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ABSTRACT

Performance is one of the key aspects of non-functional qualities as performance bugs can cause sig-
nificant performance degradation and lead to poor user experiences. While bug reports are intended to
help developers to understand and fix bugs, they are also extensively used by researchers for finding
benchmarks to evaluate their testing and debugging approaches. Although researchers spend a consid-
erable amount of time and effort in finding usable performance bugs from bug repositories, they often
get only a few. Reproducing performance bugs is difficult even for performance bugs that are confirmed
by developers with domain knowledge. The amount of information disclosed in a bug report may not
always be sufficient to reproduce the performance bug for researchers, and thus hinders the usability
of bug repository as the resource for finding benchmarks. In this paper, we study the characteristics of
confirmed performance bugs by reproducing them using only informations available from the bug re-
port to examine the challenges of bug reproduction from the perspective of researchers. We spent more
than 800 h over the course of six months to study and to try to reproduce 93 confirmed performance
bugs, which are randomly sampled from two large-scale open-source server applications. We (1) studied
the characteristics of the reproduced performance bug reports; (2) summarized the causes of failed-to-
reproduce performance bug reports from the perspective of researchers by reproducing bugs that have
been solved in bug reports; (3) shared our experience on suggesting workarounds to improve the bug re-
production success rate; (4) delivered a virtual machine image that contains a set of 17 ready-to-execute
performance bug benchmarks. The findings of our study provide guidance and a set of suggestions to
help researchers to understand, evaluate, and successfully replicate performance bugs.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

and specific execution environments (Nistor et al., 2013a; Olivo
et al., 2015). Thus, traditional testing such as coverage-based ap-

Software performance is critical to the quality of the software
system. Unlike functional bugs that typically cause system crashes
or incorrect results, a performance bug can cause significant per-
formance degradation (Attariyan et al., 2012) which leads to prob-
lems such as poor user experience, long response time, and low
system throughput (Bugzilla, 2016; Han et al., 2012; Jin et al., 2012;
Nistor et al., 2013a; Wert et al., 2013). For instance, performance
bugs have occurred on well-tested software such as the Internet
Explorer installed on Windows systems (Han et al., 2012), and have
caused severe damages to the user experience.

Compared to functional bugs, performance bugs are substan-
tially more difficult to handle (Attariyan et al., 2012; Dean et al.,
2014) because they often manifest themselves through large inputs
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proaches may not be effective. To address performance issues, nu-
merous research efforts, especially on dynamic techniques, have
been made to analyze, detect, and fix performance bugs (Burnim
et al., 2009; Han et al., 2012; Jin et al., 2012; Jovic et al., 2011; Nis-
tor et al., 2013b; Olivo et al., 2015). Although these techniques can
detect performance bugs in the benchmark applications they stud-
ied, their effectiveness in real-world large-scale software projects,
such as server applications, is largely unknown. This is partly due
to the fact that finding performance bugs to be used for evaluation
is difficult.

Many modern software projects use bug tracking systems (e.g.,
Bugzilla, 2016, Github Issue Tracker (GitHub, 2008)) that allow
developers and users to report issues they have identified in the
software. While bug reports are intended to help developers to
understand and fix bugs, they are also used by researchers to
evaluate a proposed testing or debugging approach. Researchers
often rely on the description of a confirmed performance bug
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report to reproduce the performance bug to be used in their
evaluation. A failed-to-reproduce performance bug in this work
is defined as a confirmed reproducible performance bug that
cannot be reproduced by non-domain experts such as researchers
due to the lack of domain knowledge or environment limitations
(e.g., compilation, dependencies, etc). A failed-to-reproduce perfor-
mance bug is likely to be discarded by researchers when it cannot
be reproduced according to the bug report. Therefore, the bug
selection and reproduction process is very challenging and may
discourage researchers from trying a lot of potential bugs that are
of the interest to the proposed approach.

In a recent paper Dean et al. (2014) on dynamic detection
of performance bugs, the authors state “the bug reproduction is
extremely time-consuming and tricky due to limited and often
ambiguous information, which sometimes takes a month for us
to reproduce one bug”. In more than 30 performance testing
and diagnosis papers we studied, none of them described how
performance bugs are reproduced. To the best of our knowledge,
there is no study or experience report showing what has caused
performance bugs to be so difficult to understand and reproduce.

A high-quality bug report requires inputs, reproducing steps,
and test oracles. One challenge for performance testing tools is that
they generally require a large amount of workload or specific en-
vironment settings to expose performance bugs. However, in our
experience, we found that even using the described inputs, repro-
ducing steps, and test oracles from bug reports, performance bugs
may still not be reproduced. One natural question to ask is what
would be the other factors that lead to failed-to-reproduce bugs
beyond the quality of bug report itself. It would be very help-
ful if we can identify these factors, and suggest solutions to the
failed-to-reproduce bugs to increase the chance of success in per-
formance bug reports reproduction.

The goal of this work is to share our experience in reproduc-
ing performance bug reports by investigating the impact of dif-
ferent factors on both reproduced and failed-to-reproduce perfor-
mance bugs from open-source project confirmed performance bug
reports. We provide a set of workarounds to increase the chance
of success in performance bug reproduction. Our study targets re-
producing performance bugs from the perspectives of non-domain
expert researchers, rather than understanding and characterizing
non-reproducible bugs from the viewpoints of developers. There-
fore, the scope of our study focuses on performance bug reports
that have already been confirmed and resolved by developers. One
big difference compared to the prior work is that we specifically
target confirmed performance bugs to report why from the per-
spective of non-domain experts such as software engineering re-
searchers may not succeed in reproducing such bugs. We studied
two large open-source server projects: Apache HTTP Server and
MySQL database. Because performance bugs are more prevalent
in applications that are large-scale and handle a large quantity of
data over a long period of time, we focus on server applications.
We randomly selected, analyzed, and conducted reproduction of
93 bugs in total. The results of this study mainly aim to help re-
searchers to better understand the challenges in performance bug
reproduction and propose solutions to facilitate the bug selection
process.

The main findings and contributions of our study are as follows:

e We tried to reproduce performance bugs that were solved by
developers by following the description of the bug reports. Af-
ter six months of effort, we were able to reproduce 17 out of
93 bugs. We found that a majority of performance bugs (81%)
failed to be reproduced.

o We studied the characteristics of 17 reproduced performance
bug reports. A majority (88%) of them can be reproduced with
no more than three inputs and most (53%) of them required

specific workloads; 10 bug reports involved transient perfor-
mance bugs that must be observed during the reproduction.
A significant portion (59%) of reproduced performance bug re-
ports required more than two action steps.

* Among 17 reproduced performance bugs, only two of them can
be reproduced by directly following the bug report description.
However, the other 15 bugs required workarounds to be repro-
duced.

e We studied different factors of performance bugs that we
failed to reproduce after months of effort. These factors include
hardware dependency, OS dependency, component dependency,
source code unavailability, compilation error, installation error,
missing step, and lack of symptoms. Missing step, OS depen-
dency, and lack of symptoms were in the dominant majority
(39%).

o We further examined reasons why performance bugs failed to
be reproduced on the first attempt. We provided a list of strate-
gies for increasing the chance of successfully reproducing the
performance bugs.

o While this study primarily targets researchers in selecting per-
formance bugs, we provided a set of implications for both re-
searchers and practitioners on developing techniques for testing
and diagnosing performance bugs, improving the quality of bug
reports, and detecting failed-to-reproduce bug reports.

o We made our datasets publicly available and provided a virtual
box image that contains 17 benchmark programs.!

The rest of the paper is organized as follows. We first present
motivating examples in Section 2. We then describe our method-
ology for choosing subject applications, the bugs selected to study,
and the threats to validity in Section 3. Our results are demon-
strated in Section 4, followed by discussions in Section 5. We
present related work in Section 6 and end with conclusions in
Section 7.

2. Motivating examples

We refer to software performance bugs as programming (Nistor
et al., 2013a; 2013b) and configuration errors that cause signif-
icant performance degradation. They can adversely affect speed,
throughput, and responsiveness of the system, which lead to
the poor user experience. Some other terms such as “per-
formance problem” and “performance issue” are also widely
used (Nistor et al., 2013a). In this paper, we use these terms in-
terchangeably.

We use three examples of performance bug reports to answer
the following questions: (1) What are limitations in confirmed bug
reports that can lead to the failed-to-reproduce performance bugs?
(2) What can we do to increase the chance to successfully repro-
duce a confirmed performance bug?

We illustrate three difficulty levels of reproducing confirmed
performance bugs from the perspective of non-domain experts
such as software engineering researchers with three bug reports.
The difficulty level ranges from hard-level (“failed-to-reproduce”)
to medium-level (“reproducible with effort”) to easy-level (“repro-
ducible”).

2.1. Hard-level: Apache bug #58037

The bug reporter observed a noticeable time delay in
Lightweight Directory Access Protocol (LDAP) authentication after
the Apache server was upgraded from version 2.2 to version 2.4.
However, we were not able to reproduce this performance bug for
several reasons. First, the minor version of the faulty Apache server

1 https://github.com/xha225/PerfBugReplication.
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was not mentioned in the bug report. Since there are 34 releases
under Apache v2.2, on average, compiling and installing Apache
from source code can take anywhere between 20 and 50 min; it
is too time-consuming (up to 28 h in the worst-case) to pinpoint
the faulty version. We finally adopted a version that is closest to
the timeline when the performance bug was reported, but we were
still not able to reproduce the bug because of the other two rea-
sons.

Second, the bug report indicates that configuration option
LDAPConnectionPoolTTL in the LDAP module must be set to
0 for reproducing the bug. Since exposing the bug heavily relies
on the LDAP module, we believe that more than one configuration
option must be set to proper values, but they are not mentioned
in the report. Third, the bug report describes the symptom as “we
noticed that it would take longer and longer to check out a large
repository.” It is not clear about how large “a large repository” is.
However, such information is essential to closely resemble the re-
quired input loads to reproduce the performance bug and to ob-
serve the expected symptom. Although we used our best guesses
to set up the program and the environment, tried different levels
of input workloads, and followed the reproduction steps as closely
as possible, we still failed to observe the symptom described in the
bug report.

2.2. Medium-level: Apache Bug #27106

The bug reporter observed a memory leak that led to a sys-
tem slowdown when running tests using the Apache benchmark.
Specifically, when testing using an HTTP request with an SSL-
enabled port, memory used by the httpd process grew rapidly.
While the bug report did describe the bug-triggering inputs (i.e.,
HTTP request) and the observed symptom (increased memory us-
age), we were still having a lot of trouble reproducing the bug.

First, the description of the environment setup was ambiguous.
The information of the Linux operating system (OS) version under
which the bug happened was missing. In addition, dependency
modules, such as the OpenSSL module, that should be enabled
with the Apache server v2.0.45 are not mentioned. Apache must
be re-configured to include the OpenSSL module during the com-
pile time. Second, the description of inputs is incomplete. The bug
reporter suggest using Apache benchmark (ab) to trigger the bug,
but the parameters passed to the ab are not specified. Apache
benchmark that comes with v2.0.45 does not support Hypertext
Transfer Protocol Secure (HTTPS). We need to find an ab version
that does support HTTPS. Third, the description of the observed
symptoms was unclear. The bug reporter should have asked users
to watch memory usage on the main thread of Apache (e.g. by
using the Linux system monitoring tools such as ps to show
process status). Instead, the reporter posted a raw trace and let
readers figure out what information is important.

To reproduce this bug report, we spent about 10 h to research
on plausible components to fill in the missing information to suc-
cessfully reproduce the performance bug. We first build Apache
with default settings to make sure the specific version (v2.0.45)
works. We use the release date of Apache v2.0.45 to identify a
compatible OpenSSL version (i.e., OpenSSL v0.9.7a). To observe the
performance bug symptom, we use the Apache benchmark ab to
request 10,000 pages with 50 threads enabled: “ab -n 10,000 -c 50
https://localhost:443/".

2.3. Easy-level: MySQL Bug #74325

This performance regression bug happens in MySQL v5.7.5.
When compared to MySQL v5.7.5, MySQL v5.0.85 is four times
faster in updating an indexed column. The bug reporter provides

concrete information on the bug-triggering inputs, the environ-
ment setup, and the observed bug symptom.

First, the input passed to the mysqlslap benchmark tool is
specified. The bug reporter also suggests that specific configura-
tion options (e.g. query_cache_size) are needed for triggering
the performance bug. Second, the description of the environment
setup is accurate and concise. The reporter clearly indicates the
MySQL version (i.e., v5.7.5) from which the performance deteriora-
tion can be observed, as well as the software components and their
versions that MySQL v5.7.5 depends on. Finally, the description of
symptom is clear enough to determine the performance bug: “Inn-
oDB is more than 2X slower than5.6.21” in MySQL v5.7.5 “when
updating to indexed column”. Since this bug report contains more
detailed information than the other two bugs, we spent about 5 h
to successfully reproduce the bug.

3. Case study

Our study has two main objectives. First, we intend to under-
stand why reproducing performance bugs from bug reports are
challenging. Second, we want to understand how to design so-
lutions to increase the chance of successfully reproducing perfor-
mance bugs. Therefore, we consider the following research ques-
tions.

RQ1: How difficult is it to reproduce performance bug reports
and what are the characteristics of the reproduced bug reports?

RQ2: What are the major factors that cause reproducing con-
firmed performance bug reports to fail?

RQ3: What strategies can be used to improve the chance of suc-
cess in reproducing confirmed performance bug reports?

3.1. Data sets

3.1.1. Studied subjects

We chose two large popular open-source server projects:
Apache HTTP Server and MySQL Server. With publicly accessible
code base and well-maintained bug systems, these two subjects
have been widely used by existing bug characteristic studies (Jin
et al., 2012; Yin et al., 2011; Zaman et al., 2012). The selected pro-
grams are listed in Column 1 of Table 1. Both projects started in
the early 2000s and each has over ten years of bug reports.

3.1.2. Data collection

We collected performance bugs from the bug system of
Apache (ASFB, 2016) and MySQL (MySQLBug, 2016). We searched
bug systems using a set of commonly used general keywords and
phrases to describe the symptoms of performance bugs, such as
“slow”, “latency”, and “low throughput”. We also searched terms
that attribute to a specific aspect of the performance problems
such as “CPU spikes”, “cache hit”, and “memory leak” to iden-
tify performance bugs. Next, for Apache, we selected bug reports
with a status field of “RESOLVED”, “VERIFIED”, or “CIOSED”, and
a resolution field of “FIXED”. For MySQL, we selected bug re-
ports marked as “FIXED” or “PATCH APPROVED/QUEUED”, and with
the severity level field set to “NOT FEATURE REQUEST”. We fo-
cus on fixed/closed reports because when examining bug reports
to find executable benchmarks, they are more reliable than open
bug reports and often adopted by researchers for evaluation pur-
poses (Burnim et al., 2009; Han et al,, 2012; Jin et al., 2012; Jovic
et al., 2011; Nistor et al., 2013b; Olivo et al., 2015). More impor-
tantly, the decision to choose bug reports from confirmed bug re-
ports is in line with our study goal, that is, to explore and experi-
ence from the viewpoint of researchers, how challenging it is to try
to reproduce performance bugs from bugs reports that are consid-
ered to be reproducible by dedicated application developers. Some
but not all projects provide designated tags for different categories
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Table 1
Subject characteristics.

Subject Init Rel  Last Rel  #Sampled  #Failed #Rep  Success Rate
Apache 2.0 2002 2013 20 16 4 20%
Apache 2.2 2005 2017 31 26 5 16%
Apache 2.4 2012 2017 4 3 1 25%

MySQL 5.0 2005 2012 19 16 3 15%

MySQL 5.1 2008 2013 15 12 3 20%

MySQL 5.5+ 2010 2017 4 3 1 25%

SUM - - 93 76 17 -

Init Rel. = The year of the initial release. Last Rel = The year of the most recent release.
#Sampled = Number of performance bug reports sampled in our study.

#Rep = Number of reproduced performance bug reports.

#Failed = Number of failed-to-reproduce performance bug reports.

Success Rate = Percentage of reproduced performance bug reports.

of bugs. For example, in the MySQL bug system, the bug sever-
ity tag “S5 (Performance)” is used to mark performance bugs. In
our approach, we want to make the process as general as possible,
therefore, our method does not rely on the performance tags.

The whole process yielded a total of 564 bugs. With a confi-
dence level of 95% and a confidence interval of 5, the calculated
sample size is 229. We randomly selected 229 bugs out of the 564
bugs and conducted a manual examination. During the manual in-
spection, we follow those bug reports that have sufficient informa-
tion in bug descriptions and discussions posted by commentators,
and decide whether the inspected bug is a performance bug or not.
Specifically, the sufficient information includes bug symptoms in-
volving performance issues, such as system’s slow down, from the
discussion of the bug report. If we cannot find the symptom infor-
mation from the bug report, we cannot determine if the bug is a
performance bug. For example, some bug reports simply provide a
stack trace. We also examine the number of configuration options
that are discussed in the various modules involved in the sampled
bug reports. For Apache and MySQL, we have identified a total of
610 and 1240 configuration options respectively.

To ensure the correctness of our results, the manual inspections
were performed independently by two inspectors (the first two au-
thors). They both have experiences in using servers such as Apache
and MySQL. We hold two discussion session to define what we
consider to be a performance bug and how to keep a record of
our findings. Each inspector is given the same set of bug reports
each week, they meet twice a week to compare and consolidate
their findings. A bug report is selected only when both inspectors
agree on the outcome of the manual inspection. For bugs where
the results differ, the authors and the inspectors discussed to reach
a consensus. As such, the examination yielded a total of 93 perfor-
mance bugs. Column Subject and #Sampled of Table 1 list the re-
lease versions of the subjects and performance bugs selected from
each version.

3.1.3. Study setup

We build the environment as a virtual disk image (VDI) on
the VirtualBox (VirtualBox, 2016) for flexibility and portability. The
VDI provides great portability in the sense that it can be loaded
as a disk image wherever the VirtualBox is installed. This conve-
nience offers the possibility to provide a ready-to-run image for
researchers without having them go through a lot of environment
and project setup. The exact configuration other than the operat-
ing system is capped only by the host machine. The host machine
is running on Mac OS X with a dual-core 3 GHz Intel Core i7 CPU,
16GB of memory, and 512GB of hard drive. For the guest machine
(VDI), we use the Ubuntu 14.04 LTS operating system with a single
core 3GHz Intel Core i7 CPU, 4GB of memory, and 120GB of hard
drive. For performance bugs that require more resources, we con-
duct experiments on a machine equipped with a 6 core 2.66 GHz

Intel CPU, 36GB memory, and 256GB hard drive. For each of the 93
bugs, we ask both inspectors to follow the description of a bug re-
port to reproduce the bug. The bug reproduction process involves
two general steps: environment setup and performance bug repro-
duction. The whole process took around 800 h in total.

A bug is marked as reproduced if it can reveal the same symp-
tom as described in the bug report. If we fail to reproduce a per-
formance bug, the bug is marked as failed-to-reproduce. There are
three major reasons when we mark a bug as failed-to-reproduce:
(1) if the failure is due to the lack of hardware environment; (2) if
the bug report provides insufficient instructions on steps to repro-
duce the bug; (3) if we follow all the steps in the bug report but
cannot observe the symptom. Note that when we talk about a bug
that is failed-to-reproduce, we do not mean the bug is indeed non-
reproducible. We reserve the use of the term “non-reproducible
bug” to application developers — only they can determine what
bugs should be marked as non-reproducible. A failed-to-reproduce
bug, on the other hand, is a bug with unknown reproducibility
from our (the researchers’) perspective. For a confirmed bug, the
bug reporter should know how to reproduce the bug, however,
crucial information, such as steps to reproduce the bug, may have
been left out from the discussion in the bug report. For example,
an extensive discussion may have been carried out in a mail-list,
or through private messages and conversations. Regardless, such
information may not be present in the bug report. From the per-
spective of researchers who try to reproduce a bug directly follow-
ing the instructions available in the bug report, such bugs are con-
sidered failed-to-reproduce.

3.1.3.1. Environment setup. Before executing the program against its
bug-triggering inputs to reproduce the bug, we will need to setup
the execution environment. Environment setup typically involves
choosing the target operating system, build, deploy the faulty pro-
gram, and configure various software and hardware dependencies.
An indication of passing the environment step includes the avail-
ability of the faulty program version, its dependencies, a successful
build (if needed), and a functional program. For example, we failed
to install the database server in MySQL bug #15811 with an er-
ror message saying “recipe for target 'install’ failed”. We could not
find a solution to fix this installation error. Since we failed to re-
produce the performance bug in the environment setup step, this
bug is marked as failed-to-reproduce. As a matter of fact, less than
half (41 out of 93) bugs passed the environment setup step.

3.1.3.2. Performance bug reproduction. After the bug reproduction
environment has been successfully setup, the next step is to actu-
ally reproduce the bug. If the symptom of the bug matches what is
described in the report, it is considered reproduced; otherwise it is
considered failed-to-reproduce. Specifically, we execute the program
against the bug-triggering inputs, follow its reproduction steps, and
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observe the output described in the bug report. The bug-triggering
inputs often come from three sources: user inputs, configurations,
and environment parameters (e.g., network bandwidth, memory,
etc). A user input is often associated with a user-entered input
(e.g., a file) or an input action such as issuing a particular HTTP
request method (e.g., GET or POST) to request a particular type of
web page. One or more configuration options are also sometimes
needed to trigger performance bugs. For example, in Apache bug
#37680, the configuration option “Listen” is required. In addition,
inputs coming from external environment can affect reproducing a
bug because exposing performance bugs may require the system to
reach a specific level of load (e.g., a web server with a high volume
of network traffic).

During the bug reproduction process, if no concrete input val-
ues for the three input sources are specified, we use random val-
ues or the default values provided by the program. For example,
in MySQL bug #27501, we start the database server with default
settings as no specific runtime configurations were provided.

We next follow the steps of bug reproduction described in the
bug report (e.g., Apache bug #54852 has a section describing re-
production steps). If there are no specific steps provided, we try
different solutions based on our experience and expertise. For ex-
ample, Apache bug #43081 does not give enough information on
the nature of a “busy” machine. We infer that the server is busy
serving long connected requests based on the context of the bug
report.

Finally, to determine whether a reported performance bug is
successfully reproduced, we need to compare the observed symp-
tom (i.e., long execution time) with the symptom described in the
bug report. Unlike functional bugs in which their outputs are de-
terministic (e.g., an error message), performance bugs often use
non-functional measures such as response time, throughput, and
utilization (e.g., memory, and CPU usage) (Molyneaux, 2009). The
values of such performance measures usually depend on the exe-
cution environment, so it is likely that a measured symptom ob-
served in our execution environment is different from that de-
scribed in the bug report. To address this problem, we examine
the performance difference between a previous non-faulty version
(or the patched version) and a faulty version. If the difference is
proportional to the difference described in the bug report, the bug
reproduction is considered successful.

3.2. Threats to validity

The primary threat to the external validity for this study in-
volves the representativeness of our subjects and bug reports.
Other subjects may exhibit different behaviors. Our study examines
two popular open-source server applications (i.e. one web server
and one database server) written in C/C++ and the result may not
be generalized to other types of software such as client-side appli-
cations like a web browser. Data recorded in bug tracking systems
and code version histories can have a systematic bias relative to
the full population of bug fixes (Bird et al., 2009) and can be in-
complete or incorrect (Aranda and Venolia, 2009). However, we do
reduce this threat to some extent by using popular open-source
projects and bug systems for our study. The second source of po-
tential threat involves the age of bug reports. Since the sampled
bug reports span over ten years, the way of performance bugs be-
ing reported may change as time passes by. This may somewhat af-
fect the methodological consistency. We have examined these bug
reports and found that such changes are minimal. The third threat
is related to the type of bugs studied. In this paper, we are focusing
on performance bugs, findings in performance bugs may not nec-
essarily confirm in other types of bugs in terms of reproducibility.

The primary threat to the internal validity involves the use of
keyword search and manual inspection to identify performance

bugs. To minimize the risk of incorrect results given by the man-
ual inspection, bug reports were labeled (as performance bugs or
not) independently by two inspectors. The recall of our approach
is estimated to be 50%. This is mainly due to fact that the key-
word often does not carry a lot of information in the context. For
instance, when searching for performance bugs with the keyword
“slow”, the bug returned talks about a potential fix for the bug
may cause the application to slow down. The bug itself is not a
performance issue. To compute this recall, we randomly sampled
100 bugs and manually inspected each of them. We found six per-
formance bugs, of which only three were found by the keyword
search and manual inspection. Such an approach is also used by
Nistor et al. (2013a). The risk of not analyzing all performance bugs
cannot be fully eliminated. However, combining keyword search
and manual inspection is an effective technique to identify bugs
of a specific type from a large pool of generic bugs, which has
been successfully used in prior studies (Jin et al., 2012; Nistor et al.,
2013a; Yin et al., 2011).

Another source of potential threat involves the lack of system
resources (e.g., operating systems and hardware) necessary for re-
producing certain performance bugs. Because Windows and Mac
systems are proprietary, getting the appropriate license and OS im-
age poses a higher challenge. We managed to try a few OSs (e.g.
Windows) used in the bug report but failed to reproduce the bugs
requiring specific OS versions. For Unix-like systems, some soft-
ware components are no longer available. A few compilation prob-
lems may be fixed and more bugs could potentially be reproduced
if we have the knowledge on the specific version of the compiler
used to compile the subject discussed in a bug report. Last, certain
workaround proposed may not be suitable for some researchers.
For instance, even though in our experience we can use the binary
executable instead of compiling the project from source code, this
method may not work for researchers who wish to work on source
code (e.g. developing code analysis techniques).

The primary threat to construct validity involves the dataset
and metrics used in the study. To mitigate this threat, we used bug
reports from the bug systems of the two subjects, which are pub-
licly available and generally well understood. We have also used
well-known metrics in our data analysis such as the number of
bugs, which is straightforward to compute.

4. Results

We now present our results for each of the three research ques-
tions.

4.1. RQ1: Reproduced bug reports and their characteristics
Column #Rep and #Failed of Table 1 list the number of repro-

duced and failed-to-reproduce bugs across different versions of the
two subjects.

Finding 1: A majority (82%) of reported performance bugs
fail to be reproduced. The rate to successfully reproduce a
performance bug report is low.

We next provide further details about the characteristics of
the reproduced bug reports, shown in Table 2. The characteris-
tics of the failed-to-reproduce bug reports will be discussed in
Section 4.2.

When reproducing a server performance bug, environment
setup, data inputs, configuration options, and input actions are four
essential elements. Fig. 1 shows an example of the use of the four
elements in Apache bug #48024. Environment setup refers to the
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Table 2
Reproduced bugs and their characteristics.

Sub BugID Set Inp Opt Load Act  Order Duration Workaround
Apache 54852 12 0 1 YES 4 YES Transient YES
Apache 52914 9 2 2 NO 3 YES Permanent NO
Apache 37680 6 1 2 NO 7 YES Permanent YES
Apache 22030 12 1 0] NO 2 YES Permanent YES
Apache 51714 11 1 0 YES 7 YES Permanent YES
Apache 43081 10 0 6 YES 3 YES Transient YES
Apache 48024 13 1 3 YES 3 YES Transient YES
Apache 46749 16 1 2 YES 3 YES Permanent YES
Apache 27106 19 1 1 YES 2 YES Permanent YES
Apache 38017 10 1 9 NO 3 YES Permanent YES
MySQL 21727 8 1 1 NO 2 YES Transient YES
MySQL 44723 8 1 1 YES 2 YES Transient YES
MySQL 74325 14 1 2 YES 2 YES Transient YES
MySQL 15653 15 1 1 NO 3 YES Transient YES
MySQL 26938 16 1 1 NO 2 YES Permanent NO
MySQL 54989 11 1 1 NO 3 YES Permanent YES
MySQL 54914 13 1 1 YES 2 YES Transient YES

Avg. - 12 1 2 YES (53%) 3 YES (100%)  Permanent (53%)  YES (88%)

Set = Number of steps to setup environment for reproducing the reported bug.
Inp = Number of input parameters. Opt = Number of configuration options.

Load = Whether a specific workload is needed.

Act = Number of input actions needed for triggering the bug after environment setup.

Order = Whether a specific order of actions is needed.
Duration = The duration of a performance bug symptom.

Workaround = Whether reproducing the bug requires workarounds.

Environment Setup
1. export INSTALL=$PWD/apache-install/
2. ./configure —prefix=$INSTALL -enable-sed —enable-proxy

12. python -m SimpleHTTPServer & #Start backend server
13. ./bin/apachectl start #Start proxy server

Data Input

A static file with 1M+ characters on a single line
Configuration Options

Header unset Content-Length

SetOutputFilter Sed

ProxyPass / http://127.0.0.1:8000/

Input Actions

HTTP request: http://localhost:8000/a.1

Fig. 1. Reproducing Apache Bug #48024.

steps to install OS and set up specific application components (e.g.
in Fig. 1, we have enabled the sed module for Apache) that are
required to reproduce a performance bug. Data input refers to the
user-supplied data (e.g. in Fig. 1 we have used a static file that
contains a single line) that is used to trigger a performance bug.
Workload is the amount of processing that the computer has been
given to do in a given time (Techtarget, 2006). Workload describes
the intensity of data inputs. In the above example, the size of the
input file defines the workload for the sed filter. Configuration op-
tions (e.g. in Fig. 1 we have included the ProxyPass option) cor-
respond to the customizable items in the configuration file. The
Apache mod_headers module “provides directives to control and
modify HTTP request and response headers”. For instance, “Header
unset Content-Length” removes the Content-Length header. How-
ever, in this paper, we do not consider the HTTP headers as con-
figuration options. Input action refers to the logical steps to take
after environment setup for the performance bug to manifest (e.g.
in Fig. 1, the action includes issuing an HTTP request).

Column Set of Table 2 lists the number of steps required for set-
ting up the performance bug reproduction environment. We define
a step as a single operation that can be completed by a shell com-
mand. For instance, to compile the source code with GNU make
command is treated as one step.

Finding 2: Among 17 reproduced bug reports, a majority
(65%) of them require more than 10 steps to setup the re-
production environment.

The results suggest that the environment for reproducing a per-
formance bug is complex. Fig. 1 shows part of the 13 steps of en-
vironment setup for reproducing Apache bug #48024.

Columns Inp of Table 2 lists the number of input parameters
(e.g., files) needed for triggering the performance bug. The results
indicate that 15 out of 17 reproduced performance bugs require
input parameters and 14 bugs require only one parameter. The in-
put parameters in all 15 bugs involve files. This is because many
operations offered by the subject applications require input files
to function. For instance, in the Apache HTTP Server, when a re-
quest command is issued, it is normally associated with a type of
file that is being requested, such as the example in Fig. 1. Occa-
sionally, the content of the file plays an important role in trig-
gering the performance bug. For example, in Apache bug #51714,
the Perl script used to trigger the bug contains code to generate a
large HTTP range header. In other cases, such as an Apache server
restart, no input parameters are needed.

Finding 3: A large portion (82.3%) of reproduced bug reports
require specific input parameters. A majority (13 out of 14) of
them require only one input parameter.

Column Opt of Table 2 lists the number of configuration options
(specified both as in configuration files and command line argu-
ments) that lead to the performance bug. These options need to be
set to particular levels, whereas values of the other options do not
influence the exposure of the bug (or reproducibility of the bug)
and thus can be set to arbitrary values. For example, in Apache bug
#52914, two configuration options in the mod_reqtimeout mod-
ule RequestReadTimeout body and RequestReadTimeout
header are required to trigger a CPU spike. The results indicate
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Table 3

Workload type.
Workload type  Description Bug example
Web Concurrent web page requests Apache 54852
Traffic Long HTTP connection sessions Apache 43081
Database Large number of database tables MySQL 15653

Concurrent updates on DB tables ~ MySQL 74325

that 15 out of 17 reproduced performance bug reports are related
to specific configuration options. Such configuration options would
require a value that goes above or below a threshold to trigger the
performance bug, while other configuration option values remain
default. 14 performance bugs require less than 3 configuration op-
tions.

Finding 4: A significant percentage (88.2%) of performance
bugs require setting up specific configuration options to be
reproduced. The majority (80%) of these bugs are related to
only one option.

Column Load of Table 2 reports whether a specific level of
workload is required for reproducing the bug. The results indi-
cate that among 17 reproduced bugs, a majority (53%) of them
need a specific level of workloads to trigger the bugs. For in-
stance, in Apache bug #51714, a Perl script is used to gener-
ate a large volume of HTTP request loads. Each HTTP request
header has a large value in the Range field to get bytes from
the server. Table 3 summarizes the types of workloads in the 17
reproduced bug reports, including network traffic and database
operations.

Finding 5: Almost half (53%) of the reproduced performance
bugs require a specific level of workloads to manifest.

Column Act of Table 2 lists the number of input actions re-
quired for reproducing the reported performance bug. We define
an input action as one logical step towards triggering the perfor-
mance bug after the environment setup. For example, in Fig. 1,
sending an HTTP request is an action.

Finding 6: A majority (88%) of the reproduced performance
bug reports require no more than 3 input actions.

Column Order of Table 2 reports whether reproducing a re-
ported performance bug requires a specific order of input actions.
The results indicate that all 17 reproduced bug reports require
multiple input actions to trigger the performance bugs. This is be-
cause our studied subjects are server programs, their reproduc-
tions must start with the action of starting the server. In MySQL
bug #26938, a performance bug occurs as the database server
froze over a list of recently used statements. To trigger this bug,
the following steps are involved: (1) start a database server using
“ /bin/mysqld_safe”; (2) connect to a database server from a SQL
client using “./bin/mysql”; (3) issue a SQL command using “show
profile;”. Nevertheless, the order of input actions matters in 9 bugs
even after the server started. For example, to trigger a CPU spike in
Apache bug #37680, a sequence of input actions must follow the
specific order, as shown in Fig. 2.

Replace default port with "Listen 50000"
Add another port option "Listen 50001"
Restart sever

Make a request on port 50000

Delete option "Listen 50001"

Restart server

Make a request on port 50000

NoOuUThA WN

Fig. 2. Order of input actions.

Finding 7: The specific order of events is important in 52.9%
of the reproduced bugs that require multiple input actions.

Column Duration of Table 2 reports the life span of the per-
formance bug symptom. Permanent symptom indicates that the
symptom is always observable once it is exposed, whereas tran-
sient symptom means that the symptom appears for a short period
of time and then disappears.

Finding 8: A significant portion (47%) of bug reports involve
transient symptoms.

For instance, in Apache bug #48024, when (1) Apache is config-
ured as a reverse proxy server, (2) the SED respond content filter
is enabled, and (3) a request to a file contains long characters in a
single line, CPU suddenly spikes to 100%. However, this symptom
is only observable when Apache is processing the requested file for
about 5 s. Afterward, the CPU usage level returns to a normal state.

Column Workaround of Table 2 reports whether reproducing
a performance bug requires efforts to workaround the difficulties
(e.g., ambiguous description, version inconsistencies) in the report
description.

Finding 9: A majority (88%) of reproduced bug reports re-
quire workarounds.

For example, in MySQL bug #44723, the do_abi_check block
in Makefile.in fails the build due to a change of behavior in the
later versions of GCC. After removing the block, MySQL compiles
with no problems.

4.2. RQ2: Factors leading to failed-to-reproduce performance bug
reports

Before we can improve the practice to increase the chance
of success in reproducing performance bug reports, we want to
identify major factors that cause the reproduction to fail. We
classify the root causes of reproduction failures of the 76 failed-
to-reproduce bugs into eight categories: hardware dependency,
operating system (OS) dependency, component dependency, un-
available source code, compilation error, installation error, missing
step, and lack of symptom. The eight categories are mutually
exclusive when assigning bugs to a category. For instance, a bug
report may have “missing step” but if we run into the “compilation
error” problem, the bug report will not be counted under “missing
step” unless we can workaround the “compilation error” step. In
this case, the same bug will be counted once in each of the two
categories. The distribution of performance bug reports in the
eight categories is summarized in Fig. 3.
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Fig. 3. Bug reproduction failure factor distribution.

Finding 10: Among all failed-to-reproduce bugs, the majority
(74%) of them are due to OS dependency (20%), compilation
error (16%), missing step (20%), and lack of symptom (18%).

Hardware dependency refers to performance bugs that can
manifest themselves with only specific hardware resources.
For example, reproducing MySQL bug #51325 requires 40 GB
of memory to be configured for the configuration option
innodb_buffer_pool_size. However, the required memory
size exceeds the total amount of memory in our machine.

0S dependency refers to performance bugs that are operat-
ing system (OS) dependent, thereby failed-to-reproduce under our
available OS (i.e., Ubuntu Linux). In several cases of our study, we
have no access to the OSs described in the bug reports, such as
Microsoft Windows and Mac OS X. For example, in Apache bug
#56271, high memory consumption is observed on a Windows
Server 2008 machine. We had no success in reproducing this bug
on Linux; we suspect that exposing this performance bug requires
calling OS-specific services (e.g., system calls).

Component dependency refers to performance bugs that are de-
pendent on external software components but cannot be setup in

our environment. For example, in Apache bug #38602, JBoss v3.2 is
required to verify if Apache keeps sockets open when KeepAlive
configuration option is set to on. Since JBoss is no longer free, we
are not able to have it installed for reproducing the bug.

Source code unavailability refers to the version of a pro-
gram cannot be retrieved from the source code distribution
archives (apacheArchive, 2017; mysqlArchive, 2017). For instance,
in MySQL bug #30414, the specific versions (e.g., v5.1.20, v5.1.21)
are not found on the official distribution archive site.

Compilation error refers to the situation that the program fails
to be compiled due to unsolvable compiler flags and/or library de-
pendencies. For instance, in Apache bug #37680, make fails due to
a missed library 1ibexpat.so.0.

Installation error refers to the case that a program fails to be in-
stalled due to reasons such as the installation utility cannot locate
the files to be deployed. For instance, in MySQL bug #15811, when
executing make install, it reports an error message “recipe for
target install-pkg include HEADERS failed”. This is because the in-
stallation cannot locate certain header files.

Missing step refers to the lack of information on the steps of re-
producing performance bugs. Ideally, we want to repeat the steps
exactly as what are described in the bug report. Unfortunately,
bug reporters tend to make optimistic assumptions about the ex-
pertise of bug report readers and often skip some critical steps
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for reproducing the performance bug. For instance, in Apache bug
#43238, the bug reporter suggests to benchmark the Apache server
with HTTPS requests. However, the specific approach to benchmark
the web server is not described. Sometimes instructions on how
to observe the symptom are unclear. For example, in Apache bug
#48215, the extra negotiation of SSL connection is being reported,
but it is not clear in the bug description on how to observe such
behavior. Some would argue that a web debugging proxy utility
such as Fiddler can be used, however, if the bug report could pro-
vide clear instructions, the extra research on setting up may have
been avoided to cause further confusion.

Lack of symptom refers to when the expected symptom is not
observed. For instance, in Apache bug #38737, the bug report de-
scribes a stall during server shutdown but we are not able to ob-
serve the stall in any of the processes. Unlike functional bugs, we
cannot examine the expected program behavior by looking at the
program output. To determine if a program has performance is-
sues, we instead rely on performance bug symptoms such as long
response time, a low throughput, or excessive use of system re-
sources. Sometimes the level of magnitude is inconsistent with
the symptom being reported. For example, in Apache bug #44026,
when the web server is configured as a forward proxy, it should
exhaust all available memory after a few thousand requests. How-
ever, in our experiment, we only observed a slight memory in-
crease even after millions of requests are made. In any case, it is
difficult for others to confirm the existence of a performance bug.

Fig. 3 summarizes the categories and the total number of bug
reports falling into each category. As the results show, missing step,
0S dependency, and lack of symptom are the top three factors
leading to the failure of reproduction over the total number of
failed-to-reproduce performance bug reports. The results also in-
dicate that the factors vary across different subject programs. For
example, source code unavailability is a major factor in MySQL but
not in Apache. We conjecture that the reason is that code release
policy differs across organizations. Table 4 describes 24 representa-
tives failed-to-reproduce performance bug reports under each fac-
tor.

4.3. RQ3: Workaround the issues in failed-to-reproduce performance
bug reports

Given the challenges of reproducing performance bug reports,
we next describe the strategies we employed to increase the suc-
cess of bug reproduction.

4.3.1. Hardware dependency

It is not always possible to have the exact same hardware set-
tings as the original bug report. Our experience shows it is not al-
ways necessary either. In Apache bug #44026, it is reported that
the reverse proxy server exhausted 16 GB of memory, but we only
have 4 GB of memory on our machine. We are still able to repro-
duce this bug as long as we can observe the symptom that all 4 GB
memory is exhausted. This implies that, in certain cases, we do not
have to be restricted to the hardware settings stated in the bug re-
port for bug reproduction.

4.3.2. 0S dependency

If a performance bug does not require a specific version of OS,
it is possible to use a different OS in the same family. For instance,
Apache bug #37680 is reported on Fedora Linux. Although our OS
is Ubuntu, we can still reproduce the bug because both OSs are
based on Linux and the bug does not require a specific function-
ality provided by Fedora. Another example is Apache bug #45445,
while the bug report states that Windows Server 2003 is needed
to reproduce the bug, other Windows systems such as Windows
XP can also be used for the bug reproduction as commented in

the report. On the other hand, if the performance bug depends on
features in a specific OS, the bug is unlikely to be reproduced. For
example, reproducing Apache bug #18526 requires the process pri-
oritization component that is only provided by OS X.

4.3.3. Component dependency

A bug report may not contain information about the dependent
software components. For instance, Apache bug #27106 does not
mention which version of OpenSSL is used. If we use the latest
version, it may not have good backward compatibility. In addition,
if a bug is triggered under a specific version of its dependent com-
ponent, using a different version may not be able to expose the
bug. Our solution is to find out the timeline of the bug report and
retrieve the component version within the same time period. For
example, in Apache bug #27106, exposing the performance bug re-
quires installing OpenSSL, whose version is not mentioned in the
bug report. Since the bug happens on Apache v2.0.48, which was
released in October 2003, we can narrow down the range of the
OpenSSL versions and use OpenSSL v0.9.7 to successfully reproduce
the bug.

4.3.4. Source code unavailability

In a bug report description, the specific source code version
might not be available. This problem can often be solved by us-
ing the source code of a previous version. Since a performance
bug may not catch developers’ attention immediately, the bug is
unlikely to be fixed right away. This can make the bug appear in
multiple versions prior to the reported program version. For in-
stance, Apache bug #54852 is reported to exist in v2.2.X prior to
v2.2.24, so we can select any version in v2.2.x to reproduce the
bug. As another solution, if the faulty version is not available but
its fixed version and code patch are available, we can restore the
faulty version from the fixed version. In Apache bug #48024, the
fix is introduced in its v2.4.x version, and by removing the patched
code, we are able to generate a faulty version and reproduce the
bug.

4.3.5. Compilation error

In large-scale software projects, the compilation is typically
done through build utilities such as configure and CMake
for C/C++ programs. A build error can sometimes be fixed by
modifying the program source code. For instance, in Apache bug
#27106, the compilation fails because of a compatibility issue on
x86_64 machines for Apache v2.0.48. The solution is to change
APR_HAVE_SCTP=1 to APR_HAVE_SCTP=O0 in apr.h. Another
solution to workaround compilation error is to install a pre-built
binary distribution.

4.3.6. Installation error

Installation is the last step towards completing environment
setup. Installation may fail due to the lack of permission to deploy
files to a privileged directory. In such cases, on the Linux system,
the root permission is normally required. In other situations such
as the source distribution cannot locate header files as we have
seen in MySQL bug #74325, we workaround this problem by de-
ploying the database server to a SQL directory that contains the
needed files.

4.3.7. Missing step

For example, in Apache bug #48024, the SED module consumes
excessive memory when handling a file with long characters on
a single line. To reproduce this bug, we need a back-end server
that sits behind a reverse proxy, but details of what to be used as
a back-end server are left out. To address this problem, we make
an assumption that any web server that can serve HTTP requests
could be used as a back-end web server. Therefore, we searched for
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Table 4
Failed-to-reproduce performance bugs.

Problem Subject BugID Bug Description & Explanation
MySQL 61188 Slow performance on dropping compressed tables
The bug requires 20 GB of memory to manifest
Hardware MySQL 64258 High read timeout on InnoDB engine causes longer mutex wait
Dependency Lack of SSD on dev environment
Apache 244438 Java applet consumes significant CPU while Apache used as a proxy
Bug requires a hardware device to host backend server
MySQL 52102 InnoDB plugs has worse performance than built-in InnoDB engine
[N Bug requires Microsoft Windows
Dependency MySQL 18526 Thread priority is enabled by default on OS X which lowers performance
Bug requires OS X
Apache 38602 Web server does not keep HTTP connections alive
Component JBoss v3.2 is not available
Dependency Apache 45834 Authentication takes up to 15 mins to finish with mo_authnz_ldap module
The firewall that sits between servers is unknown
MySQL 26079 Database hangs during binlog rotation when InnoDB engined is used
Source Code MySQL v5.1.14 is not available
Unavailability MySQL 30414 Performance regression in throughput tests when logging is enabled
MySQL v5.1.21 and v5.1.20 are not available
Apache 35686 Memory leak due to the multi-threaded MPM worker module
Apache fails to build with OpenSSL
Apache 12757 LDAP cache fails to create cache file on all processes except the first one.
Compilation GCC is not compatible with the source code
Error Apache 38403 Child thread consumes 100% CPU as Apache used as a reverse proxy server
Configure utility failed with an syntax error message
MySQL 24148 Database hangs when closing SSL connections
MySQL failed to recognize OpenSSL and crashed
MySQL 15811 Long execution time of insert statements with multi-byte character sets
Installation errors out with recipe for target x failed
Installation MySQL 26527 SQL insertion with LOAD DATA INFILE is very slow in partitioned tables
Error make install failed with message “recipe for target failed”
MySQL 77094 System log buffer mutex contention
Failed to install the specific sysbench version
Apache 45445 The connection timeout causes stalling on unreachable backend servers
Bug requires a busy server with long-lived requests
Apache 22106 Embedded SSI slows down web pages
Missing Lack of information on bug reproduction steps
Step MySQL 27501 A significant increase in kernel time due to excessive getrusage() calls
Steps to reproduce the bug are very limited
MySQL 38551 Query cache consumes CPU time even when it is turned off
Lack of instructions on how to trigger the bug
Apache 44026 Server memory surges to 16 GB when used as forward proxy
The expected level of memory usage is not observed
MySQL 15815 Queries take significant longer if multiple queries are running concurrently
Lack of Linear time instead of exponential decay is observed
Symptom MySQL 20876 CPU spikes when creating 5k+ tables with large FIL_SYSTEM_HASH_SIZE
Cannot observe the difference by adjusting option values
MySQL 39253 Large query cache causes extended blocked mutex wait time

Cannot observe the symptom specified in the bug report

“simple web server” and used the SimpleHTTPServer module
from Python as the back-end web server. The performance bug was
finally successfully reproduced. The take-home message is that, to
reproduce bugs in server applications, depending on the type of
components that are not provided, we might easily find substitutes
to workaround the issue.

4.3.8. Lack of symptom

Performance bug symptoms describe the expected output we
wish to observe when reproducing a performance bug. In many
cases, however, we are not able to observe the symptoms. For in-
stance, in Apache bug #38017, the web server is used as a reverse
proxy but fails to serve content from cache, and thus causes a per-
formance slowdown. The bug report suggests searching for a “_de-
fault_” string in the log, which is an indicator of this performance
bug. However, we do not find this string in the log generated from
our environment. As an alternative solution, we monitor the HTTP
response status in the log and search for an HTTP status code 304,
which is also an indicator that the cached content is not modi-
fied (apacheCaching, 2017). Not all performance bug symptoms are
permanent. For example, in Apache bug #48024, a CPU spike only

appears after requesting a large file and returns back to the normal
level. The level of CPU usage is unnecessarily high and could lead
to more serious problems on a busy server. It is difficult to notice
the symptom without any external tools. To handle this problem,
we leverage the Linux top command and record CPU utilization pe-
riodically to observe the bug symptom.

Table 5 provides a quick reference to the problems of perfor-
mance bug report reproduction and their solutions. Table 6 re-
ports the effectiveness of workarounds applied to the failed-to-
reproduce bug reports for the eight failing factors. Column #Failed
of Table 6 lists the number of (initially) failed-to-reproduce bug
reports falling into each category. Column #Workaround lists the
number of bug reports that workarounds have been applied. Col-
umn Suc. Rate reports the success rate of workarounds applied
to the failed-to-reproduce reports. For example, among 18 failed-
to-reproduce bug reports requiring specific OSs that we do not
have in our environment, we fixed three of them and thus the
success rate is 17%. Column #Reproduced reports the number of
bugs that can be successfully reproduced with workarounds. Note
that when a workaround has been applied to a bug report in one
step does not imply the bug can be successfully reproduced be-
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Table 5
Performance bug reproduction problems and suggestions

Problem Suggestions
Hardware Hardware limitation: adjust system resource to be used in proportion to the bug report
Dependency specification. In MySQL bug #51325, the buffer pool is set to 20 GB and 40 GB respectfully. It
is advised to allocate 80% of the system memory to the buffer.
Accordingly, we use 1.5 GB and 3 GB on a machine that has 4 GB memory.
oS OS not available: choose an alternative distribution in the same operating system family.
Dependency In some cases, bugs reported on a specific Linux system can be run on a different Linux
distribution. For instance, in Apache bug #38602, v2.2 can also run on Ubuntu although the
bug is originally reported on RedHat.
Component Missing the application version: sometime when the exact application version is not available in
Dependency the bug report, we can use the timestamp on the bug report against the timeline of when

each version is made available to reduce the scope of application versions that we must try.

Source Code

Source code unavailable: restore the faulty version if a patch and a working version are

Unavailability available. In Apache bug #48024, the exact server version is not available to download.
Instead, we know that a patch has been applied to v2.4, and by removing the patch from this
version, we can reconstruct the faulty version.

Compilation Error with online solution: adjust source code and makefile; Error without online solution: use

Error a pre-built binary distribution. In MySQL bug #54989, when we try to compile executables

from the source code, we received a CMake error message with no online solutions available.
Since the offending source code is of not special interest in our investigation, we use a
pre-compiled binary distribution instead.

Installation

Missing files during installation: try to skip deploying non-essential files. For instance, when we

Error install openssl v0.9.7, the installation failed due to the manual file cannot be found. Since the
manual is not essential to our purpose, we choose to install without manual file.

Missing Step Vague description: follow through the report discussion. Missing workload instructions:
synthesize a load simulation targeting specific requirements. To simulate a long running
request, telnet is used in reproducing Apache bug #43081.
Lack of Fail to observe symptoms: find alternative bug indicators. In Apache bug #38017, it is suggested
Symptom that a “_default_” string should be searched in the log as an evidence for the miss cache hit
performance bug. Since we can not find this string, instead we monitor HTTP status code 304
to confirm that content is served form the cache.
Table 6
Workaround efficiency and effectiveness.
Problem #Failed  #Workaround  Suc. Rate  #Reproduced Est. Effort
Hardware Dependency 5 1 20% 0 1to2h
0OS Dependency 18 3 17% 0 1to2h
Component Dependency 8 1 13% 0 3to5h
Unavailable Source Code 10 5 50% 5 1to2h
Compilation Error 17 5 29% 5 1to5h
Installation Error 4 1 25% 1 1to5h
Missing Step 20 5 25% 5 3to5h
Lack of Symptom 14 1 7% 1 3to5h

#Failed = Number of failed-to-reproduce performance bug reports.
#Workaround = Number of bug reports required workarounds.

Suc. Rate = Percentage of bug reports with successful workarounds.
# Reproduced = Number of reproduced performance bug reports.

cause it may encounter other problems that cannot be resolved.
The last column reports an estimated researchers’ effort in finding
the workarounds.

Finding 11: A non-trivial portion (22.9%) of failed-to-
reproduce performance bugs can be reproduced by applying
workarounds.

5. Discussion

We share our experience in reproducing performance bug re-
ports in two open source server applications. Specifically, we study
eight major factors that make performance bug report reproduc-
tion difficult and summarize possible solutions to increase the suc-
cess of the reproduction. In this section, we summarize the impli-

cations learned from our study. The first part is geared towards
practitioners, since they reflect the state-of-the-art practices. The
second part provides a roadmap for researchers who plan to de-
velop new tools and techniques for addressing performance issues,
especially in server applications.

5.1. Implications to researchers

5.1.1. Fine-grained techniques on detecting missing information in
bug reports are needed

Existing research on characterizing and predicting missing
information in bug reports has been focusing on understanding
the description of bug reports. Chaparro et al. (2017) use machine
learning to automatically predict if a bug report contains com-
plete information for understanding and reproduction. Although
completeness of bug report description is important, it may not
be sufficient to reproduce performance bugs. Our results suggest
that reproducing performance bugs can be affected by a variety
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of fine-grained factors (Section 4.2), such as environment and
dependencies. When building prediction models, it helps to output
a detailed level of what is missing to provide suggestions in
improving the quality of the bug report.

5.1.2. Testing tools should consider input actions and orders

As our results (Finding 3) have shown, while a majority of
server performance bugs require no more than one data input to
trigger, exposing them does require multiple actions (Finding 6).
It is also worth noting that the order of actions have an influence
to performance bug reproduction (Finding 7). However, most ex-
isting performance testing techniques (Nistor et al., 2013b; Pradel
et al., 2014) consider only single inputs or workload. New testing
techniques to generate an effective sequence of input actions for
detecting performance bugs is desired. One way to obtain these
actions is from user manuals and bug systems.

5.1.3. Testing tools should consider configuration options

The current state of research in testing for performance bugs
considers two major aspects - test inputs and test oracles (Nistor
et al., 2013b; Pradel et al., 2014). However, our results (Find-
ing 4) suggest that exposing bugs require both specific data in-
puts and configuration options. Therefore, we need configuration-
aware techniques to test for performance bugs. One challenge in
configuration-aware testing is that the space of possible unique
configuration combinations grows exponentially with the number
of available configuration options. To address this problem, testers
often evaluate a representative sample of all possible configura-
tions (Qu et al., 2008; Yilmaz et al., 2004). One possibility is to
leverage existing static analysis (Lillack et al., 2014; Rabkin and
Katz, 2011) to identify performance-sensitive configuration options
based on code patterns. Such options can be used to guide perfor-
mance testing. Our results also suggest that performance testing
can focus on one or two configuration options (Finding 4).

5.14. Performance test oracles should cover various symptoms

Our results (Finding 8) suggest that many performance bugs
manifest through transient symptoms (e.g., high CPU utilization
and low cache hits). In contrast to permanent symptoms, where
the application simply hangs or slows down, transient symptoms
are difficult to handle. While runtime profilers can be used to cap-
ture such information, one challenge is that the transient symptom
may not always be observable during the entire execution. There-
fore, cost-effective sampling-based profiling techniques are needed
to catch performance bugs with transient symptoms.

5.2. Implications to practitioners

Although our study is primarily focused on reproducing perfor-
mance bugs from the perspective of researchers, our findings may
also benefit practitioners concerning the quality of bugs and the
allocations of bug resolution efforts.

5.2.1. Writing good quality bug reports is important

As the last column of Table 1 shows, there is not much im-
provement in reproducing performance bug reports over the years.
The results suggest that better practice in writing reproducible
performance bug reports is needed. We return to the results in
Section 4.2 (Finding 10). Factors including OS dependency, repro-
duction description, compilation, and symptoms are especially
important for creating reproducible performance bug reports. For
example, to successfully reproduce a performance bug report,
it often requires a number of steps to setup the environment
(Finding 2). Describing these steps in a clear way is beneficial for
performance bug reproduction. Better even, this should motivate
developers to design and adopt approaches to enforce bug reports

to contain what is considered to be necessary to reproduce a
bug. Recent advances (Chaparro et al., 2017) in applying natural
language processing techniques on bug report analysis may make
it possible to automate the procedure to check the completeness
of a bug report. By using machine learning techniques, such as
the clustering method, performance bugs may be automatically
assigned to different categories as discussed in Section 4.2. A set
of predefined rules can be associated with each category. Such
rules will be checked, for instance, when the bug is considered
to be “Lack of Symptom”, the system can then suggest poten-
tial symptoms for this bug based on similar bugs that do have
symptom descriptions in the same category.

5.2.2. Using alternative solutions when possible

As our results have shown, a non-trivial portion of the initial
failed-to-reproduce bug reports can be reproduced with additional
effort (Finding 9). This implies that when it is not possible to fol-
low the exact descriptions in the bug report, it is acceptable to
reproduce the bug with alternative methods. Table 6 also suggests
that source code unavailability is the easiest to fix, whereas lack of
symptom is the most difficult barrier to overcome. Therefore, prac-
titioners can allocate their efforts to find workarounds according to
the causes of the failed-to-reproduce performance bug reports.

6. Related work
6.1. Studies of bug reproducibility

There is a great deal of research on studying the reproducibil-
ity of bug reports (Chaparro et al., 2017; Cotroneo et al., 2016; Er-
fani Joorabchi et al., 2014; Frattini et al., 2016; Gray, 1986; Grot-
tke et al., 2010; Grottke and Trivedi, 2005; Sahoo et al., 2010).
Erfani Joorabchi et al. (2014) mined software repositories to com-
pare the characteristics of non-reproducible bug reports, such as
the number of authors, number of comments, and the bug sta-
tus transitions, to other bug reports. They defined six common
categories of bug reports based on non-reproducibility causes.
Sahoo et al. (2010) conducted an empirical study on the charac-
teristics of bugs that influence the reproducibility in the server
production environment. They randomly selected and inspected a
number of fixed bug reports to study bug characteristics, such as
the number of inputs used to trigger a bug and the types of symp-
toms as bugs manifest. Based on their findings, they proposed au-
tomated approaches for bug diagnosis. Our study and Sahoo’s work
share similarities in that we both studied server applications, a set
of confirmed bugs, the number of inputs to trigger a bug, and the
bug symptoms. Cotroneo et al. (2016) conducted a comprehensive
study on the characteristics of bug manifestation process. In the
study, they identified major triggers (i.e. workload, application’s
state, execution environment, and user behavior) under which con-
ditions a bug got activated and manifested as a failure. We also
studied the input triggers required to manifest the performance
bugs.

On the other hand, our work is different from prior work in sev-
eral aspects. First, we focused on reproducing performance bugs,
whereas the prior work studied the reproducibility of general bugs.
Performance bugs are non-functional bugs — they output the right
functional output but normally take a much longer time to fin-
ish. About half of the reproduced performance bugs require cer-
tain levels of workloads to manifest. Prior work did not consider
the characteristics that are specific to performance bugs. Second,
we focused on the study from the perspective of researchers who
tried to replicate a known reproducible performance bug with only
the description of a bug report. Therefore, we selected confirmed
performance bug reports that are known to be reproducible by
developers, whereas prior work had different target audiences of
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their studies. Third, prior work studied the characteristics of the
bugs from bug reports without trying to actually reproduce them
in real environment. In contrast, we got first-hand experience from
the perspective of researchers, and went through all the steps nec-
essary to actually execute and reproduce performance bugs, and
hence we were able to deliver a reusable set of benchmarks that
contain performance bugs. This also explains why Sahoo et al.
found that nearly 82% of bug symptoms can be reproduced —
many bugs may not actually be reproduced on researchers’ side
for bug selection.

Chaparro et al. (2017) utilized natural language processing and
machine learning techniques to automatically identify if bug re-
ports miss important information that can affect understandabil-
ity and reproducibility. Their work focused on analyzing bug re-
ports and selecting linguistic patterns as machine learning features
to automate detection of missing information in a bug report. Our
study gave insights on fine-grained categories of information that
is necessary to present in a bug report to increase its chance to be
reproduced. As a result, our findings can be used by similar ma-
chine learning techniques to improve their prediction accuracy.

Gray (1986) classified bugs into Bohrbugs that were easily
reproduced with certain inputs and Heisenbugs that were not
deterministically reproducible. Bohrbugs are “faults that are easily
detected and fixed and for which the failure occurrences are easily
reproduced.” Bugs from our study are unlikely to fall into this
category because as our study indicates, they are very challenging
to reproduce. On the other hand, Mandelbugs refer to the type of
bugs that are complex and non-deterministic. Our studied bugs
may fall into the category of Mandelbugs.

Grottke and Trivedi (2005) re-defined the widely but inconsis-
tently used software faults terms that are aging-related bugs: a
type of bug that leads to a higher probability of resulting in a
failure or performance degradation. Specifically, in the paper, they
clarified the relationship and definitions for Bohrbugs, Mandelbugs,
and Heisenbugs. Later work by Grottke et al. (2010) conducted an
empirical study in NASA space mission system software. They in-
vestigated four fault types: Bohrbugs, non-aging-related Mandel-
bugs, aging-related bugs, and unknown bugs in on-board software
faults reported from 18 past space missions, and whether the fault
type was independent of characteristics, such as failure effect and
failure risk in the space mission system software. Some bugs used
in our study may fall into the category of aging-related bugs, which
was defined as “faults that can potentially cause software aging,
which result in an increased failure rate and/or degraded perfor-
mance”. For instance, in Apache bug #27106, there is a memory
leak with the HTTP request. We consider this bug to be an aging-
related bug.

Frattini et al. (2016) discussed the process and influential fac-
tors in bug manifestation. Specifically, they surveyed the taxonomy
of bug reproducibility, described the procedure for manually an-
alyzing a bug report for its reproducibility, and applied machine
learning techniques to predict bug classifications. They manually
examined if the report was a real bug, and if not, the bug was
marked as “NOT_BUG” or “UNKNOWN?”. Next, for bugs that had
sufficient information, the following was examined: inputs and the
application configurations required for exposing the bug.

Our manual bug selection approach was similar to theirs as we
also utilized the bug repository system to filter out unwanted types
of bugs (e.g. the NOT BUG class). We also examined the bugs care-
fully to identify the inputs and workloads that were required to
expose the performance bugs.

There are several differences between Frattini’s work and our
study. First, Frattini’s work focused on studying two categories of
factors affecting reproducibility, including workload-dependent and
environment-dependent, whereas we have defined a larger set of
categories, such as component dependency and lack of symptom.

Moreover, as discussed earlier in this section, one uniqueness of
our study is that we tried to actually reproduce the bugs, so we
were able identify more factors influencing reproducibility. We also
suggested workarounds to improve the bug reproduction success
rate.

Cavezza et al. (2014) studied the dependency of environmen-
tal factors on the reproducibility of software failures in MySQL,
such as memory occupation, disk usage, and level of concurrency.
Their experiment demonstrated that by increasing the usage level
of such factors (e.g. disk usage) can increase the chance of repro-
ducing a software failure. The major difference between their work
and our study is that Cavezza’s study investigated specific aspects
of reproduction (e.g., determinism, environmental factors) for bugs
in general, whereas we systematically studied a set of fine-grained
factors (e.g., input parameters, configurations, reproducing steps)
affecting the reproducibility of performance bugs. In addition, we
provided alternative solutions to workaround failed-to-reproduce
performance bugs. On the other hand, factors studied in their work
may also be applied to performance bugs, for example, a higher
disk usage may lead to a performance bug.

6.2. Performance bug empirical studies

There has been some work on the empirical study for perfor-
mance bugs (Han and Yu, 2016; Jin et al., 2012; Nistor et al., 2013a;
Zaman et al, 2012). Jin et al. (2012) studied 110 performance
bugs from five software projects. They studied how performance
bugs were introduced, exposed, and fixed. They looked at the root
causes of performance bugs and the code patches. By observing
the code patterns that fixed performance bugs, they summarized
25 efficiency rules. They then used these rules to detect perfor-
mance bugs based on pattern matching. Nistor et al. (2013a) con-
ducted a study of over 600 bugs to compare and contrast different
characteristics of discovering, reporting, and fixing between perfor-
mance bugs and non-performance bugs. Their study provided em-
pirical evidence on the importance and challenges of performance
bugs. They focused on the way that bugs were discovered and re-
ported, where the authors claimed that a large percentage of per-
formance bugs were discovered with code reasoning (33.9-57.3%)
and a much smaller portion (5.5-10.4%) of performance bugs were
identified with profilers. They reported the complexity involved in
the bug fixing and concluded that performance bugs were likely to
be more challenging to fix.

Zaman et al. (2012) studied 400 randomly selected perfor-
mance and non-performance bug reports in Firefox and Chrome.
They quantified the study findings in four dimensions: the im-
pact on stakeholders, the context of the bug, bug fixes, and bug
fix validations. As a result, their study found that performance
bugs were more difficult to handle than non-performance bugs.
Han and Yu (2016) studied the characteristics of 113 performance
bugs in highly-configurable systems. They categorized the causes
and fixes in performance bugs. A highlight of their study was to
point out that configuration options were often neglected in the
performance testing although some configuration options can often
cause performance bugs. While previous research provided insights
on identifying the root causes of performance bugs and guidance
on addressing performance bugs in general, they did not con-
duct the study by actually reproducing bugs from performance bug
reports.

6.3. Performance debugging and testing

Several techniques in testing, debugging, fixing, and avoid-
ing performance bugs have been proposed in recent litera-
ture (Grechanik et al.,, 2012; Han et al., 2012; Jovic et al., 2011;
Nistor et al., 2013b; Pradel et al., 2014). Han et al. (2012) proposed
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StackMine, a debugging technique to discover high-performance
impact call sequences from numerous and complicated call stack
traces. Jovic et al. (2011) introduced Lag Hunting, a method
that monitors deployed interactive system behavior and provides
a list of performance issues. The authors argued that the use
of profilers would not work for detecting perceptible perfor-
mance slowness in interactive applications. Instead, they mea-
sured the latency to catch perceptible performance problems.
Pradel et al. (2014) designed a regression testing technique to
generate performance test cases for thread-safe Java concurrent
classes. Grechanik et al. (2012) proposed a test generation frame-
work, FOREPOST, to associate test inputs with their performance
loads. Execution traces were clustered and used to train a clas-
sification algorithm to generate rules that describe the semantic
patterns of good test inputs. Nistor et al. (2013b) proposed an au-
tomated performance testing oracle by identifying nested loops
whose computation has repetitive memory-access patterns. While
the above techniques are inspiring and effective, they considered
only data inputs. Our study acknowledged prior work and sug-
gested that a significant portion of performance bugs were related
to configurations, input actions, and the order of input actions.
These factors should be considered when designing software test-
ing and diagnosis tools.

7. Conclusions

We conducted a performance bug reproduction experiment
from the bug tracking systems of two open-source server applica-
tions. We studied 93 performance bug reports. Our empirical study
showed that the rate to successfully reproduce a performance bug
report was low (81%). We first studied the characteristics of the
17 performance bugs that were successfully reproduced. We then
identified eight major factors that led to the reproduction failures
in the remaining 76 bugs. We provided a list of suggestions on how
to improve the chance of reproducing performance bugs. Out of
the 17 successfully reproduced performance bugs, 15 of them uti-
lized our workaround strategies. Our study provided guidance and
insights for researchers and practitioners on improving the qual-
ity of performance bug reports and designing testing and diagnosis
tools for handling performance bugs.
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