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Abstract
We consider the problem of estimating a function from

n noisy samples whose discrete Total Variation (TV) is

bounded by Cn. We reveal a deep connection to the seem-

ingly disparate problem of Strongly Adaptive online learn-

ing (Daniely et al., 2015) and provide an O(n log n) time

algorithm that attains the near minimax optimal rate of

Õ(n1/3C
2/3
n ) under squared error loss. The resulting al-

gorithm runs online and optimally adapts to the unknown
smoothness parameter Cn. This leads to a new and more

versatile alternative to wavelets-based methods for (1)

adaptively estimating TV bounded functions; (2) online

forecasting of TV bounded trends in time series.

1 Introduction
Total variation (TV) denoising (Rudin et al., 1992) is a

classical algorithm originated in the signal processing com-

munity which removes noise from a noisy signal y by

solving the following regularized optimization problem

min
f

‖f − y‖22+λTV(f).

where TV(·) denotes the total variation functional which

is equivalent to
∫
|f ′(x)|dx for weakly differentiable func-

tions. In discrete time, TV denoising is known as “fused

lasso” in the statistics literature (Tibshirani et al., 2005;

Hoefling, 2010), which solves

min
θ∈Rn

n∑
i=1

(θi − yi)
2 + λ

n∑
i=2

|θi − θi−1|. (1)

where θi is the element at index i of the vector θ. Unlike

their L2-counterpart, the TV regularization functional is

designed to promote sparsity in the number of change

points, hence inducing a “piecewise constant” structure in

the solution.

Over the three decades since the advent of TV denois-

ing, it has seen many influential applications. Algorithms

that use TV-regularization has been deployed in every cell-

phone, digital camera and medical imaging devices. More

recently, TV denoising is recognized as a pivotal compo-

nent in generating the first image of a super massive black

hole (Akiyama et al., 2019). Moreover, the idea of TV

regularization has inspired a myriad of extensions to other

tasks such as image debluring, super-resolution, inpainting,

compression, rendering, stylization (we refer readers to a

recent book (Chambolle et al., 2010) and the references

therein) as well as other tasks beyond the context of images

such as change-point detection, semisupervised learning

and graph partitioning.

In this paper, we focus on the non-parametric statisti-
cal estimation problem behind TV-denoising which aims

to estimate a function f : [0, 1] → R using observations of

the following form:

yi = f(xi) + εi, i ∈ [n] := {1, . . . , n},

where εi are iid N(0, σ2) and the function f belongs to

some fixed non-parametric function class F . The exoge-

nous variables xi belongs to some subset X of R. The

above setup is a widely adopted one in the non-parametric

regression literature (Tsybakov, 2008). In this work, we

take F to be the Total Variation class: {f |TV(f) ≤ Cn}
or its discrete counterpart

F(Cn) :=

{
f

∣∣∣∣
n∑

t=2

|f(xt)− f(xt−1)|≤ Cn

}
.

We are interested in finding algorithms that generate

estimates ŷt, t ∈ [n] such that the total square error

Rn(ŷ, f) :=

n∑
t=1

E[(ŷt − f(xt))
2],

is minimized. Throughout this paper, when we refer to rate,

we mean the growth rate of Rn as a function of n and Cn.

The family F(Cn) we consider here features a rich class of

functions that exhibit spatially heterogeneous smoothness

behavior. These functions can be very smoothly varying

in certain regions of space, while in other regions, it can

exhibit fast variations (see for eg. Fig. 5) or abrupt changes

that may even be discontinuous. A good estimator should

be able to detect such local fluctuations (which can be

short lived) and adjust the amount of “smoothing” to apply
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according to the level of smoothness of the functions in

each local neighborhood. Such estimators are referred

as locally adaptive estimators by Donoho (Donoho et al.,

1998).

We are interested in algorithms that achieve the mini-

max optimal rates for estimating functions in F(Cn) de-

fined as:

R∗
n(Cn) = inf

{ŷt}n
t=1

sup
f∈F(Cn)

Rn(ŷ, f),

which is known to be Θ(n1/3C
2/3
n )(Donoho et al., 1990;

Mammen, 1991).

There is a body of work in Strongly Adaptive online
learning that focuses on designing online algorithms

such that its regret in any local time window is controlled

(Daniely et al., 2015). Hence the notion of local adaptiv-

ity is built into such algorithms. This makes the problem

of estimating TV bounded functions, a natural candidate

to be amenable to techniques from Strongly Adaptive on-

line learning. However, it is not clear that whether using

Strongly Adaptive algorithms can lead to minimax optimal

estimation rates. By formalizing the intuition above, we

answer it affirmatively in this work.

We reserve the phrase adaptive estimation to describe

the act of estimating TV bounded functions such that Rn of

the estimator/algorithm can be bounded by a function of n
and Cn without any prior knowledge of Cn. An adaptively
optimal estimator ŷ is able to estimate an arbitrary function

f with an error

Rn(ŷ, f) = Õ
(

inf
Cn such that f∈F(Cn)

R∗
n(Cn)

)
.

A TV bounded function will be referred as a Bounded

Variation (BV) function henceforth for brevity.The notation

Õ(·) hides poly-logarithmic factors of n.

It is well known that all linear estimators that output

a linear transformation of the observations attain a subop-

timal Ω(
√
nCn) rate (Donoho et al., 1990). This covers a

large family of algorithms including the popular methods

based on smoothing kernels, splines and local polynomials,

as well as methods such as online gradient descent (see a

recent discussion from Baby and Wang, 2019). Wavelet

smoothing (Donoho et al., 1998) is known to attain the

near minimax optimal rate of Õ(n1/3C
2/3
n ) for Rn with-

out any prior information about Cn. Recently the same rate

is shown to be achievable for the online forecasting setting

by adding a wavelets-based adaptive restarting schedule to

OGD (Baby and Wang, 2019).

In this paper, we provide an alternative to wavelet

smoothing by a novel reduction to a strongly adaptive

regret minimization problem from the online learning lit-

erature. We show that the resulting algorithm achieves

the same adaptive optimal rate of Õ(n1/3C
2/3
n ). The algo-

rithm is more versatile than wavelet smoothing for three

reasons:

1. Our algorithm is based on aggregating experts that

performs local predictions. The experts we use per-

form online averaging. However, one may use more

advanced algorithms such as kernel/spline smooth-

ing, polynomial regression or even deep learning

approaches as experts that can potentially lead to

better performance in practice. Hence our algorithm

is highly configurable.

2. Our algorithm accepts a learning rate parameter that

can be set without prior knowledge of Cn to obtain

the near optimal rate of Õ(n1/3C
2/3
n ) (see Theorem

5). However, this learning rate can also be tuned

using heuristics that can lead to better practical per-

formance (see Section 5).

3. It can also handle a more challenging setting where

the data are streamed sequentially in an online fash-

ion.

To the best of our knowledge, we are the first to for-

malize the connection between strongly adaptive online

learning and the problem of local-adaptivity in nonpara-

metric regression. By establishing this new perspective,

we hope to encourage further collaboration between these

two communities.

1.1 Problem Setup
Though we are primarily motivated to solve the offline/batch

estimation problem, our starting point is to consider a

significant generalization of the batch problem as shown

in Fig. 1. Any adaptively optimal algorithm to this on-

line game immediately implies adaptive optimality in the

batch/offline setting. For example, to solve the batch prob-

lem, adversary can be thought of as revealing the indices

isotonically, i.e it = t. However, note that in the online

game, adversary can even query the same index multiple

times. The term “forecasting strategy” in step 1 of Fig. 1,

is used to mean an algorithm that makes a prediction at

current time point only based on the historical data.

Solving the online problem has an added advantage that

the resulting algorithm can be applied to various instances

of time series forecasting like financial markets, spread of

contagious disease etc.

Assumption 1 |f(xi)|≤ B, ∀i ∈ [n] for some known

B.

Though this constraint is considered to be mild and

natural, we note that standard non-parametric regression

algorithms do not make this assumption.
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1. Player (we) declares a forecasting strategy

2. Adversary chooses an X = {x1 < x2 <
. . . < xn} and reveals it to the player.

3. Adversary chooses f(x1), . . . , f(xn) such

that
∑n

t=2|f(xt)− f(xt−1)|≤ Cn.

4. Adversary fixes an ordered set {i1, . . . , in}
where each ij ∈ [n].

5. For every time point t = 1, ..., n:

(a) Adversary reveals it.

(b) We play ŷt.

(c) We receive a feedback

yt = f(xit) + εt,
where εt is N(0, σ2).

(d) We suffer loss (ŷt − yt)
2

6. Our goal is to minimize∑n
t=1 E[(ŷt − f(xit))

2].

Figure 1: Online interaction protocol

1.2 Notes on novelty and contributions
To the best of our knowledge, in non-parametric regression

literature, only wavelet smoothing 1 (Donoho et al., 1998)

is able to provably attain a near optimal Õ(n1/3C
2/3
n ) rate

for estimating BV functions in batch setting without know-

ing the value of Cn. There are model-selection techniques

based on information-criterion, which often either incurs

significant practical overhead or comes with no optimal

rate guarantees (We will review these approaches in Sec-

tion 1.3).

The contributions of this work is mainly theoretical.

Our primary result is a novel reduction from the problem

of estimating BV functions to Strongly Adaptive online

learning (Daniely et al., 2015). This reduction approach

results in the development of a new O(n log n) time algo-

rithm that is: 1) minimax optimal (modulo log factors) 2)

adaptive to Cn and 3) can be used to tackle both online and

offline estimation problems thereby providing new insights.

To elaborate slightly, this is facilitated by few fundamen-

tally different viewpoints than those adopted in the wavelet

literature. In particular, we exhibit a specific partitioning

of TV bounded function into consecutive chunks that in-

curs low total variation such that total number of chunks

is O(n1/3C
2/3
n ). Then by designing a strongly adaptive

online learner, we ensure an Õ(1) cumulative squared error

in each chunk of that partition. This immediately implies

1Though (Baby and Wang, 2019) proposes a minimax policy for fore-

casting TV bounded sequences online, they heavily rely on the adaptive

minimaxity of wavelet smoothing.

an estimation error rate of Õ(n1/3C
2/3
n ) when summed

across all chunks. To the best of our knowledge, this is the

first time a connection between strongly adaptive online

learning and estimating BV functions has been exploited

in literature.

Experimental results (see Section 5) indicate that our

algorithm can outperform wavelet smoothing in terms of its

cumulative squared error incurred in practice. We demon-

strate that the proposed algorithm can be used without

any hyper-parameter tuning and incurs very low compu-

tational overhead in comparison to model selection based

approaches for the fused lasso problem (see Eq. (1)).

Before closing this section, we remind the reader that

this work shouldn’t be viewed only as providing yet an-

other solution to a classical problem but rather one that

provides a fundamentally new set of tools that adds new

insight to this decades-old problem that might have a pro-

found impact in many extensions of the basic setting we

consider and other downstream tasks such as estimating

higher-dimensional BV functions, fused lasso on graphs,

image deblurring, trend filtering and so on.

1.3 Related Work
As noted before, the theoretical analysis of estimating

BV functions is well studied in the rich literature of non-

parametric regression. Apart from wavelet smoothing

(Donoho et al., 1990; Donoho and Johnstone, 1994a,b;

Donoho et al., 1998), many algorithms such as Trend Filter-

ing (Kim et al., 2009; Tibshirani, 2014; Wang et al., 2016;

Sadhanala et al., 2016b; Guntuboyina et al., 2017) and

locally adaptive regression splines (Mammen and van de

Geer, 1997) can be used for estimation. However, one

drawback of these algorithms is that they require the TV

of ground truth Cn as an input to the algorithm to guaran-

tee minimax optimal rates. For example, the solution to

fused lasso (Eq. (1)) is minimax optimal only when one

chooses the hyper-parameter λ optimally. It is shown in

(Wang et al., 2016) that optimal choice of λ depends on the

variational budget Cn which may be unknown beforehand.

Theoretically one may tune the choice Cn (or λ) as

a hyper-parameter using criteria like AIC, BIC, Stein-

Unbiased Risk Estimate (SURE)-based approaches or the

use techniques presented in (Birge and Massart, 2001).

However, such model selection based schemes often have

statistical or computational overheads that make them im-

practical. The most relevant is the effective degree of

freedom (dof) approach (See Eq.(8) and Eq.(9) in (Tibshi-

rani and Taylor, 2012)). It requires solving fused lasso with

many λ (computational overhead). The estimate of dof is

unstable in some regimes (statistical overhead). Generally,

these methods may work well in practice but often do not

come with theoretical guarantees of adaptive optimality.

Moreover, we are not aware of any such model-selection

3



technique that can solve the online version of the problem.

There is also a body of work that focuses on the compu-

tation of solving problem (1) and their higher-dimensional

extensions (see (Chambolle and Lions, 1997; Barbero and

Sra, 2011), and the excellent survey therein). This is com-

plementary to our focus, which is to minimize the error

against the (unobserved) ground truth. Computationally,

(Johnson, 2013)’s dynamic programming has a worst-case

O(n) time-complexity, but only for a fixed λ. Our algo-

rithm runs in O(n log n)-time while avoids choosing the λ
parameter all together.

The closest to us is perhaps (Baby and Wang, 2019)

which indeed has motivated this work. They consider an

online protocol similar to Fig. 1 with the adversary con-

strained to reveal the indices it isotonically (i.e it = t)
and propose an adaptive restart scheme based on wavelets.

However such techniques are not useful to compete against

a more powerful adversary which can query indices in

any arbitrary manner — for example when the exogenous

variables x ∈ X are sampled iid from a distribution and

revealed online. Further, their proof critically relies on

adaptive minimaxity of wavelets. We aim to build a rad-

ically new algorithm that is agnostic to the results from

wavelet smoothing literature.

A strongly adaptive online learner (Daniely et al., 2015;

Adamskiy et al., 2016), incurs low static regret in any inter-

val. This is accomplished by maintaining a pool of sleeping

experts that are static regret minimizing algorithms which

are awake only in some specific duration. Then an aggrega-

tion strategy to hedge over the experts is used to guarantee

low regret in any interval. This work was preceded by the

notion of weakly adaptive regret in (Hazan and Seshadhri,

2007). To the best of our knowledge, the efficient reduc-

tion of TV-denoising to strongly-adaptive online learning

is new to this paper. We defer further discussions on related

work to Appendix A.

2 Preliminaries
In this section, we briefly review the elements from online

learning literature that are crucial to the development of

our algorithm.

2.1 Geometric Cover
Geometric Cover (GC) proposed in (Daniely et al., 2015)

is a collection of intervals that belong to N defined below.

In what follows [a, b] denotes the set of natural numbers

lie between a and b, both inclusive.

I =
⋃

k∈N∪{0}
Ik,

where ∀k ∈ N ∪ {0}, and Ik = {[i · 2k, (i+ 1) · 2k − 1] :
i ∈ N}. Define AWAKE(t) := {I ∈ I : t ∈ I}.By the

construction of Geometric Cover I, it holds that

|AWAKE(t)|= 	log t
+ 1. (2)

Let’s denote I|J := {I ∈ I : I ⊆ J} for an interval

J ⊆ N. The GC has a very nice property recorded in the

following Proposition.

Proposition 1. (Daniely et al., 2015) Let I = [q, s] ⊆ N.
Then the interval I can be partitioned into two finite se-
quences of disjoint consecutive intervals (I−k, . . . , I0) ⊆
I|I and (I1, . . . , Ip) ⊆ I|I such that,

|I−i|
|I−i+1|

≤ 1

2
, ∀i ≥ 1 and

|Ii|
|Ii−1|

≤ 1

2
, ∀i ≥ 2.

2.2 Sleeping Experts and Specialist Aggre-
gation Algorithm (SAA)

In the problem of learning from expert advice with out-

come space O and action space A, there are K experts

who provide a list of actions at,: = [at,1, ..., at,K ] ∈ AK

at time t = 1, ..., n. The learner is supposed to takes an

action at ∈ A based on the expert advice2 before the out-

come ot ∈ O is revealed by an adversary. The player then

incurs a loss given by �(at, ot), where � is a loss function.

In the most basic setting, A,O are discrete sets, � can

be described by a table, and we assign one constant expert

to each a ∈ A, then this becomes an online version of Von

Neumann’s linear matrix game. More generally, A can be

a convex set, describing parameters of a classifier, o ∈ O
could denote a feature-label pair in which case the loss

could be a square loss or logistic loss that measures the

performance of each classifier.

Our result leverages a variant of the learning from ex-

pert advice problem which assumes an arbitrary subset of

K experts might be sleeping at time t and the learner needs

to compete against an expert only during its awake dura-

tion. The learner chooses a distribution wt over the awake

experts and plays a weighted average over the actions of

those awake experts. It then incurs a surrogate-loss called

“MixLoss” which is a measure of how good the distribution

wt is. (See Figure 2 for details.) This setting is different

from the classical prediction with experts advice problem

in two aspects: 1) The adversary is endowed with more

power of selecting an awake expert set in addition to the

actual outcome ot at each round. 2) Instead of the loss

�(at, ot), the learner is incurred a surrogate loss on the

distribution chosen by the learner at time t.
Consider the protocol of learning with sleeping experts

shown in Fig. 2. Assume an expert pool of size K.

2Could be at,k for some k ∈ [K] or any other points in A
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For t = 1, . . . , n

1. Adversary picks a subset At ⊂ [K] of awake

experts.

2. Learner choose a distribution wt over At.

3. Adversary reveals loss of all awake experts,

�t ∈ (−∞,∞]|At|.

4. Learner suffers MixLoss:
− log(

∑
k∈At

wt,ke
−�t,k).

Figure 2: Interaction protocol with sleeping experts. The
expert pool size is K.

Initialize u1,k = 1/|S| for all k in an index set S
used to

index the expert pool.

For t = 1, . . . , n

1. Adversary reveals At ⊆ S .

2. Play weighted average action wrt distribu-

tion:

wt,k =
ut,k1{k∈At}∑

j∈At
ut,j

.

3. Broadcast the weights wt,k.

4. Receive losses �t,k for all k ∈ At.

5. Update:

• ut+1,k =
ut,ke

−�t,k

∑
j∈At

ut,je
−�t,j

∑
j∈At

ut,j

if k ∈ At.

• ut+1,k = ut,k if k /∈ At.

Figure 3: Specialist Aggregation Algorithm (SAA).

Lemma 2. (Adamskiy et al., 2016) Regret Rj
n of SAA (Fig.

3) w.r.t. any fixed expert j ∈ [K] satisfies,

Rj
n :=

∑
t∈[n]

1{j ∈ At}
(
− log(

∑
k∈At

wt,ke
−�t,k)− �t,j

)

≤ logK,

where 1{·} is the indicator function, �t,k := L(at,k, ot)
and at,k is the action taken by expert k at time t.

Note that �t,j = MixLoss(ej) where ej selects j with

probability 1. The regret measures the performance of the

learner against any fixed expert in terms of the MixLoss
in the sub-sequence where she is awake.

Definition 3. L(a, x) is η exp-concave in a for each x if

∑K
k=1 wke

−ηL(ak,x) ≤ e−ηL(
∑K

k=1 wkak,x), for wk ≥ 0

and
∑K

k=1 wk = 1.

A MixLoss regret bound is useful because it implies a
regret bound on any exp-concave losses for learners play-
ing the weighted average action at =

∑
k∈At

wt,kat,k. To

see this, let L′(a, o) be η exp-concave in its first argument
a ∈ A. By the definition of exp-concavity it follows that if
SAA is run with losses L(a, o) = ηL′(a, o), then,

∑
t∈[n]:j∈At

(
ηL′

( ∑
k∈At

wt,kat,k , ot

)
− ηL′(at,j , ot)

)
≤ Rj

n,

where at,k is the action taken by expert k at time t.
We refer to Chapter 3 of (Cesa-Bianchi and Lugosi,

2006) and (Adamskiy et al., 2016) for further details on

SAA.

3 Main Results
In this section, we present our algorithm and its perfor-

mance guarantees.

3.1 Algorithm
As noted in Section 1, our goal is to explore the possibility

that a Strongly Adaptive online learner can lead to mini-

max optimal estimation rate. Consequently the algorithm

that we present is a fairly standard Strongly Adaptive on-

line learner that can guarantee logarithmic regret in any

interval.

Our algorithm ALIGATOR (Aggregation of onLIne av-

eraGes using A geomeTric cOveR) defined in Fig.4 can

be used to tackle both online and batch estimation prob-

lems. The policy is based on learning with sleeping experts

where expert pool is defined as follows.

Definition 4. The expert pool is E = {AI : I ∈ I|[n]},
where I|[n] is as defined in Section 2.1 and AI is an al-
gorithm that perform online averaging in interval I . Let
AI(t) denote the prediction of the expert AI at time t, if
I ∈ AWAKE(t).

Due to relation (2), we have |E|≤ n log n. Our policy

basically performs SAA over E .

The precise definition of AI(t) used in our algorithm

is

AI(t) =

{∑t−1
s=1 ys1{is∈I}∑t−1
s=1 1{is∈I} if

∑t−1
s=1 1{is ∈ I} > 0

0 otherwise

where is is the index of the exogenous variable xis in

step 2(a) of Fig. 4. This particular choice of experts is

motivated by the fact that performing online averages lead

to logarithmic static regret under quadratic losses. As

shown later, this property when combined with the SAA

scheme leads to logarithmic regret in any interval of [n].

5



ALIGATOR:Inputs - time horizon n, learning rate η

1. Initialize SAA weights u1,I = 1/|E|, ∀I ∈
I|[n].

2. For t = 1 to n:

(a) Adversary reveals an arbitrary xit ∈ X .

(b) Let At = AWAKE(it). Pass At to SAA.

(c) Receive wt,I from SAA for each I ∈ At.

(d) Predict ŷt =
∑

I∈At
wt,IAI(t).

(e) Receive yt = f(xit) + εt.

(f) Pass losses �t,I = η(yt −AI(t))
2,

for each I ∈ At to the SAA.

Figure 4: The ALIGATOR algorithm

3.2 Performance Guarantees
Theorem 5. Consider the online game in Fig. 1. Let
θt := f(xit). Under Assumption 1, with probability atleast
1 − δ, ALIGATOR forecasts ŷt obtained by setting η =

1

8
(
B+σ

√
log(2n/δ)

)2 , incurs a cumulative error

n∑
t=1

(ŷt − θt)
2 = Õ(n1/3C2/3

n ),

where Õ(·) hides the dependency of constants B, σ and
poly-logarithmic factors of n and δ.

Proof Sketch. We first show that ALIGATOR suffers log-

arithmic regret against any expert in the pool E during

its awake period. Then we exhibit a particular partition

of the underlying TV bounded function such that number

of chunks in the partition is O(n1/3C
2/3
n ) (Lemma 14 in

Appendix B). Following this, we cover each chunk with

atmost log n experts and show that each expert in the cover

suffers a Õ(1) estimation error. The Theorem then fol-

lows by summing the estimation error across all chunks of

the partition. In summary, the delicate interplay between

Strongly Adaptive regret bounds and properties of the par-

tition we exhibit leads to the adaptively minimax optimal

estimation rate for ALIGATOR. We emphasize that exis-

tence of such partitions is a highly non-trivial matter.

Remark 6. We note that under the above setting, ALI-

GATOR is minimax optimal in n and Cn, and adaptive to
unknown Cn.

Remark 7. If the noise level σ is unknown, it can be
robustly estimated from the wavelet coefficients of the ob-
served data by a Median Absolute Deviation estimator
(Johnstone, 2017). This is facilitated by the sparsity of
wavelet coefficients of BV functions .

Remark 8. In the offline problem where we have access to
all observations ahead of time, the choice of η = 1/(8ν̂2)
where ν̂ = max{|y1|, . . . , |yn|} results in the same near
optimal rate for Rn as in Theorem 5. This is due to the fact
that B + σ

√
log(2n/δ) is nothing but a high probability

bound on each |yt|. Hence we don’t require the prior
knowledge of B and σ for the offline problem.

Remark 9. The authors of (Donoho et al., 1998) use the
error metric given by the L2 function norm in a compact in-

terval [0, 1] defined as
∫ 1

0

(
f̂(x)− f(x)

)2
dx in an offline

setting, where f̂(x) is the estimated function. A common
observation model for non-parametric regression consid-
ers xit = t/n (Tibshirani, 2014). When xit = t/n, ALI-

GATOR guarantees that the empirical norm 1
n

∑n
t=1 (ŷt − f(t/n))

2

decays at the rate of Õ
(
n−2/3C

2/3
n

)
. For the TV class,

it can be shown that the empirical norm and the function
norm are close enough such that the estimation rates do
not change (see Section 15.5 of (Johnstone, 2017)).

Remark 10. Note that conditioned on the past observa-
tions, the prediction of ALIGATOR is deterministic in each
round. So in the online setting, we can compete with an
adversary who chooses the underlying ground truth in an
adaptive manner based on the learner’s past moves. With
such an adaptive adversary, it becomes important to reveal
the set of covariates X ahead of time. Otherwise there
exists a strategy for the adversary to choose the covari-
ates xit that can enforce a linear growth in the cumulative
squared error. We refer the readers to (Kotłowski et al.,
2016) for more details about such adversarial strategy.

Proposition 11. The overall run-time of ALIGATOR is
O(n log n).

Proof. On each round |AWAKE(t)| is O(log n) by (2).

So we only need to aggregate and update the weights of

O(log n) experts per round which can be done in O(log n)
time.

4 Extensions
Motivated from a practical perspective, we discus two

direct extensions to ALIGATOR below. These extensions

highlight the versatility of ALIGATOR in adapting to each

application.

Hedged ALIGATOR. In our theoretical results, we

found that choosing learning rate η conservatively accord-

ing to Theorem 5 or Remark 8 ensures the minimax rates.

In practice, however, one could use larger learning rates to

adapt to the structure of every input sequence.

We propose to use a hedged ALIGATOR scheme that

aggregates the predictions of ALIGATOR instantiated with

different learning rates. In particular, we run different

6



instances of ALIGATOR in parallel where an instance corre-

sponds to a learning rate in the exponential grid [η, 2η, . . . ,max{η, log2 n}]
which has a size of O

(
log
(
(B2 + σ2) log n

))
. Here η is

chosen as in Theorem 5 or Remark 8. Then we aggregate

each of these instances by the Exponential Weighted Aver-

ages (EWA) algorithm (Cesa-Bianchi and Lugosi, 2006).

The learning rate of this outer EWA layer is set according

to the theoretical value.By exp-concavity of squared error

losses, this strategy helps to match the performance of

the best ALIGATOR instance. Since the theoretical choice

of learning rate is included in the exponential grid, the

strategy can also guarantee optimal minimax rate. We

emphasize that Hedged ALIGATOR is adaptive to Cn and

requires no hyper-parameter tuning.

ALIGATOR with polynomial regression experts. This

extension is motivated by the problem of identifying trends

in time series. Though in Section 3.1 we use online aver-

aging as experts, in practice one can consider using other

algorithms. For example, if the trends in a time series are

piecewise-linear, then experts based on online averaging

can lead to poor practical performance because the TV

budget Cn of piecewise linear signals can be very large.

To alleviate this, in this extension, we propose to use On-

line Polynomial Regression as experts where a polynomial

of a fixed degree d is fitted to the data with time points as

its exogenous variables. This is similar to the idea adopted

in (Baby and Wang, 2020) where they construct a pol-

icy that performs restarted online polynomial regression

where the restart schedule is adaptively chosen via wavelet

based methods. They show that such a scheme can guar-

antee estimation rates that grow with (a scaled) L1 norm

of higher order differences of the underlying trend which

can be much smaller than its TV budget Cn. This exten-

sion can be viewed as a variant to the scheme in (Baby

and Wang, 2020) where the “hard” restarts are replaced

by “soft restarts” via maintaining distributions over the

sleeping experts.

5 Experimental Results
For empirical evaluation, we consider online and offline

vesrions of the problems separately.

Description of policies. We begin by a description of

each algorithm whose error curve is plotted in the figures.

ALIGATOR (hedged): This is the extension described

in Section 4

ALIGATOR (heuristics): For this hueristics strategy, we

divide the loss of each expert by 2(σ2+σ2/m) where m is

the number of samples whose running average is compued

by the expert. This loss is proportional to the notion of

(squared) z-score used in hypothesis testing. Intuitively,

lower (squared) z-score corresponds to better experts. The

multiplier 2 in the previous expression is found to provide

Figure 5: Fitted signals for Doppler function with noise
level σ= 0.25

(a) Offline experiments

(b) Online experiments

Figure 6: Cumulative squared error rate of various algo-
rithms on offline setting and online setting. ALIGATOR

achieves the optimal Õ(n1/3) rate while performing better
than wavelet based methods. In particular, in the offline set-
ting, it achieves a performance closer to that of dof based
fused lasso while only incurring a cheap Õ(n) run-time
overhead.
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Figure 7: A demo on forecasting COVID cases based on
real world data. We display the two weeks forecasts of
hedged ALIGATOR and Holt ES, starting from the time
points identified by the dotted lines. Both the algorithms
are trained on a 2 month data prior to each dotted line. We
see that hedged ALIGATOR detects changes in trends more
quickly than Holt ES. Further, hedged ALIGATOR attains
a 20% reduction in the average RMSE from that of Holt
ES (see Section 5).

good performnace across all signals we consider.

arrows: This is the the policy presented in (Baby and

Wang, 2019), which runs online averaging with an adaptive

restarting rule based on wavelet denoising results.

wavelets: This is the universal soft thresholding esti-

mator from (Donoho et al., 1998) based on Haar wavelets

which is known to be minimax optimal for estimating BV

functions.

oracle fused lasso: This estimator is obtained by solv-

ing (1) whose hyper-parameter is tuned by assuming access

to an oracle that can compute the mean squared error wrt

actual ground truth. The exact ranges used in the hyper-

parameter grid search is described in Appendix C. Note

that the oracle fused lasso estimator is purely hypothetical

due to absence of such oracles described before in reality

and is ultimately impractical. It is used here to facilitate

meaningful comparisons.

fused lasso (dof): In this experiment, we maintain a

list of λ for the fused lasso problem (Eq. (1)). Then

we compute the Stein’s Unbiased Risk estimator for the

expected squared error incurred by each λ by estimating

its degree of freedom (dof) (Tibshirani and Taylor, 2012)

and select the λ with minimum estimated error.

Experiments on synthetic data. For the ground truth

signal, we use the Doppler function of (Donoho and John-

stone, 1994a) whose waveform is depicted in Fig. 5. The

observed data are generated by adding iid noise to the

ground truth. For offline setting, we have access to all

observations ahead of time. So we run Arrows and both

versions of ALIGATOR two times on the same data, once

in isotonic order (i.e it = t in Fig. 1) and other in reverse

isotonic order and average the predictions to get estimates

of the ground truth. For online setting such a forward-

backward averaging is not performed. This process of

generating the noisy data and computing estimates are

repeated for 5 trials and the average cumulative error is

plotted. As we can see from Fig.6 (a), ALIGATOR versions

attains the Õ(n1/3) rate and incurs much lower error than

wavelet smoothing. Further, performance of hedged and

heuristics versions of ALIGATOR is in the vicinity to that

of the hypothetical fusedlasso estimator while the policies

arrows and wavelets violate this property by a large margin.

Even though the dof based fused lasso comes very close to

the oracle counterpart, we emphasize that this strategy is

not known to provide theoretical guarantees for its rate and

requires heavy computational bottleneck since it requires

to solve the fused lasso (Eq. 1) for many different values

of λ.

For the online version of the problem, we consider

the policy Arrows as the benchmark. This policy has been

established to be minimax optimal for online forecasting of

TV bounded sequences in (Baby and Wang, 2019). We see

from Fig.6 (b) that all the policies attains an Õ(n1/3) rate

while ALIGATOR variants enjoy lower cumulative errors.

Experiments on real data. Next we consider the task

of forecasting COVID cases using the extension of Aligator

with polynomial regression experts as in Section 4. The

data are obtained from the CDC website (cdc).

We address a very relevant problem as follows: Given

access to the historical data, forecast the evolution of

COVID cases for the next 2 weeks. We compare the

performance of hedged ALIGATOR and Holt Exponen-

tial Smoothing (Holt ES), on this problem, where the later

is a common algorithm used in Time Series forecasting

to detect underlying trends. For ALIGATOR, we use On-

line Linear Regression as experts where a polynomial of

degree one is fitted to the data with time points as its ex-

ogenous variables. For each time point t in [Apr 20, Sep

27], we train both hedged ALIGATOR and Holt ES on a

training window of past 2 months. Then we calculate a

2 week forecast for both algorithms. For ALIGATOR this

is achieved by linearly extrapolating the predictions of ex-

perts awake at time t and aggregating them. Following

this, we compute the Root Mean Squared Error (RMSE) in

the interval [t, t+ 14) for both algorithms. These RMSE

are then averaged across all t in [Apr 20, Sep 27].

We choose data from the state of Florida, USA, as

an illustrative example. We obtained an average RMSE

of 1330.12 for hedged ALIGATOR and 1671.77 for Holt

ES. Thus hedged ALIGATOR attains a 20% reduction in

forecast error from that of Holt ES. A qualitative compar-

ison of the forecasts is illustrated in Fig. 7. As we can

see, the time series is non-stationary and has a varying

degree of smoothness. ALIGATOR is able to adapt to the

local changes quickly, while Holt ES fails to do so despite

having a more sophisticated training phase. Similar experi-
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mental results for some of the other states are reported in

Appendix C.

The training step of hedged ALIGATOR involves learn-

ing the weights of all experts by an online interaction proto-

col as shown in Fig. 1 with it = t. It is remarkable that no
hyper-parameter tuning is required by ALIGATOR for its

training phase. The slowest learning rate to be used in the

grid for hedged ALIGATOR is computed as follows. First

we calculate the maximum loss incurred by each expert

for a one step ahead forecast in its awake duration. Then

we take the maximum of this quantity across all experts

in the pool. Let this quantity be β. The slowest learning

rate in the grid is then set as 1/(2β). The learning rate

of the outer layer of EWA is also set the same. This is

justifiable because the quantity 4
(
B + σ

√
log(2n/δ)

)
in

the denominator of the learning rate in Theorem 5 is a high

probability bound on the loss incurred by any expert for a

one step ahead forecast.

We defer further experimental results to Appendix C.

An important caveat for practitioners. Though ALI-

GATOR is able to detect non-stationary trends in the COVID

data efficiently, we do not advocate using ALIGATOR as
is for pandemic forecasting, which is a substantially more

complex problem that requires input from domain experts.

However, ALIGATOR could have a role in this prob-

lem, and other online forecasting tasks. Estimating (and

removing) trend is an important first step in many time

series methods (e.g., Box-Jenkins method). Most trend

estimation methods only apply to offline problems (e.g.,

Hodrick-Prescott filter or L1 Trend Filter) (Kim et al.,

2009), while Holt ES is a common method used for on-

line trend estimation. For instance, Holt ES is being used

as a subroutine for trend estimation in a state-of-the-art

forecasting method (Jin et al., 2021) for COVID cases that

CDC is currently using. We expect that using ALIGATOR

instead in such models that use Holt ES will lead to more

accurate forecasting, but that is beyond the scope of this

paper.

6 Concluding Discussion
In this work, we presented a novel reduction from esti-

mating BV functions to Strongly Adaptive online learning.

The reduction gives rise to a new algorithm ALIGATOR

that attains the near minimax optimal rate of Õ(n1/3C
2/3
n )

in O(n log n) run-time. The results form a parallel to

wavelet smoothing in terms of optimal adaptivity to un-

known variational budget Cn. However, our algorithm is

more versatile than wavelets in terms of its configurability

and practical performance. Further, for offline estimation,

ALIGATOR variants achieves a performance closer (than

wavelets) to an oracle fused lasso while incurring only an

Õ(n) run-time with no hyper parameter tuning. This is in

contrast to degree of freedom based approaches of tuning

the fused lasso hyper parameter that requires significantly

more computational overhead and is not known to provide

guarantees on its rate.
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A More on Related Work
For any forecasting strategy whose output ŷt at time t depends only on past observations, we have E[(ŷt − yt)

2] −
E[(f(xit)− yt)

2] = E[(ŷt − f(xit))
2]. Hence any algorithm that minimizes the dynamic regret against the sequence

f(xi1), . . . , f(xin) with �t(x) = (x − yt)
2 being the loss at time t, can be potentially applied to solve our problem.

However as noted in (Baby and Wang, 2019) a wide array of techniques such as (Zinkevich, 2003; Hall and Willett,

2013; Besbes et al., 2015; Chen et al., 2018b; Jadbabaie et al., 2015; Yang et al., 2016; Zhang et al., 2018a,b; Chen

et al., 2018a; Yuan and Lamperski, 2019) are unable to achieve the optimal rate. However, we note that many of these

algorithms support general convex/strongly-convex losses. The existence of a strategy with Õ(n1/3C
2/3
n ) rate for

Rn, even in the more general (in comparison to offline problem) online setting considered in Fig. 1 is implied by the

results of (Rakhlin and Sridharan, 2014) on online non-parametric regression with Besov spaces via a non-constructive

argument. (Kotłowski et al., 2016) studies the problem of forecasting isotonic sequences. However, the techniques are

not extensible to forecasting the much richer family of TV bounded sequences.

We acknowledge that univariate TV-denoising is a simple and classical problem setting, and there had been a number

of studies on TV-denoising in multiple dimensions and on graphs, and to higher order TV functional, while establishing

the optimal rates in those settings (Tibshirani, 2014; Wang et al., 2016; Hutter and Rigollet, 2016; Sadhanala et al.,

2016a, 2017; Li et al., 2018). The problem of adaptivity in Cn is generally open for those settings, except for highly

special cases where the optimal tuning parameter happens to be independent to Cn (see e.g., (Hutter and Rigollet,

2016)). Generalization of the techniques developed in this paper to these settings are possible but beyond the scope of

this paper. That said, as (Padilla et al., 2017) establishes, an adaptive univariate fused lasso is already able to handle

signal processing tasks on graphs with great generality by simply taking the depth-first-search order as a chain.

Using a specialist aggregation scheme to incur low adaptive regret was explored in (Adamskiy et al., 2016). However,

the experts they use are same as that of (Hazan and Seshadhri, 2007). Due to this, their techniques are not directly

applicable in our setting where the exogenous variables are queried in an arbitrary manner.

There are image denoising algorithms based on deep neural networks such as (Zhang et al., 2017). However, this

body of work is complementary to our focus on establishing the connection between denoising and strongly adaptive

online learning.

B Proofs of Technical Results
For the sake of clarity, we present a sequence of lemmas and sketch how to chain them to reach the main result in

Section B.1. This is followed by proof of all lemmas in Section B.2 and finally the proof of Theorem 5 in Section B.3.

B.1 Proof strategy for Theorem 5
We first show that ALIGATOR suffers logarithmic regret against any expert in the pool E during its awake period. Then

we exhibit a particular partition of the underlying TV bounded function such that number of chunks in the partition is

O(n1/3C
2/3
n ). Following this, we cover each chunk with atmost log n experts and show that each expert in the cover

suffers a Õ(1) estimation error. The Theorem then follows by summing the estimation error across all chunks.

Some notations. In the analysis thereafter, we will use the following notations. Let σ̃ = σ
√
2 log(4n/δ),

Rσ = 16(B+ σ̃)2 and T (I) = {t ∈ [n] : it ∈ I} for any I ∈ I|[n], where I|[n] is defined according to the terminology

in Section 2.1. Let θt := f(xit).
First, we show that ALIGATOR is competitive against any expert in the pool E .

Lemma 12. For any interval I ∈ I|[n] such that T (I) is non-empty, the predictions made by ALIGATOR ŷt satisfy

∑
t∈T (I)

(ŷt − θt)
2 ≤ e− 1

3− e

∑
t∈T (I)

(AI(t)− θt)
2 +

log(n log n)Rσ + 2R2
σ log(2n log n/δ)

3− e
,

with probability atleast 1− δ.

Corollary 13. Let S = {P1, . . . , PM} be an arbitrary ordered set of consecutive intervals in [n]. For each i ∈ [n]
let Ui be the set containing elements of the GC that covers the interval Pi according to Proposition 1. Denote
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λ :=
log(n logn)Rσ+2R2

σ log(2n logn/δ)
3−e . Then ALIGATOR forecasts ŷt satisfy

n∑
t=1

(ŷt − θt)
2 ≤ min

S

M∑
i=1

∑
I∈Ui

1{|T (I)|> 0}

⎛
⎝e− 1

3− e

∑
t∈T (I)

(AI(t)− θt)
2 + λ

⎞
⎠ ,

with probability atleast 1− δ.

The minimum across all partitions in the Corollary above hints to the novel ability of ALIGATOR to incur potentially

very low estimation errors.

Next, we proceed to exhibit a partition of the set of exogenous variables queried by the adversary that will eventually

lead to the minimax rate of Õ(n1/3C
2/3
n ). The existence of such partitions is a non-trivial matter.

Lemma 14. Let S = {xk1
< . . . , < xkm

} ⊆ X be the exogenous variables queried by the adversary over n
rounds where each ki ∈ [n]. Denote θ(i) := f(xki

) and p(i) := #{t : xit = xki
} for each i ∈ [m]. Denote

[xi, xj ] := {xki , xki+1 , . . . , xkj}. For any [xi, xj ] ⊆ S, define V (xi, xj) =
∑j−1

k=i |θ(i) − θ(i+1)|. There exists a
partitioning P = {[x1, xr1 ], [xr1+1, xr2 ], . . . , [xrM−1+1, xm]} of S that satisfies

1. For any [xi, xj ] ∈ P \ {[xrM−1+1, xm]}, V (xi, xj) ≤ B√∑j
k=i p(k)

.

2. V (xrM−1+1, xm−1) ≤ B√∑m−1
k=rM−1+1 p(k)

.

3. Number of partitions M ≤ max{3n1/3C
2/3
n B−2/3, 1}.

The next lemma controls the estimation error incurred by an expert during its awake period.

Lemma 15. Let {
¯
x,< . . . , < x̄} be the exogenous variables queried by the adversary over n rounds in an arbitrary

interval I ∈ I|[n]. Then with probability atleast 1− δ

∑
t∈T (I)

(θt −AI(t))
2 ≤ 2V (

¯
x, x̄)2|T (I)|+2σ2 log(2n3 log n/δ) log(|T (I)|),

where V (·, ·) is defined as in Lemma 14.

To prove Theorem 5, our strategy is to apply Corollary 13 to the partition in Lemma 14. By the construction of

the GC, each chunk in the partition can be covered using atmost log n intervals. Now consider the estimation error

incurred by an expert corresponding to one such interval. Due to statements 1 and 2 in Lemma 14 the V (
¯
x, x̄)2|T (I)|

term of error bound in Lemma 15 can be shown to O(1). When summed across all intervals that cover a chunk, the

total estimation error within a chunk becomes Õ(1). Now appealing to statement 3 of Lemma 14, we get a total error of

Õ(n1/3C
2/3
n ) when the error is summed across all chunks in the partition.

B.2 Omitted Lemmas and Proofs
Lemma 16. Let V be the event that for all t ∈ [n], |εt|≤ σ

√
2 log(4n/δ). Then P(V) ≥ 1− δ/2.

Proof. By gaussian tail inequality, we have for a fixed t P (|εt|> σ
√
2 log(4n/δ)) ≤ δ/2n. By taking a union bound

we get P (|εt|≥ σ
√
2 log(4n/δ)) ≤ δ/2 for all t ∈ [n].

Some notations. In the analysis thereafter, we will use the following filtration.

Fj = σ((i1, yi1), . . . , (ij−1, yij−1
)).

Let’s denote Ej [·] := E[·|Fj ] and Varj [·] := Var[·|Fj ]. Let θj = f(xij ) and σ̃ = σ
√
2 log(4n/δ). Let Rσ =

16(B + σ̃)2 and T (I) = {t ∈ [n] : it ∈ I}
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Lemma 17. (Freedman type inequality, (Beygelzimer et al., 2011)) For any real valued martingale difference sequence
{Zt}Tt=1 with |Zt|≤ R it holds that,

T∑
t=1

Zt ≤ η(e− 2)

T∑
t=1

Vart[Zt] +
R log(1/δ)

η
,

with probability atleast 1− δ for all η ∈ [0, 1/R].

Lemma 18. For any j ∈ [n], we have

1. Ej [(yj −AI(j))
2 − (yj − θj)

2|V] = Ej [(AI(j)− θj)
2|V].

2. Varj [(yj −AI(j))
2 − (yj − θj)

2|V] ≤ RσEj [(AI(j)− θj)
2|V].

Proof. We have,

Ej [(yj −AI(j))
2 − (yj − θj)

2|V] =(a) Ej [(AI(j)− θj)
2|V]− 2Ej [εj |V]Ej [(AI(j)− θj)|V],

= Ej [(AI(j)− θj)
2|V],

where line (a) is due to the independence of εj with the past. Since (AI(j) + θj − 2yj)
2 ≤ 16(B+ σ̃)2 under the event

V , it holds that

Varj [(yj −AI(j))
2 − (yj − θj)

2|V] ≤ Ej [(yj −AI(j))
2 − (yj − θj)

2|V]2,
≤ 16(B + σ̃)2Ej [(AI(j)− θj)

2|V].

Lemma 19. For any interval I ∈ I, it holds with probability atleast 1− δ that

1.
∑

j∈T (I)(yj −AI(j))
2 − (yj − θj)

2 ≤∑j∈T (I)(e− 1)(AI(j)− θj)
2 +R2

σ log(2n log n/δ),

2.
∑

j∈T (I)(yj − ŷj)
2 − (yj − θj)

2 ≥∑j∈T (I)(3− e)(ŷj − θj)
2 −R2

σ log(2n log n/δ).

Proof. Define Zj = (yj −AI(j))
2 − (yj − θj)

2 − (AI(j)− θj)
2.

Condition on the event V that |εt|≤ σ
√
2 log(4n/δ).∀t ∈ [n] which happens with probability atleast 1− δ/2 by

Lemma 16. By Lemma 18, we have {Zj}j∈T (I) is a martingale difference sequence and |Zj |≤ 16(B + σ̃)2 = Rσ.

Note that once we condition on the filtration Fj , there is no randomness remaining in the terms (AI(j) − θj)
2 and

(ŷj − θj)
2. Hence Ej [(AI(j)− θj)

2|V] = (AI(j)− θj)
2 and Ej [(ŷj − θj)

2|V] = (ŷj − θj)
2. Using Lemma 17 and

taking η = 1/Rσ we get,∑
j∈T (I)

(yj −AI(j))
2 − (yj − θj)

2 ≤
∑

j∈T (I)

(e− 1)(AI(j)− θj)
2 +R2

σ log(4n log n/δ),

with probability atleast 1− δ/(4n log n) for a fixed expert AI . Taking a union bound across all O(n log n) experts in E
leads to,

P

⎛
⎝ ∑

j∈T (I)

(yj −AI(j))
2 − (yj − θj)

2 ≥
∑

j∈T (I)

(e− 1)(AI(j)− θj)
2 +R2

σ log(2n log n/δ)|V

⎞
⎠ ≤ δ/4,

for any expert AI .

By similar arguments on the martingale difference sequence (ŷj − θj)
2 − (yj − ŷj)

2 − (yj + θj)
2, it can be shown

that

P

⎛
⎝ ∑

j∈T (I)

(yj − ŷj)
2 − (yj − θj)

2 ≤
∑

j∈T (I)

(3− e)(ŷj − θj)
2 −R2

σ log(2n log n/δ)|V

⎞
⎠ ≤ δ/4,

for any interval I ∈ I|[n]. Taking union bound across the previous two bad events and multiplying the probability of

noise boundedness event V leads to the lemma.
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Lemma 12. For any interval I ∈ I|[n] such that T (I) is non-empty, the predictions made by ALIGATOR ŷt satisfy

∑
t∈T (I)

(ŷt − θt)
2 ≤ e− 1

3− e

∑
t∈T (I)

(AI(t)− θt)
2 +

log(n log n)Rσ + 2R2
σ log(2n log n/δ)

3− e
,

with probability atleast 1− δ.

Proof. Condition on the event V . Then the losses ft(x) = (yt−x)2 are 1

4(B+σ
√

log(2n/δ))2
:= η exp-concave (Haussler

et al., 1998; Cesa-Bianchi and Lugosi, 2006). Since we pass η · ft(x) as losses to SAA in ALIGATOR, Lemma 2 gives

∑
t∈T (I)

− log

(∑
J∈At

wt,Je
−ηft(AJ (t))

)
− ηft(AI(t)) ≤ log(n log n). (3)

By η exp-concavity of ft(x), we have

− log

(∑
J∈At

wt,Je
−ηft(AJ (t)))

)
≥ ηft

(∑
J∈At

wt,JAI(t)

)
,

= ηft(ŷt). (4)

Combining (3) and (4) gives,

∑
t∈T (I)

ft(ŷt)− ft(AI(t)) ≤
log(n log n)

η
,

≤ log(n log n)Rσ.

So, ∑
t∈T (I)

(yt − ŷt)
2 − (yt − θt)

2 ≤
∑

t∈T (I)

(yt −AI(t))
2 − (yt − θt)

2 + log(n log n)Rσ,

Now invoking Lemma (19) followed by a trivial rearrangement completes the proof.

Lemma 14. Let S = {xk1
< . . . , < xkm

} ⊆ X be the exogenous variables queried by the adversary over n
rounds where each ki ∈ [n]. Denote θ(i) := f(xki

) and p(i) := #{t : xit = xki
} for each i ∈ [m]. Denote

[xi, xj ] := {xki , xki+1 , . . . , xkj}. For any [xi, xj ] ⊆ S, define V (xi, xj) =
∑j−1

k=i |θ(i) − θ(i+1)|. There exists a
partitioning P = {[x1, xr1 ], [xr1+1, xr2 ], . . . , [xrM−1+1, xm]} of S that satisfies

1. For any [xi, xj ] ∈ P \ {[xrM−1+1, xm]}, V (xi, xj) ≤ B√∑j
k=i p(k)

.

2. V (xrM−1+1, xm−1) ≤ B√∑m−1
k=rM−1+1 p(k)

.

3. Number of partitions M ≤ max{3n1/3C
2/3
n B−2/3, 1}.

Proof. We provide below a constructive proof. Consider the following scheme of partitioning S.

1. Set pings = p(1),TV = 0,M = 1.

2. Start a partition from x1.

3. For i = 2 to m

(a) If TV + |θ(i) − θ(i−1)|> B√
pings+p(i)

:

i. pings = p(i),TV = 0 // start a new bin (partition) from position xi.
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ii. M = M + 1 // increase the bin counter

(b) Else:

i. pings = pings + p(i),TV = TV + |θ(i) − θ(i−1)|

Statements 1 and 2 of the Lemma trivially follows from the strategy. Next, we provide an upper bound on number

of bins M spawned by the above scheme. Let [x1, xr1 ], [xr1+1, xr2 ], . . . , [xrM−1,xrM
] be the partition of S discovered

by the above scheme.

Define the quantity TV1 :=
∑r1

i=1|θ(i) − θ(i+1)| associated with bin 1. Similarly define TV2, . . . ,TVM−1 for other

bins.

Define N(1) =
∑r1+1

i=1 p(i). Similarly define N(2), . . . N(M − 1). It is immediate that
∑M−1

i=1 N(i) ≤ 2n.

We have,

Cn ≥
M−1∑
i=1

TVi,

≥(1)

M−1∑
i=1

B√
N(i)

,

≥(2)
(M − 1)3/2 ·B√

2n
,

where (1) follows from step 3(a) of the partitioning scheme and (2) is due to convexity of 1/
√
x, x > 0 and applying

Jensen’s inequality. Rearranging and noting that M − 1 ≥ M/2, when M > 1, we obtain

M ≤ 3n1/3C2/3
n B−2/3.

Note that when Cn = 0, M will remain 1 as a result of the partitioning scheme.

Lemma 15. Let {
¯
x,< . . . , < x̄} be the exogenous variables queried by the adversary over n rounds in an arbitrary

interval I ∈ I|[n]. Then with probability atleast 1− δ

∑
t∈T (I)

(θt −AI(t))
2 ≤ 2V (

¯
x, x̄)2|T (I)|+2σ2 log(2n3 log n/δ) log(|T (I)|),

where V (·, ·) is defined as in Lemma 14.

Proof. Let q(t) =
∑t−1

s=1 1{is ∈ I}. Assume q(t) > 0. Fix a particular expert AI and a time t. Since yt ∼ N(θt, σ
2)

by gaussian tail inequality we have,

P

(∣∣∣∣∣
∑t−1

s=1(ys − θs)1{is ∈ I}∑t−1
s=1 1{is ∈ I}

∣∣∣∣∣ ≥ σ√
q(t)

√
log

(
2n3 log n

δ

))
≤ δ

(n3 log n)
.

Applying a union bound across all time points and all experts implies that for any expert AI and t ∈ T (I) with q(t) > 0,∣∣∣∣∣AI(t)−
∑t−1

s=1 θs1{is ∈ I}
q(t)

∣∣∣∣∣ ≤ σ√
q(t)

√
log

(
2n3 log n

δ

)

with probability atleast 1− δ.

Now adding and subtracting θt inside the |·| on LHS and using |a− b|≥ |a|−|b| yields,

|AI(t)− θt| ≤
∣∣∣∣∣θt −

∑t−1
s=1 θs1{is ∈ I}

q(t)

∣∣∣∣∣+ σ√
q(t)

√
log

(
2n3 log n

δ

)
.

16



Hence,

∑
t∈T (I)

(θt −AI(t))
2 ≤(a)

∑
t∈T (I)

2

(
θt −

∑t−1
s=1 θs1{is ∈ I}

q(t)

)2

+ 2
σ2

q(t)
log

(
2n3 log n

δ

)

≤
∑

t∈T (I)

2

(
θt −

∑t−1
s=1 θs1{is ∈ I}

q(t)

)2

+ 2σ2 log(|T (I)|) log
(
2n3 log n

δ

)
, (5)

with probability atleast 1− δ. In (a) we used the relation (a+ b)2 ≤ 2a2 + 2b2.

Further we have,

∑
t∈T (I)

2

(
θt −

∑t−1
s=1 θs1{is ∈ I}

q(t)

)2

≤ 2V (
¯
x, x̄)2|T (I)|. (6)

Combining (5) and (6) completes the proof.

B.3 Proof of the main result: Theorem 5
Proof. Throughout the proof we carry forward all notations used in Lemmas 14 and 15.

We will apply Corollary 13 to the partition in Lemma 14. Take a specific partition [xi, xj ] ∈ P with j �= m.

Consider a set of indices F = {ki, ki + 1, . . . , kj} of consecutive natural numbers between ki and kj . By Proposition 1

F can be covered using elements in I|[n]. Let this cover be U . For any I ∈ U , we have

∑
t∈T (I)

(θt −AI(t))
2 ≤(a) 2V (

¯
x, x̄)2|T (I)|+2σ2 log(2n3 log n/δ) log(|T (I)|)

≤ 2V (
¯
x, x̄)2|T (F )|+2σ2 log(2n3 log n/δ) log(|T (I)|)

≤(b) 2B
2 + 2σ2 log(2n3 log n/δ) log(n),

, with probability atleast 1− δ. Step (a) is due to Lemma 15 and (b) is due to statement 1 of Lemma 14.

Using Lemma 12 and a union bound on the bad events in Lemmas 12 and 15 yields,

∑
t∈T (I)

(ŷt − θt)
2 ≤ e− 1

3− e

(
2B2 + 2σ2 log(2n3 log n/δ) log(n)

)
+ λ,

with probability atleast 1 − 2δ and λ is as defined in Corollary 13. Due to the property of exponentially decaying

lengths as stipulated by Proposition 1, there are only atmost 2 log|F |≤ 2 log n intervals in U . So,

∑
t∈T (F )

(ŷt − θt)
2 ≤ 2 log n

(
e− 1

3− e

(
2B2 + 2σ2 log(2n3 log n/δ) log(n)

)
+ λ

)
.

Similar bound can be obtained for the last bin [xrM−1+1, xm] in P . There are two cases to consider. In case 1, we

consider the scenario when V (xrM−1+1, xm) obeys relation 1 of Lemma 14. Then the analysis is identical to the one

presented above. In case 2, we consider the scenario when V (xrM−1+1, xm−1) obeys relation 2 of Lemma 14 while

V (xrM−1+1, xm) doesn’t. Then the error incurred within the interior [xrM−1+1, xm−1] can be bounded as before. To

bound the error at last point, we only need to bound the error of expert that performs mean estimation of iid gaussians.

It is well known that the cumulative squared error for this problem is atmost σ2 log(n/δ) with probability atleast 1− δ.
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By Lemma 14, |P|= max{3n1/3C
2/3
n B−2/3, 1}. Hence the total error summed across all partitions in P becomes,

n∑
t=1

(ŷt − θt)
2 ≤ 2 log n

(
e− 1

3− e

(
4n1/3C2/3

n B4/3 + 4σ2 log(2n3 log n/δ) log(n)n1/3C2/3
n B−2/3

))

+ 4 log(n)
e− 1

3− e
λn1/3C2/3

n B−2/3

+ 2 log(n)

(
e− 1

3− e

(
2B2 + 2σ2 log(2n3 log n/δ) log(n)

)
+ λ

)
+ σ2 log(n/δ),

= Õ(n1/3C2/3
n ),

(7)

with probability atleast 1− 2δ. A change of variables from 2δ → δ completes the proof. As a closing note, we remark

that the aggressive dependence of B in (7) on cases when B is too small can be dampened by using a threshold of
1√

pings+p(i)
in the partition scheme presented in proof of Lemma 14.

C Excluded details in Experimental section
Waveforms. The waveforms shown in Fig. 8 and 9 are borrowed from (Donoho and Johnstone, 1994a). Note that both

functions exhibit spatially inhomogeneous smoothness behaviour.

Figure 8: Doppler function, TV = 27
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Figure 9: Heavisine function, TV = 7.2

Figure 10: Fitted signals for Doppler function with noise level σ = 0.35

Figure 11: Histogram of residuals for various algorithms when run on Doppler function with noise level σ = 0.35.
Note that they are residuals w.r.t to ground truth. ALIGATOR incurs lower bias than wavelets. The bias incurred by dof
fused lasso is roughly comparable to ALIGATOR while former is more compute intensive.
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Figure 12: Fitted signals for Heavisine function with noise level σ = 0.35

Figure 13: Histogram of residuals for various algorithms when run on Heavisine function with noise level σ = 0.35.
Note that they are residuals w.r.t to ground truth. ALIGATOR incurs lower bias than wavelets. The bias incurred by dof
fused lasso is roughly comparable to ALIGATOR while former is more compute intensive.

Figure 14: Hyper-parameter search for learning rate in ALIGATOR (heuristics).

Hyper-parameter search. Initially we used a grid search on an exponential grid to realize that the optimal λ across

all experiments fall within the range [0.125, 8]. Then we used a fine-tuned grid [0.125, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6

20



to search for the final hyper parameter value. For ALIGATOR (heuristics), we searched for different noise levels in order

to find best learning rate. We set search method as Loss/(para ∗ (σ2 + σ2/m)). As Fig. 14 shows, para = 2 is found

to provide good results across all signals we consider.

Padding for wavelets. For “wavelet” estimator in Fig. 6, when data length is not a power of 2, we used the reflect

padding mode in (Lee et al., 2019), though the results are similar for other padding schemes.

Experiments on Real Data. We follow the experimental setup described in Section 5. A qualitative comparison of

the forecasts for the state of New Mexico, USA is illustrated in Fig. 15. The average RMSE of ALIGATOR and Holt ES

for all states in USA is reported in Table 1.

Figure 15: A demo on forecasting COVID cases based on real world data. We display the two weeks forecasts of hedged
ALIGATOR and Holt ES, starting from the time points identified by the dotted lines. Both the algorithms are trained on
a 2 month data prior to each dotted line. We see that hedged ALIGATOR detects changes in trends more quickly than
Holt ES. Further, hedged ALIGATOR attains a 12% reduction in the average RMSE from that of Holt ES (see Table 1).
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State RMSE
Aligator

RMSE
Holt ES % improvement

New Jersey 411.87 546.89 24.69

Ohio 216.24 280.24 22.84

Florida 1330.33 1671.23 20.4

Alabama 290.71 362.13 19.72

New York 876.35 1054.2 16.87

Rhode Island 85.11 98.23 13.35

Vermont 7.59 8.7 12.76

Kansas 142.17 162.16 12.33

New Mexico 57.88 65.99 12.29

Connecticut 206.79 235.6 12.23

California 1456.48 1650.25 11.74

Pennsylvania 258.21 290.6 11.14

Kentucky 145.61 163.59 10.99

New Hampshire 25.16 27.99 10.1

Minnesota 161.41 179.12 9.89

Michigan 315.86 350.24 9.82

Hawaii 30.24 33.18 8.86

Texas 1510.42 1650.73 8.5

South Dakota 56.83 61.8 8.04

Utah 118.97 128.96 7.74

Alaska 17.54 18.96 7.52

Washington 188.8 202.74 6.88

North Carolina 265.74 284.47 6.58

Nebraska 98.49 105.41 6.56

Montana 28.31 30.28 6.51

Missouri 224.51 239.9 6.42

Iowa 205.77 219.28 6.16

District of Columbia 33.58 35.74 6.04

Virginia 194.29 206.44 5.89

Nevada 159.88 168.92 5.35

Wyoming 16.43 17.25 4.73

Georgia 493.93 518.27 4.7

Oregon 55.48 58.21 4.68

Louisiana 562.89 590.49 4.67

Maryland 209.95 218.22 3.79

Illinois 475.49 492.09 3.37

West Virginia 37.34 38.63 3.33

Delaware 64.1 66.26 3.26

Tennessee 384.55 396.95 3.12

Arizona 481.91 493.73 2.39

South Carolina 271.87 277.42 2.0

Idaho 93.83 95.44 1.68

Colorado 142.58 144.53 1.35

Mississippi 206.67 209.11 1.16

Arkansas 164.83 164.88 0.03

Massachusetts 302.79 301.8 -0.32

Oklahoma 151.82 146.65 -3.41

Indiana 185.1 178.2 -3.73

North Dakota 42.14 40.49 -3.92

Wisconsin 219.04 203.37 -7.15

Maine 14.59 13.37 -8.36

Table 1: Average RMSE across all states in USA. The experimental setup and computation of error metrics are as

described in Section 5. The % improvement tab is computed as follows. Let x1 and x2 be the RMSE of ALIGATOR and

Holt ES respectively. Then % improvement = (x2 − x1)/max{x1, x2}.
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