

# High-Overtone Thin Film Ferroelectric AlScN-on-Silicon Composite Resonators

Mingyo Park, Jialin Wang, Student Member, IEEE, Azadeh Ansari, Member, IEEE

**Abstract**— This letter presents the first demonstration of thin-film ferroelectric Aluminum Scandium Nitride (AlScN)-on-silicon composite resonators, targeting high-overtone resonance modes in the sub-6GHz band with a high figure of merit (FoM). The resonators are based on sputtered ferroelectric AlScN films with Sc/(Al+Sc) ratio of ~30% and thickness of ~1μm.

Two types of AlScN thickness-extensional (TE) resonators are co-fabricated on the same SOI platform; with and without a 3.55μm-thick Si layer in the resonant stack. We show that although the passive Si device layer underneath the thin piezo-stack results in degradation of the electromechanical coupling coefficient ( $k_t^2$ ), it boosts the quality factor ( $Q$ ), provides structural robustness, and improves the overall  $Q \times k_t^2$  FoM. The resonant frequency spectrum of the high-overtone TE modes of AlScN-on-Si composite resonator is analyzed and the dependency of  $k_t^2$  on the Si device layer properties is studied. A high  $k_t^2$  value of 11.7% at the 3<sup>rd</sup>-order TE resonant frequency of 2.4 GHz is reported, yielding a high  $k_t^2 \times Q_{max}$  FoM of 84. The reported FoM shows 2 $\times$  improvement compared to the co-fabricated AlScN-only FBARs.

**Index Terms**— Composite FBAR (C-FBAR); Aluminum Scandium Nitride; ferroelectric; resonator.

## I. INTRODUCTION

EMERGING next generation wireless communication systems (4G LTE/5G) require extended frequency bands, larger bandwidths, and higher power handling capabilities while minimizing the complexity of filter architectures to fulfill the increased frequency spectrum utilization [1]–[4]. Thin-film bulk acoustic resonators (FBARs) have proven to be promising candidates for high-performance acoustic filters in 5G mid-band [2], [3]. Adding switching and tuning capability to the FBARs can reduce the overall filter size, complexity, and fabrication cost [5]. Recently, we reported on the frequency tuning and intrinsic polarization switching of FBARs based on ferroelectric Al<sub>0.7</sub>Sc<sub>0.3</sub>N thin films [6], [7]. One of the challenges associated with the realization of polarization switching in acoustic resonators is the high voltages required for ferroelectric switching due to the ultra-wide bandgap of AlN [6]–[8]. Thus, piezo-stack thickness reduction (i.e. < few hundreds nm) is necessary to achieve lower coercive voltages.

Manuscript received on November XX, 2020. This work was supported in part by the National Science Foundation under Grant ECCS-1542174 and in part by the National Science Foundation CAREER Award under Grant ECCS-1944304. (Corresponding author: Mingyo Park)

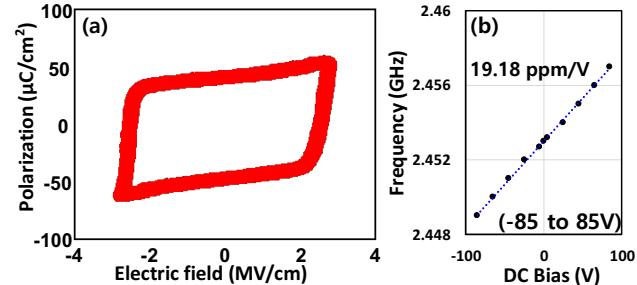



Fig. 1. (a) The hysteresis P-E loop of the Al<sub>0.7</sub>Sc<sub>0.3</sub>N on Si C-FBAR with an area of  $2.69 \times 10^{-4}$  cm<sup>2</sup> and taken at an input frequency of 1kHz.(b) Frequency vs. DC voltage plot of f<sub>3</sub> mode C-FBAR with bias -85-85V.

Additionally, thinning down the film thickness is critical for scaling up the frequency of acoustic devices [9], [10]. However, the thickness reduction can pose fabrication challenges (e.g. high thin-film stress, low device yield), as well as increased self-heating, lower quality factor ( $Q$ ), and unwanted nonlinearities. Such challenges make ultrathin acoustic resonators not desirable, particularly for high-power applications [11]–[15].

In this work, we demonstrate composite FBARs (C-FBARs), based on a thin-film Al<sub>1-x</sub>Sc<sub>x</sub>N on Si, taking advantage of the enhanced electromechanical coupling coefficient ( $k_t^2$ ) by using x= %30 [16]–[20]. A box-like ferroelectric hysteresis behavior is observed in C-FBARs with a coercive electric field at ~3 MV/cm and a linear frequency change is induced with bias voltage at -85V to 85V (Fig. 1). We demonstrate a high  $k_t^2 \times Q$  FoM, as a proof of concept and pathway for further thinning of the ferroelectric films deposited on the high- $Q$  substrates. Adding a high- $Q$  device layer underneath the sandwiched piezoelectric structure enables 1) high-frequency operation while maintaining the  $Q$  [21]–[23], 2) multi-mode resonance with mechanical robustness, avoiding thin-film stress issues found in conventional FBARs [24], and 3) higher power handling capability and lower self-heating due to including the substrate layer in the resonant stack [22], [25], [26].

The influence of the substrate in composite resonators is discussed in [21], [24], [27], [28]. Here, we demonstrate that C-FBARs show improved  $k_t^2 \times Q$  FoM, with a higher  $Q$  and lower  $k_t^2$  compared to the co-fabricated FBARs. Furthermore, we provide design guidelines to optimize the passive substrate layer material and thickness, targeting the highest achievable

M. Park, J. Wang and, A. Ansari are with the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA (e-mail: m.park@gatech.edu).

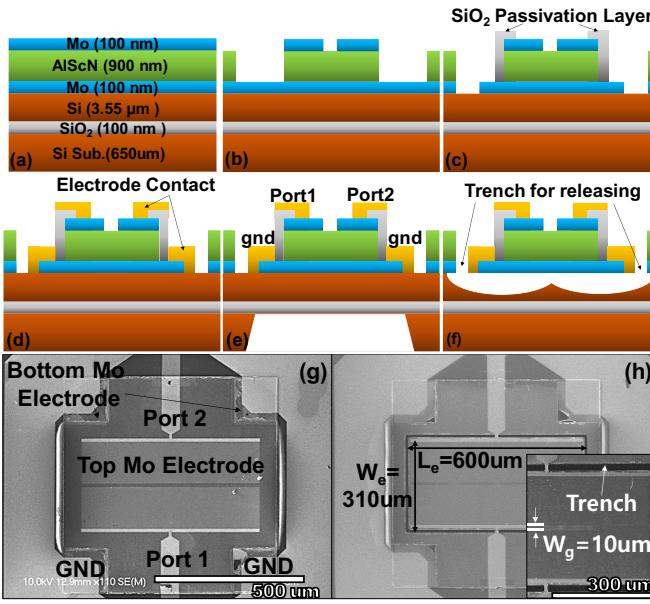



Fig. 2. The fabrication process of the AlScN C-FBARs and FBARs: (a) starting wafer cross-section schematic; (b) top electrode patterning and  $\text{Al}_{0.7}\text{Sc}_{0.3}\text{N}$  etching; (c) bottom electrode patterning and  $\text{SiO}_2$  isolation layer deposition; (d) Ti/Au deposition; (e) backside DRIE of Si handle layer to release C-FBARs; (f) front side release of the FBARs from Si device layer. The SEM images of (g) C-FBAR and (h) FBAR.

$k_t^2$ . We analyze the dependency of  $k_t^2$ , the multi-mode resonant frequencies ( $f_r$ ), and the spacing between two adjacent resonance modes ( $\Delta f$ ) on the acoustic impedance ratio of the substrates to the piezo-film ( $Z_{\text{sb}}/Z_p$ ) [27], [29]. We report on high-overtone ferroelectric AlScN-on-Si C-FBAR with  $Q_{\text{max}}$  of 720 and  $k_t^2 \times Q_{\text{max}}$  FoM of 84, which is 2 times larger than the FoM of the co-fabricated AlScN-only FBAR.

## II. FABRICATION PROCESS

The sequential fabrication process steps are demonstrated in Fig. 2. The 8-inch wafer consists of Mo/ $\text{Al}_{0.7}\text{Sc}_{0.3}\text{N}$ /Mo/Si/ $\text{SiO}_2$  with the respective thicknesses of 0.1/0.9/0.1/3.55/0.1  $\mu\text{m}$  (Fig. 2(a)). The piezo-stack is sputter-deposited on an SOI substrate using Von Ardenne CS 730S cluster at VTT Technical Research Center of Finland. The top/bottom Mo electrodes are etched using RIE with  $\text{SF}_4$ -based etchants. The  $\text{Al}_{0.7}\text{Sc}_{0.3}\text{N}$  layer is etched using ICP with  $\text{Cl}_2$ -based etchants (Fig. 2(b)). A 150nm-thick  $\text{SiO}_2$  passivation layer is deposited between top/bottom Mo layers for isolation (Fig. 2(c)). Ti/Au (15/300nm) layer is deposited as the contact pads (Fig. 2(d)). Finally, C-FBAR devices are released by DRIE from the wafer backside, leaving the 3.55  $\mu\text{m}$ -thick Si device layer in a resonant stack (Fig. 2(e)). Mo/AlScN/Mo FBARs are released from the front side using trenches with  $\text{XeF}_2$ -based isotropic Si etching (Fig. 2(f)). Fig. 2(g), (h) show the scanning electron microscope (SEM) images of fabricated 2-port C-FBAR and FBAR.

## III. DEVICE CHARACTERISTICS

The acoustic device performance is simulated using COMSOL finite element analysis (FEA). Fig. 3(a) illustrates the schematics of the four-layered C-FBAR. Fig. 3 (b) shows the simulated frequency response (FR) of the C-FBAR and

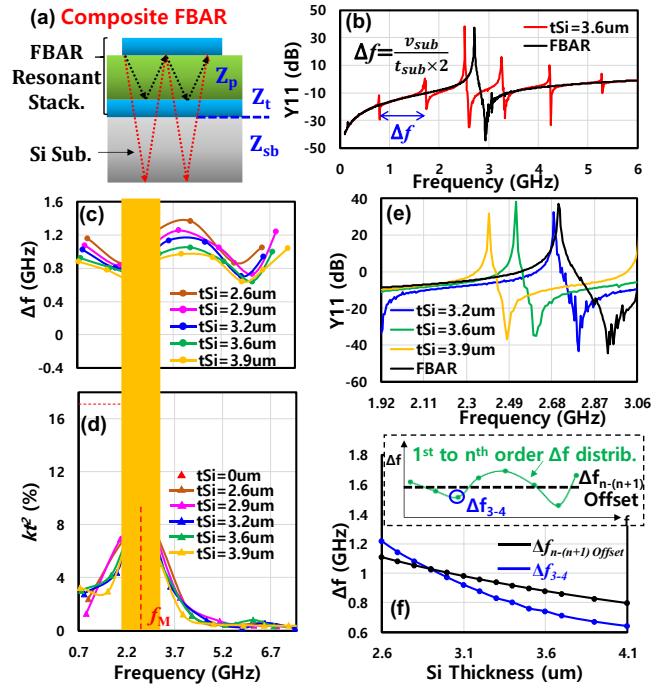



Fig. 3. (a) The schematic of the 4-layered C-FBAR. The FEA simulated results are analyzed; (b) The FR of Mo/AlScN/Mo FBAR and C-FBAR on Si substrate with  $\Delta f$ . The (c)  $\Delta f$  and (d)  $k_t^2$  distributions of C-FBAR  $f_r(n)$  mode with varied tSi. (e) The FR of C-FBAR with varied tSi along with the FBAR. (f) The  $\Delta f_{3-4}$  and offset  $\Delta f_{n-(n+1)}$  vs tSi; the  $\Delta f_{n-(n+1)}$  is evaluated using a pure Si with the same thickness of C-FBAR stack.

FBAR. The wideband FR of the FBAR shows a fundamental TE mode at the series/parallel resonant frequency ( $f_s/f_p$ ) of 2.57/2.77GHz. The C-FBAR exhibits equidistant  $n^{\text{th}}$ -order resonance ( $f_r(n)$ ) modes with frequency spacing ( $\Delta f_{n-1}$ ) of 0.74GHz between the  $f_r(3)$  and  $f_r(4)$ .

The characteristics of the multiple resonance modes of C-FBARs are determined by the acoustic material properties and thicknesses of each layer. We analyze the distribution of  $\Delta f_{n-(n+1)}$  and  $k_t^2(n)$  to target the resonance mode with the highest FoM, beginning with the electrical input impedance ( $Z_{\text{in}}$ ) of a four-layered C-FBAR [27], [29], [30]. The  $n^{\text{th}}$ -order  $f_p(n)/f_s(n)$ , can be extracted by setting  $|Z_{\text{in}}| = \infty/0$ . The distribution of  $k_t^2(n)$  and  $\Delta f_{n-(n+1)}$  (i.e.  $\Delta f(n)$ ) between the adjacent  $f_p(n)/f_s(n)$  modes) can be calculated by [27], [29]:

$$k_t^2(n) = \frac{\pi^2}{4} \cdot \frac{f_s(n)}{f_p(n)} \cdot \left[ 1 - \frac{f_s(n)}{f_p(n)} \right]. \quad (1)$$

$$\Delta f_{s,p}(n) = f_{s,p}(n+1) - f_{s,p}(n). \quad (2)$$

It has been shown that the acoustic impedance ratio of the substrate to the piezoelectric film ( $Z_{\text{sb}}/Z_p$ ) is critical in determining  $k_t^2(n)$ , where two characteristic regions of  $\Delta f(n)$  exist: (i) normal ( $\Delta f_N$ , at  $\gamma \approx n\pi$ ) and (ii) transition ( $\Delta f_T$ , at  $\gamma \approx (n+1/2)\pi$ ) regions [27], [29]. When  $Z_{\text{sb}}/Z_p < 1$  (i.e. soft substrate), maximum(max)  $k_t^2(n)$  is located at the first normal region ( $\gamma \approx \pi$ ), which is close to  $f = v/2t_p$ . In other words,  $k_t^2(n)$  is max at the half-wavelength  $f_r$  of the piezoelectric film while  $\Delta f(n)$  carries the first minimum(min) value. Whereas when  $Z_{\text{sb}}/Z_p > 1$  (i.e. hard substrate), max  $k_t^2$  occurs at the first transition region ( $\gamma \approx (1/2)\pi$ ), which is close to  $f = v/4t_p$ . In other words,  $k_t^2(n)$  is max at the quarter wavelength  $f_r$  of the piezoelectric film as  $\Delta f(n)$  has the first min value [27], [29].

Here, the impact of the Si thickness on  $k_t^2(n)$  and  $\Delta f(n)$  is studied and illustrated in Fig. 3(c-d). The highest  $k_t^2$  can be achieved from the  $f_t(3)$  mode of C-FBAR with  $3.2\mu\text{m}$  Si thickness when  $f_r$  of the C-FBAR matches the fundamental TE mode  $f_r$  of the FBAR (Fig. 3(e)). In this work, since  $Z_{\text{Si}}/Z_{\text{AlScN}} < 1$ , max  $k_t^2$  is achieved when the  $f_t(3)$  of C-FBAR matches  $f_m$  which is the half-wavelength  $f_r$  of the piezoelectric film (Fig. 3(d)).

Moreover, it is found that there is a strong correlation between the distribution of  $k_t^2$  and  $\Delta f$  versus Si device layer thickness.  $\Delta f$  can be calculated based on the substrate acoustic phase velocity ( $v_{sb}$ ) and thickness ( $t_{sb}$ ) [25], [32], showing the adjustability of  $\Delta f$  by varying  $t_{sb}$  (Fig. 3(f)).  $\Delta f_{n-(n+1)}$  with varied  $t_{sb}$  is plotted in Fig. 3(c), presenting a periodic distribution vs. frequency. The observed ripples are caused by an acoustic impedance mismatch between  $Z_t$  and  $Z_{sb}$  from the multi-layer heterostructure [31]. It is observed that the  $f_r$  corresponding to the first min of  $\Delta f(n)$  matches the fundamental TE  $f_r$  of FBAR. The max  $k_t^2$  of C-FBAR can be obtained at the first normal region ( $\Delta f_N$ ), which is close to the fundamental TE  $f_r$  of FBAR. Such characteristics offer design guidance to optimize the resonant stack critical to maximizing  $k_t^2$ .

#### IV. EXPERIMENTAL RESULTS

Fig. 4 illustrates the measured and FEA-simulated wide-band FR of the FBAR and C-FBAR. Table I summarizes the characteristic of the measured  $n^{\text{th}}$ -order resonance modes. The highest  $k_t^2$  is achieved from 3<sup>rd</sup>-order TE mode with a resonance frequency closest to the fundamental TE  $f_r$  of AlScN-only FBAR. Fig. 5(a) demonstrates the corresponding zoomed-in peaks of the de-embedded  $Y_{11}$  magnitude and  $S_{11}$  phase of the  $f_t(3)$  TE mode along with the Modified Butterworth Van Dyke (MBVD) model (Fig. 5(b)). The  $k_t^2$  is extracted using  $f_s$  and  $f_p$

| TABLE I<br>CHARACTERISTICS OF MEASURED $N^{\text{th}}$ -ORDER TE MODES IN C-FBAR |             |             |             |                  |                               |
|----------------------------------------------------------------------------------|-------------|-------------|-------------|------------------|-------------------------------|
| Mode                                                                             | $f_s$ (GHz) | $f_p$ (GHz) | $k_t^2(\%)$ | $Q_{\text{max}}$ | $Q_{\text{max}} \times k_t^2$ |
| 1                                                                                | 0.755       | 0.758       | 1.1         | 1038             | 11.42                         |
| 2                                                                                | 1.619       | 1.644       | 3.69        | 369              | 13.62                         |
| 3                                                                                | 2.348       | 2.471       | 11.69       | 720              | 84.16                         |
| 4                                                                                | 3.023       | 3.117       | 7.2         | 550              | 39.65                         |
| 5                                                                                | 3.859       | 3.959       | 6.06        | 533              | 32.34                         |

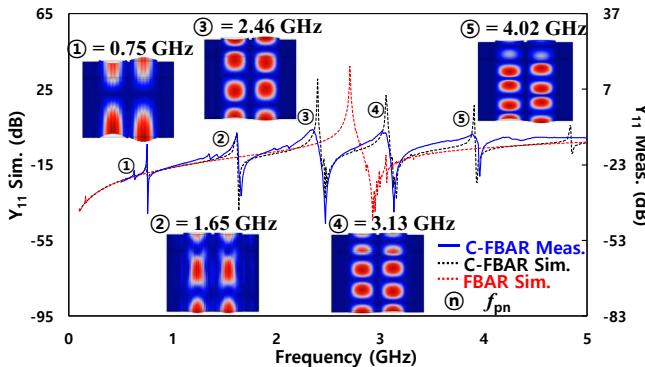



Fig. 4. Wideband  $Y_{11}$  FR of the measured (blue solid line) and simulated (black dotted line) C-FBAR, along with the simulated FBAR (red dotted line). 2D cross-section displacements of  $n^{\text{th}}$ -order TE mode are shown.

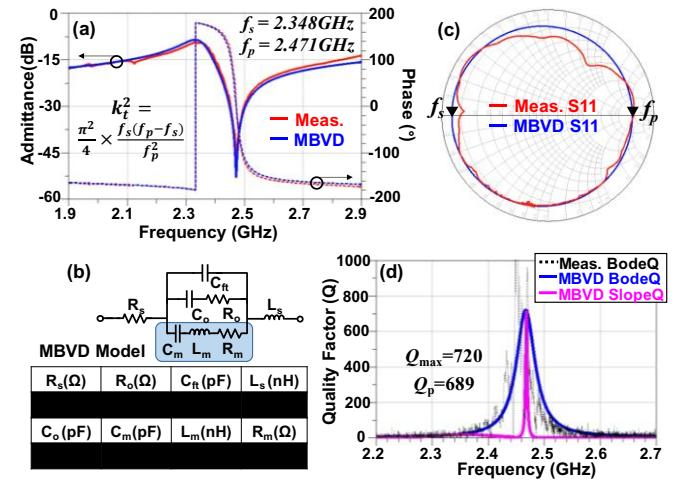



Fig. 5. Measured and MBVD-fitted results of AlScN-on-Si C-FBAR. (a) –(b) Zoomed-in C-FBAR admittance and  $S_{11}$  phase plot along with Modified Butterworth-Van Dyke (MBVD) fitted model, (c)–(d): Smith chart demonstration of  $S_{11}$  and computed C-FBAR Bode  $Q$ .

from the measured  $Y_{11}$  parameter (Fig. 5(c)) [10]. The unloaded quality factor ( $Q_m$ ) of the resonator is estimated both from the Bode  $Q$  ( $Q_{\text{Bode}}$ ) with  $S_{11}$  group delay, as well as the phase slope from the impedance  $Z_{11}$  parameter, where  $\phi$  is the phase [33]:

$$Q_{\text{Bode}} = \omega \times \frac{|S_{11}| \text{group\_delay}(S_{11})}{1 - |S_{11}|^2}, \quad (3)$$

$$Q_{s,p} = \frac{f_{s,p}}{2} \left| \frac{d\phi}{df} \right|. \quad (4)$$

Fig. 5(c) illustrates the measured  $S_{11}$  parameter fitted with the MBVD model of the continuous  $Q$  circle. The  $Q$  circle is placed at the center of the Smith chart by using source impedance matching. The  $Q_{\text{Bode}}$  versus frequency (3) and  $Q_{s,p}$  versus frequency (4) are plotted in Fig. 5(d). The computed  $Q_p$  of 689 and  $Q_{\text{max}}$  of 720 are obtained from the MBVD-fitted model. The relatively low  $Q_s$  are attributed to the large ohmic losses in  $R_s$ . Future work will focus on improving  $Q_s$  with bordering to suppress spurious modes and optimizing metal electrodes to reduce ohmic losses [34], [35].

#### V. CONCLUSION

We reported on ferroelectric AlScN FBARs and AlScN-on-Si high-overtone composite FBARs, fabricated on the same SOI platform. The measurement results of  $\text{Al}_{0.7}\text{Sc}_{0.3}\text{N}$  FBAR and C-FBAR are compared in Table II. By including a  $3.55\mu\text{m}$ -thick Si substrate underneath the piezo-stack, an FoM ( $Q_p \times k_t^2$ ) of 80 was achieved, which is 2 times larger than AlScN FBAR FoM [6], [7]. This work provides a single-chip multi-frequency solution for RF filters in the sub-6GHz band with a high FoM.

TABLE II  
AL<sub>1-x</sub>Sc<sub>x</sub>N BASED TE MODE ACOUSTIC RESONATOR FOM COMPARISON

|            | On Sub* | $S_c$ (%) | $f_p$ (GHz) | $Q_p$  | $k_t^2(\%)$ | $Q_p \times k_t^2$ |
|------------|---------|-----------|-------------|--------|-------------|--------------------|
| SMR[19]    | Y       | 20        | 2.4         | 650    | 12.3        | 79.95              |
| XBAW[20]   | N       | 28        | 3.4         | 831    | 14.82       | 123.1              |
| FBAR[14]   | N       | 9         | 2.23        | 513    | 9.5         | 48.73              |
| FBAR [6]   | N       | 28        | 3.17        | 210    | 18.1        | 38                 |
| C-FBAR[28] | Y       | 0         | 3.26        | 2507** | 2.12        | 53.1               |
| This Work  | Y       | 28        | 2.47        | 689    | 11.7        | 80.54              |

\*: Piezo-on-substrate; \*\*:  $Q_{\text{max}}$  from MBVD

## REFERENCES

[1] J. B. Shealy, R. Ventury, S. R. Gibb, M. D. Hodge, P. Patel, M. A. McLain, A. Y. Feldman, M. D. Boomgarden, M. P. Lewis, B. Hosse, and R. Holden, "Low loss, 3.7GHz wideband BAW filters, using high power single crystal AlN-on-SiC resonators," *IEEE MTT-S Int. Microw. Symp. Dig.*, pp. 1476–1479, 2017, doi: 10.1109/MWSYM.2017.8058901.

[2] D. Moy, "Avago Technologies' FBAR Filter Technology Designed Into Latest Generation of 4G & LTE Smartphones White Paper," *Avago Technologies*, 2012. www.avagotech.com.

[3] Qorvo, "A New Generation of 5G Filter Technology," *Qorvo*, 2020. www.qorvo.com.

[4] R. Ruby, "A Snapshot in Time: The Future in Filters for Cell Phones," *IEEE Microw. Mag.*, vol. 16, no. 7, pp. 46–59, Aug. 2015, doi: 10.1109/MMM.2015.2429513.

[5] S. S. Gevorgian, A. k. Tagantsev, and A. K. Vorobiev, "Introduction," in *Tunable Film Bulk Acoustic Wave Resonators*, London, U.K.: Springer, 2013, pp. 1–15.

[6] J. Wang, M. Park, S. Mertin, T. Pensala, F. Ayazi, and A. Ansari, "A Film Bulk Acoustic Resonator Based on Ferroelectric Aluminum Scandium Nitride Films," *J. Microelectromechanical Syst.*, vol. 29, no. 5, pp. 741–747, Oct. 2020, doi: 10.1109/JMEMS.2020.3014584.

[7] J. Wang, M. Park, S. Mertin, T. Pensala, F. Ayazi, and A. Ansari, "A High- $k$ t2 Switchable Ferroelectric Al0.7Sc0.3N Film Bulk Acoustic Resonator," 2020.

[8] E. DefaÿN. Ben Hassine, P. Emery, G. Parat, J. Abergel, and A. Devos, "Tunability of aluminum nitride acoustic resonators: A phenomenological approach," *IEEE Trans. Ultrason. Ferroelectr. Freq. Control*, vol. 58, no. 12, pp. 2516–2520, 2011, doi: 10.1109/TUFFC.2011.2114.

[9] M. Ueda, M. Hara, S. Taniguchi, T. Yokoyama, T. Nishihara, K. Hashimoto, and Y. Satoh, "Development of an X-band filter using air-gap-type film bulk acoustic resonators," *Jpn. J. Appl. Phys.*, vol. 47, no. 5 PART 2, pp. 4007–4010, 2008, doi: 10.1143/JJAP.47.4007.

[10] M. Park, J. Wang, R. Dargis, A. Clark, and A. Ansari, "Super High-Frequency Scandium Aluminum Nitride Crystalline Film Bulk Acoustic Resonators," in *2019 IEEE International Ultrasonics Symposium (IUS)*, Oct. 2019, pp. 1689–1692, doi: 10.1109/ULTSYM.2019.8925598.

[11] F. Martin, P. Muralt, M.-A. Dubois, and A. Pezous, "Thickness dependence of the properties of highly  $c$ -axis textured AlN thin films," *J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.*, vol. 22, no. 2, pp. 361–365, 2004, doi: 10.1116/1.1649343.

[12] A. Iqbal and F. Mohd-Yasin, "Reactive sputtering of aluminum nitride (002) thin films for piezoelectric applications: A review," *Sensors (Switzerland)*, vol. 18, no. 6, pp. 1–21, 2018, doi: 10.3390/s18061797.

[13] F. Z. Bi and B. P. Barber, "Bulk acoustic wave RF technology," *IEEE Microw. Mag.*, vol. 9, no. 5, pp. 65–80, 2008, doi: 10.1109/MMM.2008.927633.

[14] M. D. Hodge and J. B. Shealy, "High Power, Wideband Single Crystal XBAW Technology for sub-6 GHz Micro RF Filter Applications," *IEEE Int. Ultrason. Symp.*, pp. 6–9, 2018, doi: 10.1109/ULTSYM.2018.8580045.

[15] T. Yokoyama, M. Rara, M. Veda, and Y. Satoh, "K-band ladder filters employing air-gap type thin film bulk acoustic resonators," *Proc. - IEEE Ultrason. Symp.*, pp. 598–601, 2008, doi: 10.1109/ULTSYM.2008.0143.

[16] K. Umeda, H. Kawai, A. Honda, M. Akiyama, T. Kato, and T. Fukura, "Piezoelectric properties of ScAlN thin films for piezo-MEMS devices," *Proc. IEEE Int. Conf. Micro Electro Mech. Syst.*, pp. 733–736, 2013, doi: 10.1109/MEMSYS.2013.6474347.

[17] M. Moreira, J. Bjurström, I. Katardjev, and V. Yantchev, "Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications," *Vacuum*, vol. 86, no. 1, pp. 23–26, 2011, doi: 10.1016/j.vacuum.2011.03.026.

[18] M. Park, Z. Hao, R. Dargis, A. Clark, and A. Ansari, "Epitaxial Aluminum Scandium Nitride Super High Frequency Acoustic Resonators," *J. Microelectromechanical Syst.*, vol. 29, no. 4, pp. 490–498, Aug. 2020, doi: 10.1109/JMEMS.2020.3001233.

[19] A. Bogner, R. Bauder, H. Timme, T. Forster, C. Reccius, R. Weigel, and A. M. Hagelauer, "Enhanced Piezoelectric Al1-XSCXN RF-MEMS Resonators for Sub-6 GHz RF-Filter Applications: Design, Fabrication and Characterization," *Proc. IEEE Int. Conf. Micro Electro Mech. Syst.*, vol. 2020-Janua, pp. 1258–1261, 2020, doi: 10.1109/MEMS46641.2020.9056296.

[20] C. Moe, R. H. Olsson III, P. Patel, Z. Tnag, M. D'Agati, M. Winters, R. Ventury, and J. Shealy, "Highly Doped AlScN 3.5 GHz XBAW Resonators with 16%  $k_{eff}$  for 5G RF Filter Applications," *Proc. 2020 IEEE Ultrason. Symp.*, pp. 1–4, 2020.

[21] H. Zhang, W. Pang, H. Yu, and E. S. Kim, "High-tone bulk acoustic resonators on sapphire, crystal quartz, fused silica, and silicon substrates," *J. Appl. Phys.*, vol. 99, no. 12, 2006, doi: 10.1063/1.2209029.

[22] R. Abdolvand and F. Ayazi, "7E-4 Enhanced Power Handling and Quality Factor in Thin-Film Piezoelectric-on-Substrate Resonators," in *2007 IEEE Ultrasonics Symposium Proceedings*, Oct. 2007, pp. 608–611, doi: 10.1109/ULTSYM.2007.158.

[23] G. K. Ho, R. Abdolvand, A. Sivapurapu, S. Humad, and F. Ayazi, "Piezoelectric-on-silicon lateral bulk acoustic wave micromechanical resonators," *J. Microelectromechanical Syst.*, vol. 17, no. 2, pp. 512–520, 2008, doi: 10.1109/JMEMS.2007.906758.

[24] T. A. Gosavi, E. R. MacQuarrie, G. D. Fuchs, and S. A. Bhave, "HBAR as a high frequency high stress generator," in *2015 IEEE International Ultrasonics Symposium*, 2015, pp. 24–27, doi: 10.1109/ULTSYM.2015.0361.

[25] T. Daugey, J. M. Friedt, G. Martin, and R. Boudot, "A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock," *Rev. Sci. Instrum.*, vol. 86, no. 11, 2015, doi: 10.1063/1.4935172.

[26] S. Ballandras, T. Baron, E. Lebrasseur, G. Martin, D. Gachon, A. Reinhardt, P.-P. Lassagne, J.-M. Friedt, L. Chommeloux, and D. Rabus, "High overtone Bulk Acoustic Resonators: application to resonators, filters and sensors," *Acoustics*, 2012, doi: hal-00811239.

[27] M. Liu, J. Li, C. Wang, J. Li, and J. Ma, "Influence of electrodes on the effective electromechanical coupling coefficient distributions of high-overtone bulk acoustic resonator," *Ultrasonics*, vol. 56, pp. 566–574, 2015, doi: 10.1016/j.ultras.2014.10.014.

[28] G. Pillai, A. A. Zope, J. M. L. Tsai, and S. S. Li, "Design and Optimization of SHF Composite FBAR Resonators," *IEEE Trans. Ultrason. Ferroelectr. Freq. Control*, vol. 64, no. 12, pp. 1864–1873, 2017, doi: 10.1109/TUFFC.2017.2759811.

[29] Y. Zhang, Z. Wang, and J. D. N. Cheeke, "Resonant spectrum method to characterize piezoelectric films in composite resonators," *IEEE Trans. Ultrason. Ferroelectr. Freq. Control*, vol. 50, no. 3, pp. 321–333, 2003, doi: 10.1109/TUFFC.2003.1193626.

[30] K.-Y. Hashimoto, *RF Bulk Acoustic Wave Filters for Communications*. Artech House, 2009.

[31] V. J. Gokhale, B. P. Downey, D. S. Katzer, M. T. Hardy, N. Nepal, and D. J. Meyer, "Engineering Efficient Acoustic Power Transfer in HBARs and Other Composite Resonators," *J. Microelectromechanical Syst.*, pp. 1–6, 2020, doi: 10.1109/jmems.2020.3009516.

[32] V. J. Gokhale, B. P. Downey, D. S. Katzer, N. Nepal, A. C. Lang, R. M. Stroud, and D. J. Meyer, "Epitaxial bulk acoustic wave resonators as highly coherent multi-phonon sources for quantum acoustodynamics," *Nat. Commun.*, vol. 11, no. 1, p. 2314, 2020, doi: 10.1038/s41467-020-15472-w.

[33] D. A. Feld, R. Parker, R. Ruby, P. Bradley, and S. Dong, "After 60 years: A new formula for computing quality factor is warranted," in *IEEE Ultrasonics Symposium*, 2008, no. 6, pp. 431–436, doi: 10.1109/ULTSYM.2008.0105.

[34] J. Kaitila, M. Yliilammi, J. Ellä, and R. Aigner, "Spurious resonance free bulk acoustic wave resonators," *Proc. IEEE Ultrason. Symp.*, vol. 1, no. IL, pp. 84–87, 2003, doi: 10.1109/ultsym.2003.1293361.

[35] R. Thalhammer, G. Fattinger, M. Handtmann, and S. Marksteiner, "Ohmic effects in BAW-resonators," *IEEE MTT-S Int. Microw. Symp. Dig.*, pp. 390–393, 2006, doi: 10.1109/MWSYM.2006.249552.