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Abstract 
 
Non-pharmaceutical intervention measures, such as social distancing, have so far been the only 
means to slow the spread of SARS-CoV-2. In the United States, strict social distancing during 
the first wave of virus spread has resulted in different types of infection dynamics.  In some 
states, such as New York, extensive infection spread was followed by a pronounced decline of 
infection levels. In other states, such as California, less infection spread occurred before strict 
social distancing, and a different pattern was observed. Instead of a pronounced infection 
decline, a long-lasting plateau is evident, characterized by similar daily new infection levels. 
Here we show that network models, in which individuals and their social contacts are explicitly 
tracked, can reproduce the plateau if network connections are cut due to social distancing 
measures. The reason is that in networks characterized by a 2D spatial structure, infection 
tends to spread quadratically with time, but as edges are randomly removed, the infection 
spreads along nearly one-dimensional infection “corridors”, resulting in plateau dynamics.  
Further, we show that plateau dynamics are observed only if interventions start sufficiently 
early; late intervention leads to a “peak and decay” pattern. Interestingly, the plateau dynamics 
are predicted to eventually transition into an infection decline phase without any further 
increase in social distancing measures. Additionally, the models suggest that a second wave 
becomes significantly less pronounced if social distancing is only relaxed once the dynamics 
have transitioned to the decline phase. The network models analyzed here allow us to interpret 
and reconcile different infection dynamics during social distancing observed in various US 
states.   
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Introduction 
 

The COVID19 pandemic has caused significant mortality and morbidity around the world [1], 

and the only means to slow its spread has been the implementation of non-pharmaceutical 

intervention methods, most notably social distancing [2, 3]. In the United States, stay-home 

orders have been given and have been implemented to various extents in the different states 

during the first wave of virus spread, which has resulted in an overall reduction of disease 

burden [4].  Economic considerations, as well as social distancing fatigue in the population, 

however, lead to the relaxation of non-pharmaceutical interventions, which has resulted in 

renewed waves of virus spread across the country.   

 

 An interesting characteristic of the dynamics of COVID19 cases during non-

pharmaceutical interventions is the different patterns that have been observed across different 

locations, such as different states / counties in the United States. When strict stay-home orders 

were put in place and the rate of infection spread slowed down, different dynamics were  

observed in different locations. In some US states / counties, a pronounced decline of daily 

COVID19 cases was seen following the onset of strict social distancing. This tends to be the case 

if infection spread has been more severe, such as in New York (Figure 1a). In other locations, a 

relatively long-lasting plateau phase was observed, during which the number of daily cases 

seemed to fluctuate around a steady average level (corresponding to a linear cumulative 

number of cases over time). This has been seen in places that implemented social distancing 

measures relatively early and controlled the spread effectively, such as in California or 

Washington State (Figure 1b).  
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 To explain these patterns, this paper analyzes the spread of COVID19 using network 

models, which assume that individuals in a population do not all mix with each other, but that 

individuals interact according to contact networks. We assume the existence of contact 

networks both before and during strict social distancing efforts. Strict social distancing is 

implemented by cutting these network connections to varying degrees. We find that such 

models can reproduce the above-described intricacies of COVID19 spread, including the long-
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Figure 1: (a) Different patterns of COVID19 spread during social distancing across different 
states in the USA. Group 0 states show a relatively sharp decline of infections. Group 1 states 
show an initial decline, followed by convergence to a plateau. Group 2 states show a plateau 
without a significant decline during social distancing. Group 3 states show a rise, followed by a 
plateau. Group 4 states show a rise without convergence to a plateau. See Supplementary 
Materials for grouping methodology. (b) Correlation between the COVID19 spread pattern 
during social distancing with the relative timing of the epidemic rise (see Supplement Section 3 
for details). A later rise of the epidemic is associated with a relatively early implementation of 
social distancing, which happens before the infection has spread significantly through the 
population. Thus earlier initiation of distancing correlates with the occurrence of a plateau or 
even a “rise” (which is thought to correspond to pre-plateau dynamics). Initiation of distancing 
after significant virus spread tends to correlate with a “hump”-shaped epidemic: a significant 
infection spread followed by a decline and lack of a plateau. (c) The same trend is seen when 
considering deaths as an indicator of the severity of infection when distancing is initiated. Less 
death correlates with the appearance of a plateau or a rise. More death correlates with a sharp 
rise of infection followed by a decline in the absence of a plateau.    
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lasting infection plateaus observed during strict social distancing. In particular, if strict social 

distancing is put in place relatively early, the models predict a prolonged plateau phase during 

which the daily number of infections remains relatively constant. Interestingly, these dynamics 

transition naturally into a decline phase without any additional cutting of network connections 

(i.e. without stronger social distancing).  In contrast, if strict social distancing measures are 

implemented only after the infection has spread to higher levels in the model, the plateau 

phase is less pronounced or absent, and a decline phase is observed right away. Consistent with 

previous modeling approaches [5, 6], we find that the predicted second wave can be lower if 

social distancing is relaxed later. In contrast to the predictions from standard SIR models, 

however, our network models suggest that a lower second wave is only observed if social 

distancing is relaxed once the steady plateau phase is over and the number of daily new 

infections has started to decline.  

 

Mathematical models have been useful for obtaining a better understanding of SARS 

CoV-2 spread dynamics, [7-13]. This has resulted in the estimation of the basic reproduction 

number [7, 14], in insights into transmission dynamics in the absence and presence of non-

pharmaceutical interventions [3, 5, 6, 15-20], and demonstrated the effect of age structure on 

disease dynamics [16, 21], among a variety of other contributions [10]. A number of 

mathematical modeling approaches have been explored in this context. Network models, 

however, have been helpful in studying human behavior in the context of social distancing. In 

the absence of vaccination, human adaptive reactions or mandated changes that modify 

interactions on a social network can influence the course of an epidemic [22]. There is a broad 
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theoretical and computational literature on the impact of behavioral changes, such as social 

distancing, on the patterns of amelioration or prevention of infection spread over social 

networks [18, 20, 22-28]. Funk et al. [24] and Wu et al. [22] highlighted the importance of risk 

perception. They studied social distancing via reduction of contacts as awareness flows on the 

social network, and found that local awareness (self-regulated social distancing decided by 

individuals due to fear of infection in their neighborhood) in high clustering networks prevents 

the disease from growing into an epidemic, while global awareness (mandated social distancing 

imposed by government) is not as effective at controlling infections. A study by Azizi et al. [27] 

considered coupled infection and awareness dynamics in response to an infection spread, and 

found a threshold on the level and timing of social distancing which is affected by network 

structure of human interactions. On the other hand, Leung et al. [26] showed that moderate 

social distancing that includes a degree of network rewiring can worsen the epidemic 

outcomes. They demonstrated the crucial impact of network structure on the measures in this 

context. Using the SIR model on spatial networks, Maharaj et al. [25] conducted efficiency and 

cost benefit analysis of controlling infection via temporary reduction of contacts by susceptible 

individuals in response to infection within their local neighborhood. Nishi et al. [28] used 

network models to study how interventions can be used to counter the spread of SARS CoV-2  

while preserving economic activity. They found that two network intervention strategies that 

divide or balance social groups can reduce infection spread while maintaining significant 

economic activity.  

 



 6 

Our modeling approach adds to this literature, and provides an explanation for patterns 

of plateau duration and characteristics of subsequent infection waves, in the context of timing, 

intensity, and duration of social distancing measures.  

 

 

Using network models to describe the dynamics of epidemics 

Network models [29-43] do not assume perfect mixing of individuals, but instead postulate the 

existence of a graph whose nodes are individuals, and edges represent social contacts through 

which transmission can occur.  

  

While the true structure of the human contact networks in the absence and presence of 

the pandemic are not fully understood, we analyzed two basic types of networks at different 

ends of the spectrum. In what we call a  “random spatial network”, individuals are connected to 

their local neighbors; such networks have been extensively studied in the literature, see e.g. 

[44-47] for general network properties and [29, 48-51] for dynamical processes on random 

spatial graphs. In the present context,  spatial random networks might approximate a society 

under various social distancing measures, when people do not travel much. The degree of social 

distancing can be expressed by the average number of connections per individual. A network 

where individuals have a relatively large number of connections would correspond to a society 

that has stopped traveling but is still interacting to a strong degree on a local level. Stricter 

social distancing measures would correspond to a reduced number of local connections in this 

network, e.g. due to people staying at home more. This network structure is shown 
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schematically in Figure 2A.  At the other end of the spectrum, we consider the scale-free 

Barabási-Albert network [52], which is characterized by individuals having non-local 

connections, and a few individuals having a disproportionately large number of connections 

(Figure 2B). During social distancing, the connections in such a network can be reduced. 

Between these two scenarios, we consider a third network that we call “hybrid network” 

(Figure 2C), or a spatial scale-free network. The backbone consists of spatial network 

connections, with a set of long-range connections superimposed. Details of how these networks 

were constructed are given in the Supplementary Materials.  

 

For each network type, we start with a given “null network”, which represents the state 

of society before strict local distancing measures. Stricter social distancing is implemented by 

randomly cutting network connections by a given percentage, which we can vary. Through this 

variation, we can consider a range of different intensities with which non-pharmaceutical 

interventions are implemented. 

  

 The infection dynamics on these networks were simulated stochastically with the 

following algorithm. As in standard SIR models, we distinguish between susceptible individuals, 

S, infected, I, and recovered, R, individuals that are immune to infection. Every time step, the 

network was sampled randomly until infected agents were selected M times, where M is the 

total number of currently infected individuals. For each infected individual that was selected, a 

death event occurred with probability Pdeath, and a recovery event occurred with a probability 

Prec (we refer to the probability of death or recovery as the probability of removal, Premoval= 
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Pdeath + Prec ). With a probability Pinf x (number of social connections), an infection event was 

attempted. In this case, one of the connected individuals was chosen randomly for an infection 

event. If this individual was susceptible, an infection event proceeded. If this individual was 

either recovered or dead, no infection occurred.  We note that in the context of the model, 

recovered and dead individuals have the same effect: they represent network nodes that are 
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Figure 2:  Different network types considered in this paper and their properties (See section 2.1 
of the Supplement for details of construction). In (A-C), a typical degree histogram and a 
graphical representation of a typical network are presented.  (A) A random spatial network, 
where nodes are connected largely to their neighbors, i.e. connections are short-range. (B) 
Scale-free Barabasi-Albert network, where no spatial correlations are found and there is a 
power law like tail in the degree distribution. (C) A hybrid network, in which a scale-free 
component is superimposed onto a spatial component. (D) Growth curves showing the 
infection spread in the three different networks. Standard errors are shown as dashed lines, 
which in some cases are too small to see.  Parameters were chosen as follows. Pinf=0.0001min-1 
per edge; Prec=0.0001min-1; Pdeath=0.00005min-1.  
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not available for transmission anymore.  We will refer to these individuals as “removed” from 

the infection process. 

 Model parameters used here are motivated by the COVID19 epidemic: we select the 

recovery and death rates based on the literature [12, 53-55]  and we use the Method of 

Simulated Moments (MSM) [56] to calibrate unknown parameters per contact transmission 

probability to the basic reproduction number R0 and effective reproduction number Reff for 

COVID19. In our simulations R0 = 3.8, CI = [3.4, 4.2], which is close to that of [12], and the 

effective reproduction number for when social distancing is implemented by cutting half of the 

edges is Reff = 1.26, CI = [1.20, 1.32], which is close to that of [53-55].  

 

Basic growth laws 

Here, we summarize the infection spread laws observed in the different network models 

assuming that the networks are in their “null state”, i.e. before connections are cut. The spatial 

model displays clear power law growth of the infection over time, which is due to the local 

connections that characterize this network (Figure 2D), see [51, 57-59] for earlier studies of this 

phenomenon. The scale free Barabási-Albert network displays an initial phase of exponential 

growth, followed by a transition to a power law, before the final epidemic size has been 

reached (Figure 2D). This behavior has been analyzed in detail before [34]. The hybrid network 

displays a similar behavior, although the growth is more skewed towards power law behavior 

(Figure 2D).  Power law growth is not predicted by SIR models that are based on ordinary 

differential equations, and the observation of power law like spread of COVID19 across 
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different locations [60, 61]  thus indicates that network models might be more appropriate 

descriptions in many settings.     

 

 

Infection dynamics during social distancing 

 The network models considered here might shed light onto the mechanism underlying 

the observed prolonged plateau phenomenon discussed above (Figure 1). We first consider the 

spatial model. The simulation is started with the “uncut” version of the model that contains 

10,000 agents that are characterized by a relatively large number of connections. When the 

number of infected individuals has reached 100 (1% of the total population), the simulation 

switches to a strongly cut version of the network, characterized by significantly fewer 

connections per agent. Figure 3A shows the dynamics averaged over many realizations of the 

simulation. Implementation of social distancing is followed by a peak of infections, after which 

the infection levels decline slightly and converge to a long-term plateau, during which average 

infection levels remain relatively constant. This is also reflected in a linear growth of the 

cumulative case counts in the simulation (Figure 3B). After a certain period of time at this 

plateau, the dynamics start to visibly decline. We note that this transition to the decline phase 

occurs without any further cutting of network connections, i.e. without any further 

implementation of non-pharmaceutical intervention measures.  

 

 These plateau dynamics are explained as follows. When the network is relatively well-

connected (pre-social distancing), the infection can spread in two dimensions (Figure 3C),  
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Figure 3. Social distancing dynamics in the spatial network. (A) Growth in the uncut spatial 

network occurs until 100 infected individuals are present, at which point half of the network 

connections are randomly removed. The average trajectory over 900 runs is plotted, and 

standard errors are indicated by dashed lines. A plateau is observed, eventually followed by a 

decline phase. (B) Same simulation, but cumulative infection numbers are plotted. (C) 

Schematic illustration of a typical (uncut) spatial network. (D) Schematic illustration of the cut 

network, which results in the existence of one-dimensional infection corridors. (E) The cut 

network (red) superimposed onto the uncut network. (F) Same type of simulation as in part (A), 

but social distancing is initiated when different numbers of infected individuals are reached: 

100 (as in part A), 200, 300, 400, 500, 500, 700. These are again averages over 900 simulations, 

and standard errors are indicated by dashed lines. (G) Same, but cumulative number of 

infections are plotted. Parameters were as follows. Pinf=0.0001min-1 per edge; Prec=0.0001min-1; 

Pdeath=0.00005min-1.  
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resulting in power law growth, where the number of infections grows quadratically in time, see 

e.g. the classical results of [58, 59] and more recent results of [51], where a traveling wave 

solution for a 2D random spatial network predicts a quadratic growth. When the network 

connections are significantly cut, however, the remaining social pathways along which the 

infection can spread turn out to be significantly longer, resembling one-dimensional corridors 

(Figure 3D,E). Infection spread across a one-dimensional graph results in a constant number of 

new cases per day,  as was proven in [51], and is also consistent with results from network 

models with reduced connections [20]. Although the number of new cases remains roughly 

constant over time, the infection is still spreading through the community. Over time the 

infection spread reaches the end of these one-dimensional paths, at which point further spread 

cannot occur anymore and the infection levels start to decline. Therefore, the plateau phase 

can be explained by a transition from 2-dimensional to 1-dimensional infection spread, and 

indicate that the infection is now spreading towards a dead end. In Figures S11, S12, we studied 

the robustness of the plateau behavior by testing the dynamics for random spatial networks of 

average degree 10 and 20 [62], under different extent of edge removal (from 10% to 90%). 

Plateau behavior was observed as long as the extent of edge removal was not too high. In 

particular, for the spatial network of average degree 10 we observe distinct plateau behavior 

when between 35% to about 55% of edges are removed;  the spatial network of average degree 

20 exhibits a plateau when between 65% and 75% of the edges are removed.  Figures S8 and S9 

further explore parameter dependence of plateau behavior in different networks. In particular, 

plateau dynamics are not observed for the scale-free Barabási-Albert network which has no 

spatial component, because upon cutting connections, a transition to a roughly 1-dimensional 
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spread does not happen. As expected, the hybrid network reproduces the plateau behavior, but 

to a lesser extent than the spatial network (Figure S8).  

 

 Figure 3F investigates the timing of the plateau in spatial networks, by showing the 

dynamics where  social distancing is implemented at different percentages of infected 

individuals, ranging from low to high. Interestingly, we observe that the plateau phase becomes 

less pronounced the more the infection has spread when social distancing is implemented. For 

the simulation where social distancing is implemented at the largest percentage of infected 

individuals, we observe a brief shoulder phase, followed by a relatively rapid decline of 

infection cases. This is studied further in figure S10, where we explored a more realistic 

scenario for social distancing. In these simulations, we start with a hybrid network and then, 

once social distancing is implemented, all (or a large percentage of) long-distance, and a smaller 

percentage of short-distance edges are removed. We observe that the existence and longevity 

of the plateau depend on the degree to which the epidemic spreads prior to the start of social 

distancing. Having long-range connections facilitates the seeding of the infection in different 

“neighborhoods” of the spatial network.  If these infection locations are relatively few and far 

apart, each of them gives rise to plateau-like dynamics during social distancing, which adds up 

to a global plateau. If, however, the seeding becomes too dense before the start of social 

distancing, the spread that continues once the connections are cut leads to the local epidemic 

outbreaks running into each other and extinguishing each other, resulting in the epidemic 

exhaustion. This might explain why during the COVID19 pandemic, the plateau tends to be 
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observed only in those locations that started social distancing early enough to prevent 

extensive infection spread.  

 

 Last but not least, the network simulations indicate that immunity of recovered 

individuals is an essential component of the plateau behavior. This is illustrated in Figure S16, 

which compares the effect of social distancing on infection spread dynamics in simulations that 

do and do not assume that recovered individuals are immune, using the spatial network. 

Without the assumption of immunity, the plateau behavior is not observed, and the number of 

infected individuals during the phase of social distancing reaches a significantly higher peak 

(Figure S16). Based on these findings, we hypothesize that the beneficial effect of social 

distancing is noticeably enhanced by immunity. The reason for this model behavior is that 

recovered, immune individuals, even if not very prevalent in the population, can provide local 

roadblocks for infection spread, which contributes to the infection paths being more one-

dimensional rather than two-dimensional.      

 

Infection spread upon relaxation of social distancing 

Economic considerations require an eventual relaxation of social distancing measures. This 

enables a resurgence of infection levels, which is also referred to as a second wave. We 

investigated what our network models predict in this regard. This is a topic that has previously 

been analyzed with ordinary differential equation SIR models [5, 6]. These studies sought 

optimal social distancing schedules, where the starting time as well as the extent and duration 

of social distancing was varied with the aim to find the schedule that minimized over the first 
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and the second peak of infection levels. One finding was that a longer duration of social 

distancing lowered the peak of the second wave of infection spread following the relaxation of 

social distancing measures [5, 6]. Similar behavior is also observed in our network models, but 

added insights can be obtained arising from the existence of the plateau phase when social 

distancing is implemented. In agreement with the previous work [5, 6], the network models 

also indicate that a longer duration of social distancing leads to a lower second wave. It does so, 

however, in a stage-wise manner (Figure 4A,B). While the dynamics are in the plateau phase, a 

later return to the fully connected network does not significantly decrease the subsequent 

infection peak (Figure 4A) or the final epidemic size (total number of individuals infected since 

the beginning of the epidemic, Figure 4B). Once the dynamics have entered the post-plateau 

decline phase, however, both the infection peak upon return to the fully connected network, as 

well as the final epidemic size, are noticeably reduced (Figure 4A,B). The model thus gives rise 

to an important policy suggestion: If plateau-like dynamics are observed during social 

distancing, it pays off to wait for the transition to the decline phase before relaxing the non-

pharmaceutical interventions, such that both future public health burden and economic 

hardship are reduced. 

 

 The reason that the second peak and the final epidemic size are reduced if social 

distancing is relaxed during the decline phase of the dynamics is that both measures depend on  

 

the population sizes when non-pharmaceutical interventions are reduced, and in particular on 

the number of infected individuals at this time. Fewer infected individuals lead to a lower peak  
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and a lower final epidemic size, and this is only achieved once the number of infected cases 

starts to decline during the phase of social distancing. The longer the social distancing phase is 
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Figure 4. Infection spread dynamics when social distancing is relaxed in the spatial network 

model. (A) The number of infected individuals is plotted against time. Simulations start with the 

uncut network. When the infected population reaches size 100, ½ of randomly chosen edges 

are removed. At different times following the cut, the simulation reverts back to the original 

network. This results in a renewed wave of spread, and we let the infection spread in the 

simulation without further network cutting. Generally, a later return to the uncut network leads 

to a lower peak of the renewed growth. This reduction, however, is very minor, unless the 

return to the uncut network occurs when the infection levels are already in the decline phase 

during social distancing. The average over 900 simulations is shown. Standard errors are shown 

by dashed lines. (B) Same, but cumulative infections over time are shown. (C) Dynamics of the 

second wave after return to the uncut network, comparing different degrees of social 

distancing. The blue curve assumes that 50% of the connections are cut during social distancing. 

The orange curve assumes that 65% of the connections are cut during social distancing, i.e. 

distancing is stricter. Panels (i) – (iv) show return to the uncut network after longer durations of 

social distancing. Generally, stricter social distancing leads to a lower peak of the second wave 

of infections. For final epidemic size, see Figure S10. Each curve represents the average over 

900 simulations. Standard errors are shown by dashed lines, which in some cases are too small 

to see. Pinf=0.0001min-1 per edge; Prec=0.0001min-1; Pdeath=0.00005min-1.  
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maintained during this decline, the lower the predicted second peak and the final epidemic 

size.   

 

 We also investigated how the magnitude of the second peak depends on the 

degree of social distancing, expressed by the degree to which the original network was cut 

(more cut connections correspond to stricter social distancing). In the spatial network, we find 

that less strict social distancing results in a higher second peak (Figure 4C) and in a higher final 

epidemic size (Figure S13), because the number of infected individuals by the end of social 

distancing is higher if the degree of distancing is less strict.  

 

It is interesting that in SIR models based on ODEs, the opposite is observed: less strict 

distancing (expressed by a higher rate of infection) results in a lower second peak [5, 6]. The 

reason is the assumption of perfect mixing in ODE models: less strict distancing leaves fewer 

individuals uninfected (and hence susceptible), and under a perfect mixing assumption, this 

significantly slows down the rate of infection spread following the end of social distancing. In 

the spatial network model, in contrast, the total number of uninfected individuals is less 

important due to limited connections in this model, and the number of infected individuals 

when social distancing ends is the main driving factor.  Since a higher degree of mixing occurs in 

the scale-free Barabási-Albert network (compared to the spatial network), the magnitude of the 

second peak depends in the same way on the degree of distancing as in the ODEs  (Figure S14). 

The hybrid network displays intermediate behavior (Figure S15), where the relationship 

between the degree of distancing and the second peak depends on the timing of relaxation. If 
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relaxation occurs relatively early, less distancing results in a lower second wave, similar as 

observed in ODE models. If relaxation occurs later, however, the relationship between the 

degree of distancing and the predicted second wave is non-monotonic (Figure S15).   

  

  

Discussion and Conclusion 

We have used network models to interpret the dynamics of COVID19 spread during and after 

social distancing measures. The network models can account for several specific observations. 

They predict that the infection spreads according to a power law, and further predict the 

presence of a prolonged plateau phase following the start of non-pharmaceutical intervention 

measures, if those are implemented relatively early during the epidemic. According to the 

network models, the plateau occurs because during strict social distancing, infection spread 

follows nearly one-dimensional transmission corridors, compared to spread in two dimensions 

before distancing. Another interesting finding was that according to the model, the plateau 

phase naturally transitions into a decline phase without any further increase in non-

pharmaceutical intervention measures. If these are the dynamics that are happening in our 

communities, then a significant benefit can be achieved if the end of social distancing occurs 

once the dynamics are already in the decline phase. A premature end of interventions can lead 

to a higher second wave and a larger final epidemic size. 

 

 The network models further indicate that the time at which the interventions are 

initiated plays an important role, and this is supported by data. The plateau is predicted to be 
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observed if social distancing measures are implemented early (such as in West Coast states), 

and it is predicted to be much less pronounced if those interventions are started later (such as 

in New York). This insight might add to our understanding of the heterogeneity in responses to 

social distancing measures that are found when comparing different locations.    

 

 Another interesting observation concerned the role of immunity for the success of social 

distancing. In our computer simulations, the plateau is only observed if we assume that 

recovered individuals are immune. In the absence of this assumption, the plateau dynamics are 

not observed and infection levels during non-pharmaceutical intervention measures are 

predicted to be significantly higher. Conclusive data about the level of protection in recovered 

individuals are currently not available.  

 

 Our results further emphasize some important differences between ODE and network-

based modeling. While the traditional SIR ODE modeling paradigm is capable of reproducing 

many features of network infection dynamics, some aspects are not captured by the simplified 

ODE framework. For example, ODE models suggest that the lower the infectivity parameter 

during the intervention, the higher the second infection wave and the resulting final epidemic 

size. This result is a consequence of the complete mixing assumption and it is weakened or 

disappears under a network modeling approach.  

  

It is important to note that model results depend on model assumptions and that 

uncertainties remain in this regard. While we think that network models are more realistic 
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descriptions of infection spread during non-pharmaceutical interventions than ordinary 

differential equations that assume perfect mixing, uncertainty remains about the exact contact 

structure in our societies, which can also differ from location to location (e.g. comparing urban 

with rural areas). It appears, however, that our results depend on the notion that cutting 

network connections can transform virus spread in 2 dimensions towards spread paths that are 

more one-dimensional in nature. It might be possible to test this notion with more detailed 

data on human contacts during social distancing. 

 

 Another source of uncertainty comes from the data that we are interpreting. While a 

wealth of information exists about confirmed COVID190 case counts in the US and around the 

world, these counts depend on testing levels, making it hard to compare different locations. 

The observation that a plateau is observed could in principle also be explained by the limited 

availability of tests as true infection levels rise. This is unlikely to be the case, however, given 

that the percent of positive tests is typically not near saturation.  

        

The explanation of the plateau behavior proposed in this paper is not the only possible 

mechanism of this phenomenon. In [63] it is proposed that plateau behavior might be a 

consequence of unusual initial conditions (many seeds initiating the infection dynamics) in a 

near-critical regime under the SIR model. In [64],  a very different explanation is proposed 

which is related to the behavioral changes driven by fatality awareness, where individual 

protective measures increase with death rates. Each of these proposed mechanisms, including 

the one presented here, can explain some parts of the complex dynamics observed during the 
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COVID19 pandemic. It is currently not possible to say which explanation is “the correct one”, 

and it is likely that these dynamics have several underlying mechanisms. The mechanism 

proposed here has the advantage of relating the plateau behavior with centrally mandated 

social distancing measures (that usually precede the plateau) and puts forward an explanation 

of the New York type (``peak and decay”) dynamics vs the California type (a prolonged plateau) 

dynamics in the context of the timing of non-pharmaceutical interventions.  
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