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Abstract—This paper applies error-exponent and dispersion-

style analyses to derive finite-blocklength achievability bounds for

low-density parity-check (LDPC) codes over the point-to-point

channel (PPC) and multiple access channel (MAC). The error-

exponent analysis applies Gallager’s error exponent to bound

achievable symmetrical and asymmetrical rates in the MAC.

The dispersion-style analysis begins with a generalization of the

random coding union (RCU) bound from random code ensem-

bles with i.i.d. codewords to random code ensembles in which

codewords may be statistically dependent; this generalization is

useful since the codewords of random linear codes such as LDPC

codes are dependent. Application of the RCU bound yields finite-

blocklength error bounds and asymptotic achievability results

for both i.i.d. random codes and LDPC codes. For discrete,

memoryless channels, these results show that LDPC codes achieve

first- and second-order performance that is optimal for the PPC

and identical to the best prior results for the MAC.

I. INTRODUCTION

This paper (see [1] for an extended version) presents
achievability bounds for the finite-blocklength performance of
low-density parity-check (LDPC) codes over the point-to-point
channel (PPC) and the multiple access channel (MAC). Proofs
employ two types of analyses.

1) Error-exponent analyses generalize the techniques in [2]
to demonstrate that average error probability ✏ decays
exponentially in blocklength n with an error exponent
bounded below by Gallager’s error exponent. This tech-
nique yields tighter bounds when ✏ is very small.

2) Dispersion-style analyses generalize [3], bounding the
log size of the codebook achievable for a given average
error probability ✏ and blocklength n. This method yields
tighter bounds when n is very small.

LDPC codes [4] are linear codes whose sparse parity-check
matrices enable low complexity decoding strategies. While [4]
includes some early analyses of code performance for LDPC
codes, the results derived here build more directly on tools
originally developed for general linear codes.

In [5, Section 6.2], Gallager describes a random coset
parity-check matrix code ensemble. Each element of the
parity-check matrix is chosen uniformly and independently
from {0, 1}. The coset ensemble is formed by adding the same
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random vector to all codewords defined by the parity-check
matrix. For PPCs with non-binary input alphabets, a “quan-
tization” mapping maps one or more binary vectors to each
channel input symbol. Gallager shows that the proposed code
can achieve the capacity of an arbitrary discrete, memoryless
PPC (DM-PPC) under maximum likelihood (ML) decoding.

In [6], Davey and MacKay generalize binary LDPC codes
to finite field GF(q), q > 2, showing empirically that q-ary
codes can significantly improve binary code performance for
binary-input PPCs under belief propagation decoding.

The standard GF(q) LDPC code ensemble employs a ran-
dom Tanner graph that maps the vector of variable-node edge
sockets to a random permutation of the vector of check-node
edge sockets; edge weights are independent and identically
distributed (i.i.d.) uniform on GF(q) \ {0}. For the DM-PPC
under ML decoding, [2] derives the first upper bound on
the average error probability using Gallager’s error exponent,
showing that under sufficiently large connectivity and block-
length the random code has a high probability of achieving
vanishing error probability at rates arbitrarily close to the
channel capacity. Independently of [2], the authors in [7]
analyze the performance over modulo-additive PPCs of two
different GF(q)-LDPC code ensembles under ML decoding.
The error exponents for most codes in their design are bounded
below asymptotically by the random coding error exponent [7].

While many studies focus on asymptotic LDPC behavior,
the increasing prevalence of short blocklength codes (e.g., 5G
codes, whose current blocklengths typically range from 100
to 20,000), motivate interest in finite-blocklength analyses.

In [8], Di et al. analyze the finite-blocklength performance
of LDPC codes over the binary erasure channel (BEC), where
finite-blocklength analysis boils down to a combinatorial prob-
lem. The paper derives the exact average bit- and block-erasure
probability for a given regular ensemble of LDPC codes under
iterative decoding and presents upper bounds on the average
bit- and block-erasure probability for standard binary LDPC
ensembles and the random parity-check ensemble under ML
decoding. Similar studies include [9]–[13], which extend this
approach to binary-input PPCs that may not be symmetric.
While these analyses are non-asymptotic, they yield expres-
sions that are either difficult to evaluate or empirical in nature.

Yang and Meng [14] study Gallager’s independent, uni-
form parity-check ensemble and the standard binary LDPC
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code ensemble under modified Feinstein’s threshold decod-
ing. Noting that codewords under these ensembles are not
pairwise independent and therefore that Shannon-style random
coding arguments do not apply, they derive new achievability
bounds for memoryless binary-input, output-symmetric PPCs,
demonstrating that Gallager’s parity-check ensemble bound
is asymptotically tight up to the second order and that the
standard LDPC code ensemble is capacity achieving.

Less is known about LDPC codes over MACs [15]–[17].
This paper bounds the finite-blocklength performance of the

standard GF(q) LDPC code ensemble under ML decoding
using both the error-exponent approach from [2] and the
dispersion-style approach from [3]. The error exponent analy-
sis extends the result of [2] from the DM-PPC to the discrete,
memoryless MAC (DM-MAC), refining the result with a non-
asymptotic expansion from [5, Exercise 5.23]. The dispersion-
style analysis derives a finite-blocklength error bound and
asymptotic third-order achievability results for the DM-PPC
and DM-MAC when the codewords are i.i.d., generalizes the
random coding union (RCU) bound [3, Th. 16] to enable
application to code ensembles with dependent codewords,
and derives an upper bound for the quantized coset LDPC
code ensemble, showing that LDPC codes achieve first- and
second-order performance that is optimal for the DM-PPC and
matches best prior results for the DM-MAC.

While practical LDPC code implementations typically em-
ploy sub-optimal iterative decoders, it is instructive to study
how LDPC codes perform under ML decoding in order to
understand the performance penalty of the low density encoder
separately from that of the sub-optimal decoder. The main
results are Theorems 1, 2, and 3, which bound the error
performance of quantized coset LDPC codes using Gallager’s
error exponent and Theorems 5, 7, 8, and 9, which give
finite-blocklength error bounds and asymptotic achievability
results for the PPC and MAC first for i.i.d. codes and then for
quantized coset LDPC codes.

II. NOTATION

Let [k] 4
= {1, 2, . . . , k}. For ordered set A and alphabets X

i

,
i 2 A, let XA

4
=

Q
i2A X

i

, and let P
XA be the distribution

on XA. Given a scalar function f(·), a set Z ✓ Rn, a vector
v 2 Rn, and a scalar a 2 R, aZ + v

4
= {az + v, z 2 Z}

and f(v)
4
= (f(v

i

), i 2 [n]). For ordered sets A and B with
A \ B = ; and any xA 2 XA, xB 2 XB, and y 2 Y

i(xA; y)
4
= log

P
Y |XA(y|xA)

P
Y

(y)
(1)

i(xA; y|xB)
4
= log

P
Y |XA,XB(y|xA, xB)

P
Y |XB(y|xB)

. (2)

The mutual informations, dispersions, conditional disper-
sions, and third centered moments of information are

I(P
XA)

4
= E[i(XA;Y )]

I(P
XA |PXB)

4
= E[i(XA;Y |XB))]

V (P
XA)

4
= Var[i(XA;Y )]

V (P
XA |PXB)

4
= Var[i(XA;Y |XB)]

V Y

(P
XA)

4
= Var[i(XA;Y )|Y ]

V Y

(P
XA |PXB)

4
= Var[i(XA;Y |XB)|Y ]

T (P
XA)

4
= E[|i(XA;Y )� I(P

XA)|3]

T (P
XA |PXB)

4
= E[|i(XA;Y |XB)� I(P

XA |PXB)]|3].

III. QUANTIZED COSET LDPC CODES

For any prime power q and finite field GF(q), a quantized
coset GF(q)-LDPC code is defined by a standard LDPC
encoder, a coset vector v, and a quantizer. (See Fig. 1.)

Message

LDPC

Encoder

+

Coset

Vector v

Quantizer

�(·)
Channel

Codeword

Fig. 1. Encoding of Quantized Coset LDPC Code

Definition 1: A standard GF(q)-LDPC code is defined by
a bipartite Tanner graph G = (V, E) with n variable nodes, r
check nodes, and undirected edge set E ✓ [n]⇥ [r]. For each
(i, j) 2 E , edge (i, j) connects the ith variable node and jth
check node; edge weight g

i,j

is a constant in GF(q) \ {0}.
The neighborhood of j 2 [r] is N (j)

4
= {i : (i, j) 2 E}.

The n variable nodes hold a column vector u from GF(q)n;
u is a codeword if it satisfies all check nodes, giving

X

i2N (j)

g
i,j

u
i

= 0 8j 2 [r],

where the linear equation operates in GF(q). The set of all
codewords constitute the code’s codebook

c = {c
1

, . . . , c
M

} ✓ GF(q)n.

Size M = |c| exceeds qnR for design rate R
4
= 1 � r

n

q-ary symbols per channel use if the parity-check matrix
corresponding to the Tanner graph does not have full rank.

Following [18], [19], we do not transmit codewords from
the LDPC encoder but instead apply quantized coset coding.

Definition 2: The coset GF (q)-LDPC code adds constant
coset vector v (component-wise in GF(q)) to each codeword
of an LDPC codebook c, giving coset LDPC codebook

c+ v = {c
i

+ v, i 2 [M ]}.

Definition 3: The quantized coset GF(q)-LDPC code

applies quantizer � : GF(q) ! U , where U is the channel
input alphabet, to each codeword of an LDPC coset codebook
c+ v, giving quantized coset codebook

�(c+ v) = {�(c
i

+ v), i 2 [M ]}.

The quantizer operates symbol-wise, mapping each symbol
from GF (q) to a symbol from U as

�(c
i

+ v)
4
= [�(c

i

[j] + v[j])]
j2[n]

= [�((c
i

+ v)[j])]
j2[n]

.

Quantizer � allows a code on GF(q) to approximate any
rational probability mass function P

U

for which P
U

(u) is an
362
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integer multiple N
u

of 1/q for all u 2 U . This is achieved by
mapping N

u

elements to each channel input symbol u 2 U .
We consider a random ensemble of quantized coset GF(q)-

LDPC codes. In our Tanner graphs, all left and right nodes
have degrees � and ⇢, respectively. Edges with weights chosen
i.i.d. uniform on GF(q)\{0} map the vector of variable-node
edge sockets to a random permutation of the vector of check-
node edge sockets. If the parity-check matrix corresponding to
the Tanner graph is not full-rank, the code design restricts the
operational rate to equal the design rate by choosing exactly
qnR codewords for use in coding. We use LDPC(�, ⇢;n) to
denote the single-user ensemble from the random (�, ⇢) LDPC
graph after uniform random codeword selection.

IV. ERROR EXPONENT BOUND FOR LDPC CODES IN MAC
To simplify notation, the following arguments treat a sym-

metrical K-transmitter DM-MAC (S-DM-K-MAC) and a gen-
eral 2-transmitter DM-MAC (DM-2-MAC) under ML decod-
ing. Both arguments generalize to the DM-K-MAC (K � 2).

For the S-DM-K-MAC, all transmitters employ the same
random codebook from the LDPC(�, ⇢;n) ensemble, each
offset by an independent random coset vector v

k

, k 2 [K],
and followed by the same quantizer �(·). We denote the MAC
ensemble before and after applying the random coset matrix
v = [v

1

v
2

· · ·v
K

] and quantizer � by LDPC

K

(�, ⇢;n) and
LDPC

K

(�, ⇢, �;n), respectively.
For a fixed LDPC graph with M = qnR codewords, the

single-transmitter codebook for each transmitter k 2 [K]

is denoted by c
(k)

= {c
1

, . . . , c
M

} ✓ GF(q)n. The MAC

codebook is the set of codematrices d = {dm : m 2
[M ]

K} ✓ GF(q)n⇥K , where dm = (c
m(1)

, . . . , c
m(K)

) for
each m = (m(1), . . . ,m(K)). The MAC coset codebook is
d+ v, and the quantized coset codebook is �(d+ v).

We first describe the distribution over the types of codema-
trices. For any matrix a 2 GF(q)n⇥K , let T n

Q (a) denote the
type that results when we view a as a list of n elements from
alphabet Q 4

= GF(q)K . The set of possible types is

T n

Q
4
= {T n

Q (a) : a 2 GF(q)n⇥K} ⇢ Z|Q|
+

.

For any MAC codebook d, the spectrum of codebook d is
Sn

d = (Sn

d (t) : t 2 T n

Q ), where for any type t 2 T n

Q , the
number of codematrices of type t in MAC codebook d is

Sn

d (t) =
X

m

1(T n

Q (dm) = t). (3)

The ensemble-average spectrum of random codebook D is
S

n

= ED[Sn

D] = (S
n

(t) : t 2 T n

Q ).
Given a DM-K-MAC (X = UK , P

Y |X ,Y) and quantizer
�(·), let D = (D(g) : g 2 Q), where D(g) is the extension of
the Bhattacharyya parameter to non-binary channels

D(g)
4
=

1

qK

X

g

02Q

X

y

q
P
Y |X(y|�(g0))P

Y |X(y|�(g0 + g)).

For any type t 2 T n

Q , define

Dt 4
=

Y

g2Q
D(g)t(g), B(n, t)

4
=

n!Q
g2Q t

g

!

. (4)

Theorem 1: Let P
Y |X be the transition probability for

an S-DM-K-MAC (X = UK , P
Y |X ,Y). Let (C, . . . , C)

be the MAC’s maximal symmetrical rate vector, and fix
R = (R, . . . , R) with R < C. Let P

U

be a pmf on U with
P
U

(u) = N
u

/q for each u 2 U , and let � : GF(q) ! U be a
quantization matched to P

U

. Consider the LDPC

K

(�, ⇢, �;n)
ensemble of blocklength n, rate R, and ensemble-average
spectrum S

n

. For any set T ✓ T n

Q and blocklength n, the
ensemble-average error probability under ML decoding is

E[P (n)

e

] 
X

t2T

S
n

(t)Dt
+ q�nEp(KR+(log↵MAC)/n), (5)

where E
p

(·) is Gallager’s error exponent under P
X

= PK

U

E
p

(R)

4
= max

0⇢1

[E
0

(⇢, P
X

)� ⇢R]

E
0

(⇢, P
X

)

4
= � log

X

y

 X

x2UK

P
X

(x)P
Y |X(y|x)1/(1+⇢)

�
1+⇢

↵MAC

4
= max

t2T

c

S
n

(t)

(MK � 1)B(n, t)q�nK

.

Here T

c

4
= T n

Q \T\{T n

Q (0)}, where T n

Q (0) is the type of the
all zero codematrix, and M = qnR.
Optimizing over T for each blocklength n makes the bound
as tight as possible. Applying expurgation [2] to remove codes
with minimum distance less than �n gives Theorem 2.

Theorem 2: Fix ✏⇤ > 0. Under the definitions of Theorem 1,
for large enough ⇢ and n and a matched choice of �, the
ensemble-average error probability for expurgated ensemble
LDPC

K

� Ex

�

(�, ⇢, �;n) under ML decoding satisfies

E
ex

[P (n)

e

]  q�nEp(KR+✏

⇤
).

Bounding ✏⇤ as a function of , where  =

⇢

n

, bounds the
code’s density-performance tradeoff. If  < q�1

q

decays no
more quickly than ⇥(

logn

n

), then the minimal achievable rate
offset ✏⇤ decays as O(

logn

n

). (See [1, Th. 2].) Selecting P
U

to approximate the capacity-achieving input distribution makes
E

p

(R) > 0 for any R < C. When the capacity-achieving input
distribution is not an integer multiple of 1

q

for some small q,
then a large q may be required to make this approximation
accurate. Thus by Theorem 2, our proposed code design is
asymptotically capacity achieving for ⇢ and q large enough.

Given distribution P
Y |X

1

,X

2

P
X

1

P
X

2

, let

R(P
X

1

, P
X

2

) = {(R
1

, R
2

) : R
1

< I(X
1

;Y |X
2

),

R
2

< I(X
2

;Y |X
1

), R
1

+R
2

< I(X
1

, X
2

;Y )}.
Theorem 3: For DM-2-MAC (X = X

1

⇥X
2

, P
Y |X

1

,X

2

,Y),
let P

Xi be a pmf on X
i

with P
Xi(xi

) = N
xi/q for all x

i

2 X
i

.
Let �

i

: GF(q) ! X
i

be the quantizer for P
Xi , i 2 {1, 2}.

If transmitter i employs ensemble LDPC(�
i

, ⇢
i

, �
i

;n) with
independent coset vector v

i

such that rate vector (R
1

, R
2

) 2
R(P

X

1

, P
X

2

), then for any blocklength n, the ensemble-
average error probability under ML decoding is

E[P (n)

e

]  q�nEp
1

(R

1

+

log ↵
1

n )

+ q�nEp
2

(R

2

+

log ↵
2

n )

+ q�nEp
12

(R

1

+R

2

+

log ↵
12

n ), (6)
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where E
p

1

(·), E
p

2

(·), and E
p

12

(·) are Gallager’s error expo-
nents for the input distribution P

X

1

, P
X

2

, and P
X

= P
X

1

P
X

2

(see [1, Th. 4] for details), ↵
12

= ↵
1

↵
2

, and

↵
i

= max

t2T n
q \{T n

q (0)}

S
n

i

(t)

(M
i

� 1)B(n, t)q�n

, i 2 {1, 2}. (7)

Here S
n

i

(t) is the LDPC(�
i

, ⇢
i

;n) ensemble-average number
of type-t vectors and M

i

= qnRi for i 2 {1, 2}.
From [20], all error exponents, E

p

1

(R
1

), E
p

2

(R
2

), and
E

p

12

(R
1

+ R
2

), are positive when rate pair (R
1

, R
2

) 2
R(P

X

1

, P
X

2

). However, restricting the ensemble from stan-
dard i.i.d. random codes to LDPC codes incurs rate offset
penalties log↵

1

n

, log↵

2

n

, and log↵

12

n

in R
1

, R
2

, and R
1

+ R
2

.
Again, under expurgation these rate offsets become arbitrarily
small with large enough n, ⇢

1

, and ⇢
2

. Therefore, the proposed
quantized coset-shifted LDPC MAC codes can achieve any
rate pair in R(P

X

1

, P
X

2

). Taking the union of R(P
X

1

, P
X

2

)

over all P
X

1

, P
X

2

achievable with increasing values of prime
power q and incorporating time sharing [21] then achieves any
rate pair in the convex closure of [

PX
1

PX
2

R(P
X

1

, P
X

2

).
To understand how our LDPC error exponent analysis

compares to other results, consider for a moment the DM-
PPC. In [3, Th. 50], Polyanskiy et al. bound the achievable
rate R with error probability ✏ and blocklength n as

R � C �
r

V
min

n
Q�1

(✏) +O

✓
1

n

◆
, (8)

where V
min

 2 log

2

2

(min{|X |, |Y|}) � C2 is the minimal
channel dispersion over all capacity-C-achieving channel input
distributions [3]. In [5, Exercise 5.23] and [5, Th. 5.6.2.,
Corollary 1], Gallager gives the achievability result

R � C �
r

8/e2 + 2(log

e

|Y|)2 � 2R2

cr

n
log

e

1

✏
(9)

for the i.i.d. random code, where R
cr

is the critical rate [5, Eq.
(5.6.30)]. Comparing (8) with (9), the dispersion-style analysis
gives a tighter coefficient for the

p
1/n term, but the error-

exponent analysis is more accurate at very small ✏.
The error exponent analysis gives a sub-optimal

p
1/n term

even for i.i.d.-P
X

codes. Specializing our analysis to the PPC,
we find a penalty for using LDPC codes instead of i.i.d. P

X

codes is a rate offset log↵

n

in the error exponent, which is
O(

logn

n

) for large enough ⇢ after expurgation (see [1, Th. 2]).

V. RANDOM CODING UNION (RCU) BOUND FOR I.I.D.
AND LDPC CODES IN PPC AND MAC COMMUNICATION

A. RCU Bound for the I.I.D. Code on the PPC

Theorem 4 generalizes [3, Th. 16] from i.i.d. to identically
distributed (not necessarily independent) codewords.

Theorem 4: (RCU allowing dependence) Given a PPC and
marginal distribution P

X

, consider a code ensemble with M
codewords drawn according to P

X(1),X(2),...,X(M)

such that

P
X(i)

= P
X

, 8i 2 [M ] (10)
P
X(A)

= P
X(B)

, 8A,B ✓ [M ] s.t. |A| = |B|. (11)

Let P
X

¯

XY

(a, b, c) = P
X

¯

X

(a, b)P
Y |X(c|a), P

X

¯

X

(a, b) =

P
X(1)X(2)

(a, b). Under ML decoding, ensemble average error
probability ✏ satisfies

✏  E
⇥
min{1, (M � 1)Pr[i( ¯X;Y ) � i(X;Y )|X,Y ]}

⇤
.

Similar to [22, Th. 5], applying Theorem 4, the Berry-
Esséen inequality, and [3, Lemma 47] gives Theorem 5, which
improves the third-order term of [3, Theorem 49].

Theorem 5: (Random coding finite-blocklength bound and
asymptotic third-order-optimal achievability for the PPC).
Consider a DM-PPC P

Y |X and capacity achieving distribution
P
X

. If each symbol of each codeword is drawn i.i.d.-P
X

and

I(P
X

) > 0, V (P
X

) > 0, V Y

(P
X

) > 0, T (P
X

) < 1, (12)

then there exists a blocklength-n code with M codewords and
average error probability ✏ such that for any n � 1

✏  E

min

⇢
1,M

A(P
X

)p
n

exp(�i(Xn

;Y n

))

��
, (13)

and for large enough n

logM

n
� C �

r
V (P

X

)

n
Q�1

(✏) +
log n

2n
�O

✓
1

n

◆
, (14)

where C
0

= 0.5583 is the Berry-Esséen constant and

A(P
X

)

4
= 2

 
log 2p

2⇡V (P
X

)

+ 2

C
0

T (P
X

)

V (P
X

)

3/2

!
. (15)

For proof details, see [1, Th. 11]. The achievability result in
Theorem 5 is optimal up to the third order by [3, Th. 48].

B. RCU Bound for the I.I.D. Code on the 2-MAC

Theorem 6 extends the RCU bound to the 2-MAC.
Theorem 6: (RCU allowing dependence for the 2-MAC)

Given P
X

1

and P
X

2

, consider an ensemble of 2-MAC codes
with M

1

⇥ M
2

codeword pairs drawn according to any
P
X

1

(1)...X

1

(M

1

)

P
X

2

(1)...X

2

(M

2

)

with

P
Xi(mi)

= P
Xi , 8i 2 [2],m

i

2 [M
i

]

P
Xi(A)

= P
Xi(B)

, 8i 2 [2],A,B ✓ [M
i

] s.t. |A| = |B|.
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, x
2
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1
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2

)
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P
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P
X

1

X

2

¯
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1
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2Y
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P
Xi

¯

Xi
(x

i

, x̄
i

)

!
P
Y |X

1

,X

2

(y|x
1

, x
2

).

The ensemble average error probability under ML decoding is

✏  E[min{1, V
1

+ V
2

+ V
12

}], (16)

where

V
12

= (M
1

� 1)(M
2

� 1)

·Pr[i( ¯X
1

, ¯X
2

;Y ) � i(X
1

, X
2

;Y )|X
1

, X
2

, Y ]

V
1

= (M
1

� 1)Pr[i( ¯X
1

;Y |X
2

) � i(X
1

;Y |X
2

)|X
1

, X
2

, Y ]

V
2

= (M
2

� 1)Pr[i( ¯X
2

;Y |X
1

) � i(X
2

;Y |X
1

)|X
1

, X
2

, Y ].
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Theorem 7 presents an asymptotic achievability result based
on Theorem 6. Our argument follows the source coding proof
in [22, Th. 11] and is similar to [23]. Denote for brevity

E
1

4
= M

1

F
1p
n
exp(�i(Xn

1

;Y n|Xn

2

)) (17)

E
2

4
= M

2

F
2p
n
exp(�i(Xn

2

;Y n|Xn

1

)) (18)

E
12

4
= M

1

M
2

F
12p
n
exp(�i(Xn

1

, Xn

2

;Y n

)), (19)

where F
1

, F
2

, and F
12

are extensions of A(P
X

) in (15), see [1,
Th. 14] for details. Let Z be a mean-zero, covariance-KZZ

Gaussian random vector in Rd, and define

Qinv(KZZ , ✏)
4
=

�
z 2 Rd

: Pr[Z  z] � 1� ✏
 
. (20)

Theorem 7: (Random coding finite-blocklength bound and
third-order achievability for the DM-2-MAC). Consider a DM-
2-MAC (X

1

⇥ X
2

, P
Y |X

1

,X

2

,Y). If each symbol of each
codeword for transmitter i is drawn i.i.d.-P

Xi , i 2 {1, 2} and

V Y

(P
X

1

|P
X

2

) > 0, V Y

(P
X

2

|P
X

1

) > 0, V Y

(P
X

1

, P
X

2

) > 0

T (P
X

1

|P
X

2

) < 1, T (P
X

2

|P
X

1

) < 1, T (P
X

1

, P
X

2

) < 1,

then there exists a blocklength-n MAC code with M
1

⇥ M
2

codewords and average error probability ✏ such that for each
blocklength n,

✏  E [min {1, E
1

+ E
2

+ E
12

}] , (21)

and for large enough blocklength n

R̄ 2 Ī � Qinv(V, ✏)p
n

+

log n

2n
1�O

✓
1

n

◆
1, (22)

where E
1

, E
2

, and E
12

are defined in (17)-(19), Qinv
is defined in (20), R̄ = [R

1

, R
2

, R
1

+ R
2

], and Ī
and V are the expectation and covariance matrix of
[i(X

1

;Y |X
2

), i(X
2

;Y |X
1

), i(X
1

, X
2

;Y )].

C. RCU Bound for the LDPC Code Ensemble on the DM-PPC

We next apply Theorem 4 to the LDPC(�, ⇢, �;n) en-
semble. The LDPC achievability result in Theorem 8, below,
matches the bound for the unrestricted code design (Theo-
rem 5) in its first- and second-order terms. The penalty log↵

n

is O(

logn

n

) for large enough ⇢ after expurgation (see [1,
Appendix D]), where ↵ = ↵

1

���
(�

1

,⇢

1

)=(�,⇢)

and ↵
1

is from
(7). The question of whether the penalty in the third-order term
results from the LDPC structure or the bounding technique is
currently under investigation.

Theorem 8: (LDPC ensemble finite-blocklength bound, and
second-order-optimal achievability for the DM-PPC). Consider
a DMC with channel transition probability P

Y |X and capacity
achieving distribution P

X

. There exist LDPC parameters (�, ⇢)
for which the LDPC(�, ⇢, �;n) ensemble, with �(·) chosen to
approximate P

X

, contains at least one code with average error
probability ✏ such that for any blocklength n

✏  E

min

⇢
1,↵M

A(P
X

)p
n

exp(�i(Xn

;Y n

))

��
, (23)

and for large enough blocklength n and coding parameter q
with R = 1� �

⇢

=

logM

n

R � C �
r

V (P
X

)

n
Q�1

(✏) +
log n

2n
� log↵

n
�O

✓
1

n

◆
(24)

provided the moment assumptions in (12) are satisfied.
Due to the difficulty of evaluating the exact value of ↵,

expression (23) is only computable for small n (e.g., n < 100).
However, expression (24) becomes increasingly accurate as n
increases (n ! 1). Analysis in [1, Th. 2] demonstrates
log↵

n

in (24) behaves as O(

logn

n

) when ⇢ = n, provided that
 decays no more quickly than ⇥(

logn

n

).
A brief proof sketch follows; details appear in [1, Th. 15].

The proof for i.i.d. codes requires modification for use on the
LDPC code ensemble due in part to the codeword dependence
observed in all linear code ensembles. We replace the original
RCU bound [3, Th. 16] by Theorem 4, which applies by the
LDPC code ensemble’s symmetry across codewords. While
our achievability proof for i.i.d. codes (Theorem 5) relies on

Pr[

¯Xn

= x̄n|Xn, Y n

] = Pr[

¯Xn

= x̄n

],

for the LDPC(�, ⇢, �;n) ensemble, we apply

Pr[

¯Xn

= x̄n|Xn, Y n

]  ↵Pr[

¯Xn

= x̄n

]. (25)

Equation (25) provides a bound on the effect of the LDPC
code ensemble’s codeword dependence.

Although the symbols within a codeword are also not
independent under the LDPC(�, ⇢;n) ensemble, they become
independent after adding the uniformly distributed coset vector
v. Finally, applying the Berry-Esséen Theorem and [3, Lemma
47] gives the achievability bound in (24).

D. RCU Bound for the LDPC Code Ensemble on DM-2-MAC

Just as Theorem 8 extends the proof of Theorem 5 from i.i.d.
to LDPC PPC code design, Theorem 9 extends Theorem 7
from i.i.d. to LDPC MAC code design.

Theorem 9: (Finite-blocklength bound and second-order
best-prior achievability for the LDPC ensemble on the DM-2-
MAC). Consider a DM-2-MAC (X

1

⇥ X
2

, P
Y |X

1

,X

2

,Y). Let
transmitter i employ the LDPC(�

i

, ⇢
i

, �
i

;n) ensemble with
coset vector v

i

, and quantizer �
i

(·) chosen to approximate
P
Xi for i 2 {1, 2}. Then there exist LDPC parameters

(�
1

, ⇢
1

) and (�
2

, ⇢
2

) for which the LDPC(�
1

, ⇢
1

, �
1

;n) ⇥
LDPC(�

2

, ⇢
2

, �
2

;n) ensemble contains at least one MAC
code with average error ✏ such that for any blocklength n

✏  E [min {1,↵
1

E
1

+ ↵
2

E
2

+ ↵
1

↵
2

E
12

}] , (26)

and for large enough n and coding parameter q

R̄ 2 Ī � Qinv(V, ✏)p
n

+

log n

2n
1� log

¯↵

n
1�O

✓
1

n

◆
1, (27)

provided that the moment assumptions in Theorem 7 are
satisfied. Here ¯↵ = [↵

1

,↵
2

,↵
1

↵
2

], ↵
1

and ↵
2

are defined
in (7), and the definitions of all other parameters are the same
as those in Theorem 7.
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