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Numerical simulations for computational hemodynamics in clinical settings require a
combination of many ingredients, mathematical models, solvers and patient-specific data.
The sensitivity of the solutions to these factors may be critical, particularly when we have
a partial or noisy knowledge of data. Uncertainty quantification is crucial to assess the
reliability of the results. We present here an extensive sensitivity analysis in aortic flow
simulations, to quantify the dependence of clinically relevant quantities to the patient-
specific geometry and the inflow boundary conditions. Geometry and inflow conditions
are generally believed to have a major impact on numerical simulations. We resort to a
global sensitivity analysis, (i.e., not restricted to a linearization around a working point),
based on polynomial chaos expansion (PCE) and the associated Sobol’ indices. We
regard the geometry and the inflow conditions as the realization of a parametric stochas-
tic process. To construct a physically consistent stochastic process for the geometry, we
use a set of longitudinal-in-time images of a patient with an abdominal aortic aneurysm
(AAA) to parametrize geometrical variations. Aortic flow is highly disturbed during sys-
tole. This leads to high computational costs, even amplified in a sensitivity analysis -
when many simulations are needed. To mitigate this, we consider here a large Eddy simu-
lation (LES) model. Our model depends in particular on a user-defined parameter called
filter radius. We borrowed the tools of the global sensitivity analysis to assess the sensitiv-
ity of the solution to this parameter too. The targeted quantities of interest (QoI) include:
the total kinetic energy (TKE), the time-average wall shear stress (TAWSS), and the oscil-
latory shear index (OSI). The results show that these indexes are mostly sensitive to the
geometry. Also, we find that the sensitivity may be different during different instants of
the heartbeat and in different regions of the domain of interest. This analysis helps to
assess the reliability of in silico tools for clinical applications. [DOI: 10.1115/1.4048336]

1 Introduction

As the computational hemodynamics are progressively incorpo-
rated into the clinical practice, a rigorous assessment of the reli-
ability of the numerical predictions is crucial. The numerical
solution depends on many factors, ranging from the patient-
specific geometry reconstructed from medical images to the meas-
urements used as boundary conditions, the parameters of the
mathematical model, and of the associated numerical solver. We
do not have a perfect knowledge of these factors and a sensitivity
analysis intends to assess the dependence of the computational
solution and its associated clinical conclusions on the data as well
as the empirically chosen numerical parameters of the solver.
Uncertainty quantification is an essential instance of sensitivity
analysis, focused on the uncertainty of the physical inputs to a
mathematical model, to assess the reliability and the robustness of
the numerical solutions.

In this work, we present a sensitivity analysis of the computa-
tional hemodynamics in the aorta. The aorta is a peculiar site for
the shape, the size, and the regime of the flow. Many pathologies
are currently investigated using numerical tools (e.g., Refs. [1–5]

to mention a few). An accurate sensitivity analysis in this site is of
utmost interest for the reliability of numerical tools.

1.1 Methods of Sensitivity Analysis. Sensitivity analysis can
be carried out in different ways. A possible approach is an edu-
cated sampling of different values of the inputs under scrutiny to
obtain a statistical assessment of the sensitivity. This approach is
quite general; it requires many samples for the significance of the
results. Another approach resorts to the numerical computation of
the so-called sensitivity equations. This requires the calculation of
the differential equations solved by the sensitivities, i.e., the
(Gateaux) derivatives of the outputs as a function of the inputs.
Numerical procedures can solve these equations. This analysis is
“local” as the sensitivities are generally computed by Taylor
expansion around a working point, i.e., a nominal value of the
inputs. Here, we opted for a “global” sensitivity analysis. Global
sensitivity analysis quantifies the importance of varying inputs on
the outputs of interest by exploring the entire input parameters’
domain [6]. Our approach is based on the polynomial chaos
expansion (PCE) and the associated Sobol’ indices [7–9]. Recent
applications of PCE in vascular problems can be found in Refs.
[10–15]. With PCE, the inputs are regarded as stochastic proc-
esses represented by a polynomial expansion and parametrized by
random input variables. The outputs are, consequently,
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represented by a corresponding stochastic polynomial expansion.
Our analysis computes the coefficients of a truncated PCE; the
number of samples of the input space required to accomplish this
task is dictated by the quadrature formulas used for computing
these coefficients. The need for samples is significantly less than
for other strategies.

1.2 Inputs of Interest. There is a common agreement in com-
putational hemodynamics that the inputs having a major impact
on the numerical results with clinical relevance are the geometry
and the boundary conditions, more than rheological models or
fluid-structure interaction: this is the experience of the authors and
experts of the field (e.g., T.J.R. Hughes, personal communication,
2016). Geometry and boundary conditions are, therefore, the focus
of the present global sensitivity analysis.

A sensitivity analysis for the geometry can be done in different
ways, depending on the specific sources of variations under inves-
tigation. For instance, if one is interested in the variations induced
by the operator’s dependence on a reconstruction procedure, a
simple approach consists of sampling the reconstruction with dif-
ferent operators and then comparing the results. The number of
samples required to have a statistically significant assessment is
pretty large. Here, we pursue a novel approach related to the sto-
chastic parametrization. To obtain physically consistent variations
of the geometrical domain parametrized by a random variable, we
resort to a longitudinal dataset of a patient, i.e., snapshots of the
patient’s geometry at different times. The patient at hand is
affected by an Abdominal Aortic Aneurysm (AAA), and the evo-
lution of the disease is available over a time range of 4 years.
With appropriate image-processing techniques (nonrigid registra-
tion), we manage to create a continuous representation of the
geometry as a stochastic process. This enables using PCE in a
physically realistic way. Also, we argue that, in this way, our anal-
ysis spans a broad range of possible variations and uncertainties
of the geometry (image noise, operator dependence, reconstruc-
tion artifacts, the time evolution of the morphology).

Investigations of the impact of uncertainty of inflow and out-
flow boundary conditions on the simulation results of blood flows
are, e.g., in Refs. [11] and [13–18]. For the physical nature of the
problem, with a strong convective field from the proximal to the
distal sites, inflow conditions are arguably more impactful than
outflow ones. We postulate that an inlet flowrate is prescribed as a
stochastic variable, expanded by PCE. We analyze the impact of
the variations of the time-waveform on the numerical results and
their hemodynamics significance, with a focus on the different
instants of the heartbeat when the sensitivity is significant.

Finally, we extend our sensitivity analysis to numerical parame-
ters required by the blood modeling. As aorta is affected by highly
disturbed flows, large Eddy simulation (LES) models have been
demonstrated to mitigate the high computational costs signifi-
cantly [2,19]. However, LES models require numerical parameters
whose tuning is largely empirical. In particular, in our model ana-
lyzed in Ref. [20] and tested in Refs. [2] and [19], the filter radius
is expected to have a significant impact on the solution. A local
preliminary analysis based on the sensitivities equations in ideal-
ized geometries confirmed this guess [21]. Here, we borrow the
same tools used for physical inputs to assess our simulations’ sen-
sitivity to the filter radius.

1.3 Outputs of Interest. We analyze the impact of the (phys-
ical and numerical) inputs for both an idealized aortic geometry
and a patient-specific setting, on the following outputs: the total
kinetic energy (TKE), the time average wall shear stress
(TAWSS), and the oscillatory shear index (OSI). These quantities
were demonstrated to be associated with the growth of abdominal
aortic aneurysms [22–26]. We use the name of quantities of inter-
est (QoI) hereafter to indicate these model outputs generically. In
this way, we assess the robustness of our numerical model for aor-
tic hemodynamic applications. The PCE-based Sobol’ indices

analysis identifies the inputs that affect the most the final results,
while the confidence intervals computed for the numerical simula-
tions certify the reliability of the model predictions.

Our results rigorously confirm the quite general experience of
the geometry being the most impactful input on the results. More-
over, the analysis allows a fine investigation of different phases of
the heartbeats and the region of the aorta more sensitive to the
input variations. In particular, we found that some outputs are
more sensitive to the inputs in regions of the vessel where other
indices are more robust. If confirmed, this result suggests that a
combined calculation of several indices may be beneficial in terms
of the overall robustness of the computational clinical indications
to the input variations.

2 Materials and Methods

2.1 The Numerical Model. Simulating the aortic blood flows
is nontrivial due to the relatively large Reynolds numbers during
systole and complex morphology [2,27–29]. The direct numerical
simulation of these flows requires a refinement level of the space
reticulation to be able to capture the flow field at the smallest sig-
nificant scale. The associated computational cost might be intimi-
datingly high, especially for time-sensitive clinical applications.
Turbulence modeling has been adopted for simulating aortic flows
[28,29]. Recently, an LES deconvolution-based Leray model was
shown to capture the properties of a disturbed flow using a rela-
tively coarse discretization finite element mesh, reducing the com-
putational cost [2]. This model can also suppress backflow
instability, which is a typical numerical drawback caused by Neu-
mann boundary conditions at outflow branches [19].

The Leray model relies on a modification of the incompressible
Navier–Stokes equations. Denoting by u, p the velocity and pres-
sure fields, respectively, in the physical domain X and in the time
interval ð0;TÞ, the Navier–Stokes equations read

q
@u

@t
þ q u � rð Þu� lDuþrp ¼ f (1)

r � u ¼ 0 (2)

where the first equation states the momentum conservation and
the second one the mass conservation. Here, l denotes the blood
viscosity and q its density, both assumed constant. The equations
are completed by boundary and initial conditions

u ¼ uD on CD � ð0;TÞ (3)

ðlru� pIÞn ¼ g on CN � ð0; TÞ (4)

uðt ¼ 0Þ ¼ u0 in X (5)

Here, for the sake of the notation, the boundary of X is split into
two nonoverlapping portions CD (Dirichlet conditions) and CN

(Neumann conditions).
In highly disturbed or turbulent flows, the nonlinear term in Eq.

(1) determines an energy cascade from large to small scales. This
cascade triggers significant effects at space scales smaller than the
one of the space discretization of a numerical solver. Eventually,
the unresolved scales may trigger numerical instability. For this
reason, LES models modify (1) to include the effect of the small
space-scales unresolved by the discretization to the ones solved
by the numerical problem. In more detail, we introduce an auxil-
iary velocity field uf and solve the following system:

q
@u

@t
þ q uf � rð Þu� lDuþrp ¼ f (6)

r � u ¼ 0 (7)

�d2r � ðaðuÞruf Þ þ uf þrpf ¼ u (8)
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r � uf ¼ 0 (9)

with the additional boundary conditions (beyond Eq. (3))

uf ¼ uD on CD � ð0;TÞ (10)

ðd2aðuÞruf � pf IÞn ¼ 0 on CN � ð0;TÞ (11)

Here, aðuÞ is an indicator function that identifies the regions of
the fluid domain requiring stabilization, and d is a user-defined
parameter called filter radius, which quantifies the strength of
the stabilization. For F � ðI � d2DÞ�1

(Helmholtz operator), one
choice advocated in Refs. [20] and [30] is aðuÞ ¼ ju� ðFðuÞÞj
(deconvolution based indicator function). In this study we refer to
the so-called Evolve-Filter-Relax implementation of this model,
as detailed in Ref. [20]. The radius d should be selected to find the
tradeoff between the stabilization (preferring a large d) and the
accuracy (suggesting a small d).

In what follows, we refer to the solver previously developed in
Ref. [2], where the equations are discretized with the finite ele-
ment method in space (Taylor-Hood elements) and a backward
difference formula of order 2 in time with a semi-implicit (Picard)
linearization. The solver is implemented in the Cþþ Object Ori-
ented library lifeV [31]. We carried out simulations on Stampede2
from the extreme science and engineering discovery environment
(XSEDE). For all the simulations conducted in the study, we
assume blood to be a Newtonian incompressible flow with density
q ¼ 1:06 g=cm3 and viscosity l ¼ 0:035 dyn � s=cm2. The aortic
wall is assumed to be rigid. Time-step, grid size (and grid inde-
pendence) and the number of heartbeats run to have a reasonable
periodic flow are illustrated and discussed in Refs. [2] and [19].

2.2 Benchmarks. The study is carried out on (1) an idealized
aortic arch and (2) a patient-specific aorta with a degenerated
AAA, i.e., with a degradation of the aortic wall.

2.2.1 The Idealized Aortic Arch. As a proof of concept, we
first investigate the impact of the filter radius d and inflow rate
Q(t) in a simplified aortic arch (Fig. 1). The geometry is composed
of a half torus and two cylinders. The detailed dimensions are in
Fig. 1. In this case, we do not test the uncertainty for the geome-
try. The stochasticity of the inflow and the filter radius is detailed
below.

2.2.2 The Patient-Specific Abdominal Aortic Aneurysm. To
parametrize realistic variations of the arterial geometry, we con-
sidered a patient affected by the AAA, available from the iCardio-
Cloud Project supported by the Cariplo Foundation, Italy (No.
2013–1779). The patient had a significant abdominal aortic dila-
tion from 2010 to 2016, as shown in Fig. 2. The figure reports the
3D reconstruction of the morphology from the available CT scans,
performed with the vascular modeling ToolKit [32]. These geo-
metries provided the basis for the construction of the stochastic
map needed by the PCE, as explained in Sec. 2.3.1.

2.3 Stochastic Representation of the Inputs. To use the
PCE, we associate a stochastic process to the inputs of interest.
This avoids the need for many samples, requiring many data cur-
rently unavailable. To this aim, we postulate some a priori sto-
chastic information on the inputs. The criterion for these arbitrary
choices is the consistency with the physical context.

We list the specific stochastic features of the random variable
for each input in Table 1.

2.3.1 Stochastic Representation of the Aneurysmal Geometry.
The parametrization of the geometrical variation as a stochastic
process can be obtained in different ways. An important criterion
is that this task is realistically accomplished. Actually, arbitrary

Fig. 1 The simplified aortic arch and its dimensions

Fig. 2 Initial (left: acquired at 2010) and follow-up (right:
acquired at 2016) aortic geometries of a patient with the AAA

Table 1 Stochastic inputs and their distributions. Here,
N (l;r2) denotes the normal distribution with the mean of l and
variance of r2, while U½a;b� denotes the uniform distribution
with the support being ½a;b�

Uncertain inputs Distribution Polynomial chaos

nd Nðhmin; ð0:25hminÞ2Þ Hermite

nQ Nð1; 0:12Þ Hermite

nG U½0; 1� Legendre
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modifications of a given geometry may lead to unrealistic mor-
phologies. To this aim, we propose here to use the snapshots in
different time instances available for our AAA patient. Once the
reconstructions of the geometries have been obtained at the differ-
ent stages of the pathology (Fig. 2), we consider these as the real-
izations of a stochastic process function of a random variable nG,
uniformly distributed between 0 and 1 (in short nG � U½0; 1�). In
detail, the 2010 geometry corresponds to nG ¼ 0 and the follow-
up (2016) to nG ¼ 1. The three-dimensional deformation field
DðxÞ quantifying the variation between the initial (Fig. 2 left) and
follow-up (Fig. 2 right) geometries is computed by a nonrigid
registration method [33], as already successfully carried out in a
previous study [2] to quantify the growth of an aortic dissection.
Once the deformation map DðxÞ is computed, it is scaled by nG to
represent the uncertainty in the morphology. The resulting uncer-
tain geometry is a linear function of the parameter nG

Gðx; nGÞ ¼ GinitialðxÞ þ nG � DðxÞ (12)

To the best of our knowledge, it is the first time that a sensitivity anal-
ysis on geometry is conducted by using a longitudinal dataset and a
registration method. In this way we embrace a large range of possible
realizations of the geometry, on a time scale of 4 years. The same pro-
cedure can be used on different time scales and with more than two
scans, adjusting the scaling function (12) accordingly.

2.3.2 Stochastic Representation of the Inflow Rate. In the
absence of patient-specific inflow data, we designed a stochastic
inflow QðtÞ ¼ qðtÞnQ by scaling the average inflow waveform q(t)
reported in Fig. 3 (retrieved from Ref. [34]) by a normally distributed
univariate random variable nQ � NðlQ; r

2
QÞ, where lQ ¼ 1 and

rQ ¼ 0:1. This results in a range (lQ63rQ) of peak inflow being
from 203 to 380 ml/s, covering the flowrate from at rest to stress [35].

2.3.3 Stochastic Representation of the Filter Radius d. The
filter radius d is modeled as a normally distributed univariate ran-
dom variable nd � Nðld; r

2
dÞ with mean being the minimal mesh

size ld ¼ hmin and standard deviation being rd ¼ 25%ld. As we
mentioned in the introduction, this parameter is empirically tuned
as a tradeoff between stabilization (preferring a larger value) and
accuracy (suggesting a smaller value). The standard deviation 25%
of the “nominal” value is a reasonable range in our practical
experience.

2.4 Model Responses (Outputs). The model responses con-
sidered here are the TKE, TAWSS, and OSI. These are indices
with potential relevance for clinical applications in aortic diseases
(see, e.g., Refs. [34] and [36–38]).

The TKE is defined as

TKE � 1

2

ð
X
qu � udX

where X represents the whole computational domain.

The wall shear stress (WSS) is defined as the tangential compo-
nent of the normal stress. The normal stress for a Newtonian fluid
is defined as

w ¼ pn� lðruþrTuÞ � n

and correspondingly the WSS reads

WSS � w� ðw � nÞn

The TAWSS is defined as the time average over the heart beat
of duration T of the WSS

TAWSS ¼ 1

T

ðT

0

WSS tð Þdt

The OSI [39] is a way for measuring the occurrence of retro-
grade flows during the heart beat on the wall and it is defined as

OSI ¼ 1

2
1� T

jTAWSSjðT

0

jWSSj tð Þdt

0
B@

1
CA

OSI of values around ð1=2Þ indicates a high occurrence of retro-
grade flows.

The mean and variance of these QoIs are computed as well as
the corresponding Sobol’ indices to quantify the relative contribu-
tion of different uncertain inputs to the uncertainty of QoIs.

2.5 Recall on Global Sensitivity Analysis. We recall the
basic ingredients of our global sensitivity analysis, the Sobol’
index, and their determination through PCE. The notation in this
section follows the previous literature [8,40,41].

2.5.1 The Sobol’ Index. The Sobol’ index is a variance-based
indicator to characterize the dependence of the output variance on
the stochastic inputs [42], so to rank the influence of the inputs,
especially for nonlinear models [7,8,40]. Sobol proved that the
output of a model can be decomposed into summands with
increasing dimensions of the input parameters [42]. Let n ¼
ðn1;…; ndÞ represent the vector of d inputs, which are independent
random variables with a joint distribution pðnÞ defined on the
sample space X of a probability measure space ðX;F ;PÞ, where P
is the probability measure defined on the sigma-algebra F . The
Sobol’ decomposition [43] of the model output, generically
denoted by f, reads

f ðnÞ ¼ f0 þ
Xd

i¼1

fiðniÞ þ
X

i1;i22Cð2;dÞ
fi1i2ðni1

; ni2Þ

þ
X

i1 ;i2;i32Cð3;dÞ
fi1i2i3
ðni1

; ni2 ; ni3Þ þ � � � f1;…;dðn1;…; ndÞ

¼
Xd

s¼0

X
i1 ;…;is2Cðs;dÞ

fi1 ;…;isðni1
;…nis Þ (13)

where f0 is a constant and Cðs; dÞ denotes all the possible combi-
nations of s elements of the pool of indices 1; 2;…; d.

With a little abuse of notation, we introduce the index sets A ¼
fi1;…; isg � f1;…; dg for s ¼ 1;…; d, so that the decomposition
(13) for nA ¼ ðni1

;…; nis
Þ can be written as

f ðnÞ ¼
X

A�f1;…;dg
fAðnAÞ (14)

with the convention that for A ¼ ø, then fA :¼ f0. By the construc-
tion of the decomposition, the summands satisfy

ð
fAðnAÞpðniÞdni ¼ 0; 8i 2 A (15)

Fig. 3 The mean inflow rate
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The orthogonality between the summands follows as:

ð
fAðnAÞfBðnBÞpðnÞdn (16)

¼ dAB

ð
fAðnAÞfAðnAÞpðnÞdn (17)

8A;B � f1;…; dg, where dAB is the Kronecker delta (dAB ¼ 1 for
A � B; dAB ¼ 0 otherwise).

Due to the orthogonality, the total and partial expectations of
the output are

Eðf Þ ¼
ð

f ðnÞpðnÞdn ¼ f0 (18)

EðfAÞ ¼
ð

fAðnAÞpðnAÞdnA ¼ 0 (19)

The total variance and partial variances are defined as

V :¼ Var½f � ¼ Eðf 2 �Eðf Þ2Þ ¼
ð

f ðnÞ2pðnÞdn� f 2
0 (20)

VA :¼ Var½fA� ¼ Eðf 2
A �EðfAÞ2Þ ¼

ð
f 2
A ðnAÞpðnAÞdnA (21)

Subsequently, the Sobol’ indices [43] corresponding the specific
set A of inputs are defined as the ratios between the partial varian-
ces and the total variance

SA ¼ VA=V (22)

which are the global sensitivity indices indicating the functional
structure of the model [43] related to the combination of the input
parameters nA. Notice that fA¼ 0 if and only if VA¼ 0.

2.5.2 Polynomial Chaos Expansion Based Sobol’ Indices.
Traditionally, the Sobol’ indices are computed using Monte Carlo
(MC) or other sampling methods [42]. To be accurate, MC approaches
generally require many samples, since the accuracy improves with
only the square root of the number of samples. In our case, each sam-
ple requires the numerical simulation of the LES model, with a pro-
hibitive computational cost. Therefore, we resort to the truncated PCE
for a surrogate model to propagate uncertainties and compute the
Sobol’ indices. In this way, the computational cost reduces to that of
estimating the coefficients of the PCE. Specifically, the convergence
of the Sobol’s indices from PCE depends on: (1) the smoothness of
the output of interest, (2) the number of dimensions of the inputs under
consideration [8,44]. To balance the computational cost and accuracy,
we test here truncated PCE of degree 2 and 3 (see Sec. 3).

2.5.3 Truncated Polynomial Chaos Expansion. Any second-
order random process (i.e., with a finite variance) can be repre-
sented as a series of polynomials in random inputs [45,46]. Denote
again by n � fnig1i¼1 a vector of independent random variables
with a joint distribution pðnÞ defined on ðX;F ;PÞ. The corre-
sponding image probability space of the random variables is
ðC;BðCÞ; pðnÞdnÞ, where C is the image of n; BðCÞ is the Borel
r-algebra on C and pðnÞdn is the probability measure defined on
BðCÞ. Consider

Pp as the space of all polynomials in ni with degree up to p;

P̂p as the set of all polynomials in Pp orthogonal to Pp�1 with
respect to the probability measure pðnÞdn;

�Pp as the space of polynomials spanned by P̂p.

The subspace �Pp is called the pth homogeneous Chaos [47]
originally and P̂p is called the polynomial chaos of order p. For

ðt; xÞ 2 ½0; T� � D, a random process uðt; x; nÞ can be represented
as

uðt; x; nÞ ¼ u0ðt; xÞP̂0 þ
X1
i1¼1

ui1ðt; xÞP̂1ðni1

þ
X1
i1¼1

Xi1

i2¼1

ui1i2ðt; xÞP̂2ðni1 ; ni2Þ

þ
X1
i1¼1

Xi1

i2¼1

Xi2

i3¼1

ui1i2i3ðt; xÞP̂3ðni1
; ni2

; ni3Þ þ � � � (23)

with ui1i2…ðt; xÞ being the deterministic coefficients. This expan-
sion can be rewritten as

uðt; x; nÞ ¼
X1
k¼0

ukðt; xÞUkðnÞ (24)

There is a one to one correspondence between the functionals P̂p

and Uk. Therefore Uk are orthogonal polynomial basis with
respect to probability measure, i.e.,

ð
UiðnÞUjðnÞpðnÞdn

¼ dij

ð
UiðnÞUiðnÞpðnÞdn

¼ dijjjUiðnÞjj2 (25)

U0 is conventionally taken as U0 ¼ 1. Due to the orthogonality,
EðUiÞ ¼ 0 for all i > 0.

In practice, only a finite set of d input parameters are consid-
ered with polynomial basis of limited degrees no greater than p.
The truncated polynomial chaos expansion reads

uðt; x; nÞ ¼
XK

k¼0

ukðt; xÞUkðnÞ (26)

where K þ 1 ¼ ðpþ dÞ!=p!d!.
The multivariate polynomial basis with degree up to p can be

constructed by the tensor product of unidimensional basis

UkðnÞ ¼ Uak ðnÞ :¼
Yn

i¼1

/ak
i
ðniÞ (27)

where ak ¼ ðak
1;…; ak

dÞ 2Nn with jakj ¼
Pn

i¼1 ak
i 	 p; n 	 d

and k ¼ 0; 1;…K. The moments of the output random process can
be computed based on the PCE with minimum computational
effort. For a fixed ðt; xÞ, the mean and variance of uðt; x; nÞ is
given by

E½uðt; x; nÞ� ’ u0ðt; xÞ (28)

Var½uðt; x; nÞ� ’
XK

k¼1

ukðt; xÞ2jjUkjj2 (29)

2.5.4 Polynomial Chaos Expansion-Based Sobol’ Indices.
The summands of the Sobol’s decomposition, depending only on
the subset of n indicated by the index set A, can be approximated
using PCE as

fAðt; x; nÞ ’ f PC
A ðt; x; nÞ (30)

In order to regroup the multidimensional polynomial basis Ua that
depends only on a subset of parameters A ¼ fi1;…; isg �
f1;…; dg with jAj :¼ cardðAÞ, define the sets
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IA :¼ fk 2 f1;…;Kg : Uk ¼
QjAj
i¼1

/ak
i
ðnAi
Þ; ak 2Nd; jakj 	 pg.

Therefore we have

f PC
A ðt; x; nAÞ :¼

X
k2IA

fkðt; xÞUkðnAÞ (31)

where fkðt; xÞ is the deterministic coefficient.
Consequently, we approximate the Sobol’ decomposition by

the truncated polynomial expansion as

f PCðt; x; nÞ ’
X

A�f1;…;dg
f PC
A ðt; x; nAÞ

¼
X
k2IA

fkðt; xÞUkðnAÞ (32)

Due to the orthogonality of the polynomial basis, the total var-
iance and partial variance can be conveniently computed as

VPC :¼ Var½f PC� ¼
XK

k¼1

ykðt; xÞ2jjUkjj2 (33)

VPC
A :¼ Var½f PC

A � ¼
X
k2IA

ykðt; xÞ2jjUkjj2: (34)

Then, the PCE based Sobol’ indices read

SPC
A ¼ VPC

A =VPC (35)

Specifically, first-order Sobol indices quantify the contribution of
the total variance from the sole input parameter ni

SPC
i ¼

X
k2IAi

fk t; xð Þ2jjUkjj2

XK

k¼1

fk t; xð Þ2jjUkjj2
(36)

where Ai ¼ fig for i ¼ 1;…; d. As shown in Eq. (36), the cost of
computing the Sobol’ indices corresponds to the cost of evaluating
the coefficients of the truncated PCE.

2.6 Computing the Coefficients of the Polynomial Expan-
sion. There are different approaches to accomplishing this task.
“Intrusive approaches” (i.e., Galerkin approach [40,48]) and
“nonintrusive” (point collocation [49] and pseudo-spectral projec-
tion) methods [49–51] are used to compute the stochastic modes
for the PCE. In the former, the governing equations are reformu-
lated to target the PCE. In the latter, available deterministic solv-
ers are combined with collocation or projection techniques.
Compressed sensing is usually adopted with the point collocation
method to enforce the sparsity of the coefficients [9].

The computational complexity of the fluid-dynamics applica-
tion at hand and the dimension of the input parameter space are
significant. We opted for the nonintrusive pseudo-spectral method
due to its relatively low computational cost. This basically means
that, like for any generalized Fourier series, the coefficients are
computed by numerical integration (quadrature). By taking
advantage of the orthogonality, the deterministic coefficients can
be approximated by the quadrature formula

fk t; xð Þ ¼

ð
f t; x; nð ÞUkp nð Þdnð

U2
kp nð Þdn

(37)

’ 1

jjUkjj2
XR

r¼1

f t; x; nrð ÞUk nrð Þp nrð Þwr (38)

where nr and wr are quadrature points and associated weights. The
number of required numerical simulations (ultimately, the compu-
tational complexity of the method) and the accuracy depend on
the number and the collocation of the quadrature nodes. We
adopted nested sparse grid quadrature points based on Leja
sequence [52] and generated by the open-source tool Chaospy
[53]. In this way, the number of forward simulations required for
evaluating the stochastic modes for d¼ 2 and a PCE of degree 2 is
15 while it is 21 for PCE of degree 3, as shown in Fig. 4. Here,
the number of quadrature points are subjected to an “empirical
rule” as detailed in Ref. [52], which is implemented in Chaospy.
This is much less than the number of samples required by MC
approaches. Further potential improvement can be made by adopt-
ing adaptive sparse PCE [54,55], which is subject to future work.
The degree of the surrogate PCE is cross-validated by comparing
its results to the results of the original LES model.

3 Results

3.1 Results on the Idealized Aortic Arch. As a proof of con-
cept, the impact of the filter radius d ¼ nd and inflow rate QðtÞ ¼
qðtÞnQ are investigated in a simplified aortic arch (Fig. 1). Details
of the random input parameters are listed in first two rows of
Table 1.

The truncated PCE approximations of the TKE, TAWSS are
computed with polynomial basis of degree p¼ 2 and p¼ 3. As
anticipated, in this case, d¼ 2, we needed 15 and 21 simulations,
respectively. The differences between the results from the PCE of
different degrees are negligible.

The mean, variance, and prediction interval of the TKE for the
simplified aortic are shown in Fig. 5. The Sobol’ indices for the
TKE is shown in Fig. 6 (left).

The mean, variance, and prediction interval for TAWSS are
reported in Fig. 7, while the Sobol’ indices for TAWSS is shown
in Fig. 6 (right).

3.2 Results on the Patient-Specific Abdominal Aortic
Aneurysm. The truncated PCE approximations of the TKE,
TAWSS, and OSI are computed with PCE of degree p¼ 2. We
compute the stochastic modes using the nonintrusive pseudo-
spectral methods with the Leja nested sparse grid quadrature
points. The resulting number of simulations required is 35 (d¼ 3
inputs in this case). To be concrete, the realizations of the geome-
try in the five different values of nG are illustrated in Fig. 8.

The mean and coefficient of variation for the TAWSS (top row)
and OSI (bottom row) are reported in Fig. 9. The Sobol’ indices

Fig. 4 The Leja sparse quadrature points for PCE of degree
two and three with the two-dimensional input parameter space

021012-6 / Vol. 143, FEBRUARY 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/biom

echanical/article-pdf/143/2/021012/6592834/bio_143_02_021012.pdf by avenez2@
em

ory.edu on 31 M
ay 2021



for the TKE, TAWSS, and OSI are reported in Figs. 10 and 11,
respectively.

4 Discussion

4.1 The Idealized Case. The variance of the TKE caused by
the variation of the filter radius d during the systole (from 0 to
0.3 s) is minimal, while the influence of the filter radius is evident
during the diastole, as shown in Fig. 5 (left). However, the inflow
impact is much higher than that caused by d, as shown in Fig. 5
(right).

4.1.1 Sobol’ Indices for the Total Kinetic Energy. The relative
influence of the variations of the filter radius d as well as the
inflow boundary conditions on the hemodynamic factors of this
simplified aortic arch are investigated using the Sobol’ indices.
The Sobol’ index of d in time (Fig. 6 left) represents the contribu-
tion of d to the TKE variation through the cardiac cycle. Consist-
ent with the variance results (in Fig. 5), this Sobol’ index is much
lower than that from the inflow rate during systole, despite the
higher coefficient of variation (CoV) of d. This result

demonstrates the robustness of the model during systole. How-
ever, the influence of d exceeds that of the inflow rate during
diastole.

The TAWSS Sobol’ index of d is lower than that of the inflow
in most of the arch, except for the inflow and the interior bend.
The higher Sobol’ index of d in these regions might be due to the
influence of the d during the diastolic phase.

4.2 The Patient-Specific Abdominal Aortic Aneurysm
Case. TAWSS and OSI are often computed together to assess the
nature of the flow in the neighborhood of the wall, and the con-
nection to possible focal diseases or degenerations of the wall. As
expected, the mean TAWSS is found to be lower in the region
with more growth than other regions on the aneurysm. Corre-
spondingly, we found that OSI is relatively high in the region with
more growth. These two hemodynamics indicators point out a
possible disturbed oscillating nature of the flow in the region with
growth.

More interestingly, the CoV for TAWSS is higher in the region
with more growth (i.e., region with relatively low mean TAWSS),
while the opposite result is observed from OSI. This means that

Fig. 5 The mean, variance, 90% prediction interval for the TKE in the simplified aortic arch. Only the uncertainty of the filter
radius d is considered in the left plot; The uncertainty of both the filter radius d and inflow rate Q(t) are considered in the right
plot.

Fig. 6 Sobol’ indicies of filter radius and inflow for TKE (left) and TAWSS (right). SU delta t and SU Q t denote the total
Sobol’ index of the filter radius d and inflow for TKE, respectively. SU TAWSS delta t and SU TAWSS Q t denote the total
Sobol’ index of d for TAWSS and inflow for TAWSS, respectively.
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the reliability of the two hemodynamic indices is somehow com-
plementary in terms of space-dependent reliability. Their joint
computation is justified by the fact that one is more reliable where
the other is less.

4.2.1 Sobol’ Indices for the Total Kinetic Energy. The Sobol’
indices of the filter radius d, the inflow rate, as well as the abdomi-
nal aneurysmal geometry for the TKE are in Fig. 10. The result
for the relative contribution from the filter radius and inflow rate

Fig. 7 Mean, coefficient of variation, 95th percentile, 5th percentile of TAWSS of the simplified aortic arch

Fig. 8 The sampled AAA geometries corresponding to five values of nG in the quadrature
nodes
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is consistent with the finding from the simplified aortic arch, i.e.,
the inflow rate has relatively more contribution to the total varia-
tion during systole. In contrast, the filter radius is more influential
than the inflow rate during diastole. However, the variation of the
abdominal aneurysmal geometry of the aorta has a significantly
dominant role for the variability of the TKE throughout the whole
cardiac cycle. The partial variance caused by the variation in the
geometry is larger than those caused by the other two factors com-
bined, as shown in Fig. 10.

4.2.2 Sobol’ Indices for the Time-Average Wall Shear Stress
and Oscillatory Shear Index. The Sobol’ indices of the filter
radius d, inflow rate, as well as the abdominal aneurysmal geome-
try for TAWSS and OSI are in Fig. 11. Similarly to what we found
for the TKE, the relative contribution of the three investigated fac-
tors (ranked from high to low) to both TAWSS and OSI are the
aneurysm geometry, the inflow rate, and the filter radius. The
TAWSS of the two extreme quadrature points for nG is in Fig. 12
and the OSI is in Fig. 13. The filter radius and inflow rate are fro-
zen at their mean values, respectively. We can appreciate that the
TAWSS and OSI may change significantly even when the geome-
try is the only source of variability.

4.3 Limitations. The work bears some limitations, as listed
below.

(1) Due to the constraint of computational costs, only three
sources of uncertainty are considered simultaneously.

(2) We assume simplified models for the variations in the
inflow boundary condition for the lack of patient-specific
data of a large population.

(3) In the simulations, the arterial wall is rigid, and the flow is
Newtonian.

Limitations (1) and (2) will be addressed in future works, while
we speculate that the limitations in (3) have a minor impact on the
conclusions of this study. We argue that the qualitative conclu-
sions drawn from the results here, particularly in terms of

Fig. 9 Mean and coefficient of variation of TAWSS (top) and OSI (bottom) for the patient-
specific AAA case

Fig. 10 Sobol’ indices for the TKE for the patient-specific
AAA case. (SU delta T ; SU Q T and SU geo T represent
the total Sobol’ indices of d, inflow and geometry,
respectively).
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prioritizing the impact of the different uncertainties hold despite
these limitations.

5 Conclusions

We performed a global sensitivity analysis using PCE-based
Sobol’ indices to investigate the impact of the filter radius of the

deconvolution-based Leray model, inflow rate, as well as the
geometry on the hemodynamic simulations in aortas. The conclu-
sions of the results are summarized hereafter.

(1) Arterial morphology has always been speculated to be a
critical factor affecting the computational hemodynamic
predictions. The results in this study confirm this intuition:

Fig. 11 Sobol’ indices for TAWSS (top row) and OSI (bottom row) for the patient-specific AAA case. Notice that the color scale
associated with the bars is the same in the three panels.

Fig. 12 TAWSS for the extreme geometries nG 5 0 (left) and
nG 5 1 (right) for the patient-specific AAA case, when nd 5 ld

and nG 5 lG

Fig. 13 OSI for the extreme geometries nG 5 0 (left) and nG 5 1
(right) for the patient-specific AAA case, when nd 5 ld and
nG 5 lG
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the geometry is the most influential uncertain input, com-
paring to the other inputs considered. Other studies report
similar results on idealized geometries. In Ref. [12], the
authors considered idealized AAA and carotid sinus geo-
metries [12] with the radius of the aneurysm as an uncertain
input. Thanks to our novel use of the image-registration
procedure, coupled with the truncated PCE analysis, we
can extend the results to patient-specific geometries with a
realistic geometrical variability. We observed significant
variations of wall shear stress and axial velocity fields with
the variation of the geometry. For completeness, we men-
tion that in coronary arteries, the relative importance of the
minimal luminal diameter was shown to exceed that of the
viscosity and boundary resistance in computing FFRCT

[15]. Our results lead to a similar conclusion in the aorta. In
this respect, it is crucial to use patient-specific geometries
and to quantify the associated sensitivity to predict clini-
cally relevant results reliably.

(2) Minimal influence of d on clinically relevant quantities is
shown by the Sobol’ index of d for TAWSS and OSI in the
patient-specific AAA case, as shown in Fig. 11. These
numerical results demonstrated that the clinical QoIs are
quite insensitive to the filter radius and therefore we can
guarantee the robustness of applying the Leray model in
aortic simulations.

(3) The third practical conclusion we want to highlight from
our results is that different hemodynamic indices may show
a different level of reliability in space. The CoV results of
TAWSS and OSI in the patient-specific AAA case of this
study seem to “complement each other,” in the sense that
one is more trustworthy in a specific region where the other
is less reliable and vice versa. This result suggests that it is
worth computing both in practice and complementing
mutually the information they provide to have a complete,
reliable picture of the clinical condition of the patient, so to
use one or the other QoIs in different regions of interest.

The educated (possibly automatic) combination of the different
QoIs in clinical scenarios and the extension of the present global
analysis to more uncertain inputs will be the subject of future
works. Specifically, we target the sensitivity analysis on the aortic
syndrome of type B aortic dissections in our following work and
its impact on the clinical routine of diagnosis of this specific
disease.
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