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A B S T R A C T

Hydrologic models are widely used for projecting influences of changing climate on water resources. In this
study, we compared the original Soil and Water Assessment Tool (SWAT) model and an enhanced version of
SWAT model with physically based Freeze-Thaw cycle representation (SWAT-FT) for simulating future annual
ET, stream flow, water yield, surface runoff, and subsurface runoff in the Upper Mississippi River Basin (UMRB).
SWAT-FT projected fewer frozen days than the original SWAT model due to its better representation of snow
cover insulation effects. Both models derived declining trends in annual streamflow and terrestrial water yield in
the late 21st century due to increased ET under warmer climate. However, these two models exhibited con-
trasting mechanisms underlying the streamflow decline. For original SWAT model, the decrease in surface runoff
was the major driver, while for SWAT-FT, reduced subsurface runoff was the main cause. In general, the original
SWAT model predicted more surface runoff and less subsurface runoff than SWAT-FT. Further geospatial in-
spection shows large discrepancies between these two models, particularly in the northern colder parts of the
UMRB, where the maximum differences in annual surface and subsurface runoff reached 130 mm yr−1 and
140 mm yr−1, respectively. Collectively, the results demonstrate the importance of accounting for Freeze-Thaw
cycles for reliable projection of future water resources.

1. Introduction

It is estimated that 1.8 billion people will undergo water shortage by
2025 (Connor, 2015), and water resources demand for energy and crops
is projected to increase sharply by the end of the 21st century (Gesualdo
et al., 2019; Jewell, 2011). Water shortage has serious impacts on social
and economic development and food production (Gosling and Arnell,
2016; Schewe et al., 2014; Seung-Hwan et al., 2013). Future climate
change is expected to further exacerbate water resource problems in
many countries and regions (Asadieh and Krakauer, 2017; Debortoli
et al., 2017; Liu et al., 2017; Mandal and Simonovic, 2017). Influences
of climate change on water resources has been one of the greatest en-
vironmental concerns (McCarthy et al., 2001).

Impacts of climate change on water resources and hydrological
cycles are often investigated using hydrological models driven by pro-
jections of Global Climate Models (GCMs) (Blanco-Gomez et al., 2019;
Schewe et al., 2014; Seung-Hwan et al., 2013). Large model prediction

uncertainty exists mainly due to two reasons: (1) model deficiency in
representing essential hydrological processes, and (2) projections based
on a single GCM (Wilby et al., 2006). To understand and quantify GCM
projection uncertainties, multi-GCMs approaches are often employed in
many studies. Meanwhile, improving process representation in hydro-
logic models is needed to increase credibility of future water resources
projection.

Freeze-thaw cycles play a significant role in regulating surface and
subsurface flows (Guo et al., 2011), determining soil water distribution
(Farouki, 1981), modulating water budgets and water yield (Wang
et al., 2009), altering energy exchange between land and atmosphere
(Yang et al., 2007), and influencing biogeochemical processes (Duan
et al., 2012; Gu et al., 2005; Ma et al., 2009; Yang et al., 2014). Despite
the recognition of its importance, Freeze-Thaw cycles are under-
represented in most hydrological models (Bakir and Zhang, 2008; Wu
et al., 2014). As Freeze-Thaw cycles are amongst the processes most
sensitive to climate change, this deficiency tends to enlarge model
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prediction uncertainty under future climate change scenarios (Guo and
Wang, 2013; Yang et al., 2007).

The Soil and Water Assessment Tool (SWAT) is a hydrological model
for simulating long term water quantity and quality in agriculturally
dominated watersheds (Arnold et al., 1998; Borah and Bera, 2003). It
has been extensively used to assess impacts of climate change on wa-
tershed hydrology and water resources availability. However, its ap-
plication encountered difficulties at middle and high latitudes that are
affected by seasonal Freeze-Thaw cycles (Bakir and Zhang, 2008; Wu
et al., 2014). Like other commonly used hydrological models, the SWAT
model employs a simplified empirical soil temperature algorithm which
does not simulate phase changes of soil water and does not represent
well snow insulation effects. To address this problem, a physically
based soil temperature module has been developed to improve SWAT
depiction of soil thermal status and snow insulation effects on Freeze-
Thaw cycles (Qi et al., 2016a; Qi et al., 2016b). The enhanced version of
SWAT with physically based representation of Freeze-Thaw cycles
(hereafter SWAT-FT) has been successfully tested to simulate soil
temperature, soil thermal status, and Freeze-Thaw cycle in both small
and large watersheds in North America (Qi et al., 2016a; Qi et al., 2017;
Qi et al., 2019b; Qi et al., 2019c; Qi et al., 2020). Particularly, the
application of SWAT-FT in the Upper Mississippi River Basin (UMRB)
has demonstrated its superior performance in soil temperature and
hydrology simulation as compared with the original SWAT model.

The UMRB occupies only 18% of the whole Mississippi River Basin
(Moriasi et al., 2013), but disproportionally accounts for about 35–43%
of total nitrogen loading to Gulf of Mexico (Alexander et al., 1997;
Panagopoulos et al., 2014). This makes the UMRB a major nitrogen
source driving eutrophication and hypoxia in the Gulf of Mexico
(Rabalais et al., 1996). Since the transport and fate of nitrogen is closely
coupled with hydrological processes, and most soils of the UMRB ex-
perience seasonal Freeze-Thaw cycles, it is imperative to understand
impacts of Freeze-Thaw cycle representations on hydrologic modeling
in response to future climate change.

Our literature review shows that no studies have been conducted to
predict watershed hydrology as affected by Freeze-Thaw cycles under
future climate change scenarios for large agricultural watersheds. Thus,
the main objective of this study is to investigate the influence of
freezing-thaw cycle representation on simulating stream flow, water
yield, surface runoff, and subsurface flow in the UMRB. Specifically, we
employed the original SWAT and SWAT-FT models to predict future
watershed hydrology in the UMRB as driven by five GCM projections
under the Representative Concentration Pathways 8.5 scenario
(RCP8.5). Simulations from the two models were analyzed on different
temporal and spatial scales to quantify the impacts of representation of
Freeze-Thaw cycles on water resources assessment in the UMRB.

2. Methods and materials

2.1. Empirical vs. physical soil temperature algorithms

SWAT is a semi-distributed and processed-based hydrological
model, which has been widely used to investigate the impact of climate
change, land use change, and environmental management on water
quantity (Bhatta et al., 2019; Li et al., 2014; Liang et al., 2019a;
Mengistu et al., 2019; Osei et al., 2019; Qi et al., 2018; Zhang et al.,
2017) and water quality (Engebretsen et al., 2019; Liang et al., 2019b;
Naqvi et al., 2019). An empirical equation has been used in SWAT to
calculate the soil temperature as a function of the previous day’s soil
temperature, the average annual air temperature, the current day’s soil
surface temperature and the depth in the profile (Neitsch et al., 2011):
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where, T z( )soil and T z( )soil
' are soil temperature (°C) at depth z (mm) for

the current and previous day, respectively; γ is the lag coefficient

regulating the influence of the previous day’s soil temperature on the
current day’s temperature; d is a depth factor reflecting changes in soil
temperature as influenced by depth from soil; T̄Air is average annual air
temperature (°C); and Tsur is soil surface temperature (°C). Details re-
garding determination of these parameters can be found in Neitsch
et al. (2011).

This empirical soil temperature module was found to generate large
errors in cold regions by severely underestimating soil temperatures in
the winter season (Qi et al., 2016b; Qi et al., 2019c). Snow has in-
sulating and protective effects that reduce heat loss of soil surface
(Zhang, 2005). The effects are not well simulated by the empirical
module (Qi et al., 2016a). Most importantly, the empirical module does
not account for Freeze-Thaw cycles, because it does not simulate phase
change of water in the soil profile (Bélanger, 2009; Qi et al., 2019c).
Therefore, hydrological cycles impacted by Freeze-Thaw cycles cannot
be accurately simulated in regions with seasonal snow cover (Zhang
et al., 2008). Recently, Qi et al. (2016b) have developed a physically
based soil temperature module to better represent the insulating and
protective effects of snow, as well as Freeze-Thaw cycles with phase
change of soil water (Qi et al., 2016a; Qi et al., 2016b; Qi et al., 2019b;
Qi et al., 2019c). For the physically based method, soil temperature is
calculated as (Qi et al., 2016b):
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where, T is soil temperature (°C), t is time step (day), k is soil thermal
conductivity (J cm−1 d−1 °C−1), C is soil heat capacity (J cm−3 °C−1),
x is downward depth from soil/snow surface (cm), and s is soil latent
heat in source or sink (J cm−3 d−1). Detailed algorithms and parameter
determination are provided in Qi et al. (2016b). It is worth noting that
the only difference between SWAT-FT and the original SWAT model
used in the present study is that SWAT-FT used the physically based soil
temperature module instead of the empirical module to calculate soil
temperature. All other hydrological algorithms remained the same for
both models.

2.2. Study area and data collection

2.2.1. Upper Mississippi River Basin
The UMRB originates from the Lake Itasca in upper Minnesota and

extends 492,000 km2 southward into the Ohio River near Cairo, Illinois
(Fig. 1). Over 52% of the UMRB is used to plant crops for food and
biofuel production (Deb et al., 2015). It is one of the most productive
region in the U.S. that provides about 40% corn production (Wu et al.,
2012). Silty loam and loam soils are the main soil types in the UMRB
and flat and rolling terrains are the main topography (Deb et al., 2015).
Climate of the UMRB is sub-humid continental (Qi et al., 2019c).
Average annual precipitation is around 900 mm and decreases from
south to north. About 75% of annual precipitation falls in growing
season between April and October (Qi et al., 2019c).

2.2.2. Model setup and input data collection
The SWAT model requires detailed information about land use, soil,

and topography of the UMRB to simulate water quantity and quality.
We adopted the input data from Srinivasan et al. (2010) that divided
the UMRB into 131 subbasins in line with the eight-digit United States
Geological Survey (USGS) hydrologic unit codes (HUCs). Watershed
configuration and topographic parameter estimation were derived from
National hydrography Dataset (NHD) stream dataset and a 90 m digital
elevation model (DEM) (Srinivasan et al., 2010). Two sources of land
use information, i.e., the Cropland Data Layer (CDL) and 2001 National
Land Cover Data were used to represent crop rotation and non-agri-
cultural land use, respectively. Soil properties were derived from the
State Soil Geographic (STATSGO) 1:250,000 scale soil map. Manage-
ment practices such as tile drainage, tillage, crop rotation, and fertilizer
application were included in the project (Srinivasan et al., 2010).
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Historical climate input data (1979 to 2018) were obtained from the
NASA North-American Land Data Assimilation System phase 2
(NLDAS2; ldas.gsfc.nasa.gov/nldas/) (Qi et al., 2019a; Qi et al., 2019c;
Xia et al., 2012). Monthly observed stream flow data were obtained at
the U.S. Geological Survey (USGS) gauge station # 05,587,450
(Grafton, Illinois) during 1980–2015.

2.2.3. Climate change data
To derive future climate change scenarios, we compiled daily pre-

cipitation, solar radiation, relative humidity, maximum/minimum air
temperature, and wind speed data from five Coupled Model
Intercomparison Project (CMIP5) GCMs from 1960 to 2099. The five
GCMs are GFDL-ESM2M (Geophysical Fluid Dynamics Laboratory-Earth
System Model version.2; hereafter referred to as GFDL), HadGEM-ES
(Hadley Centre Global Environmental Model, version 2, Earth System;
hereafter referred to as HadGEM2), IPSL-CM5A-LR (Institute Pierre-
Simon Laplace version 5a, low-resolution configuration; hereafter re-
ferred to as IPSL), MIROC-ESM-CHEM (Model for Interdisciplinary
Research on Climate, Earth System Model, Chemistry Coupled; here-
after referred to as MIROC), and NorESM1-M (Norwegian Earth System
Model 1-Medium resolution; hereafter referred to as NorESM1). Those
future climate change projections were bias-corrected against observed
climate data using the bias-correction and spatial-downscaling

approach (Wood et al., 2004; Yang et al., 2019). We chose the RCP 8.5
for our study to assess water resources in the UMRB reflecting the
business-as-usual emissions scenario.

2.3. Model performance evaluation

The monthly observed stream flow data from 1980 to 2015 at the
USGS gauge station # 05,587,450 were used to evaluate the perfor-
mance and reliability of the two SWAT models under historical condi-
tions. Model performance was evaluated with three widely used me-
trics, i.e., Nash-Sutcliffe efficiency (NS) (Nash and Sutcliffe, 1970),
coefficient of determination (R2) (Parajuli et al., 2009), and percentage
bias (PBIAS) (Moriasi et al., 2007), defined in the following.
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where, Oi and Pi are observed and simulated values, respectively; and Ō

Fig. 1. Location of the Upper Mississippi River Basin (a) and its mainstream and subbasins based on eight-digit hydrologic unit catalogue (b), elevation (c), and major
land use types (d).
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and P̄ are the average of the observed and simulated values, respec-
tively.

2.4. Statistical analysis

The two SWAT models were implemented with the projected cli-
mate change data from the five GCMs for 1960–2099. We calculated
annual precipitation and average daily air temperature across the
UMRB for each decade from 1960 to 2099. We also used the non-
parametric Mann–Kendall (MK) test to detect monotonic trends, and
computed slope and intercept of the trendline for each GCM using the
Sen’s method (Kendall, 1975; Mann, 1945; Sen, 1968). These statistical
methods are commonly used in analyses of environmental, climate, and
hydrological data. For the MK test, the global trend for the entire series
is significant when P-value < 0.05.

The MK test and Sen’s method were also used for detecting trends in
hydrological variables (including ET, streamflow, water yield, surface
runoff, and subsurface runoff) and soil thermal state (frozen days). In
addition, the non-parametric Wilcoxon test was used to detect sig-
nificant difference between simulations by SWAT and SWAT-FT for the
baseline period (1960–1999) and each decade of the 21st century (Raje,
2014). We used the Wilcoxon test rather than the t-test because simu-
lated hydrologic variables do not follow normal distribution (Raje,
2014). A P-value < 0.05 indicates a significant difference between the
two model predictions.

3. Results

3.1. Future climate change in the UMRB

Trend analysis results for annual precipitation and average daily air
temperature over the UMRB are shown in Fig. 2a and 2b, respectively.
In general, most GCMs projected a significant increase in annual pre-
cipitation, except for IPSL. The Sen’s slope ranged from −2.97 to
10.53 mm decade−1 for annual precipitation time series projected by
the five GCMs (Fig. 2a). For air temperature, significant increases were
found for all five GCMs, ranging from 0.32 to 0.7 °C decade−1 (Fig. 2b).
Compared with baseline period (1960–1999), annual precipitation in-
creases by 90 to 129 mm (except for a 32 mm decrease for IPSL), while
annual temperature increases by 4.19 to 8.88 °C by the end of the 21st

century.

3.2. Model performance evaluation

Fig. 3 shows monthly streamflow simulated by the two SWAT
models against observations at the UMRB outlet. According to the
model performance criteria suggested by Moriasi et al. (2007) and
Wallace et al. (2018), both models performed satisfactorily (i.e., NS/
R2 > 0.5 and −25%< PBIAS<+25%). The results also indicate that
SWAT-FT performed better than SWAT with larger NS and R2 values
and smaller PBIAS due to model improvement (Qi et al., 2020).

3.3. Climate change impacts on future soil thermal status

Average annual frozen days (when surface soil temperature < 0°C)
across the UMRB for the baseline period and each decade of the 21st
century were shown in Supplementary Fig. S1. Fig. 4 shows aggregated
results based on the five GCM projections. In general, both models
predicted decreases in annual frozen days (P-value < 0.05; Fig. 4a).
Simulated average annual frozen days were significantly different be-
tween the two models (P-value < 0.05), though the difference tended
to narrow with time (Fig. 4a). Fig. 4b compares the percentage change
in annual frozen days in each decade of the 21st century relative to the
baseline period. The percentage decreases simulated by SWAT-FT were
greater than those by the original SWAT model, and the percentage
difference between the two models increases over time (Fig. 4b).

3.4. Future streamflow in the UMRB

Average annual streamflow simulated by both models with five
GCM projections for different periods are shown in Fig. 5a. Overall,
both models predicted decreases in streamflow at the outlet of the
UMRB (P-value < 0.05). There is no significant difference in average
annual streamflow between the two SWAT models for each decade in
the 21st century (P-value > 0.05; Fig. 5a). Fig. 5b further compares
the percentage change in average annual streamflow relative to the
baseline period between the two models. Overall, SWAT predicted
higher percentage decreases than SWAT-FT in each decade of the 21st
century, and the difference between the two models increases with time
(Fig. 5b).

Fig. 2. Trends of decadal changes in annual precipitation (a) and daily air temperature (b) from1960s to 2090 s as projected by five GCMs under RCP8.5 in the
UMRB.
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Since SWAT and SWAT-FT predicted significantly different winter
soil thermal status, we further compared streamflow generated during
the nongrowing season (from Nov. to Apr.) as shown in Fig. 6a. Like the
results for annual total streamflow (Fig. 5a), there was no significant
difference between the two models for nongrowing season (P-value >
0.05). Compared with the baseline period, both models predicted in-
creased non-growing season streamflow with maximum increases of
21.7% and 13.1% in the 2080s for SWAT-FT and the original SWAT
model, respectively (Fig. 6b).

3.5. Future water cycle in the UMRB

Fig. 7 shows average annual water yield and surface and subsurface
runoff for the baseline period and each decade of the 21st century as
aggregated over the five GCMs. Supplementary Figs. S2 and S3 show
more detailed surface and subsurface runoff simulations for each GCM.
There was a decreasing trend for average annual water yield for both
models (P-value < 0.05), but the difference between the two models
was not significant (P-value > 0.05; Fig. 7a). The largest percentage
decrease in annual water yield occurred in 2070 s and were 9.9 and
11.2%, respectively, for SWAT-FT and the original SWAT model
(Fig. 7d).

Further statistical analyses indicate significant differences in both
annual surface and subsurface runoff between the two models (P-
value < 0.05). The differences tended to diminish over time in the
21st century (Fig. 7b and 7c). Compared with the baseline period, the
original SWAT model predicted a decline in both surface (P-value <
0.05) and subsurface runoff (P-value > 0.05). In contrast, SWAT-FT
predicted an increase in surface runoff (P-value > 0.05) but a decrease
in subsurface runoff (P-value < 0.05). The percentage decrease in
subsurface runoff predicted by SWAT-FT was greater than the original
SWAT model in the 21st century (Fig. 7e and 7f). For example, at the
end of this century, SWAT-FT predicted a −17.1% decrease in sub-
surface flow while the original SWAT model predicted a −7.6% de-
crease.

Average annual ET across the UMRB is shown in Fig. 8a. Clearly,
both models predicted increasing annual ET and there was no sig-
nificant difference between them (P-value < 0.05). At the end of the
21st century, both models predicted as much as 37% increase in ET
(Fig. 8b). The difference in ET between the two models was too small to
detect. This is mainly because the two models used the same ET

algorithm of SWAT which currently was not affected by the soil tem-
perature.

3.6. Spatial distribution of future water resources in the UMRB

We selected the baseline period (1960–1999) and three future 30-
year periods (i.e., 2010–2039, 2040–2069, and 2070–2099) to illustrate
the differences between SWAT and SWAT-FT in simulating annual
surface and subsurface runoff (Fig. 9). Those three 30-year periods re-
present near term, mid-term, and long-term future conditions, thereby
allowing us to analyze changes in spatial differences between the ori-
ginal SWAT model and SWAT-FT over time (Fig. 9). The difference in
surface runoff was greatest in the northern parts of the UMRB (with
maximum difference of about 130 mm) and least in the southern
UMRB. Note that surface runoff simulated by the original SWAT model
was greater than that of SWAT-FT across most subbasins (the difference
is positive), except for small areas with negative values in the south
during 2070–2099 (Fig. 9a). The difference between simulations of
SWAT-FT and the original SWAT model tended to narrow over time
which is consistent with the results from temporal analyses in Fig. 7.
Similar spatial patterns were found for subsurface runoff, for which the
differences between the two models are greatest in the northern UMRB
(with maximum difference of about 140 mm) and gradually reduced
towards south. In addition, the difference in subsurface runoff between
the two models also tended to diminish over time. In contrast with
surface runoff, the subsurface runoff simulated by the original SWAT
was less than that by SWAT-FT for most subbasins (Fig. 9).

4. Discussion

4.1. Impacts of warming temperature on streamflow/water yield

Annual precipitation and daily air temperature projected by the five
GCMs show upward trends from 1960 to 2099 in the UMRB, which
agree with previous studies in the same area (Qian et al., 2007; Tao
et al., 2014). Warming air led to increases in annual ET (which offsets
the gently increased annual precipitation) and resulted in reduced
streamflow/water yield simulated by both SWAT models (Figs. 8, 5 and
7a). In general, average annual streamflow was predicted to decrease
starting in the 2030 s (Fig. 5). Both the original SWAT model and
SWAT-FT predicted a maximum decrease of 11 and 9.1%, respectively,

Fig. 3. Simulated vs. observed of monthly stream flow at the outlet of the UMRB from 1980 to 2015. Statistics for original SWAT and SWAT-FT are shown in red and
blue fonts, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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in annual streamflow during 2070 s (Fig. 5). The fact that 2070 s and
2090 s had greater percentage changes in stream flow than those of
2060 s and 2080 s indicates a long-lasting unstable climatic period after
2050 s in the UMRB (Fig. 5). Similar results were found for water yield
(Fig. 5a and 5b vs. Fig. 7a and 7d). Different from streamflow (which
can be monitored at the outlet of a basin), water yield is the summation
of surface runoff and subsurface runoff (=lateral flow + tile
flow + base flow) from uplands of the basin (which is difficult to
measure at a watershed scale). The difference between streamflow and
water yield includes a relatively small amount of transmission losses
(ET from waterways and losses to riverbeds). Water yield and its
components are directly associated with water cycles at the field scale,
and the quantity and quality of these waters have important implica-
tions for agricultural water resources management.

Although annual total stream flow was predicted to decrease by
both models, annual streamflow of the non-growing season tended to
increase (Fig. 6a), which implies a shifted precipitation pattern and
warmer winter (causing more snow melt) in the 21st century. Similar
conclusions were drawn in northern Eurasia and North America under
future climate change scenarios (Smith et al., 2007; Walvoord and
Striegl, 2007). SWAT-FT predicted greater percentage increase in
streamflow during the nongrowing season (with a maximum increase

rate of 21% in the 2080 s) relative to the baseline period (Fig. 6b),
which indicate higher risks of sediment erosion during non-growing
season when less biomass is left on ground to protect soils.

4.2. Impacts of warming temperature on soil thermal status

Driven by temperature increases, annual frozen days averaged over
the UMRB reduced over time, with SWAT-FT predicting less annual
frozen days in any periods than the original SWAT model (Fig. 4a). This
is because the physically based soil temperature module better ad-
dressed snow insulation effects than the empirical algorithm. The dif-
ference in annual frozen days between the two models tended to
minimize when snow cover extent and depth decreased due to warming
air temperature in the late 21st century (Fig. 4a). SWAT-FT simulated
greater percentage decrease in annual frozen days indicating high
sensitivity of the physically based soil temperature module to future
climate change (Fig. 4b). Studies from snow removal experiments at the
site scale have shown more frozen days and deeper frozen depth im-
plying that global warming could lead to “cooler” soils (Freppaz et al.,
2008; Sulkava and Huhta, 2003). Our numerical simulation results
demonstrate otherwise. This is understandable that those field experi-
ments were conducted under current winter temperature, while future

Fig. 4. Average annual frozen days across the UMRB simulated by the two SWAT models (a) and percentage change (%) with respect to the baseline period
(1960–1999) for each decade of the 21st century (b). “****” indicates the significant difference between two model simulations with the P-value < 0.0001.
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winter temperature increases will lead to “warmer” soils, even though
snow cover shrinks. Changes in frozen days in general reflect the sen-
sitivity of the physically based soil temperature module to snow cover
change (which is expected to reduce) and demonstrate the importance
of including physically based soil temperature for better future pre-
diction of soil thermal status.

4.3. Influence of Freeze-Thaw cycle representation on temporal changes in
hydrological processes

The influence of freeze and thaw cycles on hydrological processes
was clearly demonstrated by the difference between the original SWAT
model and SWAT-FT in predicting surface and subsurface runoff in the
UMRB. Surface and subsurface water flows from uplands are important
components of watershed hydrology. SWAT-FT predicted less surface
runoff and more subsurface runoff than the original SWAT model for
the baseline and every decade of the 21st century. The differences
tended to diminish over time in the 21st century (Fig. 7b and 7c), which
echoes the narrowed difference in predicted frozen days between the
two models (Fig. 4a). The results reflect the impacts of Freeze-Thaw
cycle on the partition between surface runoff and subsurface flow, and
further suggest that Freeze-Thaw cycle representation is critical for

accurate assessment of future water resources in the UMRB. In addition,
different from the original SWAT model, SWAT-FT tended to predict
increases in annual surface runoff despite reduced total water yield in
the 21st century (Fig. 7b and 7e).

It is worth noting that the increasing trend of surface runoff for
SWAT-FT and the decreasing trend of subsurface flow for the original
SWAT were not significant (Fig. 7). This indicates that the reduction in
total water yield was caused by the decrease in surface runoff for the
original SWAT model, while for SWAT-FT, it was mainly caused by the
decrease in subsurface runoff. The results reflect the impacts of dif-
ferent soil thermal statuses on hydrological cycles and highlight the
importance of accounting for Freeze-Thaw cycles in hydrological
models.

4.4. Influence of Freeze-Thaw cycle representation on spatial changes in
hydrological processes

Spatial variabilities of surface and subsurface runoff provide im-
portant information for water resources management and im-
plementation of adaptation strategies. In the northern UMRB, the large
differences in simulated surface/subsurface runoff between the two
models reflect the influence of freeze and thaw cycles on the partition of

Fig. 5. Average annual streamflow (m3 s−1) simulated by the two SWAT models (a) and percentage change (%) in streamflow with respect to the baseline period
(1960–1999) for each decade of the 21st century (b).
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surface and subsurface water (Fig. 9). More attention is deserved for the
northern agricultural areas of the UMRB, because SWAT-FT predicted
increasing subsurface runoff over time implying potentially more ni-
trate leaching through baseflow. For the southern part of the basin, the
differences in simulations of surface and subsurface runoff between the
two models were not as dramatic as in the northern parts, and they
tended to diminish over time (Fig. 9). Reliable assessment of manage-
ment practices and land use change under future climate scenarios re-
quires accurate simulations of hydrological processes and the nutrient
transport and fate. This study demonstrates that hydrological modeling
should not ignore the impacts of freeze and thaw cycles, particularly in
regions affected by cold climate. Collectively, water resources assess-
ment under future climate change scenarios based on the original SWAT
model likely yields biased results because of its incapability of depicting
Freeze-Thaw cycles.

Notably, the difference between SWAT and SWAT-FT varies be-
tween different GCM projections (Fig. 9). In general, GFDL projections
translated to less differences in simulated surface and subsurface runoff
between SWAT and SWAT-FT, while NorESM1 projections led to large
differences, particularly towards the end of the 21st century. This re-
sults clearly demonstrate the differences between GCM projections,
therefore using multiple GCM is critical to understand and quantify the

uncertainties.

4.5. Impacts, limitations, and future work

Apart from anticipated changes in climate (e.g. more frequent and
severe storms) (Pryor et al., 2014), land use change to meet food se-
curity, energy independence, and environmental sustainability goals
(EISA, 2007; NRC, 2012; USDA-NRCS, 2009) are expected to influence
both hydrologic processes and water quality in the UMRB. For example,
UMRB contributes> 30% of nutrients to the Gulf of Mexico (Dale et al.,
2007), where hypoxia and harmful algal bloom are causing significant
damage to environmental integrity and commercial fishing (Scientists,
2020). Numerous conservation practices, such as efficient fertilizer
application, reduced tillage, and cover crops, are being incentivized to
reduce nitrogen pollution from the UMRB (USDA-NRCS, 2012). In ad-
dition, cropland expansion is occurring in the URMB in response to
bioenergy and food demand (Lark et al., 2015). Currently, the SWAT
model is being used to understand and quantify impacts of these
complex natural and human drivers in the UMRB. Accurate simulation
of hydrologic processes (such as surface runoff and baseflow) is the
prerequire for reliable assessment of water quality. Surface runoff is the
major pathway for particulate nutrient transport (such as particulate

Fig. 6. Average annual streamflow (m3 s−1) for the nongrowing season (Nov.-Apr.) (a) and percentage change (%) with respect to the baseline period (1960–1999)
for each decade of the 21st century (b).
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organic nitrogen and sediment loss) from land to downstream water-
bodies, while baseflow is the major contributor to dissolved organic and
inorganic pollutants (such as nitrate). The improvement with SWAT-FT
not only helps better predict future water resources availability but also
serves as the foundation for reliable assessment of water quality im-
pacts of agricultural conservation and land use change in the UMRB.
Additionally, as the SWAT model are being widely used for hydrologic
and water quality modeling (Gassman et al., 2007) (https://www.card.
iastate.edu/swat_articles/), we anticipate the SWAT-FT with better
performance for Freeze-Thaw cycle and hydrologic modeling will
contribute to other applications such as nutrient cycles and sediment
loading (Anthony et al., 2009; Collins et al., 2017; Collins et al., 2010)
across the globe.

Even though our previous studies demonstrated satisfactory per-
formance of SWAT-FT for simulating soil thermal status in areas that
are subject to seasonal snow cover and Freeze-Thaw cycles, we did not
test the applicability of the model in regions that are permafrost or
covered with glacier. Particularly for glacial regions, more detailed
depiction of ice formation and melting is likely needed to achieve sa-
tisfactory performance. Therefore, application and evaluation of SWAT-
FT in polar regions deserves further research.

Given the close coupling between hydrological and biogeochemical
cycles, SWAT-FT applications to understand water quality and carbon

cycle impacts of agricultural management and climate change await
future work. Although SWAT-FT possesses physically based soil water
temperature algorithms, the riverine water temperature is still calcu-
lated using empirical regression based on air temperature. Riverine
temperature is a critical factor influencing numerous aquatic biogeo-
chemical processes, such as organic matter decomposition, plankton
growth and die-off, and nitrification and denitrification. Future efforts
are needed to further refine physically based methods for simulating
riverine water temperature, thereby allowing SWAT-FT to fully re-
present water temperature across both terrestrial and aquatic ecosys-
tems.

5. Conclusion

The influence of future climate change on water resources has be-
come a great concern in the UMRB and many other basins across the
globe. By employing the original SWAT model and SWAT-FT, we de-
monstrated the importance of accounting for soil Freeze-Thaw cycles in
hydrological models for climate change impact assessment. Specifically,
projected annual ET, stream flow, water yield, surface runoff, and
subsurface flow using climate scenarios simulated by five GCMs under
the RCP8.5 scenarios were analyzed in this study.

Compared with the baseline period (1960–1999), annual

Fig. 7. Average annual water yield (a), surface runoff (b), and subsurface runoff (c) simulated by the two SWAT models with five GCM projections; and percentage
change (%) relative to the baseline period (1960–1999) for each decade of the 21st century (d, e, and f for water yield, surface runoff, and subsurface runoff,
respectively). “****” denotes P-value < 0.0001, “***” denotes P-value < 0.001, “**” denotes P-value < 0.01, and “*” denotes P-value < 0.05.
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precipitation and average daily air temperature were predicted to in-
crease ranging from 90 to 129 mm and from 4.19 to 8.88 °C in the
UMRB, respectively, by the end of the 21st century. In response to the
warmer climate, SWAT-FT predicted less frozen days than the original
SWAT model mainly because the physically based soil temperature
module better simulated snow insulation effects. Both models predicted
decreases in streamflow/water yield mainly due to increased ET caused
by warmer temperature. Further analyses indicate different mechan-
isms underlying the projected decreases in streamflow/water yield. For
the original SWAT model, the reduction in total water yield was mainly
caused by the decrease in surface runoff. In contrast, decreases in
subsurface runoff is the major reason explaining the SWAT-FT projected
decreases in water yield.

Spatial analyses show that the original SWAT model predicted more
surface runoff than SWAT-FT and the difference between them was
large in the northern UMRB (with maximum difference of about
130 mm with) and small in the southern parts of the UMRB. Meanwhile,
the original SWAT model predicted less subsurface water flow than
SWAT-FT. The large difference between the two models also occurred
in the northern parts of the UMRB (with maximum difference of about

140 mm) and gradually reduced towards south.
Our results for the first time demonstrate the significant influence of

Freeze-Thaw cycles on hydrological modeling in the UMRB under fu-
ture climate change conditions. Freeze-thaw cycle representation is
crucial for accurate assessment of future water resources and hydro-
logical models should consider the impacts of freeze and thaw cycles in
regions affected by cold climate in order to provide reliable information
to support agricultural and water management.
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