
The Journal of Systems and Software 156 (2019) 268–282

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Reproducing performance bug reports in server applications: The

researchers’ experiences

Xue Han, Daniel Carroll, Tingting Yu

∗

Department of Computer Science, University of Kentucky, Lexington, KY 40508, United States

a r t i c l e i n f o

Article history:

Received 22 October 2018

Revised 11 June 2019

Accepted 28 June 2019

Available online 29 June 2019

Keywords:

Performance bug reproduction

Bug characteristics study

Experience report

a b s t r a c t

Performance is one of the key aspects of non-functional qualities as performance bugs can cause sig-

nificant performance degradation and lead to poor user experiences. While bug reports are intended to

help developers to understand and fix bugs, they are also extensively used by researchers for finding

benchmarks to evaluate their testing and debugging approaches. Although researchers spend a consid-

erable amount of time and effort in finding usable performance bugs from bug repositories, they often

get only a few. Reproducing performance bugs is difficult even for performance bugs that are confirmed

by developers with domain knowledge. The amount of information disclosed in a bug report may not

always be sufficient to reproduce the performance bug for researchers, and thus hinders the usability

of bug repository as the resource for finding benchmarks. In this paper, we study the characteristics of

confirmed performance bugs by reproducing them using only informations available from the bug re-

port to examine the challenges of bug reproduction from the perspective of researchers. We spent more

than 800 h over the course of six months to study and to try to reproduce 93 confirmed performance

bugs, which are randomly sampled from two large-scale open-source server applications. We (1) studied

the characteristics of the reproduced performance bug reports; (2) summarized the causes of failed-to-

reproduce performance bug reports from the perspective of researchers by reproducing bugs that have

been solved in bug reports; (3) shared our experience on suggesting workarounds to improve the bug re-

production success rate; (4) delivered a virtual machine image that contains a set of 17 ready-to-execute

performance bug benchmarks. The findings of our study provide guidance and a set of suggestions to

help researchers to understand, evaluate, and successfully replicate performance bugs.

© 2019 Elsevier Inc. All rights reserved.

a

e

p

m

b

e

t

d

i

s

t

i

B

d
1. Introduction

Software performance is critical to the quality of the software

system. Unlike functional bugs that typically cause system crashes

or incorrect results, a performance bug can cause significant per-

formance degradation (Attariyan et al., 2012) which leads to prob-

lems such as poor user experience, long response time, and low

system throughput (Bugzilla, 2016; Han et al., 2012; Jin et al., 2012;

Nistor et al., 2013a; Wert et al., 2013). For instance, performance

bugs have occurred on well-tested software such as the Internet

Explorer installed on Windows systems (Han et al., 2012), and have

caused severe damages to the user experience.

Compared to functional bugs, performance bugs are substan-

tially more difficult to handle (Attariyan et al., 2012; Dean et al.,

2014) because they often manifest themselves through large inputs
∗ Corresponding author.

E-mail addresses: xue.han@uky.edu (X. Han), drca234@g.uky.edu (D. Carroll),

tyu@cs.uky.edu (T. Yu).

s

u

e

o

https://doi.org/10.1016/j.jss.2019.06.100

0164-1212/© 2019 Elsevier Inc. All rights reserved.
nd specific execution environments (Nistor et al., 2013a; Olivo

t al., 2015). Thus, traditional testing such as coverage-based ap-

roaches may not be effective. To address performance issues, nu-

erous research efforts, especially on dynamic techniques, have

een made to analyze, detect, and fix performance bugs (Burnim

t al., 2009; Han et al., 2012; Jin et al., 2012; Jovic et al., 2011; Nis-

or et al., 2013b; Olivo et al., 2015). Although these techniques can

etect performance bugs in the benchmark applications they stud-

ed, their effectiveness in real-world large-scale software projects,

uch as server applications, is largely unknown. This is partly due

o the fact that finding performance bugs to be used for evaluation

s difficult.

Many modern software projects use bug tracking systems (e.g.,

ugzilla, 2016 , Github Issue Tracker (GitHub, 2008)) that allow

evelopers and users to report issues they have identified in the

oftware. While bug reports are intended to help developers to

nderstand and fix bugs, they are also used by researchers to

valuate a proposed testing or debugging approach. Researchers

ften rely on the description of a confirmed performance bug

https://doi.org/10.1016/j.jss.2019.06.100
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.06.100&domain=pdf
mailto:xue.han@uky.edu
mailto:drca234@g.uky.edu
mailto:tyu@cs.uky.edu
https://doi.org/10.1016/j.jss.2019.06.100

X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282 269

r

e

i

c

d

(

m

b

s

d

o

o

e

a

t

a

p

t

p

a

t

v

e

d

m

w

b

f

f

f

i

f

m

r

o

p

e

n

f

t

b

t

s

s

t

M

i

d

W

9

s

r

p

m

o

a

s

p

S

2

e

i

t

t

f

u

t

t

r

(

d

p

s

T

t

d

2

L

t

H

s

1 https://github.com/xha225/PerfBugReplication .
eport to reproduce the performance bug to be used in their

valuation. A failed-to-reproduce performance bug in this work

s defined as a confirmed reproducible performance bug that

annot be reproduced by non-domain experts such as researchers

ue to the lack of domain knowledge or environment limitations

e.g., compilation, dependencies, etc). A failed-to-reproduce perfor-

ance bug is likely to be discarded by researchers when it cannot

e reproduced according to the bug report. Therefore, the bug

election and reproduction process is very challenging and may

iscourage researchers from trying a lot of potential bugs that are

f the interest to the proposed approach.

In a recent paper Dean et al. (2014) on dynamic detection

f performance bugs, the authors state “the bug reproduction is

xtremely time-consuming and tricky due to limited and often

mbiguous information, which sometimes takes a month for us

o reproduce one bug”. In more than 30 performance testing

nd diagnosis papers we studied, none of them described how

erformance bugs are reproduced. To the best of our knowledge,

here is no study or experience report showing what has caused

erformance bugs to be so difficult to understand and reproduce.

A high-quality bug report requires inputs, reproducing steps,

nd test oracles. One challenge for performance testing tools is that

hey generally require a large amount of workload or specific en-

ironment settings to expose performance bugs. However, in our

xperience, we found that even using the described inputs, repro-

ucing steps, and test oracles from bug reports, performance bugs

ay still not be reproduced. One natural question to ask is what

ould be the other factors that lead to failed-to-reproduce bugs

eyond the quality of bug report itself. It would be very help-

ul if we can identify these factors, and suggest solutions to the

ailed-to-reproduce bugs to increase the chance of success in per-

ormance bug reports reproduction.

The goal of this work is to share our experience in reproduc-

ng performance bug reports by investigating the impact of dif-

erent factors on both reproduced and failed-to-reproduce perfor-

ance bugs from open-source project confirmed performance bug

eports. We provide a set of workarounds to increase the chance

f success in performance bug reproduction. Our study targets re-

roducing performance bugs from the perspectives of non-domain

xpert researchers, rather than understanding and characterizing

on-reproducible bugs from the viewpoints of developers. There-

ore, the scope of our study focuses on performance bug reports

hat have already been confirmed and resolved by developers. One

ig difference compared to the prior work is that we specifically

arget confirmed performance bugs to report why from the per-

pective of non-domain experts such as software engineering re-

earchers may not succeed in reproducing such bugs. We studied

wo large open-source server projects: Apache HTTP Server and

ySQL database. Because performance bugs are more prevalent

n applications that are large-scale and handle a large quantity of

ata over a long period of time, we focus on server applications.

e randomly selected, analyzed, and conducted reproduction of

3 bugs in total. The results of this study mainly aim to help re-

earchers to better understand the challenges in performance bug

eproduction and propose solutions to facilitate the bug selection

rocess.

The main findings and contributions of our study are as follows:

• We tried to reproduce performance bugs that were solved by

developers by following the description of the bug reports. Af-

ter six months of effort, we were able to reproduce 17 out of

93 bugs. We found that a majority of performance bugs (81%)

failed to be reproduced.
• We studied the characteristics of 17 reproduced performance

bug reports. A majority (88%) of them can be reproduced with

no more than three inputs and most (53%) of them required
specific workloads; 10 bug reports involved transient perfor-

mance bugs that must be observed during the reproduction.

A significant portion (59%) of reproduced performance bug re-

ports required more than two action steps.
• Among 17 reproduced performance bugs, only two of them can

be reproduced by directly following the bug report description.

However, the other 15 bugs required workarounds to be repro-

duced.
• We studied different factors of performance bugs that we

failed to reproduce after months of effort. These factors include

hardware dependency, OS dependency, component dependency,

source code unavailability, compilation error, installation error,

missing step, and lack of symptoms. Missing step, OS depen-

dency, and lack of symptoms were in the dominant majority

(39%).
• We further examined reasons why performance bugs failed to

be reproduced on the first attempt. We provided a list of strate-

gies for increasing the chance of successfully reproducing the

performance bugs.
• While this study primarily targets researchers in selecting per-

formance bugs, we provided a set of implications for both re-

searchers and practitioners on developing techniques for testing

and diagnosing performance bugs, improving the quality of bug

reports, and detecting failed-to-reproduce bug reports.
• We made our datasets publicly available and provided a virtual

box image that contains 17 benchmark programs. 1

The rest of the paper is organized as follows. We first present

otivating examples in Section 2 . We then describe our method-

logy for choosing subject applications, the bugs selected to study,

nd the threats to validity in Section 3 . Our results are demon-

trated in Section 4 , followed by discussions in Section 5 . We

resent related work in Section 6 and end with conclusions in

ection 7 .

. Motivating examples

We refer to software performance bugs as programming (Nistor

t al., 2013a; 2013b) and configuration errors that cause signif-

cant performance degradation. They can adversely affect speed,

hroughput, and responsiveness of the system, which lead to

he poor user experience. Some other terms such as “per-

ormance problem” and “performance issue” are also widely

sed (Nistor et al., 2013a). In this paper, we use these terms in-

erchangeably.

We use three examples of performance bug reports to answer

he following questions: (1) What are limitations in confirmed bug

eports that can lead to the failed-to-reproduce performance bugs?

2) What can we do to increase the chance to successfully repro-

uce a confirmed performance bug?

We illustrate three difficulty levels of reproducing confirmed

erformance bugs from the perspective of non-domain experts

uch as software engineering researchers with three bug reports.

he difficulty level ranges from hard-level (“failed-to-reproduce”)

o medium-level (“reproducible with effort”) to easy-level (“repro-

ucible”).

.1. Hard-level: Apache bug #58037

The bug reporter observed a noticeable time delay in

ightweight Directory Access Protocol (LDAP) authentication after

he Apache server was upgraded from version 2.2 to version 2.4.

owever, we were not able to reproduce this performance bug for

everal reasons. First, the minor version of the faulty Apache server

https://github.com/xha225/PerfBugReplication

270 X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282

c

m

s

t

t

s

M

t

v

s

o

u

d

t

3

s

c

l

m

t

a

fi

c

3

3

A

c

h

e

g

t

3

A

b

p

“

t

s

t

w

a

p

t

c

t

b

p

e

t

p

e

t

e

b
was not mentioned in the bug report. Since there are 34 releases

under Apache v2.2, on average, compiling and installing Apache

from source code can take anywhere between 20 and 50 min; it

is too time-consuming (up to 28 h in the worst-case) to pinpoint

the faulty version. We finally adopted a version that is closest to

the timeline when the performance bug was reported, but we were

still not able to reproduce the bug because of the other two rea-

sons.

Second, the bug report indicates that configuration option

LDAPConnectionPoolTTL in the LDAP module must be set to

0 for reproducing the bug. Since exposing the bug heavily relies

on the LDAP module, we believe that more than one configuration

option must be set to proper values, but they are not mentioned

in the report. Third, the bug report describes the symptom as “we

noticed that it would take longer and longer to check out a large

repository.” It is not clear about how large “a large repository” is.

However, such information is essential to closely resemble the re-

quired input loads to reproduce the performance bug and to ob-

serve the expected symptom. Although we used our best guesses

to set up the program and the environment, tried different levels

of input workloads, and followed the reproduction steps as closely

as possible, we still failed to observe the symptom described in the

bug report.

2.2. Medium-level: Apache Bug #27106

The bug reporter observed a memory leak that led to a sys-

tem slowdown when running tests using the Apache benchmark.

Specifically, when testing using an HTTP request with an SSL-

enabled port, memory used by the httpd process grew rapidly.

While the bug report did describe the bug-triggering inputs (i.e.,

HTTP request) and the observed symptom (increased memory us-

age), we were still having a lot of trouble reproducing the bug.

First, the description of the environment setup was ambiguous.

The information of the Linux operating system (OS) version under

which the bug happened was missing. In addition, dependency

modules, such as the OpenSSL module, that should be enabled

with the Apache server v2.0.45 are not mentioned. Apache must

be re-configured to include the OpenSSL module during the com-

pile time. Second, the description of inputs is incomplete. The bug

reporter suggest using Apache benchmark (ab) to trigger the bug,

but the parameters passed to the ab are not specified. Apache

benchmark that comes with v2.0.45 does not support Hypertext

Transfer Protocol Secure (HTTPS). We need to find an ab version

that does support HTTPS. Third, the description of the observed

symptoms was unclear. The bug reporter should have asked users

to watch memory usage on the main thread of Apache (e.g. by

using the Linux system monitoring tools such as ps to show

process status). Instead, the reporter posted a raw trace and let

readers figure out what information is important.

To reproduce this bug report, we spent about 10 h to research

on plausible components to fill in the missing information to suc-

cessfully reproduce the performance bug. We first build Apache

with default settings to make sure the specific version (v2.0.45)

works. We use the release date of Apache v2.0.45 to identify a

compatible OpenSSL version (i.e., OpenSSL v0.9.7a). To observe the

performance bug symptom, we use the Apache benchmark ab to

request 10,0 0 0 pages with 50 threads enabled: “ab -n 10,0 0 0 -c 50

https://localhost:443/”.

2.3. Easy-level: MySQL Bug #74325

This performance regression bug happens in MySQL v5.7.5.

When compared to MySQL v5.7.5, MySQL v5.0.85 is four times

faster in updating an indexed column. The bug reporter provides
oncrete information on the bug-triggering inputs, the environ-

ent setup, and the observed bug symptom.

First, the input passed to the mysqlslap benchmark tool is

pecified. The bug reporter also suggests that specific configura-

ion options (e.g. query_cache_size) are needed for triggering

he performance bug. Second, the description of the environment

etup is accurate and concise. The reporter clearly indicates the

ySQL version (i.e., v5.7.5) from which the performance deteriora-

ion can be observed, as well as the software components and their

ersions that MySQL v5.7.5 depends on. Finally, the description of

ymptom is clear enough to determine the performance bug: “Inn-

DB is more than 2X slower than5.6.21” in MySQL v5.7.5 “when

pdating to indexed column”. Since this bug report contains more

etailed information than the other two bugs, we spent about 5 h

o successfully reproduce the bug.

. Case study

Our study has two main objectives. First, we intend to under-

tand why reproducing performance bugs from bug reports are

hallenging. Second, we want to understand how to design so-

utions to increase the chance of successfully reproducing perfor-

ance bugs. Therefore, we consider the following research ques-

ions.

RQ1: How difficult is it to reproduce performance bug reports

nd what are the characteristics of the reproduced bug reports?

RQ2: What are the major factors that cause reproducing con-

rmed performance bug reports to fail?

RQ3: What strategies can be used to improve the chance of suc-

ess in reproducing confirmed performance bug reports?

.1. Data sets

.1.1. Studied subjects

We chose two large popular open-source server projects:

pache HTTP Server and MySQL Server. With publicly accessible

ode base and well-maintained bug systems, these two subjects

ave been widely used by existing bug characteristic studies (Jin

t al., 2012; Yin et al., 2011; Zaman et al., 2012). The selected pro-

rams are listed in Column 1 of Table 1 . Both projects started in

he early 20 0 0s and each has over ten years of bug reports.

.1.2. Data collection

We collected performance bugs from the bug system of

pache (ASFB, 2016) and MySQL (MySQLBug, 2016). We searched

ug systems using a set of commonly used general keywords and

hrases to describe the symptoms of performance bugs, such as

slow”, “latency”, and “low throughput”. We also searched terms

hat attribute to a specific aspect of the performance problems

uch as “CPU spikes”, “cache hit”, and “memory leak” to iden-

ify performance bugs. Next, for Apache, we selected bug reports

ith a status field of “RESOLVED”, “VERIFIED”, or “ClOSED”, and

 resolution field of “FIXED”. For MySQL, we selected bug re-

orts marked as “FIXED” or “PATCH APPROVED/QUEUED”, and with

he severity level field set to “NOT FEATURE REQUEST”. We fo-

us on fixed/closed reports because when examining bug reports

o find executable benchmarks, they are more reliable than open

ug reports and often adopted by researchers for evaluation pur-

oses (Burnim et al., 2009; Han et al., 2012; Jin et al., 2012; Jovic

t al., 2011; Nistor et al., 2013b; Olivo et al., 2015). More impor-

antly, the decision to choose bug reports from confirmed bug re-

orts is in line with our study goal, that is, to explore and experi-

nce from the viewpoint of researchers, how challenging it is to try

o reproduce performance bugs from bugs reports that are consid-

red to be reproducible by dedicated application developers. Some

ut not all projects provide designated tags for different categories

X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282 271

Table 1

Subject characteristics.

Subject Init Rel Last Rel #Sampled #Failed #Rep Success Rate

Apache 2.0 2002 2013 20 16 4 20%

Apache 2.2 2005 2017 31 26 5 16%

Apache 2.4 2012 2017 4 3 1 25%

MySQL 5.0 2005 2012 19 16 3 15%

MySQL 5.1 2008 2013 15 12 3 20%

MySQL 5.5 + 2010 2017 4 3 1 25%

SUM – – 93 76 17 –

Init Rel. = The year of the initial release. Last Rel = The year of the most recent release.

#Sampled = Number of performance bug reports sampled in our study.

#Rep = Number of reproduced performance bug reports.

#Failed = Number of failed-to-reproduce performance bug reports.

Success Rate = Percentage of reproduced performance bug reports.

o

i

o

t

d

s

b

s

t

a

S

v

d

m

p

s

t

b

6

w

t

a

c

o

e

t

a

t

a

m

l

e

3

t

V

a

n

r

a

i

i

1

(

c

d

d

I

b

p

t

d

t

f

t

(

t

d

c

t

r

b

b

b

f

b

c

b

a

o

i

s

i

s

3

b

t

c

g

A

a

b

t

r

fi

p

b

h

3

e

a

d

c

a
f bugs. For example, in the MySQL bug system, the bug sever-

ty tag “S5 (Performance)” is used to mark performance bugs. In

ur approach, we want to make the process as general as possible,

herefore, our method does not rely on the performance tags.

The whole process yielded a total of 564 bugs. With a confi-

ence level of 95% and a confidence interval of 5, the calculated

ample size is 229. We randomly selected 229 bugs out of the 564

ugs and conducted a manual examination. During the manual in-

pection, we follow those bug reports that have sufficient informa-

ion in bug descriptions and discussions posted by commentators,

nd decide whether the inspected bug is a performance bug or not.

pecifically, the sufficient information includes bug symptoms in-

olving performance issues, such as system’s slow down, from the

iscussion of the bug report. If we cannot find the symptom infor-

ation from the bug report, we cannot determine if the bug is a

erformance bug. For example, some bug reports simply provide a

tack trace. We also examine the number of configuration options

hat are discussed in the various modules involved in the sampled

ug reports. For Apache and MySQL, we have identified a total of

10 and 1240 configuration options respectively.

To ensure the correctness of our results, the manual inspections

ere performed independently by two inspectors (the first two au-

hors). They both have experiences in using servers such as Apache

nd MySQL. We hold two discussion session to define what we

onsider to be a performance bug and how to keep a record of

ur findings. Each inspector is given the same set of bug reports

ach week, they meet twice a week to compare and consolidate

heir findings. A bug report is selected only when both inspectors

gree on the outcome of the manual inspection. For bugs where

he results differ, the authors and the inspectors discussed to reach

 consensus. As such, the examination yielded a total of 93 perfor-

ance bugs. Column Subject and #Sampled of Table 1 list the re-

ease versions of the subjects and performance bugs selected from

ach version.

.1.3. Study setup

We build the environment as a virtual disk image (VDI) on

he VirtualBox (VirtualBox, 2016) for flexibility and portability. The

DI provides great portability in the sense that it can be loaded

s a disk image wherever the VirtualBox is installed. This conve-

ience offers the possibility to provide a ready-to-run image for

esearchers without having them go through a lot of environment

nd project setup. The exact configuration other than the operat-

ng system is capped only by the host machine. The host machine

s running on Mac OS X with a dual-core 3 GHz Intel Core i7 CPU,

6GB of memory, and 512GB of hard drive. For the guest machine

VDI), we use the Ubuntu 14.04 LTS operating system with a single

ore 3 GHz Intel Core i7 CPU, 4GB of memory, and 120GB of hard

rive. For performance bugs that require more resources, we con-

uct experiments on a machine equipped with a 6 core 2.66 GHz
ntel CPU, 36GB memory, and 256GB hard drive. For each of the 93

ugs, we ask both inspectors to follow the description of a bug re-

ort to reproduce the bug. The bug reproduction process involves

wo general steps: environment setup and performance bug repro-

uction. The whole process took around 800 h in total.

A bug is marked as reproduced if it can reveal the same symp-

om as described in the bug report. If we fail to reproduce a per-

ormance bug, the bug is marked as failed-to-reproduce . There are

hree major reasons when we mark a bug as failed-to-reproduce:

1) if the failure is due to the lack of hardware environment; (2) if

he bug report provides insufficient instructions on steps to repro-

uce the bug; (3) if we follow all the steps in the bug report but

annot observe the symptom. Note that when we talk about a bug

hat is failed-to-reproduce, we do not mean the bug is indeed non-

eproducible. We reserve the use of the term “non-reproducible

ug” to application developers — only they can determine what

ugs should be marked as non-reproducible. A failed-to-reproduce

ug, on the other hand, is a bug with unknown reproducibility

rom our (the researchers’) perspective. For a confirmed bug, the

ug reporter should know how to reproduce the bug, however,

rucial information, such as steps to reproduce the bug, may have

een left out from the discussion in the bug report. For example,

n extensive discussion may have been carried out in a mail-list,

r through private messages and conversations. Regardless, such

nformation may not be present in the bug report. From the per-

pective of researchers who try to reproduce a bug directly follow-

ng the instructions available in the bug report, such bugs are con-

idered failed-to-reproduce.

.1.3.1. Environment setup. Before executing the program against its

ug-triggering inputs to reproduce the bug, we will need to setup

he execution environment. Environment setup typically involves

hoosing the target operating system, build, deploy the faulty pro-

ram, and configure various software and hardware dependencies.

n indication of passing the environment step includes the avail-

bility of the faulty program version, its dependencies, a successful

uild (if needed), and a functional program. For example, we failed

o install the database server in MySQL bug #15811 with an er-

or message saying “recipe for target ’install’ failed”. We could not

nd a solution to fix this installation error. Since we failed to re-

roduce the performance bug in the environment setup step, this

ug is marked as failed-to-reproduce . As a matter of fact, less than

alf (41 out of 93) bugs passed the environment setup step.

.1.3.2. Performance bug reproduction. After the bug reproduction

nvironment has been successfully setup, the next step is to actu-

lly reproduce the bug. If the symptom of the bug matches what is

escribed in the report, it is considered reproduced ; otherwise it is

onsidered failed-to-reproduce . Specifically, we execute the program

gainst the bug-triggering inputs, follow its reproduction steps, and

272 X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282

b

u

n

i

w

i

“

m

p

1

f

s

N

c

a

o

b

2

r

p

s

a

W

r

w

l

i

u

w

F

e

m

c

a

r

l

w

b

4

t

4

d

t

t

t

S

s

e

e
observe the output described in the bug report. The bug-triggering

inputs often come from three sources: user inputs, configurations,

and environment parameters (e.g., network bandwidth, memory,

etc). A user input is often associated with a user-entered input

(e.g., a file) or an input action such as issuing a particular HTTP

request method (e.g., GET or POST) to request a particular type of

web page. One or more configuration options are also sometimes

needed to trigger performance bugs. For example, in Apache bug

#37680, the configuration option “Listen” is required. In addition,

inputs coming from external environment can affect reproducing a

bug because exposing performance bugs may require the system to

reach a specific level of load (e.g., a web server with a high volume

of network traffic).

During the bug reproduction process, if no concrete input val-

ues for the three input sources are specified, we use random val-

ues or the default values provided by the program. For example,

in MySQL bug #27501, we start the database server with default

settings as no specific runtime configurations were provided.

We next follow the steps of bug reproduction described in the

bug report (e.g., Apache bug #54852 has a section describing re-

production steps). If there are no specific steps provided, we try

different solutions based on our experience and expertise. For ex-

ample, Apache bug #43081 does not give enough information on

the nature of a “busy” machine. We infer that the server is busy

serving long connected requests based on the context of the bug

report.

Finally, to determine whether a reported performance bug is

successfully reproduced, we need to compare the observed symp-

tom (i.e., long execution time) with the symptom described in the

bug report. Unlike functional bugs in which their outputs are de-

terministic (e.g., an error message), performance bugs often use

non-functional measures such as response time, throughput, and

utilization (e.g., memory, and CPU usage) (Molyneaux, 2009). The

values of such performance measures usually depend on the exe-

cution environment, so it is likely that a measured symptom ob-

served in our execution environment is different from that de-

scribed in the bug report. To address this problem, we examine

the performance difference between a previous non-faulty version

(or the patched version) and a faulty version. If the difference is

proportional to the difference described in the bug report, the bug

reproduction is considered successful.

3.2. Threats to validity

The primary threat to the external validity for this study in-

volves the representativeness of our subjects and bug reports.

Other subjects may exhibit different behaviors. Our study examines

two popular open-source server applications (i.e. one web server

and one database server) written in C/C++ and the result may not

be generalized to other types of software such as client-side appli-

cations like a web browser. Data recorded in bug tracking systems

and code version histories can have a systematic bias relative to

the full population of bug fixes (Bird et al., 2009) and can be in-

complete or incorrect (Aranda and Venolia, 2009). However, we do

reduce this threat to some extent by using popular open-source

projects and bug systems for our study. The second source of po-

tential threat involves the age of bug reports. Since the sampled

bug reports span over ten years, the way of performance bugs be-

ing reported may change as time passes by. This may somewhat af-

fect the methodological consistency. We have examined these bug

reports and found that such changes are minimal. The third threat

is related to the type of bugs studied. In this paper, we are focusing

on performance bugs, findings in performance bugs may not nec-

essarily confirm in other types of bugs in terms of reproducibility.

The primary threat to the internal validity involves the use of

keyword search and manual inspection to identify performance
ugs. To minimize the risk of incorrect results given by the man-

al inspection, bug reports were labeled (as performance bugs or

ot) independently by two inspectors. The recall of our approach

s estimated to be 50%. This is mainly due to fact that the key-

ord often does not carry a lot of information in the context. For

nstance, when searching for performance bugs with the keyword

slow”, the bug returned talks about a potential fix for the bug

ay cause the application to slow down. The bug itself is not a

erformance issue. To compute this recall, we randomly sampled

00 bugs and manually inspected each of them. We found six per-

ormance bugs, of which only three were found by the keyword

earch and manual inspection. Such an approach is also used by

istor et al. (2013a) . The risk of not analyzing all performance bugs

annot be fully eliminated. However, combining keyword search

nd manual inspection is an effective technique to identify bugs

f a specific type from a large pool of generic bugs, which has

een successfully used in prior studies (Jin et al., 2012; Nistor et al.,

013a; Yin et al., 2011).

Another source of potential threat involves the lack of system

esources (e.g., operating systems and hardware) necessary for re-

roducing certain performance bugs. Because Windows and Mac

ystems are proprietary, getting the appropriate license and OS im-

ge poses a higher challenge. We managed to try a few OSs (e.g.

indows) used in the bug report but failed to reproduce the bugs

equiring specific OS versions. For Unix-like systems, some soft-

are components are no longer available. A few compilation prob-

ems may be fixed and more bugs could potentially be reproduced

f we have the knowledge on the specific version of the compiler

sed to compile the subject discussed in a bug report. Last, certain

orkaround proposed may not be suitable for some researchers.

or instance, even though in our experience we can use the binary

xecutable instead of compiling the project from source code, this

ethod may not work for researchers who wish to work on source

ode (e.g. developing code analysis techniques).

The primary threat to construct validity involves the dataset

nd metrics used in the study. To mitigate this threat, we used bug

eports from the bug systems of the two subjects, which are pub-

icly available and generally well understood. We have also used

ell-known metrics in our data analysis such as the number of

ugs, which is straightforward to compute.

. Results

We now present our results for each of the three research ques-

ions.

.1. RQ1: Reproduced bug reports and their characteristics

Column #Rep and #Failed of Table 1 list the number of repro-

uced and failed-to-reproduce bugs across different versions of the

wo subjects.

Finding 1: A majority (82%) of reported performance bugs
fail to be reproduced. The rate to successfully reproduce a
performance bug report is low.

We next provide further details about the characteristics of

he reproduced bug reports, shown in Table 2 . The characteris-

ics of the failed-to-reproduce bug reports will be discussed in

ection 4.2 .

When reproducing a server performance bug, environment

etup, data inputs, configuration options, and input actions are four

ssential elements. Fig. 1 shows an example of the use of the four

lements in Apache bug #48024. Environment setup refers to the

X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282 273

Table 2

Reproduced bugs and their characteristics.

Sub BugID Set Inp Opt Load Act Order Duration Workaround

Apache 54852 12 0 1 YES 4 YES Transient YES

Apache 52914 9 2 2 NO 3 YES Permanent NO

Apache 37680 6 1 2 NO 7 YES Permanent YES

Apache 22030 12 1 0 NO 2 YES Permanent YES

Apache 51714 11 1 0 YES 7 YES Permanent YES

Apache 43081 10 0 6 YES 3 YES Transient YES

Apache 48024 13 1 3 YES 3 YES Transient YES

Apache 46749 16 1 2 YES 3 YES Permanent YES

Apache 27106 19 1 1 YES 2 YES Permanent YES

Apache 38017 10 1 9 NO 3 YES Permanent YES

MySQL 21727 8 1 1 NO 2 YES Transient YES

MySQL 44723 8 1 1 YES 2 YES Transient YES

MySQL 74325 14 1 2 YES 2 YES Transient YES

MySQL 15653 15 1 1 NO 3 YES Transient YES

MySQL 26938 16 1 1 NO 2 YES Permanent NO

MySQL 54989 11 1 1 NO 3 YES Permanent YES

MySQL 54914 13 1 1 YES 2 YES Transient YES

Avg. – 12 1 2 YES (53%) 3 YES (100%) Permanent (53%) YES (88%)

Set = Number of steps to setup environment for reproducing the reported bug.

Inp = Number of input parameters. Opt = Number of configuration options.

Load = Whether a specific workload is needed.

Act = Number of input actions needed for triggering the bug after environment setup.

Order = Whether a specific order of actions is needed.

Duration = The duration of a performance bug symptom.

Workaround = Whether reproducing the bug requires workarounds.

Fig. 1. Reproducing Apache Bug #48024.

s

i

r

u

c

W

g

t

i

t

r

A

m

u

e

fi

a

i

t

a

m

c

f

v

(

i

i

p

o

t

q

fi

s

g

t

l

r

(

m

s

i

a

u

h
teps to install OS and set up specific application components (e.g.

n Fig. 1 , we have enabled the sed module for Apache) that are

equired to reproduce a performance bug. Data input refers to the

ser-supplied data (e.g. in Fig. 1 we have used a static file that

ontains a single line) that is used to trigger a performance bug.

orkload is the amount of processing that the computer has been

iven to do in a given time (Techtarget, 2006). Workload describes

he intensity of data inputs. In the above example, the size of the

nput file defines the workload for the sed filter. Configuration op-

ions (e.g. in Fig. 1 we have included the ProxyPass option) cor-

espond to the customizable items in the configuration file. The

pache mod_headers module “provides directives to control and

odify HTTP request and response headers”. For instance, “Header

nset Content-Length” removes the Content-Length header. How-

ver, in this paper, we do not consider the HTTP headers as con-

guration options. Input action refers to the logical steps to take

fter environment setup for the performance bug to manifest (e.g.

n Fig. 1 , the action includes issuing an HTTP request).

Column Set of Table 2 lists the number of steps required for set-

ing up the performance bug reproduction environment. We define

 step as a single operation that can be completed by a shell com-

and. For instance, to compile the source code with GNU make
ommand is treated as one step.
Finding 2: Among 17 reproduced bug reports, a majority
(65%) of them require more than 10 steps to setup the re-
production environment.

The results suggest that the environment for reproducing a per-

ormance bug is complex. Fig. 1 shows part of the 13 steps of en-

ironment setup for reproducing Apache bug #48024.

Columns Inp of Table 2 lists the number of input parameters

e.g., files) needed for triggering the performance bug. The results

ndicate that 15 out of 17 reproduced performance bugs require

nput parameters and 14 bugs require only one parameter. The in-

ut parameters in all 15 bugs involve files. This is because many

perations offered by the subject applications require input files

o function. For instance, in the Apache HTTP Server, when a re-

uest command is issued, it is normally associated with a type of

le that is being requested, such as the example in Fig. 1 . Occa-

ionally, the content of the file plays an important role in trig-

ering the performance bug. For example, in Apache bug #51714,

he Perl script used to trigger the bug contains code to generate a

arge HTTP range header. In other cases, such as an Apache server

estart, no input parameters are needed.

Finding 3: A large portion (82.3%) of reproduced bug reports
require specific input parameters. A majority (13 out of 14) of
them require only one input parameter.

Column Opt of Table 2 lists the number of configuration options

specified both as in configuration files and command line argu-

ents) that lead to the performance bug. These options need to be

et to particular levels, whereas values of the other options do not

nfluence the exposure of the bug (or reproducibility of the bug)

nd thus can be set to arbitrary values. For example, in Apache bug

52914, two configuration options in the mod_reqtimeout mod-

le RequestReadTimeout body and RequestReadTimeout
eader are required to trigger a CPU spike. The results indicate

274 X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282

Table 3

Workload type.

Workload type Description Bug example

Web

Traffic

Concurrent web page requests Apache 54852

Long HTTP connection sessions Apache 43081

Database Large number of database tables MySQL 15653

Concurrent updates on DB tables MySQL 74325

Fig. 2. Order of input actions.

f

s

s

o

u

i

s

i

a

a

(

d

i

l

w

4

r

o

i

c

t

o

a

s

e

r

e

s

t

c

e

that 15 out of 17 reproduced performance bug reports are related

to specific configuration options. Such configuration options would

require a value that goes above or below a threshold to trigger the

performance bug, while other configuration option values remain

default. 14 performance bugs require less than 3 configuration op-

tions.

Finding 4: A significant percentage (88.2%) of performance
bugs require setting up specific configuration options to be
reproduced. The majority (80%) of these bugs are related to
only one option.

Column Load of Table 2 reports whether a specific level of

workload is required for reproducing the bug. The results indi-

cate that among 17 reproduced bugs, a majority (53%) of them

need a specific level of workloads to trigger the bugs. For in-

stance, in Apache bug #51714, a Perl script is used to gener-

ate a large volume of HTTP request loads. Each HTTP request

header has a large value in the Range field to get bytes from

the server. Table 3 summarizes the types of workloads in the 17

reproduced bug reports, including network traffic and database

operations.

Finding 5: Almost half (53%) of the reproduced performance
bugs require a specific level of workloads to manifest.

Column Act of Table 2 lists the number of input actions re-

quired for reproducing the reported performance bug. We define

an input action as one logical step towards triggering the perfor-

mance bug after the environment setup. For example, in Fig. 1 ,

sending an HTTP request is an action.

Finding 6: A majority (88%) of the reproduced performance
bug reports require no more than 3 input actions.

Column Order of Table 2 reports whether reproducing a re-

ported performance bug requires a specific order of input actions.

The results indicate that all 17 reproduced bug reports require

multiple input actions to trigger the performance bugs. This is be-

cause our studied subjects are server programs, their reproduc-

tions must start with the action of starting the server . In MySQL

bug #26938, a performance bug occurs as the database server

froze over a list of recently used statements. To trigger this bug,

the following steps are involved: (1) start a database server using

“./bin/mysqld_safe”; (2) connect to a database server from a SQL

client using “./bin/mysql”; (3) issue a SQL command using “show

profile;”. Nevertheless, the order of input actions matters in 9 bugs

even after the server started. For example, to trigger a CPU spike in

Apache bug #37680, a sequence of input actions must follow the

specific order, as shown in Fig. 2 .
Finding 7: The specific order of events is important in 52.9%

of the reproduced bugs that require multiple input actions.

Column Duration of Table 2 reports the life span of the per-

ormance bug symptom. Permanent symptom indicates that the

ymptom is always observable once it is exposed, whereas tran-

ient symptom means that the symptom appears for a short period

f time and then disappears.

Finding 8: A significant portion (47%) of bug reports involve
transient symptoms.

For instance, in Apache bug #48024, when (1) Apache is config-

red as a reverse proxy server, (2) the SED respond content filter

s enabled, and (3) a request to a file contains long characters in a

ingle line, CPU suddenly spikes to 100%. However, this symptom

s only observable when Apache is processing the requested file for

bout 5 s. Afterward, the CPU usage level returns to a normal state.

Column Workaround of Table 2 reports whether reproducing

 performance bug requires efforts to workaround the difficulties

e.g., ambiguous description, version inconsistencies) in the report

escription.

Finding 9: A majority (88%) of reproduced bug reports re-
quire workarounds.

For example, in MySQL bug #44723, the do_abi_check block

n Makefile.in fails the build due to a change of behavior in the

ater versions of GCC. After removing the block, MySQL compiles

ith no problems.

.2. RQ2: Factors leading to failed-to-reproduce performance bug

eports

Before we can improve the practice to increase the chance

f success in reproducing performance bug reports, we want to

dentify major factors that cause the reproduction to fail. We

lassify the root causes of reproduction failures of the 76 failed-

o-reproduce bugs into eight categories: hardware dependency,

perating system (OS) dependency, component dependency, un-

vailable source code, compilation error, installation error, missing

tep, and lack of symptom. The eight categories are mutually

xclusive when assigning bugs to a category. For instance, a bug

eport may have “missing step” but if we run into the “compilation

rror” problem, the bug report will not be counted under “missing

tep” unless we can workaround the “compilation error” step. In

his case, the same bug will be counted once in each of the two

ategories. The distribution of performance bug reports in the

ight categories is summarized in Fig. 3 .

X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282 275

Fig. 3. Bug reproduction failure factor distribution.

m

F

o

i

s

i

a

h

M

S

o

c

p

o

r

c

a

g

a

i

a

t

p

a

s

t

e

t

s

p

e

b

p
Finding 10: Among all failed-to-reproduce bugs, the majority
(74%) of them are due to OS dependency (20%), compilation

error (16%), missing step (20%), and lack of symptom (18%).

Hardware dependency refers to performance bugs that can

anifest themselves with only specific hardware resources.

or example, reproducing MySQL bug #51325 requires 40 GB

f memory to be configured for the configuration option

nnodb_buffer_pool_size . However, the required memory

ize exceeds the total amount of memory in our machine.

OS dependency refers to performance bugs that are operat-

ng system (OS) dependent, thereby failed-to-reproduce under our

vailable OS (i.e., Ubuntu Linux). In several cases of our study, we

ave no access to the OSs described in the bug reports, such as

icrosoft Windows and Mac OS X. For example, in Apache bug

56271, high memory consumption is observed on a Windows

erver 2008 machine. We had no success in reproducing this bug

n Linux; we suspect that exposing this performance bug requires

alling OS-specific services (e.g., system calls).

Component dependency refers to performance bugs that are de-

endent on external software components but cannot be setup in
ur environment. For example, in Apache bug #38602, JBoss v3.2 is

equired to verify if Apache keeps sockets open when KeepAlive
onfiguration option is set to on . Since JBoss is no longer free, we

re not able to have it installed for reproducing the bug.

Source code unavailability refers to the version of a pro-

ram cannot be retrieved from the source code distribution

rchives (apacheArchive, 2017; mysqlArchive, 2017). For instance,

n MySQL bug #30414, the specific versions (e.g., v5.1.20, v5.1.21)

re not found on the official distribution archive site.

Compilation error refers to the situation that the program fails

o be compiled due to unsolvable compiler flags and/or library de-

endencies. For instance, in Apache bug #37680, make fails due to

 missed library libexpat.so.0 .
Installation error refers to the case that a program fails to be in-

talled due to reasons such as the installation utility cannot locate

he files to be deployed. For instance, in MySQL bug #15811, when

xecuting make install , it reports an error message “recipe for

arget install-pkg include HEADERS failed”. This is because the in-

tallation cannot locate certain header files.

Missing step refers to the lack of information on the steps of re-

roducing performance bugs. Ideally, we want to repeat the steps

xactly as what are described in the bug report. Unfortunately,

ug reporters tend to make optimistic assumptions about the ex-

ertise of bug report readers and often skip some critical steps

276 X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282

t

f

e

o

4

s

m

v

i

p

b

r

e

q

b

r

O

t

4

m

i

b

u

m

s

v

b

i

f

fi

c

b

4

d

f

m

x

A

s

b

4

s

fi

t

a

s

p

n

4

e

a

t

a

a

c
for reproducing the performance bug. For instance, in Apache bug

#43238, the bug reporter suggests to benchmark the Apache server

with HTTPS requests. However, the specific approach to benchmark

the web server is not described. Sometimes instructions on how

to observe the symptom are unclear. For example, in Apache bug

#48215, the extra negotiation of SSL connection is being reported,

but it is not clear in the bug description on how to observe such

behavior. Some would argue that a web debugging proxy utility

such as Fiddler can be used, however, if the bug report could pro-

vide clear instructions, the extra research on setting up may have

been avoided to cause further confusion.

Lack of symptom refers to when the expected symptom is not

observed. For instance, in Apache bug #38737, the bug report de-

scribes a stall during server shutdown but we are not able to ob-

serve the stall in any of the processes. Unlike functional bugs, we

cannot examine the expected program behavior by looking at the

program output. To determine if a program has performance is-

sues, we instead rely on performance bug symptoms such as long

response time, a low throughput, or excessive use of system re-

sources. Sometimes the level of magnitude is inconsistent with

the symptom being reported. For example, in Apache bug #44026,

when the web server is configured as a forward proxy, it should

exhaust all available memory after a few thousand requests. How-

ever, in our experiment, we only observed a slight memory in-

crease even after millions of requests are made. In any case, it is

difficult for others to confirm the existence of a performance bug.

Fig. 3 summarizes the categories and the total number of bug

reports falling into each category. As the results show, missing step,

OS dependency, and lack of symptom are the top three factors

leading to the failure of reproduction over the total number of

failed-to-reproduce performance bug reports. The results also in-

dicate that the factors vary across different subject programs. For

example, source code unavailability is a major factor in MySQL but

not in Apache. We conjecture that the reason is that code release

policy differs across organizations. Table 4 describes 24 representa-

tives failed-to-reproduce performance bug reports under each fac-

tor.

4.3. RQ3: Workaround the issues in failed-to-reproduce performance

bug reports

Given the challenges of reproducing performance bug reports,

we next describe the strategies we employed to increase the suc-

cess of bug reproduction.

4.3.1. Hardware dependency

It is not always possible to have the exact same hardware set-

tings as the original bug report. Our experience shows it is not al-

ways necessary either. In Apache bug #44026, it is reported that

the reverse proxy server exhausted 16 GB of memory, but we only

have 4 GB of memory on our machine. We are still able to repro-

duce this bug as long as we can observe the symptom that all 4 GB

memory is exhausted. This implies that, in certain cases, we do not

have to be restricted to the hardware settings stated in the bug re-

port for bug reproduction.

4.3.2. OS dependency

If a performance bug does not require a specific version of OS,

it is possible to use a different OS in the same family. For instance,

Apache bug #37680 is reported on Fedora Linux. Although our OS

is Ubuntu, we can still reproduce the bug because both OSs are

based on Linux and the bug does not require a specific function-

ality provided by Fedora. Another example is Apache bug #45445,

while the bug report states that Windows Server 2003 is needed

to reproduce the bug, other Windows systems such as Windows

XP can also be used for the bug reproduction as commented in
he report. On the other hand, if the performance bug depends on

eatures in a specific OS, the bug is unlikely to be reproduced. For

xample, reproducing Apache bug #18526 requires the process pri-

ritization component that is only provided by OS X.

.3.3. Component dependency

A bug report may not contain information about the dependent

oftware components. For instance, Apache bug #27106 does not

ention which version of OpenSSL is used. If we use the latest

ersion, it may not have good backward compatibility. In addition,

f a bug is triggered under a specific version of its dependent com-

onent, using a different version may not be able to expose the

ug. Our solution is to find out the timeline of the bug report and

etrieve the component version within the same time period. For

xample, in Apache bug #27106, exposing the performance bug re-

uires installing OpenSSL, whose version is not mentioned in the

ug report. Since the bug happens on Apache v2.0.48, which was

eleased in October 2003, we can narrow down the range of the

penSSL versions and use OpenSSL v0.9.7 to successfully reproduce

he bug.

.3.4. Source code unavailability

In a bug report description, the specific source code version

ight not be available. This problem can often be solved by us-

ng the source code of a previous version. Since a performance

ug may not catch developers’ attention immediately, the bug is

nlikely to be fixed right away. This can make the bug appear in

ultiple versions prior to the reported program version. For in-

tance, Apache bug #54852 is reported to exist in v2.2.x prior to

2.2.24, so we can select any version in v2.2.x to reproduce the

ug. As another solution, if the faulty version is not available but

ts fixed version and code patch are available, we can restore the

aulty version from the fixed version. In Apache bug #48024, the

x is introduced in its v2.4.x version, and by removing the patched

ode, we are able to generate a faulty version and reproduce the

ug.

.3.5. Compilation error

In large-scale software projects, the compilation is typically

one through build utilities such as configure and CMake
or C/C ++ programs. A build error can sometimes be fixed by

odifying the program source code. For instance, in Apache bug

27106, the compilation fails because of a compatibility issue on

86_64 machines for Apache v2.0.48. The solution is to change

PR_HAVE_SCTP = 1 to APR_HAVE_SCTP = 0 in apr.h. Another

olution to workaround compilation error is to install a pre-built

inary distribution.

.3.6. Installation error

Installation is the last step towards completing environment

etup. Installation may fail due to the lack of permission to deploy

les to a privileged directory. In such cases, on the Linux system,

he root permission is normally required. In other situations such

s the source distribution cannot locate header files as we have

een in MySQL bug #74325, we workaround this problem by de-

loying the database server to a SQL directory that contains the

eeded files.

.3.7. Missing step

For example, in Apache bug #48024, the SED module consumes

xcessive memory when handling a file with long characters on

 single line. To reproduce this bug, we need a back-end server

hat sits behind a reverse proxy, but details of what to be used as

 back-end server are left out. To address this problem, we make

n assumption that any web server that can serve HTTP requests

ould be used as a back-end web server. Therefore, we searched for

X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282 277

Table 4

Failed-to-reproduce performance bugs.

Problem Subject BugID Bug Description & Explanation

MySQL 61188 Slow performance on dropping compressed tables

The bug requires 20 GB of memory to manifest

Hardware MySQL 64258 High read timeout on InnoDB engine causes longer mutex wait

Dependency Lack of SSD on dev environment

Apache 24448 Java applet consumes significant CPU while Apache used as a proxy

Bug requires a hardware device to host backend server

MySQL 52102 InnoDB plugs has worse performance than built-in InnoDB engine

OS Bug requires Microsoft Windows

Dependency MySQL 18526 Thread priority is enabled by default on OS X which lowers performance

Bug requires OS X

Apache 38602 Web server does not keep HTTP connections alive

Component JBoss v3.2 is not available

Dependency Apache 45834 Authentication takes up to 15 mins to finish with mo_authnz_ldap module

The firewall that sits between servers is unknown

MySQL 26079 Database hangs during binlog rotation when InnoDB engined is used

Source Code MySQL v5.1.14 is not available

Unavailability MySQL 30414 Performance regression in throughput tests when logging is enabled

MySQL v5.1.21 and v5.1.20 are not available

Apache 35686 Memory leak due to the multi-threaded MPM worker module

Apache fails to build with OpenSSL

Apache 12757 LDAP cache fails to create cache file on all processes except the first one.

Compilation GCC is not compatible with the source code

Error Apache 38403 Child thread consumes 100% CPU as Apache used as a reverse proxy server

Configure utility failed with an syntax error message

MySQL 24148 Database hangs when closing SSL connections

MySQL failed to recognize OpenSSL and crashed

MySQL 15811 Long execution time of insert statements with multi-byte character sets

Installation errors out with recipe for target x failed

Installation MySQL 26527 SQL insertion with LOAD DATA INFILE is very slow in partitioned tables

Error make install failed with message “recipe for target failed”

MySQL 77094 System log buffer mutex contention

Failed to install the specific sysbench version

Apache 45445 The connection timeout causes stalling on unreachable backend servers

Bug requires a busy server with long-lived requests

Apache 22106 Embedded SSI slows down web pages

Missing Lack of information on bug reproduction steps

Step MySQL 27501 A significant increase in kernel time due to excessive getrusage() calls

Steps to reproduce the bug are very limited

MySQL 38551 Query cache consumes CPU time even when it is turned off

Lack of instructions on how to trigger the bug

Apache 44026 Server memory surges to 16 GB when used as forward proxy

The expected level of memory usage is not observed

MySQL 15815 Queries take significant longer if multiple queries are running concurrently

Lack of Linear time instead of exponential decay is observed

Symptom MySQL 20876 CPU spikes when creating 5k + tables with large FIL_SYSTEM_HASH_SIZE

Cannot observe the difference by adjusting option values

MySQL 39253 Large query cache causes extended blocked mutex wait time

Cannot observe the symptom specified in the bug report

“

f

fi

r

c

t

4

w

c

s

p

f

f

b

o

r

w

fi

p

a

l

t

t

w

r

m

p

r

o

r

n

u

t

t

h

s

b

t

s
simple web server” and used the SimpleHTTPServer module

rom Python as the back-end web server. The performance bug was

nally successfully reproduced. The take-home message is that, to

eproduce bugs in server applications, depending on the type of

omponents that are not provided, we might easily find substitutes

o workaround the issue.

.3.8. Lack of symptom

Performance bug symptoms describe the expected output we

ish to observe when reproducing a performance bug. In many

ases, however, we are not able to observe the symptoms. For in-

tance, in Apache bug #38017, the web server is used as a reverse

roxy but fails to serve content from cache, and thus causes a per-

ormance slowdown. The bug report suggests searching for a “_de-

ault_” string in the log, which is an indicator of this performance

ug. However, we do not find this string in the log generated from

ur environment. As an alternative solution, we monitor the HTTP

esponse status in the log and search for an HTTP status code 304,

hich is also an indicator that the cached content is not modi-

ed (apacheCaching, 2017). Not all performance bug symptoms are

ermanent. For example, in Apache bug #48024, a CPU spike only
ppears after requesting a large file and returns back to the normal

evel. The level of CPU usage is unnecessarily high and could lead

o more serious problems on a busy server. It is difficult to notice

he symptom without any external tools. To handle this problem,

e leverage the Linux top command and record CPU utilization pe-

iodically to observe the bug symptom.

Table 5 provides a quick reference to the problems of perfor-

ance bug report reproduction and their solutions. Table 6 re-

orts the effectiveness of workarounds applied to the failed-to-

eproduce bug reports for the eight failing factors. Column #Failed

f Table 6 lists the number of (initially) failed-to-reproduce bug

eports falling into each category. Column #Workaround lists the

umber of bug reports that workarounds have been applied. Col-

mn Suc. Rate reports the success rate of workarounds applied

o the failed-to-reproduce reports. For example, among 18 failed-

o-reproduce bug reports requiring specific OSs that we do not

ave in our environment, we fixed three of them and thus the

uccess rate is 17%. Column #Reproduced reports the number of

ugs that can be successfully reproduced with workarounds. Note

hat when a workaround has been applied to a bug report in one

tep does not imply the bug can be successfully reproduced be-

278 X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282

Table 5

Performance bug reproduction problems and suggestions

Problem Suggestions

Hardware

Dependency

Hardware limitation: adjust system resource to be used in proportion to the bug report

specification. In MySQL bug #51325, the buffer pool is set to 20 GB and 40 GB respectfully. It

is advised to allocate 80% of the system memory to the buffer.

Accordingly, we use 1.5 GB and 3 GB on a machine that has 4 GB memory.

OS OS not available: choose an alternative distribution in the same operating system family.

Dependency In some cases, bugs reported on a specific Linux system can be run on a different Linux

distribution. For instance, in Apache bug #38602, v2.2 can also run on Ubuntu although the

bug is originally reported on RedHat.

Component

Dependency

Missing the application version: sometime when the exact application version is not available in

the bug report, we can use the timestamp on the bug report against the timeline of when

each version is made available to reduce the scope of application versions that we must try.

Source Code

Unavailability

Source code unavailable: restore the faulty version if a patch and a working version are

available. In Apache bug #48024, the exact server version is not available to download.

Instead, we know that a patch has been applied to v2.4, and by removing the patch from this

version, we can reconstruct the faulty version.

Compilation

Error

Error with online solution: adjust source code and makefile; Error without online solution: use

a pre-built binary distribution. In MySQL bug #54989, when we try to compile executables

from the source code, we received a CMake error message with no online solutions available.

Since the offending source code is of not special interest in our investigation, we use a

pre-compiled binary distribution instead.

Installation

Error

Missing files during installation: try to skip deploying non-essential files. For instance, when we

install openssl v0.9.7, the installation failed due to the manual file cannot be found. Since the

manual is not essential to our purpose, we choose to install without manual file.

Missing Step Vague description: follow through the report discussion. Missing workload instructions:

synthesize a load simulation targeting specific requirements. To simulate a long running

request, telnet is used in reproducing Apache bug #43081.

Lack of

Symptom

Fail to observe symptoms: find alternative bug indicators. In Apache bug #38017, it is suggested

that a “_default_” string should be searched in the log as an evidence for the miss cache hit

performance bug. Since we can not find this string, instead we monitor HTTP status code 304

to confirm that content is served form the cache.

Table 6

Workaround efficiency and effectiveness.

Problem #Failed #Workaround Suc. Rate #Reproduced Est. Effort

Hardware Dependency 5 1 20% 0 1 to 2 h

OS Dependency 18 3 17% 0 1 to 2 h

Component Dependency 8 1 13% 0 3 to 5 h

Unavailable Source Code 10 5 50% 5 1 to 2 h

Compilation Error 17 5 29% 5 1 to 5 h

Installation Error 4 1 25% 1 1 to 5 h

Missing Step 20 5 25% 5 3 to 5 h

Lack of Symptom 14 1 7% 1 3 to 5 h

#Failed = Number of failed-to-reproduce performance bug reports.

#Workaround = Number of bug reports required workarounds.

Suc. Rate = Percentage of bug reports with successful workarounds.

Reproduced = Number of reproduced performance bug reports.

c

p

s

v

e

5

5

b

i

t

l

p

c

b

t
cause it may encounter other problems that cannot be resolved.

The last column reports an estimated researchers’ effort in finding

the workarounds.

Finding 11: A non-trivial portion (22.9%) of failed-to-
reproduce performance bugs can be reproduced by applying
workarounds.

5. Discussion

We share our experience in reproducing performance bug re-

ports in two open source server applications. Specifically, we study

eight major factors that make performance bug report reproduc-

tion difficult and summarize possible solutions to increase the suc-

cess of the reproduction. In this section, we summarize the impli-
ations learned from our study. The first part is geared towards

ractitioners, since they reflect the state-of-the-art practices. The

econd part provides a roadmap for researchers who plan to de-

elop new tools and techniques for addressing performance issues,

specially in server applications.

.1. Implications to researchers

.1.1. Fine-grained techniques on detecting missing information in

ug reports are needed

Existing research on characterizing and predicting missing

nformation in bug reports has been focusing on understanding

he description of bug reports. Chaparro et al. (2017) use machine

earning to automatically predict if a bug report contains com-

lete information for understanding and reproduction. Although

ompleteness of bug report description is important, it may not

e sufficient to reproduce performance bugs. Our results suggest

hat reproducing performance bugs can be affected by a variety

X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282 279

o

d

a

i

5

s

t

I

t

i

e

t

d

a

5

c

e

i

p

a

c

c

o

o

t

l

K

b

m

c

5

m

a

t

a

t

m

f

t

5

m

a

a

5

p

T

p

S

d

i

e

i

(

p

d

t

b

l

i

o

t

a

o

r

t

t

s

5

f

e

l

r

t

s

t

t

6

6

i

f

t

E

p

t

t

c

S

t

p

n

t

t

t

s

o

b

s

s

s

d

s

b

e

w

P

f

i

t

t

w

t

t

p

d
f fine-grained factors (Section 4.2), such as environment and

ependencies. When building prediction models, it helps to output

 detailed level of what is missing to provide suggestions in

mproving the quality of the bug report.

.1.2. Testing tools should consider input actions and orders

As our results (Finding 3) have shown, while a majority of

erver performance bugs require no more than one data input to

rigger, exposing them does require multiple actions (Finding 6).

t is also worth noting that the order of actions have an influence

o performance bug reproduction (Finding 7). However, most ex-

sting performance testing techniques (Nistor et al., 2013b; Pradel

t al., 2014) consider only single inputs or workload. New testing

echniques to generate an effective sequence of input actions for

etecting performance bugs is desired. One way to obtain these

ctions is from user manuals and bug systems.

.1.3. Testing tools should consider configuration options

The current state of research in testing for performance bugs

onsiders two major aspects – test inputs and test oracles (Nistor

t al., 2013b; Pradel et al., 2014). However, our results (Find-

ng 4) suggest that exposing bugs require both specific data in-

uts and configuration options. Therefore, we need configuration-

ware techniques to test for performance bugs. One challenge in

onfiguration-aware testing is that the space of possible unique

onfiguration combinations grows exponentially with the number

f available configuration options. To address this problem, testers

ften evaluate a representative sample of all possible configura-

ions (Qu et al., 2008; Yilmaz et al., 2004). One possibility is to

everage existing static analysis (Lillack et al., 2014; Rabkin and

atz, 2011) to identify performance-sensitive configuration options

ased on code patterns. Such options can be used to guide perfor-

ance testing. Our results also suggest that performance testing

an focus on one or two configuration options (Finding 4).

.1.4. Performance test oracles should cover various symptoms

Our results (Finding 8) suggest that many performance bugs

anifest through transient symptoms (e.g., high CPU utilization

nd low cache hits). In contrast to permanent symptoms, where

he application simply hangs or slows down, transient symptoms

re difficult to handle. While runtime profilers can be used to cap-

ure such information, one challenge is that the transient symptom

ay not always be observable during the entire execution. There-

ore, cost-effective sampling-based profiling techniques are needed

o catch performance bugs with transient symptoms.

.2. Implications to practitioners

Although our study is primarily focused on reproducing perfor-

ance bugs from the perspective of researchers, our findings may

lso benefit practitioners concerning the quality of bugs and the

llocations of bug resolution effort s.

.2.1. Writing good quality bug reports is important

As the last column of Table 1 shows, there is not much im-

rovement in reproducing performance bug reports over the years.

he results suggest that better practice in writing reproducible

erformance bug reports is needed. We return to the results in

ection 4.2 (Finding 10). Factors including OS dependency, repro-

uction description, compilation, and symptoms are especially

mportant for creating reproducible performance bug reports. For

xample, to successfully reproduce a performance bug report,

t often requires a number of steps to setup the environment

Finding 2). Describing these steps in a clear way is beneficial for

erformance bug reproduction. Better even, this should motivate

evelopers to design and adopt approaches to enforce bug reports
o contain what is considered to be necessary to reproduce a

ug. Recent advances (Chaparro et al., 2017) in applying natural

anguage processing techniques on bug report analysis may make

t possible to automate the procedure to check the completeness

f a bug report. By using machine learning techniques, such as

he clustering method, performance bugs may be automatically

ssigned to different categories as discussed in Section 4.2 . A set

f predefined rules can be associated with each category. Such

ules will be checked, for instance, when the bug is considered

o be “Lack of Symptom”, the system can then suggest poten-

ial symptoms for this bug based on similar bugs that do have

ymptom descriptions in the same category.

.2.2. Using alternative solutions when possible

As our results have shown, a non-trivial portion of the initial

ailed-to-reproduce bug reports can be reproduced with additional

ffort (Finding 9). This implies that when it is not possible to fol-

ow the exact descriptions in the bug report, it is acceptable to

eproduce the bug with alternative methods. Table 6 also suggests

hat source code unavailability is the easiest to fix, whereas lack of

ymptom is the most difficult barrier to overcome. Therefore, prac-

itioners can allocate their effort s to find workarounds according to

he causes of the failed-to-reproduce performance bug reports.

. Related work

.1. Studies of bug reproducibility

There is a great deal of research on studying the reproducibil-

ty of bug reports (Chaparro et al., 2017; Cotroneo et al., 2016; Er-

ani Joorabchi et al., 2014; Frattini et al., 2016; Gray, 1986; Grot-

ke et al., 2010; Grottke and Trivedi, 2005; Sahoo et al., 2010).

rfani Joorabchi et al. (2014) mined software repositories to com-

are the characteristics of non-reproducible bug reports, such as

he number of authors, number of comments, and the bug sta-

us transitions, to other bug reports. They defined six common

ategories of bug reports based on non-reproducibility causes.

ahoo et al. (2010) conducted an empirical study on the charac-

eristics of bugs that influence the reproducibility in the server

roduction environment. They randomly selected and inspected a

umber of fixed bug reports to study bug characteristics, such as

he number of inputs used to trigger a bug and the types of symp-

oms as bugs manifest. Based on their findings, they proposed au-

omated approaches for bug diagnosis. Our study and Sahoo’s work

hare similarities in that we both studied server applications, a set

f confirmed bugs, the number of inputs to trigger a bug, and the

ug symptoms. Cotroneo et al. (2016) conducted a comprehensive

tudy on the characteristics of bug manifestation process. In the

tudy, they identified major triggers (i.e. workload, application’s

tate, execution environment, and user behavior) under which con-

itions a bug got activated and manifested as a failure. We also

tudied the input triggers required to manifest the performance

ugs.

On the other hand, our work is different from prior work in sev-

ral aspects. First, we focused on reproducing performance bugs,

hereas the prior work studied the reproducibility of general bugs.

erformance bugs are non-functional bugs — they output the right

unctional output but normally take a much longer time to fin-

sh. About half of the reproduced performance bugs require cer-

ain levels of workloads to manifest. Prior work did not consider

he characteristics that are specific to performance bugs. Second,

e focused on the study from the perspective of researchers who

ried to replicate a known reproducible performance bug with only

he description of a bug report. Therefore, we selected confirmed

erformance bug reports that are known to be reproducible by

evelopers, whereas prior work had different tar get audiences of

280 X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282

M

o

w

s

r

t

s

T

o

d

a

o

i

f

a

p

p

m

d

6

m

Z

b

b

c

t

2

m

d

c

m

p

b

p

f

a

i

t

b

m

T

p

fi

b

H

b

a

p

p

c

o

o

d

r

6

i

t

N
their studies. Third, prior work studied the characteristics of the

bugs from bug reports without trying to actually reproduce them

in real environment. In contrast, we got first-hand experience from

the perspective of researchers, and went through all the steps nec-

essary to actually execute and reproduce performance bugs, and

hence we were able to deliver a reusable set of benchmarks that

contain performance bugs. This also explains why Sahoo et al.

found that nearly 82% of bug symptoms can be reproduced —

many bugs may not actually be reproduced on researchers’ side

for bug selection.

Chaparro et al. (2017) utilized natural language processing and

machine learning techniques to automatically identify if bug re-

ports miss important information that can affect understandabil-

ity and reproducibility. Their work focused on analyzing bug re-

ports and selecting linguistic patterns as machine learning features

to automate detection of missing information in a bug report. Our

study gave insights on fine-grained categories of information that

is necessary to present in a bug report to increase its chance to be

reproduced. As a result, our findings can be used by similar ma-

chine learning techniques to improve their prediction accuracy.

Gray (1986) classified bugs into Bohrbugs that were easily

reproduced with certain inputs and Heisenbugs that were not

deterministically reproducible. Bohrbugs are “faults that are easily

detected and fixed and for which the failure occurrences are easily

reproduced.” Bugs from our study are unlikely to fall into this

category because as our study indicates, they are very challenging

to reproduce. On the other hand, Mandelbugs refer to the type of

bugs that are complex and non-deterministic. Our studied bugs

may fall into the category of Mandelbugs.

Grottke and Trivedi (2005) re-defined the widely but inconsis-

tently used software faults terms that are aging-related bugs: a

type of bug that leads to a higher probability of resulting in a

failure or performance degradation. Specifically, in the paper, they

clarified the relationship and definitions for Bohrbugs, Mandelbugs,

and Heisenbugs. Later work by Grottke et al. (2010) conducted an

empirical study in NASA space mission system software. They in-

vestigated four fault types: Bohrbugs, non-aging-related Mandel-

bugs, aging-related bugs, and unknown bugs in on-board software

faults reported from 18 past space missions, and whether the fault

type was independent of characteristics, such as failure effect and

failure risk in the space mission system software. Some bugs used

in our study may fall into the category of aging-related bugs, which

was defined as “faults that can potentially cause software aging,

which result in an increased failure rate and/or degraded perfor-

mance”. For instance, in Apache bug #27106, there is a memory

leak with the HTTP request. We consider this bug to be an aging-

related bug.

Frattini et al. (2016) discussed the process and influential fac-

tors in bug manifestation. Specifically, they surveyed the taxonomy

of bug reproducibility, described the procedure for manually an-

alyzing a bug report for its reproducibility, and applied machine

learning techniques to predict bug classifications. They manually

examined if the report was a real bug, and if not, the bug was

marked as “NOT_BUG” or “UNKNOWN”. Next, for bugs that had

sufficient information, the following was examined: inputs and the

application configurations required for exposing the bug.

Our manual bug selection approach was similar to theirs as we

also utilized the bug repository system to filter out unwanted types

of bugs (e.g. the NOT BUG class). We also examined the bugs care-

fully to identify the inputs and workloads that were required to

expose the performance bugs.

There are several differences between Frattini’s work and our

study. First, Frattini’s work focused on studying two categories of

factors affecting reproducibility, including workload-dependent and

environment-dependent , whereas we have defined a larger set of

categories, such as component dependency and lack of symptom .
oreover, as discussed earlier in this section, one uniqueness of

ur study is that we tried to actually reproduce the bugs, so we

ere able identify more factors influencing reproducibility. We also

uggested workarounds to improve the bug reproduction success

ate.

Cavezza et al. (2014) studied the dependency of environmen-

al factors on the reproducibility of software failures in MySQL,

uch as memory occupation, disk usage, and level of concurrency.

heir experiment demonstrated that by increasing the usage level

f such factors (e.g. disk usage) can increase the chance of repro-

ucing a software failure. The major difference between their work

nd our study is that Cavezza’s study investigated specific aspects

f reproduction (e.g., determinism, environmental factors) for bugs

n general, whereas we systematically studied a set of fine-grained

actors (e.g., input parameters, configurations, reproducing steps)

ffecting the reproducibility of performance bugs. In addition, we

rovided alternative solutions to workaround failed-to-reproduce

erformance bugs. On the other hand, factors studied in their work

ay also be applied to performance bugs, for example, a higher

isk usage may lead to a performance bug.

.2. Performance bug empirical studies

There has been some work on the empirical study for perfor-

ance bugs (Han and Yu, 2016; Jin et al., 2012; Nistor et al., 2013a;

aman et al., 2012). Jin et al. (2012) studied 110 performance

ugs from five software projects. They studied how performance

ugs were introduced, exposed, and fixed. They looked at the root

auses of performance bugs and the code patches. By observing

he code patterns that fixed performance bugs, they summarized

5 efficiency rules. They then used these rules to detect perfor-

ance bugs based on pattern matching. Nistor et al. (2013a) con-

ucted a study of over 600 bugs to compare and contrast different

haracteristics of discovering, reporting, and fixing between perfor-

ance bugs and non-performance bugs. Their study provided em-

irical evidence on the importance and challenges of performance

ugs. They focused on the way that bugs were discovered and re-

orted, where the authors claimed that a large percentage of per-

ormance bugs were discovered with code reasoning (33.9–57.3%)

nd a much smaller portion (5.5–10.4%) of performance bugs were

dentified with profilers. They reported the complexity involved in

he bug fixing and concluded that performance bugs were likely to

e more challenging to fix.

Zaman et al. (2012) studied 400 randomly selected perfor-

ance and non-performance bug reports in Firefox and Chrome.

hey quantified the study findings in four dimensions: the im-

act on stakeholders, the context of the bug, bug fixes, and bug

x validations. As a result, their study found that performance

ugs were more difficult to handle than non-performance bugs.

an and Yu (2016) studied the characteristics of 113 performance

ugs in highly-configurable systems. They categorized the causes

nd fixes in performance bugs. A highlight of their study was to

oint out that configuration options were often neglected in the

erformance testing although some configuration options can often

ause performance bugs. While previous research provided insights

n identifying the root causes of performance bugs and guidance

n addressing performance bugs in general, they did not con-

uct the study by actually reproducing bugs from performance bug

eports.

.3. Performance debugging and testing

Several techniques in testing, debugging, fixing, and avoid-

ng performance bugs have been proposed in recent litera-

ure (Grechanik et al., 2012; Han et al., 2012; Jovic et al., 2011;

istor et al., 2013b; Pradel et al., 2014). Han et al. (2012) proposed

X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282 281

S

i

t

t

a

o

m

s

P

g

c

w

l

s

p

t

w

t

o

g

t

T

i

7

f

t

s

r

1

i

i

t

t

l

i

i

t

A

d

S

f

R

A

A

A

A
A

B

B

B

C

C

C

D

E

F

G

G

G

G

G

H

H

J

J

L

M

M

M
N

N

O

P

Q

R

S

T
O

W

Y

Y

Z

tackMine, a debugging technique to discover high-performance

mpact call sequences from numerous and complicated call stack

races. Jovic et al. (2011) introduced Lag Hunting, a method

hat monitors deployed interactive system behavior and provides

 list of performance issues. The authors argued that the use

f profilers would not work for detecting perceptible perfor-

ance slowness in interactive applications. Instead, they mea-

ured the latency to catch perceptible performance problems.

radel et al. (2014) designed a regression testing technique to

enerate performance test cases for thread-safe Java concurrent

lasses. Grechanik et al. (2012) proposed a test generation frame-

ork, FOREPOST, to associate test inputs with their performance

oads. Execution traces were clustered and used to train a clas-

ification algorithm to generate rules that describe the semantic

atterns of good test inputs. Nistor et al. (2013b) proposed an au-

omated performance testing oracle by identifying nested loops

hose computation has repetitive memory-access patterns. While

he above techniques are inspiring and effective, they considered

nly data inputs. Our study acknowledged prior work and sug-

ested that a significant portion of performance bugs were related

o configurations, input actions, and the order of input actions.

hese factors should be considered when designing software test-

ng and diagnosis tools.

. Conclusions

We conducted a performance bug reproduction experiment

rom the bug tracking systems of two open-source server applica-

ions. We studied 93 performance bug reports. Our empirical study

howed that the rate to successfully reproduce a performance bug

eport was low (81%). We first studied the characteristics of the

7 performance bugs that were successfully reproduced. We then

dentified eight major factors that led to the reproduction failures

n the remaining 76 bugs. We provided a list of suggestions on how

o improve the chance of reproducing performance bugs. Out of

he 17 successfully reproduced performance bugs, 15 of them uti-

ized our workaround strategies. Our study provided guidance and

nsights for researchers and practitioners on improving the qual-

ty of performance bug reports and designing testing and diagnosis

ools for handling performance bugs.

cknowledgment

This research is supported in part by the National Science Foun-

ation grant CCF-1652149 .

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jss.2019.06.100 .

eferences

pache http Server Source Code Distributions, 2017. https://archive.apache.org/dist/

httpd/ .
pache Caching Guide. 2017. https://httpd.apache.org/docs/2.4/caching.html .

randa, J. , Venolia, G. , 2009. The secret life of bugs: going past the errors and omis-

sions in software repositories. In: Proceedings of the International Conference
on Software Engineering .

pache Software Fundation Bugzilla. 2016. https://bz.apache.org/bugzilla/ .
ttariyan, M. , Chow, M. , Flinn, J. , 2012. X-ray: automating root-cause diagnosis of

performance anomalies in production software. In: Proceedings of the USENIX
Conference on Operating Systems Design and Implementation .

ird, C. , Bachmann, A. , Aune, E. , Duffy, J. , Bernstein, A. , Filkov, V. , Devanbu, P. , 2009.
Fair and balanced?: Bias in bug-fix datasets. In: European Software Engineering

Conference .

ugzilla Keyword Descriptions. 2016. https://bugzilla.mozilla.org/describekeywords.
cgi .

urnim, J. , Juvekar, S. , Sen, K. , 2009. Wise: Automated test generation for worst–
case complexity. In: Proceedings of the International Conference on Software

Engineering .
avezza, D.G. , Pietrantuono, R. , Alonso, J. , Russo, S. , Trivedi, K.S. , 2014. Reproducibil-
ity of environment-dependent software failures: an experience report. IEEE 25th

International Symposium on Software Reliability Engineering .
haparro, O. , Lu, J. , Zampetti, F. , Moreno, L. , Di Penta, M. , Marcus, A. , Bavota, G. ,

Ng, V. , 2017. Detecting missing information in bug descriptions. In: Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering .

otroneo, D. , Pietrantuono, R. , Russo, S. , Trivedi, K. , 2016. How do bugs surface? A
comprehensive study on the characteristics of software bugs manifestation. J.

Syst. Softw. 113, 27–43 .

ean, D.J. , Nguyen, H. , Gu, X. , Zhang, H. , Rhee, J. , Arora, N. , Jiang, G. , 2014. Perfscope:
practical online server performance bug inference in production cloud comput-

ing infrastructures. In: Proceedings of the ACM Symposium on Cloud Comput-
ing .

rfani Joorabchi, M. , Mirzaaghaei, M. , Mesbah, A. , 2014. Works for me! Characteriz-
ing non-reproducible bug reports. In: Proceedings of the 11th Working Confer-

ence on Mining Software Repositories .

rattini, F. , Pietrantuono, R. , Russo, S. , 2016. Reproducibility of software bugs. In:
Principles of Performance and Reliability Modeling and Evaluation. Springer,

pp. 551–565 .
ithub. 2008. https://github.com .

ray, J. , 1986. Why do computers stop and what can be done about it? In: Sympo-
sium on Reliability in Distributed Software and Database Systems. Los Angeles,

CA , USA , pp. 3–12 .

rechanik, M. , Fu, C. , Xie, Q. , 2012. Automatically finding performance problems
with feedback-directed learning software testing. In: Proceedings of the Inter-

national Conference on Software Engineering .
rottke, M. , Nikora, A.P. , Trivedi, K.S. , 2010. An empirical investigation of fault types

in space mission system software. In: 2010 IEEE/IFIP international Conference
on Dependable Systems & Networks (DSN). IEEE, pp. 447–456 .

rottke, M. , Trivedi, K.S. , 2005. A classification of software faults. J. Reliabil. Eng.

Assoc. Jpn. 27 (7), 425–438 .
an, S. , Dang, Y. , Ge, S. , Zhang, D. , Xie, T. , 2012. Performance debugging in the large

via mining millions of stack traces. In: Proceedings of the International Confer-
ence on Software Engineering .

an, X. , Yu, T. , 2016. An empirical study on performance bugs for highly config-
urable software systems. In: Proceedings of the International Symposium on

Empirical Software Engineering and Measurement .

in, G. , Song, L. , Shi, X. , Scherpelz, J. , Lu, S. , 2012. Understanding and detecting re-
al-world performance bugs. In: Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation .
ovic, M. , Adamoli, A. , Hauswirth, M. , 2011. Catch me if you can: performance bug

detection in the wild. In: Proceedings of the ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages and Applications .

illack, M. , Kästner, C. , Bodden, E. , 2014. Tracking load-time configuration options.

In: Proceedings of International Conference on Automated Software Engineer-
ing .

olyneaux, I. , 2009. The Art of Application Performance Testing: Help for Program-
mers and Quality Assurance. O’Reilly Media, Inc. .

ysql Community Server (archived versions), 2017. https://downloads.mysql.com/
archives/community/ .

ysql Bugs Home. 2016. https://bugs.mysql.com/ .
istor, A. , Jiang, T. , Tan, L. , 2013. Discovering, reporting, and fixing performance

bugs. In: Proceedings of the International Conference on Mining Software

Repositories .
istor, A. , Song, L. , Marinov, D. , Lu, S. , 2013. Toddler: detecting performance prob-

lems via similar memory-access patterns. In: Proceedings of the International
Conference on Software Engineering .

livo, O. , Dillig, I. , Lin, C. , 2015. Static detection of asymptotic performance bugs in
collection traversals. In: Proceedings of the ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation .

radel, M. , Huggler, M. , Gross, T.R. , 2014. Performance regression testing of concur-
rent classes. In: Proceedings of the International Symposium on Software Test-

ing and Analysis .
u, X. , Cohen, M.B. , Rothermel, G. , 2008. Configuration-aware regression testing: an

empirical study of sampling and prioritization. In: Proceedings of the Interna-
tional Symposium on Software Testing and Analysis .

abkin, A. , Katz, R. , 2011. Static extraction of program configuration options. In: Pro-

ceedings of the 33rd International Conference on Software Engineering .
ahoo, S.K. , Criswell, J. , Adve, V. , 2010. An empirical study of reported bugs in server

software with implications for automated bug diagnosis. In: Software Engineer-
ing, 2010 ACM/IEEE 32nd International Conference on .

echtarget. 2006. https://searchdatacenter.techtarget.com/definition/workload .
racle VM VirtualBox, 2016. Virtualbox.

ert, A. , Happe, J. , Happe, L. , 2013. Supporting swift reaction: automatically uncov-

ering performance problems by systematic experiments. In: Proceedings of the
International Conference on Software Engineering .

ilmaz, C. , Cohen, M.B. , Porter, A. , 2004. Covering arrays for efficient fault charac-
terization in complex configuration spaces. TSE 29 (4) .

in, Z. , Ma, X. , Zheng, J. , Zhou, Y. , Bairavasundaram, L.N. , Pasupathy, S. , 2011. An
empirical study on configuration errors in commercial and open source systems.

In: Proceedings of the ACM Symposium on Operating Systems Principles .

aman, S. , Adams, B. , Hassan, A.E. , 2012. A qualitative study on performance bugs.
In: Proceedings of the International Conference on Mining Software Reposito-

ries .

https://doi.org/10.13039/100000001
https://doi.org/10.1016/j.jss.2019.06.100
https://archive.apache.org/dist/httpd/
https://httpd.apache.org/docs/2.4/caching.html
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0001
https://bz.apache.org/bugzilla/
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0003
https://bugzilla.mozilla.org/describekeywords.cgi
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0010
https://github.com
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0020
https://downloads.mysql.com/archives/community/
https://bugs.mysql.com/
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0027
https://searchdatacenter.techtarget.com/definition/workload
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30143-8/sbref0031

282 X. Han, D. Carroll and T. Yu / The Journal of Systems and Software 156 (2019) 268–282

T

S

s

a

A

Xue Han is in his fifth year of Ph.D. study in the Computer Science Department,
University of Kentucky. He is passionate about doing research in Software Testing,

Search Based Software Testing, Performance Modeling, Program Analysis, Machine
Learning, Natural Language Processing, and Data Mining. He has published sev-

eral research papers in premier Software Engineering conferences. Before his Ph.D.
study, he was working as a.NET Engineer.

Daniel Carroll was a undergraduate student in the Computer Science Department

of University of Kentucky when this work was completed.
ingting Yu is an assistant professor of Computer Science at University of Kentucky.
he received her Ph.D degree from University of Nebraska-Lincoln in 2014. Her re-

earch interests include software engineering, software testing, concurrent systems,
nd cyber-physical systems. Dr. Yu received the ACM SIGSOFT Distinguished Paper

ward in 2016. She was a recipient of the NSF Faculty CAREER Award in 2017.

	Reproducing performance bug reports in server applications: The researchers’ experiences
	1 Introduction
	2 Motivating examples
	2.1 Hard-level: Apache bug #58037
	2.2 Medium-level: Apache Bug #27106
	2.3 Easy-level: MySQL Bug #74325

	3 Case study
	3.1 Data sets
	3.1.1 Studied subjects
	3.1.2 Data collection
	3.1.3 Study setup

	3.2 Threats to validity

	4 Results
	4.1 RQ1: Reproduced bug reports and their characteristics
	4.2 RQ2: Factors leading to failed-to-reproduce performance bug reports
	4.3 RQ3: Workaround the issues in failed-to-reproduce performance bug reports
	4.3.1 Hardware dependency
	4.3.2 OS dependency
	4.3.3 Component dependency
	4.3.4 Source code unavailability
	4.3.5 Compilation error
	4.3.6 Installation error
	4.3.7 Missing step
	4.3.8 Lack of symptom

	5 Discussion
	5.1 Implications to researchers
	5.1.1 Fine-grained techniques on detecting missing information in bug reports are needed
	5.1.2 Testing tools should consider input actions and orders
	5.1.3 Testing tools should consider configuration options
	5.1.4 Performance test oracles should cover various symptoms

	5.2 Implications to practitioners
	5.2.1 Writing good quality bug reports is important
	5.2.2 Using alternative solutions when possible

	6 Related work
	6.1 Studies of bug reproducibility
	6.2 Performance bug empirical studies
	6.3 Performance debugging and testing

	7 Conclusions
	Acknowledgment
	Supplementary material
	References

