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While the potential groundbreaking role of mathematical modeling in electrophysiology 
has been demonstrated for therapies like cardiac resynchronization or catheter ablation, its 
extensive use in clinics is prevented by the need of an accurate customized conductivity 
identification. Data assimilation techniques are, in general, used to identify parameters 
that cannot be measured directly, especially in patient-specific settings. Yet, they may 
be computationally demanding. This conflicts with the clinical timelines and volumes 
of patients to analyze. In this paper, we adopt a model reduction technique, developed 
by F. Chinesta and his collaborators in the last 15 years, called Proper Generalized 
Decomposition (PGD), to accelerate the estimation of the cardiac conductivities required in 
the modeling of the cardiac electrical dynamics. Specifically, we resort to the Monodomain 
Inverse Conductivity Problem (MICP) deeply investigated in the literature in the last five 
years. We provide a significant proof of concept that PGD is a breakthrough in solving 
the MICP within reasonable timelines. As PGD relies on the offline/online paradigm and 
does not need any preliminary knowledge of the high-fidelity solution, we show that the 
PGD online phase estimates the conductivities in real-time for both two-dimensional and 
three-dimensional cases, including a patient-specific ventricle.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The use of mathematical computational models in medicine is a consolidated approach (sometimes called in silico work-
ing alongside the traditional in vivo and in vitro analyses) to have a deep understanding of physio-pathological dynamics. 
However, the complete translation of these models to the clinical practice is prevented by several factors, including the need 
for their accurate customization to reflect the specific patient’s condition [1]. This requires accurate image processing pro-
cedures for the morphology retrieval as well as the personalized identification of model parameters. The parameters often 
cannot be measured and their fine tuning can be obtained only after data assimilation procedures (see, e.g., [2–5]), i.e., spe-
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cific methodologies to combine available measures and numerical solutions for an enhanced modeling. Different approaches 
can be used to include a measurable quantity into the mathematical modeling process. In sequential stochastic procedures, 
the parameters are included as unknowns (or state variables) of the problem and are subject to an estimation procedure 
generally aimed to minimize the variance of the estimate or to maximize a probability density function. In variational ap-
proaches, the parameters to identify are used as control variables in the minimization of the mismatch between the results 
of the numerical model and the observed dynamics. In this way, the knowledge of observable quantities is converted into 
an estimate of the non-observable ones.

Data assimilation strategies [6,7] are generally very powerful and able of an accurate personalization. However, they have 
intrinsic limitations and, in general, they may entail significant computational costs. Thus, as clinical problems often require 
relatively short timelines, empirical approaches are generally preferred to privilege efficiency over accuracy. In this way, the 
core knowledge of physiological and pathological dynamics expressed by physic-based models is discarded. This may be 
detrimental for patients whose features do not fall into the set of data used for the empirical methods.

In order to improve the efficiency of rigorous identification procedures, model reduction techniques can be used to re-
place high-fidelity models with customized surrogates, yet including the core knowledge of the problem at hand. Model 
reduction is an important topic developed over the years in the engineering and mathematical literature as the increased 
computational power was not able to cover the even more progressively rising complexity of problems addressed by math-
ematical modeling (see, e.g., [8–13]). Life sciences and medicine certainly fall in this picture.

In this work, we address a data assimilation problem of cardiac electrophysiology. The knowledge of the differential 
equations for the potential propagation in the cardiac tissue is quite consolidated, as witnessed by the specific literature 
(see, e.g., [14–16]). Modeling improvements are mainly devoted to the micro-, meso- and macroscopic (i.e., cell, tissue and 
organ levels) description of the ions dynamics at cellular and subcellular level [17], to their behavior at the cell-cell interface 
[18,19], and to the spatio-temporal coupling among the different cardiac components resulting in synchronized emerging 
phenomena [20]. These models feature parameters that are quite hard to measure in vivo and data assimilation procedures 
have been recognized as a viable approach [21,22]. In particular, variational techniques for the estimation of the tensor of 
the cardiac conductivities of the classical Bidomain and Monodomain models have been addressed and analyzed in [23]. 
The reliability of this approach for solving the Bidomain/Monodomain Inverse Conductivity Problem has been demonstrated 
on several benchmarks, covering synthetic as well as in vitro cases [24,25]. However, the efficiency of such procedures needs 
to be properly addressed, as the computational cost of the iterative mismatch minimization is generally high, especially 
when dealing with real geometries. This problem has been promptly recognized as a bottleneck, and several Reduced-Order 
Models (ROMs) have been investigated [13,26–29]. The proposed approaches rely on the construction of a surrogate, as a 
combination of basis functions generally built moving from previous solutions (called “snapshots”) for a predetermined set 
of values for the parameters. For instance, in the Proper Orthogonal Decomposition (POD) considered in [29], the snapshots 
are smartly selected based on the concept of domain of influence in the space of the conductivities, and the surrogate is 
constructed after a Singular Value Decomposition (SVD) of the snapshot matrix.

In this paper, we consider a ROM procedure that does not require any a priori knowledge of the solution, even though 
it still relies on an offline/online paradigm. The Proper Generalized Decomposition (PGD) is a model reduction technique 
introduced by F. Chinesta et al. [30], specifically devised to efficiently evaluate a parametrized differential problem when 
varying the parameter values. The idea is to treat the parameters as additional independent variables and to compute the 
solution over an extended domain, inclusive of the range the parameters are expected to belong to. As the actual numerical 
computation is performed in a highly dimensional domain during the offline stage, a special representation is introduced, 
where the surrogate solution is factorized with respect to each independent variable (including the parameters) or low-
dimensional groups of variables. By advocating an iterative approach to compute this factorization, PGD proved to be an 
effective technique to reliably approximate several parametric problems [31–33]. During the online phase, the solution is 
ready to be promptly evaluated for any value of the parameters as well as of the independent variables (space/time). This 
is particularly effective in a variational parameter identification procedure, when the solution for different guesses of the 
parameter(s) is tested in an iterative minimization process.

Based on these general properties, in this paper we use PGD to solve the Monodomain Inverse Conductivity Problem 
(MICP) to estimate cardiac conductivities. After a short introduction to PGD in Section 2, we present the Monodomain model, 
the MICP and its basic features in Section 3. Successively, we introduce the specific technical aspects of the application of 
PGD to the Monodomain problem in Section 4. In Section 5 we assess the accuracy of the PGD model over a number of test 
cases. We start with a two-dimensional (2D) test problem, yet in a morphology based on a previous study on canine tissues. 
Then, we extend the procedure to three-dimensional (3D) problems, including a patient-specific left ventricle. Finally, we 
apply PGD to the solution of MICP in Section 6.

The ultimate goal of this paper is to provide a convincing demonstration of the effectiveness of PGD for this inverse 
problem, starting with a simplified - yet realistic - case. In fact, all the results pinpoint that, in spite of an offline stage 
that may be quite demanding in terms of CPU time, the PGD dramatically reduces the parameter identification - for which 
no computational standards are currently available - to nearly real-time computations on common architectures. These 
preliminary results encourage further work for the extension of the methodology to the clinical practice (Section 7).
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2. The PGD in a nutshell

For the sake of completeness, we provide a short introduction to the PGD, to recall the basic ideas and provide some 
notation and terminology. For a more complete introduction, the reader is referred to [30,34,35].

In what follows, � ⊂ Rd is the physical space domain, with d = 2, 3. We denote by V a Hilbert space, generally a 
subspace of the Sobolev space H1(�) [36]. With q ∈ Rδ we denote a vector of parameters the problem we consider depends 
on. Let us focus on a generic parametrized elliptic problem in the weak form: find u ∈ V s.t.

aq(u, v) = F q(v) ∀v ∈ V , (1)

where, for any given admissible value of the parameters in q, aq : V × V →R and Fq : V →R are a bilinear, continuous and 
coercive and a linear continuous form, respectively. More precisely, we assume that the parameter qr , for r = 1, . . . , δ, ranges 
in an admissible interval Sr , so that the admissible set for q is the box S ≡ S1 ×S2 . . . ×Sδ . According to a PGD procedure, 
we regard the solution u as a function of x ∈ Rd and q ∈ Rδ . Specifically, we assume that u ∈ W =V ⊗ ⊗δ

l=1 L2(Sl). Thus, 
the extended weak formulation, including the parameters as independent variables, is obtained by integrating (1) over S
and coincides with the (d + δ)-dimensional problem: find u ∈ W s.t.

A(u, v) = F(v), ∀v ∈ W, (2)

with A :W ×W →R and F :W →R given by

A(u, v) ≡
∫
S

aq(u, v)dq, F(v) ≡
∫
S

F q(v)dq, (3)

respectively. With a little abuse of notation, we keep denoting the unknown and the test functions with the same symbols, 
u, v , although their dependence on the parameters in q.

As the dimension of the problem is now increased, the numerical solution (e.g., with a generic Galerkin approach) may 
be problematic. We therefore proceed under the assumption of separability of the parameter functions, that is typically 
postulated for unsteady problems to separate the space to the time dependence of the solution (semi-discretization). This 
means that the reduced solution is regarded as the linear combination of factors breaking up the dependence on the 
different independent variables into the product of low-dimensional separated functions, i.e.,

um(x;q) =
m∑

k=1

ux
k(x)

δ∏
l=1

ul
k(ql), (4)

for m ∈ N+ and k being a modal index. Here, functions ux
k ∈ Vh ⊂ V account for the x-dependence of the solution, while 

functions ul
k ∈ Q l ⊂ L2(Sl), for l = 1, 2, . . . δ, carry the dependence on the parameters, Vh and Q l being discrete spaces with 

dim(Vh) = Nx
h and dim(Q l) = Nl , respectively. The space of the functions in (4) (the PGD space) is defined as,

Wm =
{

wm(x;q) =
m∑

k=1

wx
k(x)

δ∏
l=1

wl
k(ql), wx

k ∈ Vh, wl
k ∈ Q l, l = 1, . . . , δ, x ∈ �, q ∈S

}
. (5)

The separability assumption is applied also to the extended bilinear and linear forms in (2). Setting δku = ux
k(x) 

δ∏
l=1

ul
k(ql)

(and similar notation for the test functions), we have

A(δku, v j) =
Na∑

α=1

ax
α(ux

k, vx
j)

δ∏
l=1

al
α(ul

k, vl
j), F(v j) =

N F∑
ϕ=1

F x
ϕ(vx

j)

δ∏
l=1

F l
ϕ(vl

j), (6)

with the modal indices k, j ranging from 1 to m, ax
α : V × V → R and al

α : L2(Sl) × L2(Sl) → R bilinear forms, for α =
1, . . . , Na , F x

ϕ : V → R and F l
ϕ : L2(Sl) → R, linear forms, for ϕ = 1, . . . , N F , where Na , N F ∈ N+ strictly depend on the 

differential operators involved in the definition of A and F , the test function v being rewritten in a separate form as well 
[30].

Differently from a standard Galerkin approach, the separated functions, ux
k , ul

k in (4), are not selected a-priori (e.g., as 
piecewise or Gaussian polynomials). Conversely, the computation of these functions is the result of a progressive construc-
tion customized on the problem to solve, performed in an iterative way that takes advantage of the factorization in (4). In 
more details, the computation of um is based on two steps: (i) a “greedy” weighted residual step to enrich the approximation 

um−1 ∈ Wm−1 to um ∈ Wm , by adding the new contribution (or mode) δmu ≡ ux
m(x) 

δ∏
l=1

ul
m(ql); (ii) a factorized computation 

of the m-th term, δmu, based on a fixed-point iteration method called Alternating-Direction Strategy (ADS) [30,34,35].
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As for (i), we aim to find the new mode, δmu, by solving the weighted residual problem

A(um−1 + δmu, vm) = F(vm), ∀vm ∈ Wm, (7)

where um−1 ∈ Wm−1 is the available approximation (for m = 1, typically, one sets u0 = 0). The progressive addition of new 
terms stops when the PGD solution no longer changes significantly. Technically, this leads to the (external) convergence 
criterion

‖um‖
‖u1‖ ≤ tole, (8)

where the tolerance tole is user-defined and the norm can be selected in different ways (e.g., in H1(�) ⊗ ⊗δ
l=1 L2(Sl)). The 

rationale is that the new modes add a progressively less relevant information to the solution (as it happens, for instance, 
with a Sturm-Liouville Eigenvalue expansion [37]), so that the left-hand side of (8) does actually reduce when m increases. 
We stress that this rationale is based on empirical evidence, but a rigorous proof that the quotient at the left-hand side in 
(8) does actually decrease with m, is still missing.

As for (ii), we perform the computation of δmu in (7) by solving iteratively the component dependence on each variable 
(or set of variables) independently, in an alternating direction framework. Introducing the fixed-point iterative index, i ≥ 1, 

let us assume to have a guess δm,i−1u(x; q) = ux
m,i−1(x) 

δ∏
l=1

ul
m,i−1(ql) for δmu (for i = 1, δm,0u(x; q) is chosen according to 

the boundary conditions of the problem at hand). We start computing the contribution ux
m,i by solving the d-dimensional 

problem

A(ux
m,i

δ∏
l=1

ul
m,i−1, vm) = F(vm) −A(um−1, vm), (9)

where vm(x; q) = vx
m(x) 

δ∏
l=1

ul
m,i−1(ql), for any vx

m ∈ Vh . This problem can be regarded as the PGD formulation of problem 

(1) when the parameters are frozen. Successively, we tackle the dependence on the parameter qr , for r = 1, . . . , δ, by solving 
the 1D problem

A(ux
m,iu

r
m,i

r−1∏
l=1

ul
m,i

δ∏
l=r+1

ul
m,i−1, vm) = F(vm) −A(um−1, vm), (10)

where ur
m,i is the unknown and we choose now vm(x; q) = ux

m,i(x)vr
m(qr)

r−1∏
l=1

ul
m,i(ql)

δ∏
l=r+1

ul
m,i−1(ql), for any vr

m ∈ Q r . By 

solving (10) for r = 1, . . . , δ, we complete the computation of δmu in (7), by setting δmu(x; q) = ux
m(x) 

δ∏
l=1

ul
m(ql), with 

ux
m(x) = ux

m,ĩ
(x), ul

m(ql) = ul
m,ĩ

(ql), ĩ denoting the fixed-point iteration index ensuring the convergence to problems (9)-(10). 
A standard stopping criterion for the (internal) iterative loops in (9) and (10) reads

‖δm,iu − δm,i−1u‖
‖δm,i−1u‖ ≤ tol f , (11)

with tol f a user-defined tolerance and δm,τ u(x; q) = ux
m,τ (x) 

δ∏
l=1

ul
m,τ (ql), with τ = i − 1, i. Once this criterion is fulfilled, the 

PGD approximation um(x;q) = um−1(x;q) + δmu(x;q) is available. Also in this case, it is worth noting that a rigorous proof 
of convergence of these internal iterations is missing, although convergence is actually occurring in practice.
All the steps involved in (9)-(10) can be written in an algebraic form that we skip here for the sake of brevity (see, e.g., [38]
for the explicit computations).

The PGD procedure is summarized in Algorithm 1. Implementation details related specifically to the Monodomain prob-
lem are deferred to Section 4.2. In particular, among the input parameters, mmax and imax introduce an upper bound to 
the maximum number of enrichment and fixed-point iterations, respectively. Algorithm 1 is the so-called offline phase of 
the PGD method. After this phase, the reduced solution is available for any value of the independent variables, and in 
the admissible set S of the parameters. Thus, the cost of the online phase reduces to the cost of assembling the solution 

um(x;q) =
m∑

k=1
ux

k(x) 
δ∏

l=1
ul

k(ql). This is a strategic property in view of a data assimilation procedure, where we need to iter-

atively estimate the solution of the problem of interest for different values of the parameters, to minimize the mismatch 
from the observations. Actually, the ultimate goal of this work is assessing the robustness (accuracy and efficiency) of the 
4
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Algorithm 1 PGD algorithm (Offline phase).
1: Input: u0, S , tole , tol f , mmax , imax

2: Set: m ← 0;
3: while (‖um‖/‖u1‖ ≤ tole & m ≤ mmax) do
4: Set: m ← m + 1;
5: Set: i ← 0;
6: Set δm,0u;
7: while (‖δm,i u − δm,i−1u‖/‖δm,i−1u‖ ≤ tol f & i ≤ imax) do
8: i ← i + 1;
9: Solve (9);

10: for r = 1, . . . , δ do
11: Solve (10);
12: end for
13: end while
14: Set: ux

m(x) ← ux
m,i(x);

15: Set: ur
m(qr) ← ur

m,i(qr), r = 1, . . . , δ;

16: Set: um(x; q) ← um−1(x; q) + ux
m(x)

δ∏
r=1

ur
m(qr);

17: end while

PGD model reduction and verifying its computational competitiveness when solving the cardiac conductivities estimation 
problem.

The methodological presentation above refers to unsteady problems. When migrating to unsteady ones, it is pretty nat-
ural to factorize the dependence on space and time. Specifically - as proposed in [30] - we opt for a semidiscretization in 
time first, and then we apply the reduction procedure to the sequence of time-discrete problems. In this way, the extension 
to time-dependent problems becomes straightforward.

3. The Monodomain model

3.1. The forward problem

Propagation of the electrical signal in the cardiac tissue is the result of complex multiscale dynamics occurring over 
the whole heart, yet based on cellular and subcellular kinetics [39]. Well-established experimental evidences, originating 
from Hodgkin-Huxley famous studies, support the description of ionic currents by means of local nonlinear reaction terms 
within a reaction-diffusion model [40]. Such constitutive laws, generally denoted by ionic models, consist of a set of ordinary 
differential equations capturing the dynamics of the ionic currents flowing throughout the cell membrane and within the 
cell itself [41]. In particular, they describe the time evolution of the so-called gating variables, which control the ionic fluxes 
and ensure the fulfillment of ion balance laws over the whole cell.

The mathematical modeling of the electrical activity of the heart has been the subject of many works in the last 80 
years. One of the most popular descriptions, the Bidomain model [16,42], stems from a homogenized description of intra-
and extra-cellular spaces and has been demonstrated to be accurate and reliable specifically for defibrillation applications 
[43]. Yet, its degenerate nature of parabolic partial differential equation system (where the matrix multiplying the vector 
of time derivatives is actually singular) makes the numerical solution quite challenging. This has justified an abundant 
literature on the efficient solution of the Bidomain model, in terms of algorithms, preconditioners and high-performance 
computing implementations (see, e.g., [44–55] to mention a few).

A more classical and less expensive approach in computational electrocardiology relies on the Monodomain model. This 
can be proved to be a model reduction of the Bidomain equations formulated in terms of the transmembrane potential, 
under the assumption of equal anisotropy among the intra- and extra-cellular spaces. Even if this assumption is generally 
not completely justified, this model has been recognized as a possible trade-off between accuracy and efficiency. Besides, 
it retains the same level of information in the case of physiological spatio-temporal propagation (i.e., the object of the 
present study). For these reasons, in the present paper, we focus on the Monodomain system, coupled with the simplified 
two-variable phenomenological Rogers-McCulloch (RM) model [14], featuring a single gating variable. Although simplified 
and empirical, this model is able of capturing important dynamics of the potential propagation, so we picked it up as a 
reasonable paradigm for the preliminary results of PGD on inverse problems. More complex models, both physiological 
and phenomenological, are available in the literature [17,56–58]. However, the purpose of this work is to assess the novel 
methodological procedure, so we defer the technicalities of the extension to more complex models to future works.

The Monodomain equations we refer to read

{
∂t u = ∇ · (σ∇u) − Iion(u, w) + Iapp in Q ,

d w = g(u, w) in Q ,
(12)
t

5
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Table 1
Rogers-McCulloch model parameters. Here � denotes the Ohm, the unit of electrical resis-
tance.

RM parameters

G Vth V p η1 η2 η3

1.5 �−1cm−2 13 mV 100 mV 4.4 �−1cm−2 0.012 ms−1 1 ms−1

with initial and boundary conditions{
u(x,0) = u0(x), w(x,0) = w0(x) in �,

σ∇u · n = 0 on ∂ Q ,
(13)

with Q = � × (0, T ) the space-time domain with boundary ∂ Q = ∂� ×[0, T ]; [0, T ] a fixed time interval; u the transmem-
brane potential ([mV]); w the gating variable characterizing the RM model; σ the conductivity tensor ([cm2/ms]), in general 
function of the local coordinates, x, and of the local fiber direction, a; Iion the total ionic current flowing through the cell 
membrane; g the kinetic dynamics of the ionic quantities; Iapp the external stimulation current (e.g., electrical pacing or 
synaptic input); n the outward unit normal vector to the boundary ∂�; U0 and w0 the initial value for the potential and 
for the gating variable, respectively. According to the standard notation, symbols ∂t , dt , ∇ and ∇· represent the partial and 
total derivatives in time, the spatial gradient and divergence operator, respectively. The Neumann-type boundary condition 
(13)2, usually adopted in this context, mimics an insulated tissue [16]. In mathematical terms, Neumann-type conditions try 
to minimize the sensitivity of arbitrary data on the simulation results [59].

The computational domain � is represented as an heterogeneous and anisotropic tissue via a spatial dependent fiber 
direction a(x). We define with {al(x), at(x), an(x)} the orthonormal fields related to the structure of the myocardium, char-
acterizing the longitudinal, transverse and normal direction of the fibers, respectively [60,16]. Accordingly, we identify with 
{(σl(x), σt(x), σn(x))} the longitudinal, transverse and normal conductivity fields. In the present work, the conductivities 
are assumed independent of the local coordinates x. Following this approach, the conductivity tensor can be decomposed 
as

σ = σlal(x)aT
l (x) + σtat(x)aT

t (x) + σnan(x)aT
n (x). (14)

Moreover, for d = 3 and under the hypothesis of axial (or transverse) isotropy, i.e., σt = σn and an ≡ e3 with {e1, e2, e3} the 
canonical basis in R3, the conductivity tensor reduces to

σ = σt I + (σl − σt)al(x)aT
l (x), (15)

with I∈R3×3 the identity tensor. We emphasize that the conductivity tensor σ is spatial dependent and anisotropic be-
cause, at every point in the model, the tissue microstructure (that is, the fiber orientation) varies, whereas the longitudinal 
and transverse conductivity values, σ̂ = (σl, σt), are constant parameters belonging to separate admissible intervals, namely, 
σl ∈ [ml, Ml] and σt ∈ [mt , Mt], 
l = Ml − ml and 
t = Mt − mt denoting the corresponding length, with Mt < ml . In fact, it 
is observed that electrical conduction along the length of myocytes is faster than along the transverse direction [61,62], so 
that σl should be greater than σt .

Let θ : � → [0, 2π ] be the angle between the longitudinal fiber direction, al , and the x-axis direction, e1, at any point x
of the domain �. It holds that al(x) = cos(θ(x))e1 + sin(θ(x))e2. Therefore, the conductivity tensor explicitly reads

σ 2D =
[
σl cos2 (θ(x)) + σt sin2 (θ(x)) (σl − σt) cos (θ(x)) sin (θ(x))

(σl − σt) cos (θ(x)) sin (θ(x)) σl sin2 (θ(x)) + σt cos2 (θ(x))

]
, σ 3D =

[
σ 2D 02×1
01×2 σt

]
, (16)

for the 2D and 3D cases, respectively, with 02×1 ∈R2×1 the zero tensor, and 01×2 = 0T
2×1.

The RM model is based on a cubic polynomial formulation for Iion and one gating variable which allow to describe the 
most relevant feature of the cardiac action potential at a limited computational cost. The model reads

Iion(u, w) = Gu

(
1 − u

Vth

)(
1 − u

V p

)
+ η1uw, g(u, w) = η2

(
u

V p
− η3 w

)
. (17)

The parameters G, Vth, V p, η1, η2, η3 are provided in Table 1.

3.2. The Monodomain inverse conductivity problem

Identifying the cardiac conductivities, σl , σt in a patient-specific setting is a challenging problem whose solution may 
enable an extensive use of mathematical models in clinics. The problematic aspects come from the limited access to data in 
vivo. Also, the available literature in the field shows that the range of these parameters may be quite large [63–65], while 
the numerical sensitivity of the Monodomain solution to cardiac conductivities is generally high [66]. A variational data 
6
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assimilation approach was proposed and analyzed in [21,23]. The basic idea is to infer the conductivities from available 
measures of the transmembrane potential retrieved from the surface of the tissue at certain instants of the propagation. 
The variational procedure achieves this assimilation by finding the conductivities that minimize the mismatch between 
the available data and the results of the Monodomain solution. Formally, this leads to the so-called Monodomain Inverse 
Conductivity Problem (MICP): find σl and σt in the tensor σ to minimize the functional

J (σ ) = 1

2

T∫
0

∫
�obs

(u(σ ) − umeas)
2 dxdt, (18)

subject to (12)-(13). Specifically, umeas denotes the experimental data measured on the observation domain, �obs ⊂ �, and 
u is function of σ through (12), (13), (17). We stress that, in this work, we aim to retrieve the longitudinal and transverse 
conductivity values σ̂ = (σl, σt), while keeping the other model parameters and the spatial function θ(x) fixed during the 
optimization procedure. The promising results presented here do motivate further research in this direction.

An existence analysis for this problem is reported in [23], whereas numerical and experimental validations are extensively 
discussed in [24,25]. As it is promptly realized, the iterative minimization procedure based on the introduction of Lagrange 
multipliers and the solution of the Monodomain adjoint problem is computationally demanding. As a matter of fact, when 
following an optimize-then-discretize approach, we need to evaluate the Monodomain system and its adjoint, forward and 
backward in time, at each minimization iteration. This led to the introduction of model reduction techniques, based either 
on a Proper Orthogonal Decomposition (POD) paradigm [26,28,29] or the Lax-pairs [27]. The POD paradigm requires the 
offline computation of snapshots for different values of the parameters. Successively, these snapshots are reduced via SVD 
and combined to form a basis for a rapid evaluation of the solution for new values of the parameters. As demonstrated in 
[29], the selection of the snapshots is critical for the successful achievement of an efficient reduced solution, and specific 
techniques are required [28].

On the contrary, as already pointed out, the PGD approach does not need the computation of any snapshot in the offline 
phase, and directly computes the solution in the incremented independent-variable space (i.e., the space, the time and the 
two conductivities). The actual performance of PGD will be illustrated in the next section.

4. PGD model reduction of the Monodomain problem

4.1. Formulation of the reduced model

To solve the Monodomain system with the PGD approach, as previously anticipated, we perform first a semi-
discretization in time of the problem. In this way, we eliminate the time dependence with a classical finite difference 
discretization. Also, we decouple the PDE from the ODE ionic model. By defining a time step 
t > 0, the time interval 
[0, T ] is uniformly divided into N subintervals, (tn, tn+1), with t0 = 0, tN = T , being tn+1 = tn + 
t = (n + 1)
t , for any 
n = 0, . . . , N − 1. A popular strategy for the semi-discretization in time is a semi-implicit approach that automatically lin-
earizes the problem at each time step. With this approach and using a first order discretization in time, at each time tn+1, 
for (un, wn) available, we solve the problems{

wn+1 = 
t g(un, wn+1) + wn in �,

un+1 − 
t ∇ · (σ∇un+1) = 
t In+1
app − 
t Iion(un, wn+1) + un in �,

(19)

completed by the boundary conditions (13)2. For each n = 0, . . . , N − 1, (17), (19) lead to

wn+1 = η2
t

(1 + 
t η2η3)V p
un + wn

1 + 
t η2η3
. (20)

Consequently, the ionic term reads

Iion(un, wn+1) = Gun − G

(
1

V p
+ 1

Vth

)
(un)2 + G

V p Vth
(un)3 +η1un wn+1. (21)

At each step, we apply the PGD model reduction to (19)2, whose weak formulation, for V = H1(�), reads

aσ (un+1, v) = F σ (v) ∀v ∈ V , (22)

with

aσ (un+1, v) =
∫


t σ∇un+1 · ∇v d� +
∫

un+1 v d�, (23)
� �

7
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Table 2
Factorization of the PGD extended bilinear form in (25). Lines for α = 1, . . . , 9 refer 
to the second order term in (23), while the last line (α = 10), refers to the reactive 
contribution.

α ax
α(ux

k , vx
j ) al

α(uσl
k , vl

j) at
α(uσt

k , vt
j)

1 
t(cos2(θ)∂xux
k , ∂x vx

j ) (σlu
σl
k , vl

j) (uσt
k , vt

j)

2 
t(sin2 (θ)∂xux
k , ∂x vx

j ) (uσl
k , vl

j) (σt uσt
k , vt

j)

3 
t(cos (θ) sin (θ)∂y ux
k , ∂x vx

j ) (σlu
σl
k , vl

j) (uσt
k , vt

j)

4 −
t(cos (θ) sin (θ)∂y ux
k , ∂x vx

j ) (uσl
k , vl

j) (σt uσt
k , vt

j)

5 
t(cos (θ) sin (θ)∂xux
k , ∂y vx

j ) (σlu
σl
k , vl

j) (uσt
k , vt

j)

6 −
t(cos (θ) sin (θ)∂xux
k , ∂y vx

j ) (uσl
k , vl

j) (σt uσt
k , vt

j)

7 
t(sin2 (θ)∂y ux
k , ∂y vx

j ) (σlu
σl
k , vl

j) (uσt
k , vt

j)

8 
t(cos2 (θ)∂y ux
k , ∂y vx

j ) (uσl
k , vl

j) (σt uσt
k , vt

j)

9 
t(∂zux
k , ∂z vx

j ) (σlu
σl
k , vl

j) (uσt
k , vt

j)

10 (ux
k , vx

j ) (uσl
k , vl

j) (uσt
k , vt

j)

F σ (v) =
∫
�

(
t In+1
app − 
t Iion(un, wn+1) + un)v d�. (24)

We retain the index σ for the functional F in (22) to be consistent with the notation in Section 2. Actually, in our 
specific problem, the functional at the right-hand side is independent of the parameters.

To apply the PGD approach, we introduce the space W ≡ H1(�) ⊗ L2(Sl) ⊗ L2(St), where Sl and St are the admissible 
ranges for σl and σt , respectively. Then, the extended variational formulation coincides with (2), where

A(u, v) =
∫
Sl

∫
St

aσ (u, v) dσl dσt, F(v) =
∫
Sl

∫
St

F σ (v) dσl dσt . (25)

Again, we preserve the same notation, u and v , despite the dependence on σl and σt . To perform the model reduction, we 
introduce the PGD space

Wm =
{

wm(x;σl,σt) =
m∑

k=1

wx
k(x)wσl

k (σl)wσt
k (σt), wx

k ∈ Vh, wσl
k ∈ Q σl

h , wσt
k ∈ Q σt

h , x ∈ �, σl ∈ Sl,σt ∈ St

}
, (26)

with Vh , Q σl
h and Q σt

h discrete subspaces of V , L2(Sl) and L2(St), respectively. The PGD approximation for the solution at 
time t = tn+1 is defined as

un+1(x;σl,σt) ≈
mn+1

u∑
k=1

un+1,x
k (x)un+1,σl

k (σl)un+1,σt
k (σt). (27)

We observe that the modal index mn+1
u may vary, a priori, at each time. The different contributions of the sum are computed 

up to the fulfillment of criterion (8), while each term un+1,x
k , un+1,σl

k , un+1,σt
k , is computed by the ADS strategy, breaking the 

solution into an iterative fixed-point solver, and alternatively solving for x, σl and σt , as described in Section 2.
The factorization of the forms A and F in (6) leads to

A(δku, v j) =
10∑

α=1

ax
α(ux

k, vx
j)a

l
α(uσl

k , vl
j)a

t
α(uσt

k , vt
j), F(v j) =

N F∑
ϕ=1

F x
ϕ(vx

j)F l
ϕ(vl

j)F t
ϕ(vt

j), (28)

with the modal indices k and j varying in the corresponding modal index range, and where the bilinear and linear 
factors are explicitly provided in Table 2 and 3, respectively. The notation (·, ·) stands for the standard L2-product in �. For 
all the details concerning the derivation of the quantities in Tables 2 and 3, we refer to [67]. In particular, the factorization 
of the linear functional F(v) demands a separated representation also for w , given by

wn+1(x;σl,σt) ≈
mn+1

w∑
ξ=1

wn+1,x
ξ (x)wn+1,σl

ξ (σl)wn+1,σt
ξ (σt), (29)

although, in practice, the gating variable is computed via equation (20). By a direct computation for N F in (28), one verifies 
that
8
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Table 3
Factorization of the PGD extended linear form in (25). The first column provides the number of components for any 
row. As for the indices, we have λ, γ , ζ = 1, . . . , mn

u and ξ = 1, . . . , mn+1
w .

F x
ϕ(vx

j ) F l
ϕ(vl

j) F t
ϕ(vt

j)

1 
t(In+1
app , vx

j ) (1, vl
j) (1, vt

j)

mn
u (un,x

λ , vx
j ) (un,σl

λ , vl
j) (un,σt

λ , vt
j)

mn
u −
tG(un,x

λ , vx
j ) (un,σl

λ , vl
j) (un,σt

λ , vt
j)

mn
u 
tG( 1

V p
+ 1

Vth
)((un,x

λ )2, vx
j ) ((un,σl

λ )2, vl
j) ((un,σt

λ )2, vt
j)(mn

u
2

)
2
tG( 1

V p
+ 1

Vth
)(un,x

λ un,x
γ , vx

j ) (un,σl
λ un,σl

γ , vl
j) (un,σt

λ un,σt
γ , vt

j) with γ > λ

mn
u −
t G

V p Vth
((un,x

λ )3, vx
j ) ((un,σl

λ )3, vl
j) ((un,σt

λ )3, vt
j)

2
(mn

u
2

) −3
t G
V p Vth

((un,x
λ )2un,x

ζ , vx
j ) ((un,σl

λ )2un,σl
ζ , vl

j) ((un,σt
λ )2un,σt

ζ , vt
j) with ζ �= λ(mn

u
3

) −6
t G
V p Vth

(un,x
λ un,x

ζ un,x
γ , vx

j ) (un,σl
λ un,σl

ζ un,σl
γ , vl

j) (un,σt
λ un,σt

ζ un,σt
γ , vt

j) with γ > ζ > λ

mn
umn+1

w 
tη1(un,x
λ wn+1,x

ξ , vx
j ) (un,σl

λ wn+1,σl
ξ , vl

j) (un,σt
λ wn+1,σt

ξ , vt
j)

N F = 1 + 2mu + 2

(
mu

1

)
+ 3

(
mu

2

)
+

(
mu

3

)
+ mumw

= 1 + 4mu + 3

2
mu(mu − 1) + 1

6
mu(mu − 1)(mu − 2) + mumw ,

the time index being omitted to simplify notation. Specifically, in (24), Iapp contributes with a unique function, while the 
term un requires mu functions. For the ionic term (21), the linear term requires mu functions, the quadratic contribution 
demands 

(mu
1

) + (mu
2

)
functions, the cubic term leads to 

(mu
1

) + 2
(mu

2

) + (mu
3

)
functions and the mixed term, in un and wn+1, 

mumw functions. Finally, we remark that while Na (equal to 10 in (28)) only depends on the differential terms identifying 
the bilinear form A and remains unchanged during the PGD iterations and in time, N F changes during the enrichment 
iterations and, additionally, it changes in time, due to the time dependence in Fσ .

Exploiting factorizations (27) and (28) in the inner loop (9)-(10), the generic fixed-point iteration, i, of the three-step 
ADS reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10∑
α=1

ax
α(un+1,x

m,i ,vx
m)al

α(un+1,σl
m,i−1 , un+1,σl

m,i−1 )at
α(un+1,σt

m,i−1 , un+1,σt
m,i−1 ) =

N F∑
ϕ=1

F x
ϕ(vx

m)F l
ϕ(un+1,σl

m,i−1 )F t
ϕ(un+1,σt

m,i−1 )

−
10∑

α=1

m−1∑
k=1

ax
α(un+1,x

k , vx
m)al

α(un+1,σl
k , un+1,σl

m,i−1 )at
α(un+1,σt

k , un+1,σt
m,i−1 ) ∀vx

m ∈ Vh,

10∑
α=1

ax
α(un+1,x

m,i , un+1,x
m,i )al

α(un+1,σl
m,i ,vl

m)at
α(un+1,σt

m,i−1 , un+1,σt
m,i−1 ) =

N F∑
ϕ=1

F x
ϕ(un+1,x

m,i )F l
ϕ(vl

m)F t
ϕ(un+1,σt

m,i−1 )

−
10∑

α=1

m−1∑
k=1

ax
α(un+1,x

k , un+1,x
m,i )al

α(un+1,σl
k , vl

m)at
α(un+1,σt

k , un+1,σt
m,i−1 ) ∀vl

m ∈ Q σl
h ,

10∑
α=1

ax
α(un+1,x

m,i , un+1,x
m,i )al

α(un+1,σl
m,i , un+1,σl

m,i )at
α(un+1,σt

m,i ,vt
m) =

N F∑
ϕ=1

F x
ϕ(un+1,x

m,i )F l
ϕ(un+1,σl

m,i )F t
ϕ(vt

m)

−
10∑

α=1

m−1∑
k=1

ax
α(un+1,x

k , un+1,x
m,i )al

α(un+1,σl
k , un+1,σl

m,i )at
α(un+1,σt

k , vt
m) ∀vt

m ∈ Q σt
h ,

(30)

where, to simplify the notation, we have set mn+1
u = m. Moreover, we have highlighted in bold the term each equation has 

to be solved for.

4.2. Implementation details

For the discrete spaces Vh , Q σl
h and Q σt

h in (26), we choose piecewise linear finite elements (FE) [68]. At the time 
t = tn+1, the initial guess for the external loop is set to un+1,x

0 = un+1,σl
0 = un+1,σt

0 = 0, whereas the contributions determined 
at the m-th ADS iteration are initially set to un+1,x

m,0 = un+1,σl
m,0 = un+1,σt

m,0 = 1 consistently with the Neumann-type boundary 
condition (13)2. As for the tolerances tole and tol f in Algorithm 1, we will select different values to investigate the impact 
of this choice on the performance of the PGD. The linear systems following the discretization of the three ADS steps in 
(30) are solved using the conjugate gradient method with a standard incomplete LU (ILU) right preconditioner [69]. While 
this strategy is appropriate to solve the first ADS step, (30)1, that may lead to large linear systems associated with the 
discretization of the physical space, the remaining steps concern the parametric space and, in general, they require the 
solution of smaller linear systems. Direct solvers may be more efficient in such cases, depending on the linear algebra 
package used. The optimization of this part of the implementation will be object of future works. Simulations were carried 
9
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Fig. 1. (a) Realistic geometry of a 2D portion of a canine ventricular tissue: computational mesh (left) and approximation of the fiber structure (right). 
The segments represent the local cardiac fiber direction, while the colorbar indicates the value of the local fiber angle with respect to the x-axis (unit of 
measurement is in radians). (b) 3D mesh (left) and myocardial fiber orientation from two different viewpoints (center-right) for the real ventricle simulation 
(image from [23]). To appreciate the figures at best, the reader is referred to the color electronic version of this paper.

out in serial, on a workstation equipped with Intel 6-Core i7-7800X CPU 3.50 GHz and 64 GB of RAM. The code was 
implemented in LifeV [70,71], an object oriented C++ parallel finite element library based on the Trilinos project [72], 
developed by different groups worldwide.

5. Numerical investigation of the PGD reduced forward problem

In this section, we analyze the accuracy and the computational efficiency of the PGD technique for the reduction of the 
forward Monodomain model (12)-(13). We focus on realistic geometries, both in 2D and 3D.

5.1. A canine tissue geometry

We consider a realistic geometry of a portion of a canine ventricular tissue [73], both in 2D and 3D settings. Fig. 1(a) 
shows the 2D computational domain featuring 22747 degrees of freedom (DOFs) and the cardiac fiber structure, encoded by 
the parameter θ(x) in (16), approximated to reproduce the experimental activation on the tissue [20]. The 3D geometry is 
obtained by extruding, along the z-axis, the 2D domain as well as the fiber structure (see Fig. 1(b)). The resulting mesh is 0.5 
cm thick and discretized with 136482 DOFs. As mentioned, the cardiac tissue is assumed transversally isotropic, with constant 
values of the longitudinal and transverse conductivities identified by the 2D vector σ̂ = (σl, σt) belonging to the admissible 
space S = Sl ×St = [ml, Ml] ×[mt , Mt] = [0.06, 0.09] cm2/ms×[0.01, 0.04] cm2/ms, (
l = 
t = 0.03 cm2/ms). These bounds 
were manually tuned so to reproduce the realistic wavefront propagation velocities observed in vitro experiments [73,74]. 
Domain S has been discretized with 250 × 250 DOFs, while the simulation time step is set to 
t = 0.2 ms until T = 30 ms. 
One stimulus of Iapp = 250 mV/ms is applied at the top of the domain for a duration of 2 ms. For the sake of brevity, we 
only present results of the PGD approximation of the wavefront propagation (depolarization) as it features the most abrupt 
change in the action potential. The PGD reduction shows a similar behavior in the other phases of the action potential 
dynamics, such as the waveback propagation (repolarization). Henceafter, with an abuse of notation, we use the symbol σ , 
previously identifying the conductivity tensor, to indicate the 2D vector of conductivity values (σl, σt).

Let us first consider the 2D case. One of the primary goals of the following numerical experiments is to investigate the 
interplay between the tolerance tole (associated to the number of modes) and the reliability of the solution. In fact, the lower 
the tolerance, the more accurate the PGD solution. However, this entails higher computational costs in the offline phase 
as more modes are required to converge. We compare the full FE Monodomain discretization, assumed as the reference 
solution, with the PGD approximation, varying tole = 10−4, 10−5, 10−6, and the conductivities. The tolerance of the ADS 
fixed point iterations, tol f , is set to 10−2.

Fig. 2(a) shows the number of modes as a function of the time. We notice that more modes are needed as the excitable 
wave travels through the tissue and the dynamics become more involved. Then, this number suddenly drops at around t 
= 22 ms, when the wavefront propagation terminates. As expected, the number of modes needed for convergence increases 
with lower tolerance values. This results in a heavier computational burden of the offline phase, as highlighted in Table 4. 
However, the computation of the PGD solution in the online phase is remarkably inexpensive. Evaluating the PGD approxi-
mation at a new pair of parameters, (σl, σt), only takes at most 0.2 s in contrast with 15 s of the corresponding FE solution, 
thus reducing the computation time of two orders of magnitude. The rapid evaluation of the PGD solution is critical for 
setting up a fast solver for the inverse problem, as we will verify in the next section.

In terms of accuracy, the quality of the PGD solution depends on the conductivity values which, in this particular case 
where we do not perform any change in the model reaction parameters, are mostly determined by the parameter σt . 
Fig. 2(b) displays the percentage L2-relative error between the FE and the PGD transmembrane potential obtained with 
tole = 10−4, σl = 0.09 cm2/ms, and for σt = 0.01, 0.02, 0.03, 0.035, 0.04 cm2/ms, corresponding to the conduction velocities 
(CVs) = 0.15, 0.21, 0.25, 0.27, 0.29 cm/ms, ordered from the lowest to the highest value. Regardless of the wavefront 
velocity, the discrepancy between the FE and the PGD approximation is minimal after the excitation ends. On the other 
hand, during the potential propagation, the error increases at faster CVs, reaching almost 40% for σt = 0.04 cm2/ms. The 
accuracy of the PGD solution improves for slow CVs. For instance, for σt = 0.01, 0.02 cm2/ms, the error is always below 10%. 
10
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Table 4
2D canine tissue: CPU times of the PGD approach 
for different values of tole , and time demanded by 
the FE solver.

10−4 10−5 10−6 FE

Offline [h] 0.9 4.6 30.5 /
Online [s] 0.1 0.15 0.2 15

Fig. 2. 2D canine tissue: (a) Trend of the PGD modes for different tolerances. (b) Percentage L2-relative error between the FE and the PGD potential, for 
different conductivity values and tole = 10−4. (c) Percentage L2-relative error between the FE and the PGD potential for different tolerances and anisotropy 
ratios. To appreciate the figures at best, the reader is referred to the color electronic version of this paper.

Therefore, we postulate that the PGD basis is informative enough to reproduce slow excitation waves, yet it needs further 
enrichment to accurately capture faster wavefront propagation. This is confirmed in Fig. 2(c) comparing the percentage 
L2-relative error on the potential when reducing the tolerance. Also, let us introduce the anisotropy ratio Ra defined as 
Ra ≡ σl/σt . The solution of the Monodomain equation is known to be sensitive to Ra (see e.g. [29]), so we analyze three 
different values typical for the cardiac tissue [16], Ra = 2, 4, 6, corresponding to σ = (0.07, 0.035) cm2/ms, σ =(0.08, 0.02)

cm2/ms and σ =(0.084, 0.014) cm2/ms, respectively. The case Ra = 2 features the highest CVs as σt takes the greatest value 
(0.035 cm2/ms), whereas the cases Ra = 4, 6 result in a slower propagation. The approximation is overall inaccurate at the 
initial stages of the propagation because of the lack of regularity of the stimulus function Iapp that abruptly goes to zero 
after 2 ms. Then, for the high CV case, Ra = 2, the maximum of the error decreases from roughly 20% for tole = 10−4 to 
approximately 10% and 3% for tole = 10−5, 10−6, respectively. Therefore, enriching the PGD basis is necessary to ensure a 
reasonable accuracy in the case of high CVs. For low CV cases, Ra = 4, 6, the approximation slightly improves in case of a 
richer PGD basis. However, setting tole = 10−4 already guarantees a good approximation as the error is below 10%.

A visual inspection of the differences between FE and PGD transmembrane potentials varying tolerance tole and 
anisotropy ratio is provided in Fig. 3. The snapshots shown are related to the times featuring the highest error. As for 
the PGD solution obtained with tole = 10−4, the CVs are accurately captured for the slow CV cases, Ra = 4, 6 in (b) and 
(c), whereas, for the high CV case, Ra = 2 in (a), the PGD wavefront propagation is slower than the FE one, so that CV is 
underestimated. As expected, a smaller tolerance improves the accuracy, with an associated increment of the computational 
11
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Fig. 3. 2D canine tissue: FE and PGD solutions for different anisotropy ratios and tolerances. The green arrow in (a) points out the stimulation site. (a) 
Ra = 2, σ = (0.07, 0.035) cm2/ms, t = 17 ms. (b) Ra = 4, σ = (0.08, 0.02) cm2/ms, t = 22 ms. (c) Ra = 6, σ = (0.084, 0.014) cm2/ms, t = 25 ms. To 
appreciate the figures at best, the reader is referred to the color electronic version of this paper.

Fig. 4. 2D canine tissue: percentage L2-relative error on the potential (left panel) and trend of the number of modes (right panel) when narrowing the 
admissible interval for σt . This approach improves the accuracy of the PGD approximation in case of high CVs (σ = (0.07, 0.035) cm2/ms). To appreciate 
the figures at best, the reader is referred to the color electronic version of this paper.

cost (compare the PGD solution for tole = 10−6 with the FE approximation). In general, setting tole = 10−5 seems to be the 
most convenient trade-off between accuracy and efficiency.

In view of improving the quality of the PGD approximation in case of high CVs, additional numerical tests were per-
formed by refining the discretization of the admissible space S and by lowering the tolerance of the inner fixed point 
iterations tol f . However, this investigation did not lead to a better accuracy of the reduced solution. On the other hand, 
narrowing the admissible interval for σt (
t ) successfully reduces the error. We keep the admissible interval for σl (
l) 
fixed since, in this test, the CVs mostly depends on σt . In Fig. 4, we analyze the performance of PGD in terms of percent-
age L2-relative error on the potential and number of modes, for 
t = 0.01, 0.02 cm2/ms, and compare this trend with 
the results obtained for 
t = 0.03 cm2/ms, 
l being set to 0.03 cm2/ms. We select tole = 10−4 for the sake of compu-
tational efficiency. Narrower 
t yields an improvement of the PGD approximation, with 
t = 0.01 cm2/ms leading to the 
most accurate results (the error reduces from roughly 20% to 3%). This is reasonable since restricting the admissible interval 
for σt implies less values to explore. Therefore, the more a priori knowledge we have on the parameter values, the better 
the approximation becomes. This strategy is also beneficial to efficiency, as fewer modes are needed for convergence thus 
containing the computational demand of the offline phase.
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Table 5
3D canine tissue: CPU times of the PGD 
approach for different values of tole , 
and time demanded by the FE solver. 
The computation of the PGD solution in 
the online phase is remarkably inexpen-
sive compared with the full FE simula-
tion.

10−4 10−5 FE

Offline [h] 8 41 /
Online [s] 0.6 0.75 330

Fig. 5. Real ventricle: snapshots of the excitation wave propagation (visualized from two different perspectives) simulated using the FE method. The white 
arrow in snapshot t=5 ms, (top) highlights the stimulation site triggering the propagation. To appreciate the figures at best, the reader is referred to the 
color electronic version of this paper.

Moving to the 3D setting, the computational complexity of the offline phase increases as expected. Table 5 shows that 
the offline phase actually takes 8 and 41 hours for tole = 10−4 and 10−5, respectively. The case tole = 10−6 was not 
explored in the 3D context because computationally unaffordable. As for the online phase, adopting the PGD technique is 
extremely convenient since the evaluation of the reduced solution requires at most 0.75 s as opposed to 330 s for the FE 
approximation, as reported in Table 5. This will lead to a striking reduction of the computational costs related to the MICP, 
as we will see in the next section.

In terms of accuracy, the trend of the error with respect to the FE reference solution is rather similar to the 2D case 
when varying the tolerance and the anisotropy ratio, thus we do not report the analysis here for the sake of brevity.

5.2. A real ventricular geometry

In view of clinical applications, we run simulations on a real left ventricular geometry reconstructed from SPECT images 
[45]. The excitation wave was simulated on a mesh with 22470 DOFs. Fig. 1(b) displays the 3D mesh and a realistic rep-
resentation of the fiber structure used in the simulation. The fiber orientation was first obtained on an ellipsoidal domain 
and then adapted to the real domain, following the strategy proposed in [45]. The conductivity values are the same as 
in the previous tests. In this case, the resulting CVs are similar, whereas the influence of the anisotropy ratio Ra on the 
wavefront curvature is more evident. One stimulus of Iapp = 250 mV/ms is applied at the ventricular endocardium, for a 
duration of 2 ms. The electrical propagation simulated with the FE method for σ = (0.08, 0.02) cm2/ms is shown in Fig. 5. 
As shown in Table 6, the offline phase takes 0.8, 4.1 and 32 hours for tole = 10−4, 10−5, 10−6, respectively. On the other 
hand, we emphasize that the online phase is extremely inexpensive as it requires at most 0.2 s as opposed to 60 s of the FE 
simulation. The trend of the error on the potential between the FE and the PGD solution when varying the tolerance, tole , 
and the anisotropy ratio is displayed in Fig. 6. Unlike the previous tests, the three anisotropy ratios show a similar error 
for tole = 10−4, with a loss of accuracy for Ra = 4, 6 in comparison to the canine tissue tests. However, the approximation 
is overall reliable as the error is around 10%. The negative impact of the discontinuity of Iapp on the accuracy of the PGD 
technique is more evident in these experiments as the error at the initial stage of the simulation is around 30%. The relia-
bility of the approximation does not significantly benefit from lower values of tole . Only the case Ra = 2 presents a slight 
reduction of the error, although less significant than the tests with the canine geometry. For Ra = 4, 6, we do not have 
13



A. Barone, M.G. Carlino, A. Gizzi et al. Journal of Computational Physics 423 (2020) 109810
Table 6
Real ventricle: CPU times of the PGD approach for 
different values of tole , and time demanded by 
the FE solver.

10−4 10−5 10−6 FE

Offline [h] 0.8 4.1 32 /
Online [s] 0.1 0.15 0.2 60

Fig. 6. Real ventricle: percentage L2-relative error between the FE and the PGD potential for different tolerances and anisotropy ratios. To appreciate the 
figures at best, the reader is referred to the color electronic version of this paper.

substantial improvement. We argue that, in these cases, the accuracy is determined by the numerical errors of the space 
discretization and the linear systems solution, as simplified tests suggest. However, the mesh progressive refinement may 
significantly increase the off-line computational costs; also, it may become inconsistent with the homogenization behind the 
formulations of Bidomain/Monodomain models (at small scales, different models hold). As we will see, the discrepancies 
presented here between FE and PGD do not prevent anyway a reliable solution of the MICP.

The results are confirmed in Fig. 7 with a visual comparison of the different solutions. Notice that a higher error is 
observed at the ventricular apex, in particular in the cases Ra = 4, 6, because of the complex swirling pattern of the cardiac 
fibers and the geometric curvature of the ventricle that affect the accuracy of the simulations.

6. Estimation of cardiac conductivities using the PGD reduced solution

We verify now that PGD may significantly accelerate the minimization of the misfit functional (18) when solving the 
MICP. Once the PGD solution is available, the value of the functional J as a function of the conductivities is readily com-
puted. This enables the use of nonlinear constrained optimization algorithms, not necessarily developed for differential 
problems. Specifically, we tested our method with a generic solver like the sequential quadratic programming (SQP) method 
[75], implemented by the fmincon routine in MATLAB®. The possibility of using this kind of solvers is clearly a practical 
advantage of the online phase.

We present the results about the conductivity evaluation in a synthetic setting, where the data used as observations 
are generated on a spatial discretization more refined in comparison with the one used for the model reduction. At each 
time step, we also add a Gaussian noise with zero mean and standard deviation equal to p maxx,t |u|, where p is the 
noise-to-signal ratio. Synthetic measurements were recorded every dtsnap = 2 ms for a global duration of T = 30 ms, so 
that 15 voltage recordings are used to calculate J . The observation domain, �obs , consists of 8000 points equally dis-
tributed in the domain, which is comparable with the number of observation points characterizing standard optical mapping 
recordings [73]. The search is constrained to the admissible parametric space S = Sl × St with Sl = [0.06, 0.09] cm2/ms, 
St = [0.01, 0.04] cm2/ms (
l = 
t = 0.03 cm2/ms). We set σ 0 = (0.06, 0.025) cm2/ms as initial guess. We evaluate the 
performance of the PGD method to solve the MICP varying the tolerance tole and the anisotropic ratio, Ra = 2, 4, 6
corresponding to σ = (0.07, 0.035) cm2/ms, σ =(0.08, 0.02) cm2/ms and σ =(0.084, 0.014) cm2/ms, respectively. The com-
putational cost for solving the MICP with PGD is negligible and cannot be directly compared with the variational technique 
used in [24,25], as PGD takes advantage of the offline phase. However, we will demonstrate that the PGD-based solution of 
the MICP is advantageous even when including offline costs.
14
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Fig. 7. Real ventricle: FE and PGD solutions for different anisotropy ratios and tolerances (four left panels) at t = 20 ms. The stimulation point is located 
at the ventricular endocardium, thus it is not visible from this perspective. (a) Ra = 2, σ = (0.07, 0.035) cm2/ms. (b) Ra = 4, σ = (0.08, 0.02) cm2/ms. (c) 
Ra = 6, σ = (0.084, 0.014) cm2/ms. The right panel shows the distribution of the absolute value of the error on the potential [mV] between FE and PGD 
solutions. To appreciate the figures at best, the reader is referred to the color electronic version of this paper.

6.1. PGD-MICP in the canine tissue case

Considering the 2D canine mesh used in Section 5.1, we expect to get a more precise estimation for Ra = 4 since the 
PGD approximation showed to be more accurate than for the other choices of the conductivity pairs (see Fig. 2(c)). The 
reliability of the estimation is assessed by looking specifically at the value of σt since it controls the CVs. Table 7 gathers 
the results varying tole , the anisotropy ratio and p. Regardless of the tolerance selected and the value of p, the best estimates 
are obtained for σ exact = (0.08, 0.02) cm2/ms, the PGD approximation being in such a case closer to the FE solution. The 
recovery of the parameter σt is particularly precise and exhibits a low sensitivity to p, meaning that we can reconstruct the 
true propagation dynamics with a reliable prediction for the CVs. On the contrary, more variability affects σl estimates. This 
is in accordance with the results in Section 5.1, where we noticed that the PGD solution depends more on the parameter 
σt , which controls the CVs, while it is less sensitive to the value of σl . As for the other conductivity pairs, the estimation 
obtained with tole = 10−4 is less precise, especially for the high CV case, Ra = 2, consistently with the fact that the PGD 
error is higher in this case, as shown in Fig. 2(c). An overall improvement of the results is evident for lower tolerance values. 
For tole=10−6, the estimates are accurate and robust with respect to the presence of noise in the data.

In view of a better estimation in the case of high CVs, we restrict the admissible range for σt , by choosing a length 

t = 0.01 and 0.02 cm2/ms, respectively. The same strategy has been used in Section 5.1 to reduce the error of the PGD 
approximation (see Fig. 4). Table 8 shows a more precise estimation when using 
t = 0.01 cm2/ms both for tole = 10−4

and 10−5. This agrees with the results in Fig. 4 where, for 
t = 0.01 cm2/ms, the PGD method is able to capture fast 
propagating excitable waves. Regarding 
t = 0.02 cm2/ms, an improvement is visible only for tole = 10−5. Results are robust 
with respect to the percentage of noise p. The extremely fast evaluation of the reduced solution in the PGD online phase 
makes inversion remarkably inexpensive. In fact, solving the MICP using the PGD approximation of the transmembrane 
potential requires, at most, only 30 s (see Table 9).

The results presented so far suggest some practical ideas on using the PGD for solving the MICP, even with tole = 10−4. 
In a sort of Predictor-Corrector approach, the PGD with a large tolerance can be used to inform a second-level computation. 
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Table 7
2D canine tissue: conductivity estimation provided by the PGD-MICP procedure varying 
the external tolerance, the anisotropy ratio and the percentage of noise. For the sake of 
readability, we display the conductivities in mm2/ms.

p = 1%, [σ ] = mm2/ms

Ra = 2 Ra = 4 Ra = 6
σ exact =(7.00,3.50) σ exact =(8.00,2.00) σ exact =(8.40,1.40)

tole=10−4 (6.57,3.28) (8.11,1.93) (8.98,1.29)
tole=10−5 (6.93,3.96) (7.71,1.96) (8.57,1.34)
tole=10−6 (6.90,3.56) (7.80,1.96) (8.22,1.35)

p = 5%, [σ ] = mm2/ms

Ra = 2 Ra = 4 Ra = 6
σ exact = (7.00,3.50) σ exact = (8.00,2.00) σ exact = (8.40,1.40)

tole=10−4 (6.56,3.27) (7.91,1.93) (8.97,1.31)
tole=10−5 (6.95,3.96) (7.76,1.95) (8.78,1.35)
tole=10−6 (6.83,3.56) (7.84,1.97) (8.31,1.35)

p = 10%, [σ ] = mm2/ms

Ra = 2 Ra = 4 Ra = 6
σ exact = (7.00,3.50) σ exact = (8.00,2.00) σ exact = (8.40,1.40)

tole=10−4 (6.55,3.24) (8.05,1.93) (8.98,1.30)
tole=10−5 (6.96,3.97) (7.73,1.95) (8.44,1.36)
tole=10−6 (6.82,3.56) (7.91,1.96) (8.26,1.35)

Table 8
2D canine tissue: estimation of the conductivity σ exact =
(0.07, 0.035) provided by the MICP-PGD procedure varying the ex-
ternal tolerance, the length of the admissible domain 
t for σt

and the percentage of noise. For the sake of readability, we dis-
play the conductivities in mm2/ms.

tole = 10−4, [σ ] = mm2/ms

p = 1% p = 5% p = 10%


t =0.03 (6.57,3.28) (6.56,3.27) (6.55,3.24)

t =0.02 (7.85,3.71) (7.86,3.73) (7.84,3.71)

t =0.01 (6.91,3.33) (6.90,3.32) (6.91,3.35)

tole = 10−5, [σ ] = mm2/ms

p = 1% p = 5% p = 10%


t =0.03 (6.93,3.96) (6.95,3.96) (6.96,3.97)

t =0.02 (6.40,3.66) (6.39,3.66) (6.40,3.65)

t =0.01 (6.80,3.35) (6.75,3.35) (6.82,3.34)

Table 9
Execution time [s] associated with the MICP-PGD approach varying the ex-
ternal tolerance. The times are average values since they may vary depend-
ing on the realization of the noise random variable and on the initial guess 
of the optimization procedure.

2D canine tissue 3D canine tissue Real ventricle

tole=10−4 22 154 32
tole=10−5 25 180 36
tole=10−6 30 / 40

The latter can be performed either with PGD again but with a much narrowed exploration interval for the parameters (as 
suggested in Section 5.1) or with a full-order solution, i.e. using the classical FE solver. The latter idea was used here in 
the case of σ exact = (0.07, 0.035) cm2/ms and tole = 10−4. Solving the MICP with a FE approximation and starting from the 
PGD estimate σ 0 = (0.0657, 0.0328) cm2/ms takes 527 s to reach convergence with the final estimation σ = (0.07, 0.0349)

cm2/ms, to compare with 3293 s needed starting from σ 0 = (0.06, 0.025) cm2/ms to reach a similar estimate, precisely, 
σ = (0.0702, 0.0360) cm2/ms.

The MICP with PGD technique has been tested in the 3D canine domain as well. As the PGD approximation for the 
propagation of the transmembrane potential in 3D yields results similar to the 2D case, we do expect results qualitatively 
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Table 10
3D canine tissue: conductivity estimation provided by the PGD-MICP procedure 
varying the external tolerance, the anisotropy ratio and the percentage of noise. 
For the sake of readability, we display the conductivities in mm2/ms.

p = 1%, [σ ] = mm2/ms

Ra = 2 Ra = 4 Ra = 6
σ exact = (7.00,3.50) σ exact = (8.00,2.00) σ exact = (8.40,1.40)

tole=10−4 (6.78,3.21) (8.07,1.98) (8.98,1.32)
tole=10−5 (6.97,3.98) (7.82,1.99) (8.38,1.37)

p = 5%, [σ ] = mm2/ms

Ra = 2 Ra = 4 Ra = 6
σ exact = (7.00,3.50) σ exact = (8.00,2.00) σ exact = (8.40,1.40)

tole=10−4 (6.90,3.20) (8.11,1.97) (8.96,1.31)
tole=10−5 (6.98,4.00) (8.56,1.99) (8.38,1.39)

p = 10%, [σ ] = mm2/ms

Ra = 2 Ra = 4 Ra = 6
σ exact = (7.00,3.50) σ exact = (8.00,2.00) σ exact = (8.40,1.40)

tole=10−4 (6.81,3.25) (8.13,1.96) (9.00,1.32)
tole=10−5 (6.97,4.00) (7.92,1.99) (8.45,1.39)

comparable to the ones obtained in the 2D framework also in terms of conductivity estimation. This is confirmed in Ta-
ble 10. We obtain better results for σ exact = (0.08, 0.02) cm2/ms with high precision for the parameter σt and a general 
improvement of the estimation when decreasing the tolerance value to 10−5. We highlight also for this test case the huge 
computational saving provided by the combination of MICP with PGD. In fact, despite the large number of DOFs of the 3D 
mesh (roughly 135 K), the solution of the inverse problem only requires about 180 s when tole = 10−5, as highlighted in 
Table 9.

6.2. PGD-MICP in the real ventricular case

Finally, we analyze the estimation obtained in the real left ventricular test case. As previously discussed, the PGD ap-
proximation applied to this geometry is more sensitive to the anisotropy ratio, Ra , and features higher errors (see Fig. 6). 
Therefore, the precision of the inversion may be affected. From Table 11, we note that using the PGD basis obtained with 
tole = 10−4 leads to acceptable results only for σ exact = (0.07, 0.035) cm2/ms, whereas, in the other tests, the estimates are 
fairly inaccurate, especially for σl . The estimates become more accurate as the tolerance decreases and reasonably match the 
exact conductivities in the case σ exact = (0.07, 0.035) cm2/ms and σ exact = (0.08, 0.02) cm2/ms, whereas the estimation of 
σl for σ exact = (0.084, 0.014) cm2/ms still lacks accuracy even for tole = 10−6. This agrees with the error pattern shown in 
Fig. 6, where, for these particular parameter values, the discrepancy between FE and PGD solutions increases when reducing 
the tolerance. A possible strategy, in this case, is to refine the space discretization for the PGD solver. Table 9 confirms the 
computational advantages led by solving the MICP with PGD, estimations being obtained in at most 40 s.

7. Conclusions and perspectives

The patient-specific customization of mathematical models is a crucial step to bring numerical modeling into the clin-
ical routine. Unfortunately, the high computational costs of standard data assimilation procedures conflict with clinical 
time frames. Ideally, one would like to have a nearly real-time estimate of the patient-specific parameters. Specific model 
reduction methods that may retain the clinical accuracy of the full model (i.e., the accuracy needed for diagnosing or 
decision-making), with a significant improvement of the computational efficiency are crucial, for instance, in uncertainty 
quantification and parameter estimation (see, e.g., [76–81]).

In the specific field of electrophysiology, the need of an accurate estimation of the conductivities in the Monodomain 
problem is associated with many possible applications, for instance when dealing with the optimal placement of a pace-
maker or the identification of ablation sites [82–86]. Parameter estimation calls for accurate and efficient model reduction 
techniques. However, consolidated model reduction techniques, like the POD, may suffer from a non optimal selection of 
the snapshots. In this paper, a snapshot-free model order reduction technique like PGD is adopted, thus circumventing one 
of the main drawbacks of POD. In spite of a significant offline cost, the minimal cost of the online phase makes PGD very 
competitive with respect to other model reduction techniques, in particular, when involved in multi-query contexts, such 
as the resolution of inverse problems. We notice that the accuracy of the results presented for the inverse problem is 
competitive with the full order methods tested and validated in [24,25]. When dealing with inverse problems, the intrinsic 
ill-conditioning in general prevents a highly accurate parameter identification, yet the accuracy is expected to be sufficient 
for the medical applications.
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Table 11
Real ventricle: conductivity estimation provided by the PGD-MICP procedure varying the 
external tolerance, the anisotropy ratio and the percentage of noise. For the sake of read-
ability, we display the conductivities in mm2/ms.

p = 1%, [σ ] = mm2/ms

Ra = 2 Ra = 4 Ra = 6
σ exact = (7.00,3.50) σ exact = (8.00,2.00) σ exact = (8.40,1.40)

tole=10−4 (6.53,3.46) (8.98,1.56) (7.10,1.22)
tole=10−5 (6.79,3.77) (7.40,1.88) (7.40,1.31)
tole=10−6 (6.75,3.62) (7.57,2.06) (7.70,1.45)

p = 5%, [σ ] = mm2/ms

Ra = 2 Ra = 4 Ra = 6
σ exact = (7.00,3.50) σ exact = (8.00,2.00) σ exact = (8.40,1.40)

tole=10−4 (6.54,3.45) (9.00,1.57) (7.20,1.21)
tole=10−5 (6.81,3.78) (7.36,1.88) (7.46,1.20)
tole=10−6 (6.78,3.62) (7.56,2.06) (7.71,1.43)

p = 10%, [σ ] = mm2/ms

Ra = 2 Ra = 4 Ra = 6
σ exact = (7.00,3.50) σ exact = (8.00,2.00) σ exact = (8.40,1.40)

tole=10−4 (6.55,3.45) (8.90,1.56) (7.21,1.21)
tole=10−5 (6.80,3.77) (7.31,1.94) (7.41,1.27)
tole=10−6 (6.79,3.60) (7.58,2.06) (7.69,1.46)

What presented here is just a preliminary step of a more complex series of possible developments. Among these: (1) the 
extension to more complex ionic models (and, eventually, to the Bidomain model) is not trivial, as the modeling of the ionic 
terms requires a specific factorization of the increased linear functional F ; (2) the implementation of the PGD approach 
to include spatial dependent conductivities would allow us to alleviate the computational burden of the estimation when 
dealing with clinically relevant cases, such as scarred tissues, or different experimental scenarios [25]; (3) the rapid solution 
of the online phase makes affordable the introduction of Uncertainty Quantification techniques, like the Bayesian ones. This 
is a critical step for the self-assessment of the quality of the parameter estimation; (4) the cost of the offline phase could 
be dumped if recyclable on different geometries. This calls for the construction of a PGD library of offline solutions on a 
reference geometry to be successively mapped onto a real patient-specific morphology. While this approach might slow 
down the online phase, the overall benefit for a large pool of patients and, eventually, for clinical applications could be 
potentially high; (5) finally, there is the need of a deep theoretical analysis of the well-posedness of the problems solved by 
the PGD, and the convergence of the iterative solvers, to identify rigorously the conditions that guarantee the functionality 
of the approach and, possibly, appropriate acceleration techniques.

Encouraged by the extremely positive results reached in this work, we plan to pursue these developments in the next 
future.
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