding x;. Therefore,

basis functions qﬁg-p ) (z), associated with each DoF, can be derived so that

o0

(2.2) a(z) = Y wol (@),

j=—oc0

with ¢;p ) (x) nonzero over p + 1 intervals surrounding z;. For example, formulas for
the degree two and four basis functions are given in (2.3) and (2.4), respectively,

(§g+2£t})Lgfj+h), _3h/2 < gj < _h/2’
2.3 (2) ) — _%’ _h/2<£j Sh/27
(2:3) 95 (&) (&j=h)(&;—2h)

T h/2 < &; <3h/2,

0 else,
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(G HAMEHMEHMEHD) 5y o oo < _3h)9,

24h4
i1+3h)(§+2h)(§;+h)(§;—h
_ (&+3R)(€ +26h)4(5 +h) (€ ), —3h/2 < £ < —h/2,
(§j+2h)(§j+z)}f§j_h)(£j_Qh)7 —h/2 <& < h/2,

(2.4) o\ (g;) =

7(5j+h)(§j*h)6(§£*2h)(€j*3h)’ h/2 < & < 3h/2,
(gj_h)(gj_w;)ﬁi_%)@j_%)a 3h/2 < & < 5h/2,
0 else,

where §; = x —x; and z; is the grid point at the center. In addition, plots of the basis
and its derivative are given for p = 2, 10, and 100 in Figure 2.1. Note that because
each basis function spans nearby elements, modifications must be applied near domain
boundaries, and such modifications will be discussed later as appropriate.

The basis functions gb;p ) have a number of interesting and useful properties.
Clearly the basis has jumps at the points x;11 /2, and so the derivative must formally
contain delta functions at each ;1 /,. Nevertheless, the limits of the derivative from
the left and right are equal at all points, including x;41/2. This can be seen in the
plots of the derivative in Figure 2.1 and will be further discussed in Appendix A. As
we shall see later in this paper, this implies that derivative values appearing in the
fluxes are determined unambiguously. Furthermore, the decay of the basis functions
away from the central point §; = 0 implies that the elements of the mass and stiff-
ness matrices will also decay rapidly away from the diagonal. In fact, the compact
support of the functions implies the mass and stiffness matrices will be banded with
bandwidth 2p + 1. We also note that like their continuous counterparts in [4], these
basis functions approach sinc in the limit as p — oo, although the rate of convergence
is slow; in particular the size of the jump at the discontinuity is O(1/p).

3. Semidiscretization of the wave equation and numerical fluxes. As in
any finite element method, the basis described previously in section 2 can be used
to discretize a PDE using a standard Galerkin projection approach. Since the basis
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Fic. 2.1. Discontinuous GD basis functions, ¢, and their derivatives, qﬁ’, plotted for p = 2, 10,
and 100.
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contains discontinuities at element interface z;,/2, the inner product over the entire
domain is decomposed into the sum of contributions over each element. Integration
by parts then reveals a set of fluxes at each element boundary, which must be defined
numerically. The present work focuses on wave equations in one and two space dimen-
sions, although extension to higher dimensions is clear, and both energy conserving
and dissipative upwind numerical fluxes are considered.

3.1. Wave equation in one space dimension. Consider first the semidis-
cretization of the second-order wave equation in one space dimension

(3.1) Uy = (C2uw)z, T € Q,

where Q = [a,b], and ¢ = c(x) is a spatially dependent wave speed.! In (3.1) it
will be convenient to define a flux function f = c?u,. Note that in the following
discussion, the treatment of physical boundary conditions is deferred until later, since
it is a separate topic, and any boundary terms associated with physical boundaries are
suppressed. The weak form of the PDE is derived in the usual way with multiplication
by a test function v and integration over the domain to give

(3.2) (W, u) = ($, (Pua),)’

where (g, w)g = g’ qw dx denotes the inner product over a given interval. Expanding

both the test and trial functions in the GD basis (e.g., 4(z) = >_,¢; uj¢§-p) (x), where
j € j indicates the set of indices such that x; € ), breaking the global inner product
into a sum over elements and integrating by parts over each element gives the IIPGD
approximation

(3'3) Z (att,¢§p))xl+l/2 _ Z { (Cgﬂz,égﬁz)xlﬂ/z i [f*¢§p)}x:+1/2} vjej.

I€j Ti—1/2 I€j Ti—1/2 Ti_1/2

In (3'3)5 [Q]g = Q(n) —q(§), and f*(xl—l/Q) = f*(am(xlflﬁ)av(x;uz)vU<xli1/2))
is a numerical flux (to be defined) which unambiguously defines f = c?u, at the
element interfaces in either an energy conservative or an energy dissipative way. (The
superscripts + and — denote limits from the right and left, respectively.) In the
definition of the flux, v = u; will denote the time derivative of wu, i.e., the velocity.
It is important to note that %, has a unique definition at the element interfaces
since the derivatives of the basis functions are continuous. Also note that since c
is presumably a known function of x, one could compute the integrals involving c

directly. Alternatively, as is done in this work, one could replace ¢ with an interpolant
¢ defined by

(3.4) o) = ey,

where ¢; = ¢(z;). This approach maintains the order of accuracy of the scheme with
the benefit of defining ¢ on the domain using only the values of ¢ at the grid points.
In addition, after the interpolation of ¢ onto the finite element space, the integrals
can be computed exactly using sufficiently high-order numerical quadrature.

ISmoothness assumptions on c(x) are related to assumptions of solution regularity, as required
for approximation accuracy in Theorem 4.2. See Remark 1.
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In order to complete the definition of the scheme, the numerical flux f* must be
defined at the element interfaces, and there are at least two natural choices. The first
of these is the centered flux, in which we simply use the unambiguous definition of
Uy, SO that

(3.5) FH(@iz1y2) = ¢t tia (w121 2),

where ¢t = c(xil /2). As will be shown later, this choice will lead to strict energy
conservation. The second natural choice is the upwind flux, given by

cte™
(3.6) [ (@iz1y2) = cte g (@_1y2) + P [v(zi—1/2)]] »

where [v] = vT — v~ denotes the jump in the velocity. This can be derived by
considering the Riemann problem for the first-order form of the acoustic wave equation
with constant density

(3.7a) vy — oy =0,
(3.7b) oy — v, =0,

where ¢ = c?uy. In the Riemann problem, denote the left states with a minus

superscript, the right states with a plus superscript, and values of the solution along
the interface with an I superscript. To determine the upwind flux, we must solve for
the value of of = c?ul on the interface. The Riemann invariants of the system then

imply that

(3.8a) ol —c vl =07 —cv,

(3.8b) ol + ol =6t +ctot,

since in this case the impedance in the left domain is given by ¢~ and the impedance
in the right domain is given by ¢*. Solving for o gives the upwind flux (3.6), since
in our case @y (1;_1/2) = U} (x1-1/2) = Ue(T1-1/2)-

The semidiscretized system in (3.3), with upwind numerical flux (3.6), can be
expressed in matrix form as

(3.9) M®y,, = (_K(m i fff’)) u+t [Py,

Here, u is the vector of coefficients u;, and the mass, stiffness, and flux matrices are
given by

u® / 6Py KW / 2(2)¢@) 6P da
f Q b of Q

cte™ =
1(;1’;,3 = ZC c gi)(:D) | l+1/2’ fipziﬁ — Z W H:(ng):u ¢<(xp)|zl++1/27

2 1—1/2
€] / lej /

where o and ( are integer indices. Specific values for the nonzero entries of the
matrices are given in Table 3.1 for p = 2, and Table 3.2 for p = 4. Finally note that
the scheme with the centered flux (3.5) is given by (3.9) with fqu ) =

As suggested in [12, 22], the semi discrete bilinear form in (3.3) (and ultimately
(3.9)) can be symmetrized. This process leads to the corresponding SIPGD method
for the wave equation given as
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TABLE 3.1
Coefficients for the interior grid points for the mass, stiffness, and flur matrices for the p = 2
SIPGD scheme.

’ B H « atxl a+2 ax3
(2) 143h 17h —17h
MQ,B 160L 240 960 0
(2) -1 1 1
Kos || & 3 6h 0
(2) -3 1 -1
fuas || 3m B h 0
f(2> =5 15 =3 1
v,a8 1 64 32 64
TABLE 3.2

Coefficients for the interior grid points for the mass, stiffness, and flur matrices for the p =4
SIPGD scheme.

’ B H « atl at2 at3 at4 ath
M@ 4160573h  462271h —396211h 5839h —18853h 0
ap 4644864 5806080 11612160 829440 16448640
K@ —2605 4969 523 —4079 479 0
af 1728h 8640h 2160h 60480h 120960h
f(4) —275 13 —43 1 -1 0
u,af 256h 16h 128h 16h 512h
f(4) _ 567 945 —135 405 —45 9
v,af 1096 8102 2048 16384 8192 16384
(3.10)
xT
~ (p) 1+1/2
E (Um ¢j o1
= i
zf+1/2 . 1;1/2 o Tiq1)2 . .
= E {f*(bg-p)} . T {c"'c u(byﬂ R (c u$,¢§f2) Vi €j.
= Ti—1/2 Ti—1/2 Ti—-1/2

Here [c+c_1]¢j’w]:+“j z is the symmetrizing term, and either the centered or the upwind
—1

numerical flux can be used to define f*. The centered choice for f* in (3.5) defines an
energy conservative scheme, while the upwind choice of f* in (3.6) yields an energy
dissipative scheme. The SIPGD scheme has the same form as (3.9), but with f,
replaced by f, + fI.

It is important to note that typical IPG schemes for second-order operators require
the addition of a penalty term of the form

(3.11) Jo(u,¢) = % [u] [¢]

J

with a positive lower bound on o. Such a penalty term is typically needed to guaran-
tee coercivity of the bilinear form, and therefore stability of the discretization (e.g.,
[22]. However, in our numerical results, and in a dispersion analysis of the discrete
operators, we observe that o = 0 gives consistent and stable numerical approxima-
tions that converge with the expected rates. This fortuitous property is a result of
the particular finite element space onto which the solution is projected. In particular,
since the finite element space is the set of piecewise continuous interpolatory poly-
nomials, the magnitude of the jumps in the solution at element faces must remain
bounded and are in fact uniquely specified by the interpolation procedure. Assuming
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periodicity or ignoring boundary effects, numerical experiments show that the jumps
and the derivatives at the element boundaries are correlated and that the flux matrix
appearing on the right-hand side of (3.10) is negative semidefinite; these are described
in more detail in Appendix A. We further note that o can be taken to be greater than
zero and the numerical results remain essentially unchanged. In the analysis we will
simply assume that ¢ has been chosen to guarantee coercivity, but we will remind the
reader that in all our experiments ¢ = 0 has sufficed.

3.2. Boundary closures. As in prior GD work, the basis functions used in this
work span multiple elements. As a result, near physical boundaries some modifications
must be used to close the system. Various choices for boundary closures, ghost basis,
extrapolation, and compatibility, have been previously discussed in [4, 5]. Nevertheless
in the interest of completeness, a brief discussion of these three options as employed
in this work is now provided. For a more in-depth discussion refer to [4, 5]. In the
ghost basis approach, basis functions are associated with all DoF's, including at ghost
points lying outside the physical domain, but the inner products in the weak form
are taken only over the physical domain. As noted in [4], the resulting mass matrix
has small values near the boundary, which can lead to poorly conditioned systems.
Further, as in [5], the spectral radius of the time stepping matrix is much larger for
the ghost basis approach than the other approaches, leading to a smaller time step for
explicit schemes, which is also undesirable. In the current context of wave equation
discretization with discontinuous basis, preliminary numerical experiments indicate
that these issues may be significant, and so ghost basis closures are not considered
further in this work. The other two boundary closures also employ ghost points,
but the value of the solution at those points is related to the interior DoFs through
algebraic formulae. Once these constraint equations are known, it is convenient to
modify the basis functions so that the discretization need not contain any DoFs at
ghost points. In the case of the extrapolation closure, the solution at the ghost points
is obtained by pth-order extrapolation formulae. For compatibility boundary closures,
the polynomial interpolants are constrained to satisfy a sequence of compatibility
boundary conditions [4]. For example, given the wave equation with a constant wave
speed, the compatibility condition for Dirichlet conditions is an odd extension of the
solution across the boundary and the compatibility condition for Neumann conditions
is an even extension of the solution across the boundary. Once the boundary closure
has been determined, one may proceed as usual with the finite element method. Also
note that for essential boundary conditions, we always modify the test and trial spaces
to enforce the conditions.

3.3. Wave equation in two space dimensions. Consider now the variable
coefficient two-dimensional (2D) wave equation,

(3.12) uy =V - (A(z,y)Vu), (z,y) €9,

where here Q = [z, 7] X [Ya,ys].2 It will be convenient to define the flux in the -
direction as F' = c®u, and the flux in the y-direction as G = c®u,. The corresponding
weak formulation of the PDE is found by taking the inner product with a smooth test
function ¥ over the domain 2 to give

2Smoothness requirements on c(z,y) are again related to assumptions of solution regularity, as
required for approximation accuracy in the multidimensional generalization of Theorem 4.2. See
Remark 1.
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(3.13) / ugpdA = | YV - ((x, y)Vu) dA.
Q Q

For the case of Cartesian geometry in two (or more) space dimensions, we seek
to leverage a tensor-product formulation. Therefore, the 2D basis function is defined
qﬁﬁ) (z,y) = qﬁg-p) (z) ](f) (y). Similar to one dimension, expanding both the test and
trial functions in this tensor-product GD basis (e.g., @(z) = > ,c; pek ujk(bg.’,z)(x),
where j € j and k € k indicate the set of indices such that z;, € ), breaking the
global inner product into a sum over elements, and integrating by parts over each
element gives the ITPGD approximation given by

> / g dA =~ Y / AV - VelkldA
Q Q

lej,mek lej,mek

Ym+1/2 x 1/2
+ > / [F*qﬁg’;;)] Ty

x

I€j,mek ¥ Ym—1/2 1—1/2
Ti4+1/2 y;n . )
(314) =+ Z / {G*d);i)} Jr+1/2 de V] c 3. ke k,
I€j,mek ¥ F1-1/2 Ym—1/2

where F* and G* are numerical flux functions approximating F' and G, and can be
either centered or upwind, as previously in one dimension. Because we have used a
tensor-product basis, (3.14) can be expressed in matrix form using tensor products of
1D matrices. For example, the mass matrix M®) can be expressed M®) = M(#2)
M®¥) since

M(ZD) _ o v (b(l’) ($)¢(p)( )d(Ed
(@8),(v6) = [ PasIPye yjaray

Tp Yb
- / 60 ()6 (2)d / 60 ()6 (2)dy

a a

_ as®x) 3 r(2y)
*Ma,e Mvé .

Defining F,Sp)7 Fqu), GS}”), and GS}’) analogously to the 1D case, we arrive at the
discretization for the 2D wave equation

(3.15)
(M(Wﬂ) ® M(pyy)) Wy = [(K(p,m) + Flgp)) ® M@y 1 pree) g (K(ny) + Ggp))} u

+ {Flgp) @ M®Y) 1 pp2) Ggp)] u;.

This representation naturally leads to an approach to computing the solution of the
system of equations by solving a number of small 1D banded matrix equations along
each grid line with fixed x and y. This approach enables the solution of the system
in linear time with respect to the number of grid points; see [5] for additional details.
Also note that the IIPGD and SIPGD formulations both take the form of (3.15), with
appropriate definitions of the matrices F,, and GG,,. For variable coefficient problems in
two dimensions, the matrices on the right-hand side of (3.15) lose the tensor-product
structure but retain the sparsity, while the tensor-product structure of the mass matrix
is retained. Therefore the cost of computing the time derivatives remains linear.
Finally we note that, while not discussed in this manuscript, the literature contains
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at least three approaches to geometric flexibility with GD methods. Curvilinear grids
are considered in [5], block-structured grids are considered in [16], and unstructured
grids are considered in [19]. One could also consider GD for overlapping grids or
embedded boundaries, although these are topics for future investigation.

4. Analysis of the schemes. In this section, we consider various analyses of
the proposed schemes. We specifically consider a 1D grid with grid spacing h (tensor-
product extension to multiple dimensions is straightforward). The error analysis
makes use of the results in [3, 23], although we note that the ultimate conclusions
are similar to those in [12], the exception being the inclusion of the upwind flux and
the properties of the GD finite element space. Therefore we first discuss the approxi-
mation properties of the GD space. Then an energy analysis of the space discretized
scheme shows that the use of the upwind flux leads to energy decay while the centered
flux is energy conserving. In combination, these two results show that the semidis-
crete IIPGD scheme converges at the expected rate of O(hP) in the Ly-norm and
the semidiscrete SIPGD scheme converges at O(hPT1). A dispersion relation of the
discretization, which is strictly valid only for periodic or infinite domains but illustra-
tive for parts of the domain far removed from boundaries, then illustrates a potential
superconvergence at the rate O(h?P) for the SIPGD scheme.

4.1. Error analysis for GD basis. The eventual error analysis for the GD
discretization of the wave equation relies on knowledge of the approximation properties
of the GD basis for smooth functions. In the following, || - ||, represents the L” norm
on the domain in question and |- |, represents the H? seminorm. Note here that we
always assume p > 2.

THEOREM 4.1 (GD error formula). Assume that the function u(x) € HPL. Let
u(x) be its approrimation represented as an expansion in the GD basis of order p.
Then there exists constant C), independent of the grid spacing h such that

(4.1) lu(@) = a(@)|l2 < CphP*ulpis.

Proof of Theorem 4.1. The use of the GD basis to represent @(z) is identical to
considering piecewise polynomial interpolants on the dual grid. Let e; be an element
on the dual grid and let x € e;. Then by the error in the Lagrange interpolating
polynomial, we have

up+1
(4.2) (@) () = T H ),

where j ranges over the elements over which the basis functions associated to element
e are nonzero. Squaring and integrating over e, and summing over the elements in
the domain, we then have that

(4.3) u— dillo < Colt? ulpi,

as desired. O

Given the above approximation result, we may now demonstrate the convergence
of our scheme using the arguments from [3, 12, 23], using that in general ITPG schemes
converge at order p for even-order polynomial spaces and SIPG schemes converge at
order p + 1 for elliptic equations [22]. We explicitly assume that that the associated
bilinear form is coercive. We recall that our numerical experiments show this to hold
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and in any case it could be enforced, if necessary, by the addition of a penalty term.
See, also, the study of the coercivity of the symbol of the method in all-space or with
periodic boundary conditions presented in the appendix.

THEOREM 4.2. Suppose that the solution wu(x,t) satisfies w,u; € L]0, T];
H*5(Q)) and uy € L>®([0,T); H¥(Q)) for s = p+ 1 and that the initial conditions
u(x,0) and uy(z,0) are set using an L? projection onto the DGGD space. Then for
any T > 0, there exists C; = Ci(u,T) such that for the IIPGD (both centered and
upwind) method

(4.4) lu(-t) —al, O)ll2 < Cih?,

and a constant Cy = Cs(u,T) such that for the SIPGD (both centered and upwind)
method

(4.5) ust) — (-, 1)]|2 < CaPH.

Remark 1. The assumptions on the smoothness of the solution require that the
initial data satisfy u(z,0) € H1T5(€), % € H*(Q) and in addition that ¢(x) € C*(Q);
see, e.g., [21, Thm. 6.12].

Proof of Theorem 4.2. Note that under the regularity assumptions made, the up-
wind term vanishes so the error analyses are the same for both the centered and up-
wind schemes. The result then follows from the arguments in [3, 12, 23], provided
that for 1 <s<p+1

(46) it (o= alla+ bllo = o) < Aol
which follows from Theorem 4.1. 0

We note here that in practice we interpolate the initial conditions rather than
performing the L? projection, but we notice no difference in the order of accuracy
of the resulting scheme. We further note that while these estimates are valid in the
L2 norm, the coming grid dispersion analysis will reveal a local superconvergence in
the discrete L? norm for the SIPGD method. Additionally, the proof of Theorem 4.2
does not depend on the use of GD basis functions explicitly; the same proof holds for
standard DG basis functions provided the penalty term in (3.11) is used.

4.2. Energy estimates. Herein we assume that the boundary conditions are
periodic so that we may neglect terms associated with the boundaries. We note that
numerical results to be presented later verify the stability of the scheme for non-
periodic boundaries as well. Define the discrete energy by

(@7 But) = 3, w) + 5on (),

where ay, (u,v) is the bilinear form defined according to either the centered or upwind
ITPGD and SIPGD schemes. We note first that the centered SIPGD bilinear form is
self-adjoint, and so the scheme conserves energy, i.e.,
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d
(4.8) thh(t) =0.
Note further that the contribution of the flux terms to Ej, in the IIPGD and SIPGD
schemes differ only by a multiplicative constant, and so the IIPGD scheme must also
satisfy (4.8). The analysis for the upwind schemes now remains the same regardless of
whether the ITPGD or the SIPGD scheme is used. Without loss of generality, consider
the ITIPGD scheme. Upon substitution of u; in place of ¢, we have

—_ + —_
4.9 _ 2 gy 2 Tit1/2 cc
(4.9) /Quttut /chut—i-;[cuut]x; +; ppe [t ] we

—1/2

This simplifies to

(4.10) %Eh(t) =-> {C%_ [[ut]]z}

from which we conclude that for the upwind schemes, we have Fj (t) < 0 and energy
dissipation. We note that (4.10) implies that for nonsmooth solutions for which the
jump in the velocity is large, the dissipation in the scheme will be greater. We
summarize the results of this section as the following theorem.

THEOREM 4.3. The centered IIPGD and SIPGD schemes are energy conserva-
tive on a periodic domain, i.e., for the energy defined in (4.7), these schemes satisfy
E;(t) = 0. The upwind IIPGD and SIPGD schemes are energy dissipative on a
periodic domain, i.e., they satisfy Ej (t) < 0.

We note here that as in the previous section, Theorem 4.3 can be proven for the
standard DG basis functions as well with the inclusion of (3.11).

4.3. Dispersion analysis of the schemes.

4.3.1. Analysis on a periodic domain. The ITPGD operators defined on a
periodic domain with uniform grid spacing h can be analyzed using Fourier analysis
since the discrete operator is translation invariant; for example, see [4]. That is to
say that the discrete eigenfunctions of the operator are the discrete Fourier modes
u; = ¢33 Given these eigenfunctions, the symbol of the GD approximation to the
second derivative is given by

Z:_ (Ka + fu,a)eina 1
(4.11) —k* & b e = ﬁs@(n),
a=—p &

where k is a wave number and 1 = kh is a normalized grid wave number, M, are the
coefficients in a row of the mass matrix, and K, are the coefficients in a row of the
stiffness matrix.

Given this dispersion analysis, the accuracy of the difference operator is deter-
mined in the limit of small 7, i.e., for small i and finite wave number k. Specifically,
the local error of the approximation can be determined in this limit by considering

3An alternate view of this fact is that the mass and stiffness matrices in this case are circulant
and so are diagonalized with the discrete Fourier modes
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the Taylor expansion of the symbol. For the ITPGD scheme with p = 2,4,6,8 these
expansions are

1 79
SP =+t — —=1* + 0 (n%),

8 2880
8(4):_772_’_%,’76_&”8_1_0(”10)’
8(6) — _7724'105@778_243%7710"'0(7712)’
S® = _p2y %Um _ 2612015447712 Lo ().

Clearly the error in the symbol is O(h?), in agreement with Theorem 4.2, and in
similarity with analysis of other ITPG schemes [22]. Note also that all terms in the
expansion are of even order and real, which implies that the spatial errors in the
eventual wave solver are purely dispersive, i.e., there will be no dissipation for these
centered difference schemes.

Similar analyses can be applied to the derivative approximation implied by the
symmetric interior penalty method to give

2 - _,2_ 7 6, 7 /8 10
S "~ 5eg0" T+ ao320" TO 07

93937  ,, 234049

) _ 2 _ 12 14
S "~ 5aasa00" T+ T5sasosizo” M)
13968274213 6167441597
SO — _p2 _ 14 16 L 0 ('8
669520276416000" T 573sszazeonsane” T )
7605288411403 2804978478591101
S® — 2 8 n® + 0 (n?2).
6993099386309836300 3875342576530034560000

Hence, the local dispersion analysis demonstrates that the SIPGD derivative approx-
imation exhibits superconvergence at the grid points with order O(h??). Remarkably,
this is the same superconvergence rate observed for the GD scheme with continuous
basis as discussed in [4].

In order to analyze the effects of the upwind flux, we must consider the full
semidiscretization of the wave equation, (3.9). Taking the Laplace transform in time,
and assuming Fourier mode spatial eigenfunctions, we arrive at the equation

(4.12) (%2§:AﬂﬂMMIS§:}%ﬂemmx(K@+l%ﬂ)éwu>ﬂﬁ

where s is the dual Laplace variable, k is the wave number, and # is used to indicate
the transformed quantities. The dispersion relation for the continuous wave equation
implies that s &~ +ik, and the discrepancy between this continuous result and solutions
to (4.12) for finite k£ number and small h reveal the accuracy of the scheme. For the
upwind ITPGD scheme with p = 2, Equation (4.12) gives that

271 4 9503 4 2582861 ¢

B 10
53010" ~ 2580480" T 7a3irszaon” T OU)

1
4.1 =ik (1——n?
(4.13) sz( 167]+
R 0
TR s 4_O(”)>

and its complex conjugate. Clearly the error in this dispersion relation indicates
O(h?) accuracy, as expected. Furthermore, the arrangement of (4.13) is intended to
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facilitate a deeper understanding of the behavior of the scheme. In particular, the first
line of (4.13) proceeds in even powers of n and indicates pure dispersion errors. The
second line, however, proceeds in odd powers of 1 and represents dissipation terms
which have entered due to the use of the upwind flux. It is particularly important
to notice that the dissipation errors in (4.13) enter at O(h®), while the dispersion
errors enter at O(h?). This order separation between the dispersion and dissipation
errors indicates that although the upwind IIPGD scheme is dissipative, the scheme
may appear to have limited dissipation for all but the very highest frequency modes.
Similarly for the upwind IIPGD scheme with p = 4, (4.12) gives
9¢

3
4.14 =ik(1—-—n" 6 ’ "
(1.14) s =it (1= g+ 00 + gz + O™

and its complex conjugate. Thus the method is O(h*), but the effects of upwind dis-
sipation do not enter until O(h?). This general trend continues as p is increased, and
the upwind ITPGD schemes have accuracy O(h?), with the dissipation error entering
at O(h?PT1).

On the other hand, the dispersion analysis of the upwind SIPGD scheme with
p = 2 yields

19 79 o 9323 g
57607~ 80640" " 66355200

vt 5 i 9
-+ 0
s’ Tt TOU )>

(4.15) s =ik (1 + +0(n™)

and its complex conjugate. Not only does (4.15) reveal a nodal superconvergence as
O(h?), the effects of the upwind dissipation enter at O(h%)), just one order higher
than the leading dispersion error. Similarly the upwind SIPGD scheme with p = 4
has

93937 9i
4.16 =ik (14—l 8 4 O0) + e + O
(4.16) e ( * Toaasea00” T O+ 5azsn O

and its complex conjugate. Again, the nodal superconvergence is revealed, and as
for p = 2, the effects of dissipation enter at only one order higher than the leading
dispersion error. This trend continues and the upwind SIPGD schemes have accuracy
O(h?P), with the dissipation error entering at O(h?*1). The fact that the dissipa-
tion error in the STPGD schemes is only one order higher than the leading dispersion
error, while for the IIPGD schemes the separation is p/2, is expected to have a sig-
nificant impact on the behavior of numerical approximations. This difference will be
investigated numerically in section 5.

4.3.2. Discrete analysis on a bounded domain. In section 4.3.1, a disper-
sion analysis was used to investigate the properties of the IIPGD and SIPGD schemes
for a periodic domain. It is also useful to perform an analysis on a bounded domain
so that the effects of boundary closures can be taken into account. An analytic in-
vestigation of the spectrum with boundaries is beyond the scope of the present work,
and so instead we choose to present the discrete spectra of the spatial operator for
the various schemes for a particular problem. To that end, we first convert (3.9) into
a first-order temporal system as

(4.17) mt = {M1(2+Fu) MleJ m
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The discrete equations are treated as a single large system of equations w; = Dw,
where w = [u, v]T, and the discretization matrix D is defined as

D— 0 1
T |IMY(K+F,) M7'F,|"

Figure 4.1 shows the eigenvalues of the D matrix for different orders and boundary
closures for p = 2 and p = 8 on the domain Q = [—1, 1], using a grid with N = 21 grid
points, Dirichlet boundary conditions, and constant wave speed ¢ = 1. Note that for
higher-order methods, the spectral radius of the operator increases, but this increase is
mild. This implies that the time step restriction for explicit schemes is relatively lax.
We observe that the eigenvalues for the centered scheme all lie on the imaginary axis,
which implies that modes oscillate but do not grow or decay in time, in agreement
with both the energy estimates of section 4.1 and the Fourier analysis of section 4.3.1.
In contrast, the upwind flux pushes the eigenvalues into the left half-plane leading
to time decay. Note that high-frequency modes are observed to decay faster than
low-frequency modes, again in agreement with the dispersion relation determined by
the Fourier analysis. Similarly, Figure 4.2 shows the eigenvalues of the same operator
for the SIPGD scheme. The spectrum of both the compatibility and extrapolation
boundary conditions have very similar behavior as for the IIPGD case.

5. Numerical results. In this section, numerical results are presented which
verify the convergence and stability properties discussed in the prior sections. Addi-
tional results for solutions lacking sufficient regularity to ensure high orders of con-
vergence, for example, solutions with discontinuities, are also presented in order to
demonstrate the favorable properties of the upwind schemes, and in particular the
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F1G. 4.1. Location of the eigenvalues in the complex plane for the IIPGD discretization operators
with the centered (blue circle) and upwind (red x) fluzes with N = 21 points in the domain. The top
row corresponds to p = 2, the bottom row corresponds to p = 8, and the columns correspond to the
compatibility and extrapolation boundary closures, respectively.
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F1a. 4.2. Location of the eigenvalues in the complex plane for the SIPGD discretization oper-
ators with the centered (blue circle) and upwind (red z) fluzes with N = 21 points in the domain.
The top row corresponds to p = 2, the bottom row corresponds to p = 8, and the columns correspond
to the compatibility and extrapolation boundary closures, respectively.

symmetrized SIPGD discretization. For all results except the cylinder scattering
problem, time is discretized using a Taylor time stepper of order p 4+ 2 for the ITPGD
scheme and 2p 4 2 for the SIPGD scheme so that the observed convergence is that of
the spatial discretization. Given the semidiscretization us; = Dpu, the precise form
of the time stepping scheme is

s J .
(5.1) u(t+ A8 =S (Ajt!) Diu(t),

=0

where s is the order of the method. This section proceeds by first considering 1D
results in section 5.1, followed by 2D results in section 5.2.

5.1. One-dimensional results.

5.1.1. Convergence for constant coefficients. Consider first the computa-
tion of a standing wave solution to the wave equation with constant wave speed in
one space dimension. Without loss of generality, take ¢ = 1 and take the domain
to be Q = [0,.5]. Let the boundary condition at = 0 be a homogeneous Dirichlet
condition and the boundary condition at x = .5 be a homogeneous Neumann con-
dition. An exact standing wave solution is given by u(z,t) = cos(knt)sin(knx), for
k an integer chosen so that the solution satisfies the boundary conditions. For the
computational results presented in Figure 5.1, we take k = 25 and run to a final time
of ty = 1.45. We also note that Lfb denotes the discrete L? norm computed at the

grid points, computed by ||ul|2 = \/ a5 2 ,¢; 43, while L? specifies the true L? norm
(computed using Gauss quadrature to order p + 2 so that the accuracy observed is
that of the scheme).
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Fic. 5.1. Convergence results of the IIPGD scheme for a standing wave. The first row shows
results for the centered flux, while the bottom row shows results for the upwind flux. The observed
Li error in each computation is plotted using marks, while solid lines are references corresponding
to order hP convergence.

The same case is repeated for the SIPGD scheme. Here, we present only the results
using the compatibility boundary conditions, since this is the only case which exhibits
the superconvergence predicted by the grid dispersion analysis. Figure 5.2 presents
the errors and convergence rates with both the discrete and true L? norms. With
the use of compatibility conditions, the super convergence predicted from the local
dispersion analysis is observed in the discrete L? norm. The expected convergence
rate in the true L? norm determined by the approximation results are also observed.

Next, extrapolation boundary conditions are tested in conjunction with the
SIPGD scheme in Figure 5.3. The purpose of this test is to reveal the dominance
of the dispersion error for domains which are sufficiently large in space or time. Thus
a final time of ¢ty = 25.4 is used, and we take & = 61. For lower-order methods
at the resolutions tested, superconvergence at order O(h?") is demonstrated. For
higher-order methods, the scheme converges at order O(h?") for coarse grids, while
approaching order O(hP*1) on finer grids. It is expected that superconvergence would
be observed on finer grids for longer final times or larger domains. This is consistent
with the results for the corresponding continuous basis functions presented in [4].

In order to more clearly understand the superconvergence observed in the STPGD
scheme, it is instructive to look more closely at the spatial error in approximations for
this case of constant wave speed. Figures 5.4 and 5.5 show the errors in the [IPGD and
SIPGD schemes respectively for a standing wave with a single period on the domain
Q = [0, 1] using compatibility boundary conditions. The scheme is advanced to a final
time of ¢ty = .45 and the error is plotted over each element. As is common for finite
difference methods, the error at the grid points is smooth and, in this case, essentially
sinusoidal. Additionally, the error for the SIPGD scheme clearly shows the effects of
the superconvergence on the error since the grid points are near the locations where
the error in the approximation changes sign.
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Fi1c. 5.2. Convergence results of the SIPGD scheme for a standing wave solution using the
compatibility boundary closure. The first row shows the true L? norm and the second row shows the
discrete L,QI norm, while the first column shows the results for the centered scheme and the second
shows the results for the upwind scheme. The SIPGD converges at the expected O(hPT1) and O(h2P)

rates in the true and discrete L? norms, respectively.
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Fi1c. 5.3. Convergence results of the SIPGD scheme for a standing wave solution using the
extrapolation boundary closure. For smaller p we observe superconvergence, while for larger p we
observe a transition from the superconvergent O(h2P) to the expected asymptotic rate of O(hPT1).

5.1.2. Performance for singular solutions. To illustrate the effect of numer-
ical upwinding, we now consider a series of tests for solutions with singular behavior.
In particular, consider two sets of initial conditions that lead to nonclassical weak

solutions of the wave equation:

%, T < T < Ty,
(5.2) up(x) = § 3755 T < T < Ty,
0 otherwise,
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F1G. 5.4. Plots of the error for the standing wave solution with one period att = .45 at different
grid resolutions for p = 4 with the upwind IIPGD scheme with compatibility conditions. Only results
for the upwind method are shown since results for the centered scheme are virtually identical.
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F1G. 5.5. Plots of the error for the standing wave solution with one period at t = .45 at different
grid resolutions for p = 4 with the upwind SIPGD scheme with compatibility conditions. Only results
for the upwind method are shown since results for the centered scheme are virtually identical.

and

1, zy<z<uz,,
5.3 =
(5:3) uo() { 0 otherwise,

with the initial velocity in both cases being set to zero. In both cases, exact formal
solutions can be determined using the D’Alembert solution. Figure 5.6 shows the
computed displacement u and velocity v at t = .7 for initial conditions (5.2) computed
using schemes corresponding to p = 2 and p = 10. Results for the centered ITIPGD
scheme, the upwind IIPGD scheme, and the upwind SIPGD scheme are included. The
effects of the upwinding is clear, with high-frequency numerical oscillations originating
from the discontinuity in velocity being damped by the dissipation inherent to the
upwind flux. In addition, the effect of the order separation between dispersive and
dissipative errors for the upwind ITPGD scheme, versus the more closely ordered
dispersive and dissipative errors for the upwind SIPGD scheme, are apparent, with
the SIPGD scheme yielding qualitatively superior results.

To further investigate this distinction between upwind IIPGD and SIPGD
schemes, Figure 5.7 shows results for the initial conditions given in (5.3). Here the
solution is rather weak and contains discontinuities in u and delta functions in v.
Nevertheless the schemes are seen to be remarkably effective, and again the effect
of upwinding is clear, and high-frequency numerical oscillations in both « and v are
effectively damped by the dissipative error. Since the upwind SIPGD scheme with
p = 2 is formally fourth-order accurate for smooth solutions, and we might expect the
discontinuities to be better resolved than for either of the other schemes with p = 2.
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Fic. 5.6. Plots of the computed solution to the wave equation for the initial condition given
in (5.2) computed with N = 300 grid points. The first row is for p = 2 and the second row is for
p = 10. The first column is the centered IIPGD scheme, the second column is the upwind IIPGD
scheme, and the final column is the upwind SIPGD scheme.
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Fi1c. 5.7. Plots of the computed solution to the wave equation for the initial condition given
in (5.3) computed with N = 300 grid points. The first row is for p = 2 and the second row is for
p = 10. The first column is the centered IIPGD scheme, the second column is the upwind IIPGD
scheme, and the final column is the upwind SIPGD scheme.

This is born out by the results. Further, one could argue that the results for the
upwind SIPGD scheme with p = 2 are qualitatively better than the results for the
other schemes with p = 10.

5.1.3. Convergence for variable coefficients. Consider now the 1D variable
coefficient equation. To facilitate quantitative convergence studies, it is useful to
derive an exact solution. To that end we pose a time harmonic solution of the form
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Fi1c. 5.8. Convergence results for the IIPGD scheme with ezact solution determined in (5.5).
The first column shows the results for the centered flux and the second column shows the results for
the upwind flux.

u(z,t) = cos(wt)p(z), and so ¥ () must satisfy
(5-4) —wh(x) — 2¢(z)c (2)¢' (2) — *(2)y" (2) = 0.
To specify a solution, we take ¢(z) = 24/x, and w = 1, so that the solution to (5.4) is

(5.5) u(z,t) = cos(t) (Jo(vz) + Yo(vz)) .

Here Jy and Y are, as usual, Bessel functions of the first and second kind, respec-
tively. The domain for the computation is chosen as [a,b] = [10.1078784750822,
39.7249819922633], and homogeneous Dirichlet boundary conditions are used. The
computation is run to a final time of ¢ty = 1.45. Results of a convergence study
using this exact solution are shown in Figure 5.8. Here the ITIPGD scheme is used,
extrapolation boundary conditions are applied, and results are presented for both
centered and upwind numerical fluxes. Note that we do not include results for the
scheme with compatibility closures since the derivation of the scheme for the variable
coefficient problem is not straightforward, and has therefore not been pursued here.

5.2. Two-dimensional results.

5.2.1. Convergence for constant coefficients. Consider now the constant
coefficient case with ¢ = 1 in two space dimensions. For purposes of illustrating
convergence behavior, we take the exact solution as

(5.6) u(zx,y,t) = cos(v/2rkt) sin(krz) sin(kry).

In order to test the efficacy of the scheme with a variety of boundary conditions, we
take the domain to be [0, 1.25] x [0, 1.25] and apply homogeneous Dirichlet conditions
on the bottom and left boundaries and homogeneous Neumann conditions on the top
and right boundaries. The computation is run to a final time of ¢t; = 5.4 with k£ = 6.
Figure 5.9 shows the results of the ITPGD scheme applied to this problem setup with
h = Az = Ay and using both extrapolation and compatibility boundary closures.
The expected convergence rate O(hP) is observed in each case.

To illustrate the superconvergent behavior of the SIPGD scheme in two space
dimensions, Figure 5.10 shows results of convergence studies using the SIPGD scheme
with extrapolation boundary conditions. Here, the standing wave solution (5.6) with
k = 10 is used, the final time is taken to be t; = 25.4, and the grid is again chosen
with Az = Ay = h. As in the 1D case, the lower-order methods exhibit supercon-
vergence across the whole range of grid resolutions, while high-order schemes exhibit
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F1G. 5.9. Results for the convergence study using the 2D IIPGD schemes with constant coeffi-
cients and a standing wave solution. As expected, convergence at O(hP) is observed in all cases.

Upwind

error
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Fic. 5.10. Results for convergence studies for the standing wave solution (5.6) with k =10 and
ty = 25.4. Here the SIPGD scheme is used, and extrapolation boundary closures are applied. For
low p, superconvergence is observed for all resolutions, while for larger p the initial superconvergence
gives way to the asymptotic O(hPt1) rate.

superconvergence for coarse grids but transition to the asymptotic O(h?*1) for finer
grids. Note that had compatibility conditions been used, the SIPGD scheme would
exhibit superconvergence for all grid resolutions.

5.2.2. Convergence for variable coefficients. Next, we consider the 2D vari-
able coefficient equations for the domain [0,1] x [0,1] with homogeneous Dirichlet
conditions on all boundaries. An exact solution can, in principle, be derived using
techniques similar to the 1D case, but we instead choose to employ the method of
manufactured solutions. Therefore, consider the forced wave equation
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(57) Ut = V- (szu) + f
with f defined so that the manufactured solution is
(5.8) w(z,y,t) = Bt +1)(x — 2a)"(x — 25)" (Y — ya)"(y — u»)".

Here x = 10 is chosen so that the solution and its derivatives are zero at the boundary
to sufficient order, 8 = 1el2 is chosen so that the solution is order one at the final
time t; = 5.4, and the wave speed is taken to be

(5.9) c(x,y) =sin(zy) + g
Results for a series of convergence studies using the ITPGD scheme are shown in
Figure 5.11. The expected asymptotic convergence rate of O(hP) is observed for all
cases as the grid is refined. Note that as in one dimension, results for the scheme with
compatibility boundary closures are omitted due to the difficulty of deriving them for
variable wave speed.

5.2.3. Scattering from a circular cylinder. As a further test involving vari-
able coefficients, a curvilinear coordinate mapping is introduced in order to ad-
dress scattering of a plane wave by a unit cylinder. Precisely, consider the time-
periodic solution of the scalar wave equation in cylindrical coordinates in the domain
(r,0) € (1,00) x (0,27) for 0 < t < 20. The incident wave is taken as

(5.10) Uine = cos (k(x — ct))

with k& = 100 defining the spatial frequency, and the wave speed is set as ¢ = 1. As
is common in exterior problems, the solver is used to approximate the scattered field
whose governing equations are

Pu_ (10 (o), 1o
oz S \vor\or) T 2ee2 )

At the cylinder surface, the standard boundary condition for the scattered field is

ou auinc
(5.11) So(1L,0.8) = -

(1,0,t) = g1(0,1).

L2 error

0.015 0.02 0.025 0.03 0.0350.040.048.08.055 0.015 0.02 0.025 0.03 0.0350.040.04%9.06.055
h h

FiG. 5.11. Results of convergence studies for the IIPGD schemes for the 2D equations with
variable coefficients. Manufactured solutions with the exact solution corresponding to (5.8) are used.
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An exact expression for the scattered field is (see, e.g., [20, Chap. 4.2])

—kiet [ _Jo(F) o Ji(k)
(5.12) uge = —R (e k (Hé?),(k)Ho(l)(kr) + QZEZIWHS)(M") cos (&9))) ,

where Jy; and H, él) are Bessel and Hankel functions of the first kind, respectively. In
the computations, the sum is truncated to ¢ < 250, which experiments show exceeds
what is necessary to deliver 15-digit accuracy in the presented cases.*

Computations are performed on the domain (r,6) € (1,2) x (0,27), where the
boundary at r = 2 is an artificial truncation of the infinite domain. At this radiation
boundary a low-order radiation boundary condition is applied, with inhomogeneous
forcing so that (5.12) remains the exact solution:

ou ou c
(5.13) 5(279#5) + 05(27 0,t) + EU(Q,HJ)
8’1,&50 6Usc c —
=5 (2,0,t) +c B (2,0,t) + zuSC(Q,G,t) = g2(0,1).

Note that we could also have simply imposed exact Dirichlet or Neumann data at
r = 2 but chose to illustrate the discretization of a prototypical boundary operator
used for scattering problems. Initial conditions, wus.(r,6,0) and agt“ (r,0,0), follow
directly from (5.12).

The numerical experiments presented below use the SIPDG method with the
upwind flux, polynomials of degree p = 8, and extrapolation boundary closures at
r =1 and r = 2. Given the simple time-dependence of the inhomogeneous data,
Taylor time stepping could have been used, but it is more typical to employ Runge—
Kutta methods. Therefore in contrast with the other examples in this manuscript, the
standard fourth-order four-stage Runge-Kutta method was used for time stepping.
The SIPDG method takes a simple form in this case due to the orthogonality of
the coordinate system. In particular the semidiscrete system can be expressed in
tensor-product form as

MT ® Meutt = ((_KT + fu,r) & M9 + Dr & (_K9 + fu,@)) u
Cc
o (fur @ My + My @ fug) w—Ey & Mogy + B2 @ My (s + Su—g2)

Here the radial integrals are properly weighted by the Jacobian r, D, arises from
the Galerkin representation of multiplication by r=2, and the boundary terms arise
from replacing % arising from the construction of K, by the boundary conditions
(5.11)—(5.13). Note that the functions g; 2(6,¢) are the inhomogeneities defined in
(5.11) and (5.13), respectively, and the matrices E o evaluate the basis functions at
the boundaries. Given the tensor-product form, the computation of u;; remains linear
in the number of grid points.

Simulation results are presented in Figure 5.12, which shows the computed scat-
tered field and solution error at ¢ = 10 from a simulation using 300 points in the radial
direction, 900 points in the azimuthal direction, and 100000 time steps for ¢ € (0, 10].
The spatial resolution corresponds to roughly 9 points-per-wavelength, and the time
step has been taken intentionally small so that spatial errors dominate. Clearly the

4Note that for the cases presented the max-norm of the first neglected term in the sum in (5.12)
is approximately 10~73, indicating that the truncated sum is exact within the confines of double
precision arithmetic.
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error t = 10 o7

(scattered field t = 10)

2

-0.5

-2 -1 0 1 2

F1c. 5.12. Computed scattered field (left) and solution error (right) at t = 10 from a simulation
using 300 points in the radial direction, 900 points in the azimuthal direction, and 100000 time steps
for t € (0,10].

boundary errors are beginning to dominate the errors on the domain interior, although
in coarser runs the interior error is more comparable to the boundary error. As has
been seen previously, this behavior is typical of the symmetric GD discretizations
where superconvergence at O(h?P) is often observed for coarse grids, but for fine grids
the expected rate transitions to O(hP*1). This behavior can clearly be observed by
considering a grid refinement study, as presented in Figure 5.13. The details of the
grid and time steps are indicated in the table, but in terms of the wavelength of the in-
cident wave these grids correspond to roughly 4.5, 6, 9, and 12 points-per-wavelength.
The time step is aggressively refined to match the higher-order accuracy of the spatial
discretizations. To reflect the temporal evolution of the error, the convergence study
uses the relative discrete L,zl norm in the full space-time domain with ¢ € (0, 20]. Early
in the refinement process the convergence rates are higher than the expected order
O(hP*1) and likely are approaching the superconvergent rate of O(h??). However, as
the boundary errors come to dominate, the convergence rates fall toward the expected
asymptotic O(hP*1) design order. Figure 5.13 also shows the time evolution of the
errors for the various resolutions and one striking feature is the decay of the error
over time for the fine grids. This is a phenomenon we do not fully understand.

5.2.4. Performance for singular solutions. To illustrate the behavior of the
various schemes for more challenging problems in two dimensions, we briefly consider
a problem with singular behavior due to both the initial conditions and the presence
of piecewise constant wave speeds. The precise definition of the wave speeds is

if —09<z<—-0land.1<y<.9,
if0.1<z<—-0land.1<y<.9,
if0.1<z<09and —09<y<-0.1,

if —09<z<-0land —09<y<-0.1,

0.5 otherwise,

3
.8
c(z,y) =< .2
9

and a graphical representation is shown in Figure 5.14. The initial conditions are
taken as us(z,y,t = 0) = 0, and
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(L%L space-time error) 5o

| (nyr,ng,n¢) || Error | Rate | 10
(150, 450,50000) || 5.2 x 10—~
(200, 600, 100000) || 1.5 x 10 ° | 124 o
(300, 900, 200000) || 2.0 x 10~7 | 10.6 \M
(400, 1200, 400000) || 1.3 x 1075 | 9.6 " \

1070
0

Fic. 5.13. Convergence with refinement for the cylinder scattering problem. Here n,, ng, and
n¢ are the number of cells in the radial, azimuthal, and temporal domains, respectively. The error
is computed using the relative Li error in space-time, and the rate is the observed convergence rate
based on two resolutions. At right are the errors versus time for the four simulations.

wave speed
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F1G. 5.14. At left is a color contour plot of the wave speeds. At right is the solution u computed
using the SSIPG scheme with upwind fluz, p = 10, Ny = Ny = 150 grid points, and a final time of
ty = 1.5 (other methods yield largely similar results).

2 2 1
1 =4y < 15>

(5.14) u(z,y,t =0) = {

0 else,
and the simulations are run to a final time ¢t = 1.5. All physical boundary conditions
are taken to be homogeneous Dirichlet.

Numerical results computed using p = 10 with the SIPGD scheme, upwind fluxes,
and the extrapolation closure are shown in Figure 5.14. One can clearly see the ef-
fect of the discontinuous wave speeds as the expanding wave has been accelerated or
retarded along its path by faster or slower waves speeds, respectively. In order to
clearly demonstrate the effect of upwind dissipation, Figure 5.15 presents u; at the
final time computed using SIPGD and ITPGD schemes with both the centered and
upwind fluxes. Owing to the challenging nature of the problem, the solution itself
contains propagating singularities, which interact with the discontinuous wave speeds
to generate a rich set of reflected and transmitted waves. As discussed in section 5.1.2,
the schemes react differently to the presence of solution singularities. This case is no
different, and Figure 5.15 illustrates that the upwind flux is effective at removing spu-
rious oscillations while simultaneously capturing the rich solution behavior, even for
the nominally high-order accurate scheme implied by p = 10. Similarly the symmetric
schemes yield results with fewer spurious oscillations. These observations are entirely
in agreement with the simpler 1D cases presented in section 5.1.2.
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Fi1G. 5.15. Results for uy at t = 1.5 with using p = 10, Ny = Ny = 150 grid points, and a final
time of t; = 1.5 using the various schemes. The effect of the upwind dissipation is clearly visible
since spurious high-frequency oscillations have been suppressed. Similarly the symmetric schemes
yield results with fewer spurious oscillations.

6. Conclusions. We have presented a new approach to GD applied to wave
equations in their second-order formulation. As in all GD discretizations, the for-
mulation is built around an underlying piecewise interpolant, which in this case is
constructed on a dual grid. This construction results in discontinuities at the bound-
aries of the dual grid, and the corresponding basis functions are similarly discontin-
uous. Thus the inner product over the domain is formulated on the broken space
and upon integration by parts leads to flux terms at the interelement boundaries.
These flux terms are treated numerically using either centered or upwind, leading to
energy conservative or energy dissipative schemes, respectively. We have formulated
schemes as using both symmetric (SIPGD) and incomplete (ITPGD) penalty formu-
lations, with the former found to yield a nodal superconvergence in many cases. In
addition, we find that owing to the properties of the GD space, the usual penalty
terms required to discretize the second-order operators with discontinuous spaces are
not required. Analysis of the various schemes is performed, and the stability and
convergence properties are presented. Finally, a detailed set of numerical experiments
has been performed to support the theory and show the behavior of the discretizations
across a range of potential scenarios.

There are a number of potential paths for future investigation. Given the observed
superconvergence behavior, it is natural to pursue a similar interior penalty approach
for higher-order operators, for example, those appearing in models of solid beams and
plates. In addition, to increase the applicability of the methods we present, application
of these approaches on more general grids, e.g., unstructured [26], overlapping, or
hybrid grids [16], is something that should be addressed in more depth.
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Appendix A. Coercivity of bilinear form. The stability of the ITPGD and
SIPGD methods follows from the positivity of the bilinear form

(A1) ZL

where w is an arbitrary function in the GD space and 7 = 1,2. Here we assume a
uniform grid of width h, and by wg(2;41/2) we mean the unique left and right limit
of w,(x). For completeness and to prepare for the coming calculations we prove this.
Denote by wy(z) the restriction of w to (2;-1/2,241/2). Using the Newton form we
can write for some degree p — 1 polynomial ;1 /2(z) and constants c;, ;11

Ti41/2

cw? + TZCJrc’wz(xH_l/Q) (w(xfrﬂﬂ) - w(xl_H/Q)) ,
1

1—1/2

p/2

wl(x) = 1f)l+1/2($(:) + ¢ H ({Bl - k’h) s
k=1-p/2

p/2

wl+1(.’17) = wl+1/2($) + Cl+1 H (,’El — k/’h) .
k=1-p/2

As the degree-p correction terms are even with respect to x;,1/, we have

dwy dwi 1 divy 112
%(xl+1/2) = d:j ($l+1/2) = dx/ ($z+1/2)~

We now specialize to the case of constant wave speed ¢ and the z € R. (The calcu-
lations also apply in the periodic case or with compatibility boundary closures.) The
linear operators which map the nodal data, w(z;), to the derivatives, w,, (xl+1/2)7 and
jumps, (w(ml‘:_1 /2) ~w(Z}, 4 5)), are obviously translation-invariant and thus amenable
to Fourier analysis. Denote these operators by D and J. Following, e.g., [25, Chap.
2], we can write

(1) = — /”/h 9. (1) d
w(z)) = — e"“(w)dw,
V2m —7m/h

1 7\'/h . . R
(A.2) Dularssyz) = = / Db

1 Tl'/h . " ~
Tutarsyz) = —= [ i)

Then by Parseval’s relation

w/h

(A3 BYDulorp) et = [ D)@l e,
1

—n/h

From (A.3) we conclude as follows.

LEMMA A.1. If ﬁ(w)j(w) > 0 for all w € (—=7/h,m/h), then Y7, Dw(x141/2)
Jw(wiy1/2) > 0 and therefore (A.1) is nonnegative.

The symbols D(w) and J(w) defined in (A.2) are easily calculated and thus the
positivity of E(w)j (w) can be checked for any p; we have done so for p < 100 and found
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FiG. A.1. Plots of D(w) - J(w) for p = 2,10,100.

that the hypothesis of the lemma holds, establishing the fact that the bilinear form is
nonnegative in these cases. We note that both D(w) and J(w) are purely imaginary,
and so we need only check that the imaginary parts have the same sign. The staggered
difference operators D are well-known not to have an imaginary part which never
changes sign except at w = 0 and since the jump operator also approximates the
(scaled) derivative the sign will be the same for w small. Thus the result holds so long
as the only Fourier mode for which the jump operator is zero is the constant mode,
which we find to be true. Indeed, if the jumps are zero w is a polynomial, and the

only periodic polynomial is a constant. We show in Figure A.1 plots of D(w) - J(w)
for p = 2,10, 100.
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