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We define an infinite family of linearly independent, integer-valued smooth concor-
dance homomorphisms. Our homomorphisms are explicitly computable and rely on
local equivalence classes of knot Floer complexes over the ring F ŒU; V �=.UV D 0/ .
We compare our invariants to other concordance homomorphisms coming from knot
Floer homology, and discuss applications to topologically slice knots, concordance
genus and concordance unknotting number.
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1 Introduction

Beginning with the � –invariant [19], the knot Floer homology package of Ozsváth and
Szabó [21] and independently J Rasmussen [26] has had numerous applications to the
study of smooth knot concordance. See Hom [12] for a survey of such applications.
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The goal of this paper is to add to the (already infinite) list of explicitly computable
homomorphisms from the smooth knot concordance group C to Z:

Theorem 1.1 For each j 2N , there is a surjective homomorphism

'j W C! Z:

Moreover ,
1M
jD1

'j W C!
1M
jD1

Z

is surjective. In particular , the 'j are linearly independent.

Our homomorphisms are similar in spirit to Ozsváth, Stipsicz and Szabó’s ‡ –invariant,
which gives a homomorphism

‡K W C! Cont.Œ0; 2�/;

where Cont.Œ0; 2�/ denotes the vector space of piecewise-linear functions on Œ0; 2�.
Indeed, ‡ is defined using t –modified knot Floer homology and can be thought
of as a generalization of � to the t –modified knot Floer homology setting. A slight
repackaging (by considering the slopes of ‡K.t/) yields a Z–valued homomorphism for
each rational value of t . Similarly, our invariants can be thought of as a generalization
of � to a shifted version of knot Floer homology. The homomorphisms 'j are then
certain linear combinations of � associated to shifted knot Floer homology. Just as �
can be recovered from ‡.t/, it can also be recovered from 'j :

Proposition 7.6 Let K be a knot in S3 . Then we have the following equality relating
the Ozsváth-Szabó � –invariant with 'j :

�.K/D
X
j2N

j'j .K/:

Both ‡.t/ and 'j factor through the local equivalence group of knot Floer com-
plexes (see Zemke [27, Theorem 1.5], forgetting the involutive part; equivalently,
stable equivalence from [12, Theorem 1]; equivalently, �C–equivalence of Kim and
Park [13]). Following [27, Section 3], the knot Floer complex can be viewed as a
module over F ŒU; V �; local equivalence is then an equivalence relation between certain
such complexes. In our setting, the invariants 'j actually factor through the local
equivalence group defined over the ring F ŒU; V �=.UV D 0/, which is the same as the
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group constructed using "–equivalence in Hom [8, Definition 1]. The advantage of
quotienting by UV D 0 is that the resulting local equivalence group is totally ordered;
this total order is the same as the order induced by "; see Hom [9]. Using this order,
we have the following characterization result:

Theorem 1.2 Every knot Floer complex coming from a knot in S3 is locally equiva-
lent mod UV to a standard complex (defined in Section 4.1) and can be completely
described by a finite (symmetric) sequence of nonzero integers .ai /2niD1 . Moreover , if
we endow the integers with the unusual order

�1 <Š �2 <Š �3 <Š � � �<Š 0 <Š � � �<Š 3 <Š 2 <Š 1;

then local equivalence classes mod UV are ordered lexicographically with respect to
their standard representatives.

1.1 Properties of 'j

The homomorphisms 'j have many properties in common with ‡ : both invariants
take a particularly simple form on homologically thin knots and L–space knots. We
use the convention that K is an L–space knot if K admits a positive L–space surgery.

Proposition 8.1 If K is homologically thin, then

'j .K/D

�
�.K/ if j D 1;
0 otherwise.

Proposition 8.2 Let K be an L–space knot with Alexander polynomial

�K.t/D

nX
iD0

.�1/i tbi ;

where .bi /niD0 is a decreasing sequence of integers and n is even. Define

ci D b2i�2� b2i�1 for 1� i � 1
2
n:

Then
'j .C /D #fci j ci D j g:

Example 1.3 Consider the torus knot T3;4 . We have that �T3;4
.t/D t6�t5Ct3�tC1,

and so, by Proposition 8.2, we have

'j .T3;4/D

�
1 if j D 1; 2;
0 otherwise.

See Figure 1 for a visual depiction of CFK1.T3;4/.
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Figure 1: The knot Floer complex of T3;4 .

Example 1.4 More generally, the torus knot Tn;nC1 has Alexander polynomial

�Tn;nC1
.t/D

n�1X
iD0

tni �

n�2X
iD0

tniCiC1;

which yields .ci /n�1iD1 D .1; 2; : : : ; n� 1/. Thus

'j .Tn;nC1/D

�
1 if j D 1; 2; : : : ; n� 1;
0 otherwise.

Remark 1.5 If K is an L–space knot, then, by Proposition 8.2, 'j .K/ � 0 for
all j. This provides an easy (although fairly weak) method for showing that a linear
combination of knots is not concordant to any L–space knot.

Remark 1.6 In Propositions 8.1 and 8.2 (as well as in the above examples), 'j is
the (signed) count of the number of horizontal arrows of length j. We will see in
Definition 7.1 that 'j is equal to the signed count of horizontal arrows in the standard
complex representative of K (in the sense of Theorem 1.2).

While ‡.t/ and 'j have many properties in common, there do exist knots K for which
‡K.t/� 0 while 'j .K/ is nontrivial. Let Kp;q denote the .p; q/–cable of K, where
p denotes the longitudinal winding.

Proposition 1.7 Let K D T2;5 #�T4;5 #T2;3I2;5 . Then ‡K.t/� 0, while

'j .K/D

8<:
2 if j D 1;
�1 if j D 2;
0 otherwise.
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Figure 2: The complex from Ozsváth, Stipsicz and Szabó [18, Figure 6].

Proof The fact that ‡K.t/� 0 follows from the proof of Hom [11, Theorem 2]. The
computation of 'j .K/ follows from Proposition 8.2 and the fact that the 'j are homo-
morphisms. (Note that T2;3I2;5 is an L–space knot; see the proof of [11, Lemma 2.1]
for the relevant Alexander polynomial.)

Conversely, while we do not have an explicit topological example, there is no algebraic
obstruction to the existence of knots with 'j .K/ trivial and ‡K.t/ nontrivial.

Proposition 1.8 Suppose there exists a knot K whose knot Floer complex is given by
Figure 2. Then ‡K.t/ is nontrivial , while 'j .K/D 0 for all j.

Proof The computation of ‡K.t/ is given in Proposition 9.4 of Ozsváth, Stipsicz
and Szabó [18]. Since diagonal arrows vanish modulo UV , it is easily checked that
the above complex is trivial in local equivalence (see Section 3). This implies that
'j .K/D 0 for all j.

1.2 Topological applications of 'j

The homomorphisms 'j have applications to CTS , the subgroup of C generated by
topologically slice knots. (That is, CTS is generated by knots bounding locally flat disks
in B4 .) Let D denote the positively clasped, untwisted Whitehead double of T2;3 ,
and let Kn DDn;nC1 #�Tn;nC1 .

Theorem 1.9 Consider the topologically slice knots Kn described above. For each
index n, we have 'n.Kn/ D 1 and 'j .Kn/ D 0 for all j > n. In particular, the
homomorphisms

1M
jD1

'j W CTS!

1M
jD1

Z

map the span of the Kn isomorphically onto
L1
jD1Z.
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Remark 1.10 The knots Kn are the same knots as considered in [9]. However, there
is an error in the proof of the main result of [9]. Fortunately, the above theorem shows
that the knots Kn do in fact generate an infinite-rank summand of CTS . Moreover, they
show this in a way that preserves the spirit of [9], namely by considering knot Floer
complexes modulo "–equivalence and extracting numerical invariants based on the
lengths of vertical and horizontal arrows.

We also have applications of 'j to concordance genus and concordance unknotting
number. Recall that the concordance genus of K is defined to be

gc.K/Dminfg.K 0/ jK and K 0 are smoothly concordantg;

where g.K 0/ denotes the Seifert genus of K 0. Note that

gc.K/� g4.K/;

where g4.K/ denotes the smooth four-ball genus of K. The concordance unknotting
number of K is defined to be

uc.K/Dminfu.K 0/ jK and K 0 are smoothly concordantg;

where u.K 0/ denotes the unknotting number of K 0. Note that, again,

uc.K/� g4.K/:

Since g4.K/� j�.K/j, the knot Floer homology of K provides lower bounds on both
gc.K/ and uc.K/. Here, we show that the invariants 'j bound concordance genus
and concordance unknotting number as follows:

Theorem 1.11 Let

N.K/D

�
0 if 'j .K/D 0 for all j;
maxfj j 'j .K/¤ 0g otherwise:

Then

(1) gc.K/�
1
2
N.K/, and

(2) uc.K/�N.K/.

Let TorsU M denotes the U –torsion submodule of an F ŒU �–module M. The quantity
N.K/ is bounded above by the maximal order of an element in TorsU HFK�.K/, as
follows:
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Proposition 7.27 If UM �TorsU HFK�.K/D 0, then 'j .K/D 0 for all j >M. In
particular, N.K/�M.

The bounds in Theorem 1.11(2) are sharp (eg for the trefoil); it is unknown to the
authors whether the bound in Theorem 1.11(1) is sharp. Note that in many cases,
the bounds are rather weak; for example, N.Tn;nC1/ D n� 1, while g4.Tn;nC1/ D
�.Tn;nC1/D

1
2
n.n�1/. The proof of the concordance genus bound in Theorem 1.11(1)

is similar to the proof of Hom [10, Theorem 2], and indeed is strong enough to recover
[10, Theorem 3]. The proof of Theorem 1.11(2) relies on unknotting number bounds
from Alishahi and Eftekhary [1].

We have the following application of Theorem 1.11(2):

Theorem 1.12 There exist topologically slice knots fKng1nD1 such that g4.Kn/D 1
for all n, while uc.Kn/� n.

The knots used to prove Theorem 1.12 are the same knots appearing in [10, Theorem 3].
In [17], Owens and Strle give examples of knots for which uc.K/�g4.K/D 1. As far
as the authors know, Theorem 1.12 gives the first known examples of knots for which
uc.K/�g4.K/ is arbitrarily large.

1.3 Remarks

We conclude with a few remarks relating the present work with other results. In [24],
Ozsváth and Szabó define a bordered-algebraic knot invariant which is isomorphic to the
knot Floer complex over the ring F ŒU; V �=.UV D 0/. Their bordered-algebraic knot
invariant is particularly amenable to computer computation. It should thus be possible
to implement an effective computer program to calculate the homomorphisms 'j .

Theorem 6.1 is closely related to horizontally and vertically simplified bases for the knot
Floer complex, defined in Lipshitz, Ozsváth and Thurston [15, Section 11.5]. Indeed,
Corollary 6.2 states every knot Floer complex over F ŒU; V �=.UV D 0/ contains a
direct summand with a simultaneously vertically and horizontally simplified basis, and
that this summand supports HF1.S3/. This is closely related to the notion of loop-type
modules, defined in Hanselman and Watson [3, Definition 3.1]. (Note that over the
ring F ŒU; V �, not every complex admits a simultaneously vertically and horizontally
simplified basis; see [9, Figure 3].)

Lastly, we point out that the techniques in this paper are the knot Floer analogues of the
techniques used in Dai, Hom, Stoffregen and Truong [2] to study the three-dimensional
homology cobordism group.
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Organization

In Section 2, we briefly recall the definition of the knot Floer complex, working over
the ring R D F ŒU; V �=.UV D 0/. In Section 3, we introduce the notion of a knot-
like complex, and define the local equivalence group K of knot-like complexes. In
Section 4, we define a particularly simple family of knot-like complexes, which we
call standard complexes. We use these to construct a sequence of numerical invariants
associated to any knot-like complex in Section 5. This is used in Section 6 to show that
every knot-like complex is locally equivalent to a standard complex. In Section 7, we
apply our characterization of knot-like complexes to define the homomorphisms 'j .
In Section 8, we prove Propositions 8.1 and 8.2 (computing 'j for thin and L–space
knots). In Section 9, we prove Theorem 1.9 (on an infinite-rank summand of CTS ), and
in Section 10, we prove Theorems 1.11 and 1.12 (on applications of 'j to gc and uc ).
Finally, we conclude with some further remarks and open questions in Section 11.

Throughout, we work over F D Z=2Z. We use the convention that N D Z>0 .
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2 Background on knot Floer homology

In this section, we give a brief overview of knot Floer homology, primarily to establish
notation. We assume that the reader is familiar with knot Floer homology as in [21; 26];
see [16; 12] for survey articles on this subject. Our conventions mostly follow those
in [28]; see in particular [28, Section 1.5].

Definition 2.1 Let R D F ŒU; V �=.UV D 0/, endowed with a relative bigrading
gr D .grU ; grV /, where gr.U / D .�2; 0/ and gr.V / D .0;�2/. We call grU the
U –grading and grV the V –grading.
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Let H D .†;˛;ˇ; w; z/ be a doubly pointed Heegaard diagram compatible with
.S3; K/. Define CFKR.H/ to be the chain complex freely generated over R by
x 2 T˛\Tˇ with differential

@x D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

U nw.�/V nz.�/y;

where, as usual, �2.x;y/ denotes homotopy classes of disks in Symg.†/ connecting
x to y , and �.�/ denotes the Maslov index of � . The chain complex CFKR.H/
comes equipped with a relative bigrading grD .grU ; grV /, defined as follows. Given
x;y 2 T˛\Tˇ and � 2 �2.x;y/, let the relative grading shifts be given by

grU .x;y/D �.�/� 2nw.�/; grV .x;y/D �.�/� 2nz.�/:

It follows that the differential has degree .�1;�1/. (In the literature, grU is usually
referred to as Maslov grading.) We define a relative Alexander grading by

A.x;y/D 1
2
.grU .x;y/� grV .x;y//D nz.�/�nw.�/:

Note that the variable U lowers grU by 2, preserves grV and lowers A by 1. The
variable V preserves grU , lowers grV by 2 and increases A by 1. The differential
preserves the Alexander grading.

Up to chain homotopy over R, the chain complex CFKR.H/ is an invariant of K�S3 ,
and so we will typically write CFKR.K/ rather than CFKR.H/. We now recall some
facts from [21]. The complex CFKR.K/ has the following symmetry property. Let
CFKR.K/ denote the complex obtained by interchanging the roles of U and V . (Note
that we thus also interchange the values of grU and grV .) Then

CFKR.K/' CFKR.K/:

The knot Floer complex behaves nicely with respect to connected sums. Indeed, we
have that

CFKR.K1 #K2/' CFKR.K1/˝R CFKR.K2/:

We also have that
CFKR.�K/' CFKR.K/

_;

where CFKR.K/
_ D HomR.CFKR.K/;R/.

Remark 2.2 Since the differential preserves the Alexander grading, the complex
CFKR splits — as a chain complex over F, but not as an R–module — as a direct sum
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over the Alexander grading:

CFKR.K/D
M
s2Z

CFKR.K; s/;

where

U W CFKR.K; s/! CFKR.K; s� 1/; V W CFKR.K; s/! CFKR.K; sC 1/:

The chain complex CFKR.K; s/ is isomorphic to the complex yAs from [23]; that is,
H�.CFKR.K; s// is isomorphic (as a relatively graded vector space) to �HF.S3N .K/; ss/,
the Heegaard Floer homology of large surgery on K in the spinc structure corresponding
to s .

The version of knot Floer homology we have constructed here follows slightly different
conventions than the usual definition in eg [21]. For the convenience of the reader, we
recall some of the most salient features of the standard knot Floer homology package,
and explicitly translate them into our setting. For further discussion, see Section 1.5
of [28].

First, consider the F –vector space bHFK.K/, which is defined by not allowing holo-
morphic disks in the definition of @ to cross either the w or the z basepoint. In our
context, this is isomorphic to H�.CFKR.K/=.U; V //, where .U; V / denotes the ideal
generated by U and V . The Alexander grading is given by AD 1

2
.grU � grV / and the

Maslov grading is given by M D grU .

Next, consider the F ŒU �–module HFK�.K/, which is defined by taking the homology
of the associated graded complex of CFK�.K/ with respect to the Alexander filtration.
This is equivalent to allowing holomorphic disks to cross the w but not the z basepoint.
In our context, this yields H�.CFKR.K/=V /, where again the Alexander grading is
given by A D 1

2
.grU � grV / and the Maslov grading is given by M D grU . It is a

standard fact that for knots in S3 , the F ŒU �–module HFK�.K/ŠH�.CFKR.K/=V /

has a single U –nontorsion tower.1 By symmetry, it follows that H�.CFKR.K/=U /

has a single V –nontorsion tower.

We now claim that these two nontorsion towers satisfy the following grading normal-
izations:

(1) The U –gradings of all V –nontorsion classes in H�.CFKR.K/=U / are zero.

(2) The V –gradings of all U –nontorsion classes in H�.CFKR.K/=V / are zero.

1By this, we mean that H�.CFKR.K/=V /=U –torsionŠ F ŒU � . Note, however, that this copy of F ŒU �
is not required to be generated by an element with grU D 0 .
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Note that all V –nontorsion classes in H�.CFKR.K/=U / have the same U –grading,
since multiplication by V does not change grU . Similarly, all U –nontorsion classes in
H�.CFKR.K/=V / have the same V –grading. To see the claim, consider the complex
CFKR.K/ and set U D 0 and V D 1. This means that we allow holomorphic disks to
cross the z but not the w basepoint, and we disregard the Alexander filtration. This
yields a complex whose homology computes �HF.S3/Š F, which is concentrated in
Maslov grading zero. Using the fact that the Maslov grading is equal to grU , some
thought shows that the V –nontorsion tower of H�.CFKR.K/=U / is thus generated
by an element with grU D 0. By symmetry, we likewise have that any U –nontorsion
element in H�.CFKR.K/=V / has grV D 0.

Finally, recall that the concordance invariant �.K/ is defined to be the negative
of the maximal Alexander grading of any U –nontorsion element in HFK�.K/ Š
H�.CFKR.K/=V /. By the previous two paragraphs, this means that

�.K/D�max
˚
1
2

grU .x/ j x 2H�.CFKR.K/=V / is not U –torsion
	
:

By symmetry, we conclude that, similarly,

�.K/D�max
˚
1
2

grV .x/ j x 2H�.CFKR.K/=U / is not V –torsion
	
:

The reader should think of the complexes CFKR.K/=U and CFKR.K/=V as delet-
ing horizontal and vertical arrows (respectively) in the pictorial representation of
CFKR . It may be helpful to keep in mind Figure 1. There, the V –nontorsion tower of
H�.CFKR.K/=U / is generated by the top-left basis element, while the U –nontorsion
tower of H�.CFKR.K/=V / is generated by the bottom-right basis element.

The following definition is particularly useful in applications of knot Floer homology
to concordance:

Definition 2.3 Let K1 and K2 be knots in S3 . We say CFKR.K1/ and CFKR.K2/

are locally equivalent if there exist absolutely U –graded, absolutely V –graded R–
equivariant chain maps

f W CFKR.K1/! CFKR.K2/ and g W CFKR.K2/! CFKR.K1/

such that f and g induce isomorphisms on H�.CFKR.Ki /=U /=V –torsion. Roughly
speaking, this means that f maps the top of the V –tower in H�.CFKR.K1/=U / to
the top of the V –tower in H�.CFKR.K2/=U /, and vice versa for g .

Local equivalence is considered in the involutive setting in [27, Section 2.3].
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Remark 2.4 CFKR.K/ is locally equivalent to CFKR.O/, where O denotes the
unknot, if and only if CFKR.K/ ' CFKR.O/˚ A, where A is a chain complex
over R with U�1H�.A/D V �1H�.A/D 0. It is straightforward to verify that local
equivalence over R and "–equivalence (see [9, Section 2]) are the same (after translating
between R–modules and bifiltered chain complexes over F ŒU; U�1�).

Theorem 2.5 [27, Theorem 1.5; 8, Theorem 2] If K1 and K2 are concordant , then
CFKR.K1/ and CFKR.K2/ are locally equivalent.

Theorem 2.5 follows from [27, Theorem 1.5] by forgetting the involutive component
and quotienting by UV , or from [8, Theorem 2] by translating from "–equivalence
and bifiltered chain complexes to local equivalence and R–modules.

3 Knot-like complexes and their properties

In this section, we consider abstract R–complexes satisfying many of the same formal
properties as CFKR.K/. We show that modulo local equivalence, the set of such
complexes forms a group, with the operation induced by tensor product. Moreover, we
show that this group is totally ordered.

3.1 Knot-like complexes

We begin by defining knot-like complexes, so named because they are R–complexes
satisfying many of the properties of CFKR from the previous section.

Definition 3.1 A knot-like complex C is a free, finitely generated, bigraded chain
complex over R such that:

(1) H�.C=U / has a single V –nontorsion tower, lying in grU D 0.

(2) H�.C=V / has a single U –nontorsion tower, lying in grV D 0.

Again, we mean by this that H�.C=U /=V –torsion is isomorphic to F ŒV �, and that all
of the V –nontorsion elements in H�.C=U / have U –grading zero. A similar statement
holds for H�.C=V /. The differential @ is required to have degree .�1;�1/.

Remark 3.2 We do not in general require any symmetry with respect to interchanging
U and V .
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Definition 3.3 Let C1 and C2 be two knot-like complexes. We say that C1 � C2 if
there exists an absolutely U –graded, relatively V –graded R–equivariant chain map

f W C1! C2

such that f induces an isomorphism on H�.Ci=U /=V –torsion. We call f a local
map. We say that two knot-like complexes C1 and C2 are locally equivalent, denoted
by C1 � C2 , if C1 � C2 and C2 � C1 .

We will also occasionally use the terminology:

Definition 3.4 Let C be a knot-like complex and let x 2 C. We say that x is a
V –tower class if Œx� is a maximally V –graded, V –nontorsion cycle in H�.C=U /.
Similarly, we say that x is a U –tower class if Œx� is a maximally U –graded, U –
nontorsion cycle in H�.C=V /. Thus f (as defined above) sends V –tower classes to
V –tower classes.

Remark 3.5 The f in Definition 3.3 is not required to be absolutely V –graded,
but rather only relatively V –graded. Thus, a priori the notion of local equivalence
in Definition 3.3 is strictly weaker than the notion of local equivalence presented
in Definition 2.3; ie we might have two knot-like complexes C1 and C2 which are
locally equivalent via maps f and g that introduce complementary V –grading shifts.
However, we will show in Lemma 6.9 that if C1 and C2 are locally equivalent (in
the sense of Definition 3.3) via f and g , then f and g induce isomorphisms on
H�.Ci=V /=U –torsion (ie send U –tower classes to U –tower classes), even without
any symmetry requirements on the Ci . Combined with the normalization conventions
of Definition 3.1, this shows that f and g are absolutely V –graded.

It is straightforward to verify that � is a partial order on the set of local equivalence
classes of knot-like complexes.

Remark 3.6 Our notion of local equivalence agrees with [27, Definition 2.4] after
forgetting �K and modding out by the ideal generated by UV . This definition of
local equivalence also agrees with the equivalence relation defined using " from
[8, Section 4.1]; for this, see Theorem 6.1 and Corollary 6.2.

Let .U; V / denote the ideal generated by U and V . If C is a free, finitely generated
chain complex over R, then every element x in .U; V / can be uniquely expressed as
xU C xV , where xU 2 imU and xV 2 imV .
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Definition 3.7 We say a chain complex over R is reduced if @� 0 mod .U; V /. In
a reduced complex, we can write @ as the sum @D @U C @V , where if @x D y , then
@UxDyU and @V xDyV . Note that @2U D@

2
V D0. We call @U the U –differential and

refer to elements with @Ux D 0 as U –cycles; similarly, we call @V the V –differential
and refer to elements with @V x D 0 as V –cycles.

Lemma 3.8 Every knot-like complex C is locally equivalent to a reduced knot-like
complex C 0.

Proof Suppose that C is not reduced. Then there exists x 2 C such that @x is not in
the ideal generated by U and V . We claim that we may complete fx; @xg to a basis
fx; @x; y1; : : : ; yng for C such that the yi generate a subcomplex C 0 of C. To see
this, first complete fx; @xg to an R–basis fx; @x; y1; : : : ; yng for C, where @ does not
necessarily preserve the span of the yi . Here, we are using the fact that if N is a (free)
submodule of a free module M, then a basis for N can be extended to a basis for M
if and only if M=N is also free. To apply this in our case, note that x and @x do not
lie in the image of .U; V /. A grading argument then shows that no linear combination
of x and @x lies in the image of .U; V /.

For each yi , we then write @yi as a linear combination of x , @x and the other basis
elements yj . By adding multiples of x to yi , we may assume that @x does not appear
in any differential @yi . This also shows that x does not appear in @yi , since then we
would have

0D @2yi D @
�
P.U; V /xC

X
Pj .U; V /yj

�
for some polynomials P.U; V / and Pj .U; V /, which would imply that @x appears in
some @yj .

It follows that

0! hx; @xi ! C
p
�! C 0! 0

is a split short exact sequence of freely generated R–complexes. Since hx; @xi is
acyclic by construction, the projection p W C !C 0 and section s W C 0!C both induce
isomorphisms on homology. Hence C and C 0 are locally equivalent. Since C is
finitely generated, we may iterate this procedure to arrive at a reduced complex.

From now on, we will assume that all of our knot-like complexes are reduced.
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3.2 The local equivalence group of knot-like complexes

We now show that knot-like complexes modulo local equivalence form a group, with the
operation induced by tensor product. Moreover, we will show that the partial order �
is in fact a total order. We begin with some routine formalism:

Definition 3.9 The product of two knot-like complexes C1 and C2 is C1˝R C2 .

Lemma 3.10 The product of two knot-like complexes is a knot-like complex.

Proof This is straightforward.

Definition 3.11 Let K denote the set of local equivalence classes of knot-like com-
plexes, with the operation induced by ˝.

Proposition 3.12 The pair .K;˝/ forms an abelian group.

Proof This is straightforward to verify. The identity is given by R with trivial
differential, and the inverse of ŒC � is ŒC_�, where C_ D HomR.C;R/.

Remark 3.13 See [27, Proposition 2.6] for the analogous result in the involutive
setting over the ring F ŒU; V �.

We now come to the significantly more interesting proposition.

Proposition 3.14 The relation � defines a total order on K.

Proposition 3.14 is a consequence of the following lemma:

Lemma 3.15 Let C be a knot-like complex. If there does not exist a local map
f WR! C, then there exists a local map g W C !R.

Proof The idea of the proof is we build a basis fx; tig for C such that quotienting
by the span of ftig gives the desired local map. Roughly, we first find a basis for the
subcomplex A generated by elements w such that some U –power of w is in the image
of @U or some V –power of w is in the image of @V . We then extend this basis by an
element x representing a V –nontorsion class in H�.C=U /. We use the absence of a
local map from R to C in order to guarantee that x is not in A. Finally, we complete
this to a basis for all of C. We describe this argument more precisely below.

Geometry & Topology, Volume 25 (2021)



290 Irving Dai, Jennifer Hom, Matthew Stoffregen and Linh Truong

We begin by finding a “vertically simplified” basis for C which is especially nice
with respect to @V . Since F ŒV �ŠR=U is a PID, the complex C=U admits a basis
B D fx; yi ; zig over F ŒV � such that

@V x D 0; @V yi D V
�i zi and @V zi D 0

for some set of positive integers �i . Since C is a free R–module, it is easily checked
that choosing any lift of B from C=U to C yields an R–basis for C, which (by
abuse of notation) we also denote by B D fx; yi ; zig. Moreover, since UV D 0, these
elements also satisfy the equalities @V x D 0, @V yi D V �i zi and @V zi D 0. We will
henceforth think of C as a free module over this basis, so that

C D SpanFfx; yi ; zig˝F R:

Note that im @V is contained in SpanFŒV �fzig. We will also have cause to consider the
F ŒU �–module C=V , which we identify with

C=V D SpanFfx; yi ; zig˝F F ŒU �;

as well as the F –vector space C=.U; V /, which we identify with

C=.U; V /D SpanFfx; yi ; zig:

These identifications allow us to view elements of C=.U; V / as elements of C=V (and
elements of C=V as elements of C ) in the obvious way — an F –linear combination
of basis elements in C=.U; V / may be viewed as the same linear combination in C=V ,
and so on. That is, they specify lifts from C=.U; V / to C=V and from C=V to C.

Now let P be the submodule of C=V consisting of elements w such that some
U –power of w lies in the image of @U :

P D fw 2 C=V W U nw 2 im @U for some n� 0g:

Note that P has the property that if Uw 2 P, then w 2 P. Moreover, by the fact that
@2U D 0, we have that every element w 2 P is a @U –cycle, that is, @Uw D 0. Choose
an F ŒU �–basis p1; : : : ; pr for P. Let xpi denote the reduction of pi modulo U in
C=.U; V /. Explicitly, if pi is a linear combination (over F ŒU �) of the basis elements
fx; yi ; zig, then xpi consists of those terms which are not decorated by any powers
of U. Note that pi differs from the canonical lift of xpi by an element in imU.

We claim that the xpi are linearly independent as elements of C=.U; V /. Suppose not.
Then we have some linear combination

xpi1 C � � �C xpik D 0:
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Lifting this to C=V , this implies that pi1C� � �Cpik DUw for some w . However, this
means that w 2 P. Writing w as a linear combination of the pi gives a contradiction.

Consider the subspaces of C=.U; V / given by P D SpanFf xp1; : : : ; xprg and Z D

SpanFfzig. Extend the linearly independent set f xp1; : : : ; xprg to a basis

f xp1; : : : ; xpr ; zi1 ; : : : ; zisg

for P CZ in C=.U; V /. We claim that x (viewed as an element of C=.U; V /) does
not lie in P CZ. Indeed, if it did, we would have x D xpC

P
zij for some xp 2 P

and sum of the zij . Lifting this to C=V shows that

xC
X

zij CUw 2 P

for some w 2 C=V . By construction of P, we have that the above expression is a
@U –cycle. Viewing it as an element of C, we also see that it is a @V –cycle, since
@V x D @V zi D 0 and @V .Uw/ D U@Vw D 0. This means that we can specify a
local map from R to C by sending the generator of R to xC

P
zij CUw , which

generates the V –tower in C=U (by definition of x and the zi). This would contradict
the hypothesis of the lemma. Thus, x … P CZ.

Now consider the set of generators S D fx; p1; : : : ; pr ; zi1 ; : : : ; zisg in C=V . It is
straightforward to check that this is linearly independent by reducing any putative linear
relation modulo U. We also claim that if Uw 2 SpanFŒU � S, then w 2 SpanFŒU � S.
Indeed, suppose not. Then we have

Uw D U �xC
X

U �pi C
X

U �zij ;

where at least one term on the right-hand side appears with a U –exponent of zero.
Reducing both sides modulo U, we obtain a nontrivial linear relation among the
generators fx; xp1; : : : ; xpr ; zi1 ; : : : ; zisg, a contradiction. It follows that we may extend
S to an F ŒU �–basis

fx; p1; : : : ; pr ; zi1 ; : : : ; zis ; w1; : : : ; wtg

for all of C=V .2 This then gives an R–basis for all of C.

By construction,

D D SpanRfp1; : : : ; pr ; zi1 ; : : : ; zis ; w1; : : : ; wtg

2As in the proof of Lemma 3.8, we are using the fact that if N is a (free) submodule of a free module M,
then a basis for N can be extended to a basis for M if and only if M=N is also free.
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is a subcomplex of C. Indeed, the image of @U is contained in the span of the pi .
Similarly, the image of @V is contained in the span of the pi and zij . To see this, note
that any zk is an F –linear combination of the xpi and the zij . Hence (viewing these
as elements of C ), we have

zk D
X

pi C
X

zij CUw

for some element w , since xpi D pi mod U. Thus, for any yk , we have

@V yk D V
�kzk D V

�k

�X
pi C

X
zij CUw

�
D V �k

�X
pi C

X
zij

�
:

Hence @D �D. Then the quotient map

C ! C=D ŠR
is a local map from C to R.

Proof of Proposition 3.14 We need to show totality of �. Let C1 and C2 be two knot-
like complexes. Consider C1˝C_2 . By Lemma 3.15, we have that either C1˝C_2 �R
or C1˝C_2 �R. By tensoring with C2 , either C1 � C2 or C1 � C2 , as desired.

Remark 3.16 The group K should be compared to the group CFK defined in [9]
using "–equivalence. Indeed, CFK is isomorphic (as an ordered group) to the subgroup
of K generated by fCFKR.K/ jK a knot in S3g. In particular, the order � defined in
Definition 3.3 agrees with the order given by ".

4 Standard complexes and their properties

In this section, we define a convenient family of knot-like complexes called standard
complexes.

Remark 4.1 The reader should compare with [2, Section 4], which carries out the
analogous construction in the setting of almost �–complexes. Indeed, an almost �–
complex may be viewed as a complex over the ring F ŒU;Q�=.Q2 DQU D 0/. In our
case, this corresponds (roughly) to passing to the ring F ŒU; V �=.UV D V 2 D 0/.

4.1 Standard complexes

Let C be a knot-like complex generated by x0; : : : ; xn . We say there is a Um–arrow
between xi and xj for m 2N if one of the following occurs:

(1) @Uxi D U
mxj , or

(2) @Uxj D U
mxi .
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The arrow goes from xi to xj in (1) and from xj to xi in (2). We define V m–arrows
analogously by replacing U with V .

Remark 4.2 In the traditional depiction of CFK1 as a bifiltered complex in the
.i; j /–plane, each generator (over F ) is placed in its appropriate bigrading and is
decorated with a power of U. An arrow between two generators indicates that one
(with its U –power decoration) appears in the differential of the other. This is not quite
the same as the pictorial description we use here. Instead, we suppress writing the
decorations of our generators and use their spatial placement in the plane to determine
the appropriate U – or V –powers appearing in the differential. That is, a horizontal
arrow of length m from xk to xl indicates that xl appears in the differential of xk
with a coefficient of Um , and similarly for vertical arrows and powers of V . It can
be shown, however, that (modulo an infinite number of translations) this produces the
same shape as in the previous picture.

Definition 4.3 Let n 2 2N , and let .b1; : : : ; bn/ be a sequence of nonzero integers.
A standard complex of type .b1; : : : ; bn/, denoted by C.b1; : : : ; bn/, is the knot-like
complex freely generated over R by

fx0; x1; : : : ; xng:

Each pair of generators xi and xi�1 for i odd are connected by U jbi j–arrows, and
each pair of generators xi and xi�1 for i even are connected by V jbi j–arrows. The
direction is determined by the sign of bi , as follows. If bi is positive, then the arrow
goes from xi to xi�1 , and if bi is negative, then the arrow goes from xi�1 to xi . We
call n the length of the standard complex and fxigniD1 the preferred basis. Explicitly,
the differential on C.b1; : : : ; bn/ is as follows. For i odd,

@Uxi�1 D U
jbi jxi if bi < 0; @Uxi D U

bixi�1 if bi > 0;

while for i even,

@V xi�1 D V
jbi jxi if bi < 0; @V xi D V

bixi�1 if bi > 0:

All other differentials are zero.

Note that x0 generates H�.C.b1; : : : ; bn/=U /=V –torsion. Similarly, xn generates
H�.C.b1; : : : ; bn/=V /=U –torsion. There is thus a unique grading on C.b1; : : : ; bn/
which makes it into a knot-like complex: namely, grU .x0/D 0 and grV .xn/D 0. The
fact that the differential has degree .�1;�1/ then determines the rest of the gradings.
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x0 x1

x2 x3

x4

Figure 3: The standard complex C.1;�2; 2;�1/ . A horizontal (respectively,
vertical) arrow of length m from xi to xj means that @Uxi DUmxj (respec-
tively, @V xi D V mxj ).

Note that grU .xi /� grV .xi /� i mod 2; we refer to this as the parity of (the grading
of) a generator of C.b1; : : : ; bn/.

Definition 4.4 A standard complex C.b1; : : : ; bn/ is symmetric if bi D�bnC1�i .

Example 4.5 We define the trivial standard complex C.0/ Š R to be the complex
generated over R by a single element with U – and V –grading zero.

Example 4.6 The standard complex C.1;�2; 2;�1/ is generated over R by

x0; x1; x2; x3; x4

with

@x0 D @x2 D @x4 D 0; @x1 D Ux0CV
2x2; @x3 D U

2x2CVx4:

The gradings of the generators are

gr.x0/D .0;�6/;

gr.x1/D .�1;�5/;

gr.x2/D .�2;�2/;

gr.x3/D .�5;�1/;

gr.x4/D .�6; 0/:

See Figure 3 for a visual depiction of C.1;�2; 2;�1/, where a horizontal (resp. vertical)
arrow of length m from xi to xj represents a Um–arrow (resp. V m–arrow). Note that
to read off the standard complex from the figure, we start at x0 and follow the unique
path to x4 , recording the direction and length of each arrow that we traverse. Namely,
traversing an arrow of length m against the direction of the arrow yields a Cm, while
traversing an arrow of length m in the direction of the arrow yields a �m.
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x0x1

x2

Figure 4: The standard complex C.�1; 1/ .

Example 4.7 The standard complex C.�1; 1/ is generated over R by

x0; x1; x2

with
@x0 D Ux1; @x1 D 0; @x2 D Vx1

and gradings

gr.x0/D .0; 2/; gr.x1/D .1; 1/; gr.x2/D .2; 0/:

See Figure 4 for a visual depiction.

Example 4.8 The standard complex C.1;�2;�1; 1; 2;�1/ is generated over R by

x0; x1; x2; x3; x4; x5; x6

with nonzero differentials

@x1 D Ux0CV
2x2; @x2 D Ux3; @x4 D Vx3; @x5 D U

2x4CVx6

with gradings
gr.x0/D .0;�4/;

gr.x1/D .�1;�3/;

gr.x2/D .�2; 0/;

gr.x3/D .�1;�1/;

gr.x4/D .0;�2/;

gr.x5/D .�3;�1/;

gr.x6/D .�4; 0/:

See Figure 5 for a visual depiction.

x0 x1

x2
x3

x4 x5

x6

Figure 5: The standard complex C.1;�2;�1; 1; 2;�1/ .
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Lemma 4.9 The dual of C.b1; : : : ; bn/ is C.�b1; : : : ;�bn/.

Proof This is a straightforward consequence of the definitions.

4.2 An unusual order on the integers

Let ZŠ D .Z;�Š/ denote the integers with the unusual order

�1 <Š �2 <Š �3 <Š � � �<Š 0 <Š � � �<Š 3 <Š 2 <Š 1:

We will see shortly the utility of this strange order. Note that for a; b ¤ 0, we have
a <Š b if and only if 1

a
< 1
b

, where < denotes the usual order on Q. Since a >Š 0 if
and only if a > 0, the sign of a 2 ZŠ coincides with the usual definition (that is, a is
positive if a > 0 and negative if a < 0).

4.3 Ordering standard complexes

We consider ZŠ–valued sequences, with the lexicographic order induced by �Š . We
take the convention that in order to compare two sequences of different lengths, we
append sufficiently many trailing zeros to the shorter sequence so that the sequences
have the same length.

Proposition 4.10 Standard complexes are ordered lexicographically as ZŠ–valued
sequences with respect to the total order on K.

The proof of Proposition 4.10 consists of a number of straightforward but technical
verifications regarding local maps between standard complexes. We have included the
details so that the reader will become accustomed to routine manipulations involving
these definitions.

Lemma 4.11 Let .a1; : : : ; am/ �Š .b1; : : : ; bn/ in the lexicographic order on ZŠ–
valued sequences. Then C.a1; : : : ; am/� C.b1; : : : ; bn/ in K.

Proof If .a1; : : : ; am/D .b1; : : : ; bn/, then it is clear that the complexes in question are
locally equivalent by taking the obvious identity map. Thus, assume that .a1; : : : ; am/<
.b1; : : : ; bn/. Suppose that the two sequences agree up to index k , so that ai D bi for
1� i < k and ak <Š bk .

Let fxig and fyig be the preferred bases for C.a1; : : : ; am/ and C.b1; : : : ; bn/, re-
spectively. Define

f W C.a1; : : : ; am/! C.b1; : : : ; bn/

Geometry & Topology, Volume 25 (2021)



More concordance homomorphisms from knot Floer homology 297

by

f .xi /D

�
yi if 0� i < k;
0 if i > k:

In order to define f .xk/, we proceed with some elementary casework based on the
value of k . First, suppose that k �minfm; ng, and consider the parity of k :

(1) If k is odd:

(a) If ak <Š bk <0, then let f .xk/DU ak�bkyk . It is straightforward to verify that
f is a chain map; the only nontrivial checks are that @Uf .xk�1/D f @U .xk�1/
and @f .xk/D f @.xk/. To verify the former, we see that

@Uf .xk�1/D @Uyk�1 D U
�bkyk;

while
f @U .xk�1/D f .U

�akxk/D U
�akU ak�bkyk :

To verify the latter, we see that

@f .xk/D @U
ak�bkyk D U

ak�bk@V yk :

This is zero, since either @V yk D 0 or @V yk D V �bkC1ykC1 and UV D 0.
Meanwhile, f @.xk/D 0 since @xk is either equal to zero or V �akC1xkC1 .

(b) If ak < 0 < bk , then let f .xk/D 0. It is straightforward to verify f is a chain
map; the only nontrivial check is that @Uf .xk�1/D f @U .xk�1/. This follows
from the fact that bk > 0 (ie @Uyk�1 D 0).

(c) If 0 < ak <Š bk , then let f .xk/ D U ak�bkyk . It is straightforward to verify
that f is a chain map; the only nontrivial check is that @f .xk/D f @.xk/. This
follows from the fact that

@f .xk/D @U
ak�bkyk D U

ak�bk .@UykC @V yk/D U
ak�bkU bkyk�1;

while
f @.xk/D f U

akxk�1 D U
akyk�1:

(2) The case when k even is similar, but with V playing the role of U.

Now assume that k >minfm; ng. We consider the following two cases:

(1) Suppose that n > m. Then k DmC 1, and

.bi /
n
iD1 D .a1; : : : ; am; bmC1; : : : ; bn/
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with bmC1 > 0. Let f be the obvious inclusion map. As above, it is easily checked
that f commutes with @.

(2) Suppose that m> n. Then k D nC 1, and

.ai /
m
iD1 D .b1; : : : ; bn; anC1; : : : ; am/

with anC1 < 0. Let f be the obvious projection map. As above, it is easily checked
that f commutes with @.

It is clear that f is local, since f .x0/D y0 . This completes the proof.

Lemma 4.12 Let C1 D C.a1; : : : ; am/ and C2 D C.b1; : : : ; bn/ be standard com-
plexes with preferred bases fxig and fyig, respectively. Suppose that ai D bi for all
1� i � k and that f W C1! C2 is a local map. Then f .xi / is supported by yi for all
0� i � k .

Proof We proceed by induction on i . The base case i D 0 follows from the fact that
f is local. Thus, let i < k , and assume that f .xi / is supported by yi . We show that
f .xiC1/ is supported by yiC1 . Suppose that i is even. We consider the following two
cases:

(1) Suppose that aiC1DbiC1<0. Then @Uf .xi /Df @U .xi /DU jaiC1jf .xiC1/. By
the induction hypothesis, f .xi / is supported by yi . We have that @Uyi DU jbiC1jyiC1

and that yi is the unique element in C2 such that @U of it is supported by a U –power
of yiC1 . It follows that f .xiC1/ must be supported by yiC1 .

(2) Suppose that aiC1D biC1>0. Then @Uf .xiC1/D f @U .xiC1/DU jaiC1jf .xi /.
By the induction hypothesis, f .xi / is supported by yi . We have that @UyiC1 D
U jbiC1jyi and that yiC1 is the unique basis element in C2 such that @U of it is
supported by a U –power of yi . It follows that f .xiC1/ must be supported by yiC1 .

The case i odd is similar, but with V playing the role of U.

Lemma 4.13 Let .a1; : : : ; am/ >Š .b1; : : : ; bn/ in the lexicographic order on ZŠ–
valued sequences. Then there is no local map from C1 D C.a1; : : : ; am/ to C2 D
C.b1; : : : ; bn/.

Proof Suppose that ai D bi for i < k and that ak >Š bk . We proceed by contradiction.
Assume there is a local map f W C1! C2 . We begin by considering the case when
k �minfm; ng:
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(1) Suppose that k is odd. We have three further subcases:

(a) Suppose that bk <Š ak < 0. Then @Uxk�1 D U jak jxk and @Uyk�1 D U jbk jyk .
Furthermore, yk�1 is the unique basis element of C2 such that @U of it is
supported by a U –power of yk . By Lemma 4.12, f .xk�1/ is supported by yk�1 .
It follows that f @U .xk�1/ D @Uf .xk�1/ is supported by U jbk jyk . Hence
f .U jak jxk/ must be supported by U jbk jyk , which is a contradiction, since
bk <

Š ak < 0, ie jbkj< jakj, where < denotes the usual ordering on Z.

(b) Suppose that bk <0< ak . Then @Uyk�1DU jbk jyk and @Uxk�1D 0. Further-
more, yk�1 is the unique basis element in C2 such that @U of it is supported
by a U –power of yk . By Lemma 4.12, f .xk�1/ is supported by yk�1 . But
0 D f @U .xk�1/ D @Uf .xk�1/, a contradiction, since the right-hand side is
supported by U jbk jyk .

(c) Suppose that 0 < bk <Š ak . Then @Uxk D U akxk�1 and @Uyk D U bkyk�1 .
Furthermore, yk is the unique basis element in C2 such that @U of it is supported
by a U –power of yk�1 . By Lemma 4.12, f .xk�1/ is supported by yk�1 . Then
@Uf .xk/D f @U .xk/D f .U

akxk�1/, where the right-hand side is supported
by U akyk�1 . Hence f .xk/ must be supported by U ak�bkyk , a contradiction
since 0 < bk <Š ak , ie bk > ak , where < denotes the usual ordering on Z.

(2) The case when k is even is similar, but with V playing the role of U.

Now assume that k >minfm; ng. We consider the following two cases:

(1) Suppose n > m. Then k D mC 1 and .bi /niD1 D .a1; : : : ; am; bmC1; : : : ; bn/.
Then bmC1 < 0, that is, @Uym D U jbmC1jymC1 and ym is the unique element in C2
such that @U of it is supported by a U –power of ymC1 . By Lemma 4.12, f .xm/ is
supported by ym . But 0D f @U .xm/D @Uf .xm/¤ 0 since @Uf .xm/ is supported
by U jbmC1jymC1 .

(2) Suppose m > n. Then k D nC 1 and .ai /miD1 D .b1; : : : ; bn; anC1; : : : ; am/.
Then anC1 > 0, that is, @UxnC1 D U janC1jxn . Furthermore, no U –power of yn
appears as @U of any element in C2 . By Lemma 4.12, f .xn/ is supported by yn . But
@Uf .xnC1/D f @U .xnC1/D f .U

janC1jxn/ is supported by U janC1jyn , a contradic-
tion.

This completes the proof.

Proof of Proposition 4.10 The proposition follows immediately from Lemmas 4.11
and 4.13.
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4.4 Semistandard complexes

In future sections, we will also find it useful to have the following generalization of
standard complexes:

Definition 4.14 Let n22N�1, and let .b1; : : : ; bn/ be a sequence of nonzero integers.
The semistandard complex C 0.b1; : : : ; bn/ is the subcomplex of the standard complex
C.b1; : : : ; bn; 1/ generated by x0; x1; : : : ; xn . We call these the preferred generators of
C 0.b1; : : : ; bn/. (The choice bnC1D 1 here is unimportant; any bnC1 > 0 is allowed.)

We stress that a semistandard complex is not a knot-like complex; indeed, for C 0 a semi-
standard complex, H�.C 0=U /=V –torsion has two V –towers, which are generated by
x0 and xn . Note that since n is odd, the gradings of x0 and xn have opposite parities.

We use the symbol 0 to distinguish semistandard complexes from standard complexes;
that is, C 0.b1; : : : ; bn/ denotes a semistandard complex (where n is odd) while
C.b1; : : : ; bn/ denotes a standard complex (where n is even).

Definition 4.15 A grading-preserving R–equivariant chain map

f W C 0.b1; : : : ; bn/! C

from a semistandard complex to a knot-like complex C is said to be local if the class
of f .x0/ generates H�.C=U /=V –torsion.

Example 4.16 The semistandard complex C 0.1;�2;�1; 1; 2/ is generated over R by

x0; x1; x2; x3; x4; x5

with nonzero differentials

@x1 D Ux0CV
2x2; @x2 D Ux3; @x4 D Vx3; @x5 D U

2x4:

See Figure 6 for a visual depiction.

x0 x1

x2
x3

x4 x5

Figure 6: The semistandard complex C 0.1;�2;�1; 1; 2/ .
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4.5 Short maps

It will often be useful for us to consider module maps from a standard complex
C.b1; : : : ; bn/ to a knot-like complex C that are chain maps except possibly at xn .
We make this notion precise with the following definition:

Definition 4.17 Let C1 D C.b1; : : : ; bn/ be a standard complex and C2 a knot-like
complex. An absolutely U –graded, relatively V –graded module map f W C1! C2 is
called a short map, denoted by

f W C.b1; : : : ; bn/ÝC2;

if f @.xi /C@f .xi /D 0 for 1� i � n�1 and f @V .xn/C@V f .xn/D 0. If f induces
an isomorphism on H�.Ci=U /=V –torsion, then we call f a short local map.

We similarly define short maps for semistandard complexes:

Definition 4.18 Let C1 D C 0.b1; : : : ; bn/ be a semistandard complex and C2 a knot-
like complex. An absolutely U –graded, relatively V –graded module map f W C1!C2

is called a short map, denoted by

f W C 0.b1; : : : ; bn/ÝC;

if f @.xi /C @f .xi /D 0 for 1� i � n� 1 and f @U .xn/C @Uf .xn/D 0. If the class
of f .x0/ generates H�.C2=U /=V –torsion, then we call f a short local map.

The following lemma states that given a short map, we can extend it to an actual chain
map (from a different domain).

Lemma 4.19 (extension lemma) Let

f W C.b1; : : : ; bn/ÝC

be a short map from a standard complex to C. Then there exists an R–equivariant
chain map

g W C.b1; : : : ; bn; bnC1; : : : ; bm/! C

for some bi with n C 1 � i � m such that f and g agree on the generators of
C.b1; : : : ; bn/ (viewed as generators of C.b1; : : : ; bn; bnC1; : : : ; bm/ in the obvious
way). Moreover , if f is local , then g is local.
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Proof Consider f .xn/. If @Uf .xn/ D 0, then f is already a chain map and we
are done. Thus, suppose that @Uf .xn/D U cz for some z 2 C and c � 1. Define a
short map f 0 W C 0.b1; : : : ; bn;�1/ÝC by setting f 0.xi /D f .xi / for 0� i � n and
f 0.xnC1/D U

c�1z . We now consider several cases:

(1) If c > 1, then extend the domain of f 0 to C.b1; : : : ; bn;�1;�1/ by setting
f 0.xnC2/ D 0. It is easily checked that f 0 then provides the desired R–
equivariant chain map.

(2) If c D 1 and @V z D 0, then we may again extend the domain of f 0 to
C 0.b1; : : : ; bn;�1;�1/ by setting f 0.xnC2/ D 0. It is easily checked that
f 0 then provides the desired R–equivariant chain map.

(3) If c D 1 and @V z D V dw for some w 2 C and d � 1, then we proceed as
in the beginning of the proof, except replacing the role of U with V . That is,
extend the short map

f 0 W C 0.b1; : : : ; bn;�1/ÝC

to a short map
f 00 W C.b1; : : : ; bn;�1;�1/ÝC:

Iterate this procedure. Note that both the U – and V –gradings of the final
preferred generator of C.b1; : : : ; bn;�1;�1; : : : ;�1;�1/ increase as the length
of standard complex increases. Since C is finitely generated, the gradings of its
generators are bounded above. Hence it is easily checked that at some point this
process must terminate, yielding the desired extension.

Since g.x0/D f .x0/, it is clear that g is local if f is local.

The analogous result holds for semistandard complexes:

Lemma 4.20 Let
f W C 0.b1; : : : ; bn/ÝC

be a short map from a semistandard complex to C. Then there exists an R–equivariant
chain map

g W C.b1; : : : ; bn; bnC1; : : : ; bm/! C

for some bi with n C 1 � i � m such that f and g agree on the generators of
C 0.b1; : : : ; bn/. Moreover , if f is local , then g is local.

Proof This is analogous to the proof of Lemma 4.19.
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5 Numerical invariants ai

In this section, we define a sequence of numerical invariants .ai / for any knot-like
complex C, analogous to those constructed in [2, Section 6]. Up to sign, these are the
same as the invariants defined in [9, Section 3], which are also denoted by .ai /. In the
next section, we will see that the ai compute successive parameters in the standard
complex representative of C.

Let C be a knot-like complex. Define

a1.C /D supŠfb1 2 ZŠ j C.b1; : : : ; bn/� C g:

Here, supŠ denotes the supremum taken with respect to the (unusual!) order on ZŠ . We
define ak.C / for k � 2 inductively, as follows. Suppose that we have already defined
ai D ai .C / for 1� i � k . If ak D 0, define akC1.C /D 0. Otherwise, define

akC1.C /D supŠfbkC1 2 ZŠ j C.a1; : : : ; ak; bkC1; : : : ; bn/� C g:

That is, we consider the set of standard complexes � C whose first k symbols agree
with the previously defined ai . We then take the supremum over the family of .kC1/st

symbols appearing in this set.3

It will be convenient for us to have the following terminology:

Definition 5.1 Let C be a knot-like complex, and let n be a positive integer. Let
.a1; : : : ; an/ be the sequence given by the first n invariants, ai D ai .C / for 1� i � n.
We say that .a1; : : : ; an/ — and, similarly, the standard complex C.a1; : : : ; an/ — is n–
maximal with respect to C . Here, we identify C.a1; : : : ; an; 0; : : : ; 0/DC.a1; : : : ; an/.

The following proposition (combined with the extension lemma) shows that the supre-
mum in the definition of ai is always realized:

Proposition 5.2 Let ai D ai .C /. For each n 2N , there is a short local map

f W C.a1; : : : ; an/ÝC:

Here , we identify C.a1; : : : ; an; 0; : : : ; 0/D C.a1; : : : ; an/.

This is a consequence of the following lemmas:

3It will be implicit in the proof of Proposition 5.2 that this set of standard complexes is nonempty. More
precisely, if a1; : : : ; ak are all defined and nonzero, then there exists a standard complex of the form
C.a1; : : : ; ak ; bkC1; : : : ; bn/ which is � C.
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Lemma 5.3 Let
f W C 0.b1; : : : ; bn/! C

be a local map from a semistandard complex to a knot-like complex C. Then there
is some bnC1 > 0 such that we have a short local map from the standard complex
C.b1; : : : ; bn; bnC1/ to C,

g W C.b1; : : : ; bn; bnC1/ÝC:

Proof Let C 0DC 0.b1; : : : ; bn/. Since xn is a cycle in C 0=U, we have that f .xn/ is
a cycle in C=U. Moreover, the class of f .xn/ must be V –torsion in C=U, since xn
has odd grading and H�.C=U /=V –torsion is supported in U –grading zero. It follows
that there exists some y 2 C and m> 0 for which @V y D V mf .xn/. Now define

g.xi /D

�
f .xi / if i D 1; : : : ; n;
y if i D nC 1:

Note that bnC1 Dm. By construction, g is a short local map.

Lemma 5.4 Let ftigi2N be a sequence of integers with ti !1, and let

fi W C.b1; : : : ; bn�1;�ti /ÝC

be a sequence of short local maps from standard complexes to a knot-like complex C.
Then there exists a short local map

f W C.b1; : : : ; bn�1; bn/ÝC

for some bn > 0.

Proof As i increases, the V –grading of the final generator xn of C.b1; : : : ; bn�1;�ti /
also increases. Since C is finitely generated, it follows that for sufficiently large i , we
have fi .xn/D 0. Restriction to the first n� 1 generators thus yields a local map from
the semistandard complex C 0.b1; : : : ; bn�1/ to C. Now apply Lemma 5.3 to obtain
the desired result.

Lemma 5.5 Let ftigi2N be a sequence of integers with ti !1, and let

fi W C
0.b1; : : : ; bn�1;�ti /ÝC

be a sequence of short local maps from semistandard complexes to a knot-like com-
plex C. Then there exists a short local map

f W C.b1; : : : ; bn�1/ÝC

from the standard complex C.b1; : : : ; bn�1/ to C.

Geometry & Topology, Volume 25 (2021)



More concordance homomorphisms from knot Floer homology 305

Proof As i increases, the U –grading of the last generator xn of C 0.b1; : : : ; bn�1;�ti /
also increases. Since C is finitely generated, it follows that for sufficiently large i , we
have fi .xn/D 0. Restriction to the first n� 1 generators then yields a local map from
the standard complex C.b1; : : : ; bn�1/ to C.

We are now ready to prove Proposition 5.2:

Proof of Proposition 5.2 We prove that the supremum in the definition of ai is always
realized (modulo trailing zeros). We proceed by induction. Suppose that a1; : : : ; ak
are defined and nonzero. Let F be the family of standard complexes appearing in the
definition of akC1 . By examining the order on ZŠ , we see that the only subsets of ZŠ

which fail to attain their supremum are those which are unbounded below (in the usual
sense). Hence the only case we have to worry about is when the family of .kC1/st

symbols appearing in F has supŠ equal to zero.

If k is odd, then truncating each element of F to its first kC 1 generators provides a
family of standard complexes and local maps as in the statement of Lemma 5.4. This
is a contradiction, since Lemma 5.4 (combined with the extension lemma) then implies
that the relevant supŠ is strictly greater than zero. Thus, we may assume that k is
even. Then truncating each element of F to its first kC 1 generators yields a family
of semistandard complexes to which we may apply Lemma 5.5. In this situation, we
see that akC1 is realized as a trailing zero, completing the proof.

6 Characterization of knot-like complexes up to local
equivalence

We now prove that every knot-like complex is locally equivalent to a standard complex.
In fact, we prove a slightly stronger statement in Corollary 6.2 below:

Theorem 6.1 Every knot-like complex is locally equivalent to a standard complex.

Corollary 6.2 Let C be a knot-like complex, and assume C is locally equivalent
to C.a1; : : : ; an/. Then C is homotopy equivalent to C.a1; : : : ; an/˚A for some
R–complex A.

Theorem 6.1 immediately implies Theorem 1.2:
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Proof of Theorem 1.2 Following Section 2, to every knot in S3 , we can associate
a knot-like complex. By Theorem 6.1, every knot-like complex is locally equivalent
to a standard complex, and by Proposition 4.10, standard complexes are ordered
lexicographically. This proves Theorem 1.2 modulo the claim that the standard complex
associated to any knot is symmetric. We delay this until the end of the section; see
Lemma 6.10.

Roughly speaking, we will show that if C is a knot-like complex, then the numerical
invariants ai .C / defined in the previous section compute successive parameters in the
desired standard complex representative of C. Our main technical result will be to
show that the ai (as defined previously) eventually become equal to zero:

Proposition 6.3 Let C be a knot-like complex. Then ai .C /D 0 for all i sufficiently
large.

The proof of Proposition 6.3 will be given at the end of the section. First, we show
how this implies Theorem 6.1:

Proof of Theorem 6.1 Let C be a knot-like complex with numerical invariants ai .
By Propositions 5.2 and 6.3, there exists some standard complex C1�C which realizes
the ai . It is easily checked from the fact that standard complexes are lexicographically
ordered that C1 must be the maximal standard complex � C. Dualizing, let C2 be
the minimal standard complex with C � C2 . If C1 ¤ C2 , then (using the fact that
standard complexes are lexicographically ordered) there exists a standard complex C3
lying strictly between them. This complex contradicts either the maximality of C1 or
the minimality of C2 . Thus we must have the local equivalence C1 D C D C2 .

To prove the more refined Corollary 6.2, we use the following series of lemmas
concerning self-maps of standard complexes:

Lemma 6.4 Let
f W C.b1; : : : ; bn/! C.b1; : : : ; bn/

be a local map such that f .xi / is supported by xj for some i ¤ j. Then

.biC1; : : : ; bn/ <
Š .bjC1; : : : ; bn/:

Here , we mean that .bkC1; : : : ; bn/D .0/ if k D n.
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Proof First assume that i is even. By grading considerations, this implies that j is
also even. We have the following casework:

(1) Suppose that biC1<0. Then @UxiDU jbiC1jxiC1 . Hence @Uf .xi /Df @Uxi 2
imU jbiC1j . Since f .xi / is supported by xj , it follows that @Uxj 2 imU jbiC1j .
This implies that bjC1�Š biC1 . (Here, we use the fact that no U –power of xjC1
appears in @U of any standard basis element other than xj .)

(2) Suppose that biC1 > 0. Then @UxiC1 D U biC1xi . Hence @Uf .xiC1/ D
U biC1f .xi / is supported by U biC1xj . In particular, U biC1xj is in the image
of @U , which implies that bjC1 �Š biC1 . (Here, we use the fact that xjC1 is the
unique basis element whose image under @U can be supported by a U –power
of xj .)

(3) Suppose that i D n, so that biC1 D 0. Then @Uxi D 0. Hence @Uf .xi /D 0.
Since f .xi / is supported by xj , it follows that @Uxj D 0. (Here, we use the
fact that no U –power of xjC1 can appear in @U of any standard basis element
other than xj .) This implies that bjC1 > 0.

If strict inequality holds in any of the above cases, then we are done. On the other
hand, if biC1 D bjC1 , then it is easily seen that f .xiC1/ is supported by xjC1 , and
we proceed inductively. By the hypothesis that i ¤ j, the sequences .biC1; : : : ; bn/
and .bjC1; : : : ; bn/ are of different lengths, and hence cannot be equal. The case i
odd is similar, with the role of U played by V .

Lemma 6.5 Any local map

f W C.b1; : : : ; bn/! C.b1; : : : ; bn/

must be injective.

Proof Suppose not. Then there exists some linear combination
P
i rixi with ri 2R

such that f
�P

i rixi
�
D 0. Since f is graded, we may assume that

P
i rixi is grading-

homogenous, so that each ri is a monomial (that is, ri 2 f0; 1; U; U 2; : : : ; V; V 2; : : : g).

We impose a partial order on the set of monomials in R by defining 1>U >U 2> � � �>0
and 1 > V > V 2 > � � � > 0. Among the nonzero coefficients ri , choose a maximal
element ri0 with respect to this partial order. Let I D fj j rj D ri0g. For each j 2 I,
consider .bjC1; : : : ; bn/. Label the elements of I D fj1; : : : ; jmg so that

.bj1C1; : : : ; bn/ <
Š .bj2C1; : : : ; bn/ <

Š
� � �<Š .bjmC1; : : : ; bn/:
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Consider f .xj1
/. By Lemma 4.12, f .xj1

/ is supported by xj1
. By Lemma 6.4,

f .xji
/ for i D 2; : : : ; m cannot be supported by xj1

. By the R–equivariance of f
and maximality of ri0 , there is no other term in f

�P
i¤j1

rixi
�

that can cancel rj1
xj1

,
contradicting the fact that f

�P
i rixi

�
D 0. Hence f must be injective.

We thus have:

Lemma 6.6 Any local self-map of a standard complex to itself is an isomorphism.

Proof Let f be a local self-map of a standard complex C. It is clear that f must
be absolutely V –graded. Hence f restricted to each bigrading is a linear map from a
finite-dimensional F –vector space to itself, which is injective by Lemma 6.5. (Note
that C is finitely generated.) It follows that f is surjective.

Using Lemma 6.6, we now prove Corollary 6.2:

Proof of Corollary 6.2 By Theorem 6.1, for a knot-like complex C, we have local
maps

f W C.a1; : : : ; an/! C and g W C ! C.a1; : : : ; an/:

Then g ıf is a local map from C.a1; : : : ; an/ to itself, which is an isomorphism by
Lemma 6.6. It follows that the short exact sequence

0! C.a1; : : : ; an/
f
�! C ! C= imf ! 0

splits.

We now turn to the proof of Proposition 6.3. We begin with the following lemma:

Lemma 6.7 Let C be a knot-like complex and let ai D ai .C /. Suppose we have a
short local map

f W C.a1; : : : ; an/ÝC:

Then f .xi / is not in im.U; V / for any 0 � i � n.4 In particular, f .xi / ¤ 0 for
0� i � n.

Proof We first show by contradiction that f .xi /… imU. Let j Dminfi jf .xi /2 imU g

be the minimal index for which f .xj / 2 imU, and let f .xj /D U�j . (Note that �j is
allowed to be zero.) Since f is local, we have that f .x0/¤ 0 2H�.C=U /, so j ¤ 0.

4Note that 0 is considered to be in im.U; V / .
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Suppose that j is odd. If aj ¤ 1, define a local map

g W C 0.a1; : : : ; aj � 1/ÝC

by setting g.xi / D f .xi / for 1 � i < j and g.xj / D �j . By the extension lemma,
g extends to a local map. This contradicts the maximality of aj , since aj � 1 >Š aj .
If aj D 1, we have that @Uxj D Uxj�1 . Since @Uf .xj / D f @U .xj / D Uf .xj�1/,
we have @U �j D f .xj�1/. Since C is reduced, it follows that f .xj�1/ 2 imU,
contradicting the minimality of j.

Now suppose that j is even. Assume aj < 0. Since f .xj / � 0 mod U, it is easily
checked that the restriction of f gives a local map

g W C 0.a1; : : : ; aj�1/! C:

Applying Lemma 5.3 and then the extension lemma shows that this contradicts the
maximality of aj . Thus, we may assume aj > 0. Then

V aj f .xj�1/D @V f .xj /D @VU�j D 0:

This implies that f .xj�1/ 2 imU, contradicting the minimality of j.

The case f .xi / … imV is similar. Indeed, let j D minfi j f .xi / 2 imV g, and let
f .xj /D V�j . (Note that �j is allowed to be zero.) Since H�.C=U / does not have
any V –nontorsion classes of positive grading, it follows that j ¤ 0. The remainder of
the proof follows by interchanging the roles of U and V in the argument above.

Before proceeding, we will need the following technical result, which will allow
us to rule out when certain complexes are n–maximal. The reader may wish to
postpone reading the proof of Lemma 6.8 until after seeing its utilization in the proof
of Proposition 6.3.

Lemma 6.8 Let

f W C.b1; : : : ; bm/ÝC and g W C.c1; : : : ; cn/ÝC

be short local maps from standard complexes to a knot-like complex C. Let fyigmiD1 and
fxig

n
iD1 denote the standard bases for C.b1; : : : ; bm/ and C.c1; : : : ; cn/, respectively.

Suppose that f .ym/D g.xn/, and we have the inequality of reversed sequences

.bm; : : : ; b1/ <
Š .cn; : : : ; c1/

with respect to the lexicographic order on ZŠ–valued sequences. Then C.c1; : : : ; cn/
is not n–maximal (with respect to C ).
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Proof Assume that the sequences .bm; : : : ; b1/ and .cn; : : : ; c1/ first differ in their
.lC1/st terms, so that bm�i D cn�i for 0� i < l and bm�l <Š cn�l .5 This means that
the final l C 1 generators of C.b1; : : : ; bm/ (and the arrows going between them) are
isomorphic to the final l C 1 generators of C.c1; : : : ; cn/. Our goal will be to define a
new local map

h W C.c1; : : : ; cn/! C

which has the property that h.xn�i /D g.xn�i /Cf .ym�i / for all 0� i � l . Since f
and g are chain maps, it is evident that h is a chain map, at least when restricted to the
generators xn�i for 0� i < l . Below, we give the full verification and construction
of h. In order to conclude the proof, we then note that h.xn/D g.xn/C f .ym/D 0,
and apply Lemma 6.7.

We define h on all generators except xn�l�1 as follows. Let

h.xi /D g.xi / for 0� i � n� l � 2;(6-1)

h.xn�i /D g.xn�i /Cf .ym�i / for 0� i � l:(6-2)

It is clear that the chain map condition @h D h@ holds for all generators xi with
i < n� l � 2, as well as all generators with i > n� l . The main subtlety will thus be
to define h.xn�l�1/. We have the following casework:

(6-3) h.xn�l�1/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

g.xn�l�1/CU
bm�l�cn�lf .ym�l�1/

if cn�l and bm�l same sign and n� l odd;
g.xn�l�1/CV

bm�l�cn�lf .ym�l�1/

if cn�l and bm�l same sign and n� l even;
g.xn�l�1/ if cn�l and bm�l have different signs:

Here, we consider b0D c0D 0 to be of a different sign than either positive or negative.
For the sake of concreteness, we explicitly describe h in the two cases when m<n and
n < m. If m< n, then all three of (6-1), (6-2) and (6-3) are utilized when defining h.
In particular, since m and n are both even and l �min.m; n/, we have n� l � 2� 0,
and thus h.x0/D g.x0/. However, if n < m, then the form of h may change slightly
depending on the value of l . More precisely, if we are in the boundary case when
l D n, then h is defined on all generators by (6-2):

h.xn�i /D g.xn�i /Cf .ym�i / for 0� i � n:

5Here, l �min.m; n/ . Note that we allow l Dmin.m; n/ , with the convention that b0 D c0 D 0 .
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Similarly, if l D n� 1, then only (6-2) and (6-3) are used:

h.xn�i /D g.xn�i /Cf .ym�i / for 0� i < n;

h.x0/D g.x0/CU
bm�nC1�c1f .ym�n/:

Note that in all other cases, we again have h.x0/D g.x0/.

We now check that h is a chain map. As in Section 4, this consists of a number of
technical but straightforward verifications. For simplicity, assume for the moment that
l < n� 1. First consider the case when n� l is odd. Note that this also implies m� l
is odd, so m� l > 0. It is clear that @Uh.xn�l�2/D h@U .xn�l�2/ and @V h.xn�l/D
h@V .xn�l/. For the remaining chain map conditions, we proceed with casework based
on the signs of cn�l�1 and cn�l . First, we consider the possible signs of cn�l�1
to verify that h@V .xn�l�2/D @V h.xn�l�2/ and h@V .xn�l�1/D @V h.xn�l�1/. We
then consider the possible signs of cn�l to verify that h@U .xn�l�1/D @Uh.xn�l�1/
and h@U .xn�l/D @Uh.xn�l/.

(1) Suppose cn�l�1 < 0. Then @V xn�l�2 D V jcn�l�1jxn�l�1 and @V xn�l�1 D 0.
Assume that cn�l and bn�l have the same sign. We compute

h@V .xn�l�2/D V
jcn�l�1jh.xn�l�1/

D V jcn�l�1j.g.xn�l�1/CU
bm�l�cn�lf .ym�l�1//

D V jcn�l�1jg.xn�l�1/;

@V h.xn�l�2/D @V g.xn�l�2/D g@V .xn�l�2/D V
jcn�l�1jg.xn�l�1/:

Similarly,

h@V .xn�l�1/D 0;

@V h.xn�l�1/D @V .g.xn�l�1/CU
bm�l�cn�lf .ym�l�1//D g@V .xn�l�1/D 0;

as desired. If cn�l and bm�l have different signs, then the same computation holds,
except that the U bm�l�cn�lf .ym�l�1/ terms vanish.

(2) Suppose cn�l�1 > 0. Then @V xn�l�2 D 0 and @V xn�l�1 D V cn�l�1xn�l�2 .
Assume that cn�l and bn�l have the same sign. We compute

h@V .xn�l�2/D 0; @V h.xn�l�2/D @V g.xn�l�2/D g@V .xn�l�2/D 0:

Similarly,

h@V .xn�l�1/D h.V
cn�l�1xn�l�2/D V

cn�l�1g.xn�l�2/;
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@V h.xn�l�1/D @V .g.xn�l�1/CU
bm�l�cn�lf .ym�l�1//D g@V .xn�l�1/

D V cn�l�1g.xn�l�2/;

as desired. If cn�l and bm�l have different signs, then the same computation holds,
except that the U bm�l�cn�lf .ym�l�1/ terms vanish.

(3) Suppose cn�l <0. Then @Uxn�l�1DU jcn�l jxn�l and @Uxn�lD0. We compute

h@U .xn�l�1/D h.U
jcn�l jxn�l/D U

jcn�l j.g.xn�l/Cf .ym�l//;

@Uh.xn�l�1/D @U .g.xn�l�1/CU
bm�l�cn�lf .ym�l�1//

D g@U .xn�l�1/CU
bm�l�cn�lf @U .ym�l�1/

D U jcn�l jg.xn�l/CU
bm�l�cn�lf .U jbm�l jym�l/

D U jcn�l j.g.xn�l/Cf .ym�l//:

In the penultimate equality above, we are using the fact that bm�l <Š cn�l < 0 to
conclude that @U .ym�l�1/D U jbm�l jym�l ; we use this again in the final equality to
write jbm�l j D �bm�l and jcn�l j D �cn�l . Similarly,

h@U .xn�l/D 0; @Uh.xn�l/D @U .g.xn�l/Cf .ym�l//D 0;

where in the second equality above, we again use bm�l <Š cn�l < 0.

(4) Suppose cn�l > 0. Then @Uxn�l�1 D 0 and @Uxn�l D U cn�lxn�l�1 . We
consider two further subcases, based on whether bm�l < 0 or bm�l > 0.

(a) Suppose bm�l < 0, so that @Uym�l�1DU jbm�l jym�l and @Uym�l D 0. Then

h@U .xn�l�1/D 0; @Uh.xn�l�1/D @Ug.xn�l�1/D 0:

Similarly,

h@U .xn�l/D h.U
cn�lxn�l�1/D U

cn�lg.xn�l�1/;

@Uh.xn�l/D @U .g.xn�l/Cf .ym�l//D U
cn�lg.xn�l�1/;

as desired.

(b) Suppose bm�l > 0, so that @Uym�l�1 D 0 and @Uym�l D U bm�lym�l�1 .
Then

h@U .xn�l�1/D 0;

@Uh.xn�l�1/D @U .g.xn�l�1/CU
bm�l�cn�lf .ym�l�1//D 0:
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Similarly,

h@U .xn�l/D h.U
cn�lxn�l�1/

D U cn�l .g.xn�l�1/CU
bm�l�cn�lf .ym�l�1//

D U cn�lg.xn�l�1/CU
bm�lf .ym�l�1/;

@Uh.xn�l/D @U .g.xn�l/Cf .ym�l//

D U cn�lg.xn�l�1/CU
bm�lf .ym�l�1/;

as desired.

This shows that h is a chain map, at least when l < n� 1 and n� l is odd. The proof
when n� l is even follows by interchanging the roles of U and V . (There is a slight
reinterpretation of case (4) when l Dm, which we leave to the reader.)

Finally, we consider the remaining cases when l D n or l D n� 1. If l D n, then
the only nontrivial check is to show that @h.x0/D h@.x0/. In this situation, we have
cm�n <

Š b0 D 0. First, suppose that cn�mC1 D b1 < 0. Then

@h.x0/D @f .x0/C @g.yn�m/D U
jb1jf .x1/CU

jcn�mC1jg.yn�mC1/;

h@.x0/D h.U
jb1jx1/D U

jb1jh.x1/D U
jb1j.f .x1/Cg.yn�mC1//:

The case b1 > 0 is analogous. The situation when l D n� 1 is similar in flavor, and
we leave it to the reader.

We now claim that h is a local map. If l < n � 1, then h.x0/ D g.x0/, and so
clearly h is local. If l D n� 1, then h.x0/D g.x0/CU bm�nC1�c1f .ym�n/. Hence
h.x0/ and g.x0/ are equal in C=U, and h is again local. Finally, if l D n, then
h.x0/D g.x0/C f .ym�n/. Since bm�n <Š c0 D 0, we have that @V ym�n D 0 and
@V ym�n�1 D V jbm�njym�n . Hence f .ym�n/ is a V –torsion cycle in H�.C=U /.
Since g.x0/ generates H�.C=U /=V –torsion, this shows that h is local, as desired.

By construction, h.xn/ D f .ym/C g.xn/D 0. Applying Lemma 6.7, we conclude
that C.c1; : : : ; cn/ is not n–maximal with respect to C.

We are now ready to prove Proposition 6.3:

Proof of Proposition 6.3 We proceed by contradiction. Suppose that ai ¤ 0 for all
indices i . Let n be very large. By Proposition 5.2, we have a short local map

g W C.a1; : : : ; an/ÝC:
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Since C is finitely generated, it follows from Lemma 6.7 that for n sufficiently large,
we must have g.xm/D g.xn/ for some m< n. Indeed, Lemma 6.7 implies that the
gradings of the g.xi / must lie in a bounded interval, since otherwise some g.xi / would
be in imU or imV . Hence g.xm/D g.xn/ for some m< n.

Consider the short local map

f W C.a1; : : : ; am/ÝC

obtained by restricting g . On one hand, C.a1; : : : ; am/ and C.a1; : : : ; an/ are ev-
idently m– and n–maximal with respect to C. However, since m ¤ n, we have
that either .am; : : : ; a1/ <Š .an; : : : ; a1/ or .an; : : : ; a1/ <Š .am; : : : ; a1/. Hence we
may apply Lemma 6.8, either with the maps f and g , or vice versa. This gives a
contradiction.

We now justify Remark 3.5 and show that if C1 and C2 are locally equivalent via maps
f and g , then f and g take U –tower classes to U –tower classes:

Lemma 6.9 Let C1 and C2 be knot-like complexes. If C1 and C2 are locally equiv-
alent via f and g , then f and g induce isomorphisms on H�.Ci=V /=U –torsion.

Proof By passing to the same local representative, we may assume that C1 is a
standard complex. Then g ıf is a local map from a standard complex to itself, which
is an isomorphism by Lemma 6.6. In particular, g ıf induces an isomorphism from
H�.C1=V /=U –torsion to itself, factoring through the composition

H�.C1=V /=U –torsion f
�!H�.C2=V /=U –torsion g

�!H�.C1=V /=U –torsion:

Since each of the above terms consists of a single U –tower, it is clear that the induced
maps must individually be isomorphisms.

Finally, we show that the standard complex associated to any knot is symmetric:

Lemma 6.10 Let K be a knot in S3 , and let C D C.a1; : : : ; an/ be the standard
complex representative of CFKR.K/. Then C is symmetric.

Proof Given Lemma 6.9, it is clear that the definition of local equivalence is in fact
completely symmetric with respect to interchanging the roles of U and V . That is, we
may require the maps f and g in Definition 3.3 to be absolutely U – and V –graded,
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and induce isomorphisms on both H�.Ci=U /=V –torsion and H�.Ci=V /=U –torsion.
Now suppose that f and g are such local equivalences between C and CFKR.K/.
Then it is not hard to see that we have local equivalences between these two complexes
with the roles of U and V reversed; ie

C � CFKR.K/:

However, we already know that CFKR.K/ is homotopy equivalent to CFKR.K/, so
C �C. It is easily checked that passing from C to C reverses the order of the standard
complex parameters, showing that C is symmetric, as desired.

7 Homomorphisms

In this section, we construct an infinite family of linearly independent homomorphisms
from K to Z.

7.1 Some Z–valued homomorphisms

We begin with the following definition:

Definition 7.1 Let C D C.a1; : : : ; an/ be a standard complex. Define

'j .C /D #fai j ai D j; i oddg� #fai j ai D�j; i oddg:

That is, 'j .C / is the signed count of the number of times that j appears as an odd
parameter a2kC1 . Equivalently, 'j .C / is the signed count of horizontal arrows of
length j. If C is any knot-like complex, then we define 'j .C / by passing to the
standard complex representative of C afforded by Theorem 6.1.

The goal of this section is to prove the following theorem:

Theorem 7.2 For each j 2N , the function

'j W K! Z

is a homomorphism.

Note that the product of two standard complexes is not a standard complex. Thus, to
compute 'j .C1˝C2/ directly, we would first have to determine the standard complex
representative of C1 ˝ C2 . However, it turns out that we do not currently have an
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explicit description of the group law on K in terms of the standard complex parameters
(see Section 11). Instead, we prove Theorem 7.2 by expressing each 'j as a linear
combination of other auxiliary homomorphisms. The construction of these (and the
proof that they are additive) will occupy our attention for the next two subsections.

Before proceeding, we show that Theorem 1.1 follows readily from Theorem 7.2:

Proof of Theorem 1.1 By Theorem 2.5 and the behavior of CFKR.K/ under con-
nected sum, we have a homomorphism

C! K

sending ŒK� to ŒCFKR.K/�. Now compose with 'j . (We henceforth abuse notation
slightly and also refer to the composition C! K! Z as 'j .) Surjectivity of

1M
jD1

'j W C!
1M
jD1

Z

follows from the observation that 'j .TiC1;iC2 #�Ti;iC1/D ıij (see Example 1.4), or
alternatively by considering the knots in Proposition 9.1.

We now introduce the first of our auxiliary homomorphisms:

Definition 7.3 Let C be a knot-like complex and let C.a1; : : : ; an/ be the standard
complex representative of C given by Theorem 6.1. Define

P.C/D�2
X
j>0

j'j .C /C

nX
iD1

sgn ai :

It is clear that 'j is an invariant of the local equivalence class of C. To see that P is a
homomorphism, we use the following alternative definition:

Lemma 7.4 The integer P.C/ is equal to the U –grading of a U –tower generator.

Proof By Corollary 6.2, C is homotopy equivalent to C.a1; : : : ; an/˚ A, where
aiDai .C / and A is some R–complex. Since C is a knot-like complex, U�1H�.C /Š
F ŒU; U�1�, and so the U –nontorsion classes in C are supported by the standard
summand C.a1; : : : ; an/. It is then clear that xn is a U –tower generator in C.
A straightforward computation shows that grU .xn/ is given by the expression in
Definition 7.3.
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Given this, we immediately have:

Proposition 7.5 The function P W K! 2Z is a surjective homomorphism.

Proof The fact that P is a homomorphism follows from the Künneth formula. To see
that P is surjective, we observe that P.C.1;�1//D�2.

Before proceeding, we show Proposition 7.6 from the introduction:

Proposition 7.6 Let K be a knot in S3 . Then we have the following equality relating
the Ozsváth-Szabó � –invariant with 'j :

�.K/D
X
j2N

j'j .K/:

Proof It is sufficient to consider the local equivalence class of CFKR.K/. Let
C DC.a1; : : : ; an/ be the local equivalence class of CFKR.K/. Then C is symmetric,
so

Pn
iD1 sgn ai D 0 and P.C/D grU .xn/D�2�.K/.

7.2 Shift homomorphisms

We now introduce an auxiliary family of endomorphisms shm W K!K for m2N . Com-
posing these with P gives an infinite sequence of homomorphisms P ı shm W K! 2Z.
In the next subsection, we show that the 'j are certain linear combinations of the
P ı shm (divided by 2). Our present goal will be to define the shm and show that they
are additive. This will be the most technical part of the argument, and will require the
introduction of several auxiliary definitions.

Definition 7.7 Let C D C.a1; : : : ; an/ be a standard complex. Let shm.C / be the
standard complex given by

shm.C /D C.a01; : : : ; a
0
n/;

where

a0i D

8<:
ai C 1 if ai �m;
ai � 1 if ai � �m;
ai if jai j<m:

That is, shm fixes U n– and V n–arrows for n < m and takes U n– and V n–arrows to
U nC1– and V nC1–arrows, respectively, for n�m.
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The majority of this subsection will be devoted to proving the following theorem:

Theorem 7.8 For all m � 1, the function shm W K! K is a homomorphism; that is,
for knot-like complexes C1 and C2 , we have the local equivalence

shm.C1˝C2/� shm.C1/˝ shm.C2/:

It will also be helpful to decompose shm as a composition of a shift in U and a shift
in V (denoted by shU;m and shV;m , respectively):

Definition 7.9 Given a standard complex C D C.a1; : : : ; an/, let

shU;m.C /D C.a01; : : : ; a
0
n/;

where, for i odd,

a0i D

8<:
ai C 1 if ai �m;
ai � 1 if ai � �m;
ai if jai j<m;

and, for i even,
a0i D ai :

Similarly, let
shV;m.C /D C.a01; : : : ; a

0
n/

where, for i even,

a0i D

8<:
ai C 1 if ai �m;
ai � 1 if ai � �m;
ai if jai j<m;

and, for i odd,
a0i D ai :

It follows from the definitions that shm D shV;m ı shU;m .

Lemma 7.10 Let C D C.a1; : : : ; an/ be a standard complex. Then

shU;m.C /_ D shU;m.C_/ and shV;m.C /_ D shV;m.C_/:

Proof The result follows from the definition of shU;m and shV;m combined with
Lemma 4.9.

We now introduce some convenient terminology:
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Definition 7.11 Let C be a knot-like complex (not necessarily a standard complex)
with an R–basis fxig. We say that fxig is U –simplified if for each xi , exactly one of
the following holds:

(1) @Uxi D U
kxj for some j and k ,

(2) @Uxj D U
kxi for some j and k , or

(3) @Uxi D 0 and xi … im @U .

If @xi DU kxj (or vice versa), we say that xi and xj are U –paired. Since H�.C=V /
has a single U –tower, it follows that at most one of the xi satisfies (3). We define a
V –simplified basis and V –paired basis elements analogously. (See for example the
proof of Lemma 3.15.)

Example 7.12 Let C D C.a1; : : : ; an/ be a standard complex with preferred basis
fxig

n
iD0 ; this basis is clearly both U – and V –simplified. We will find it convenient to

relabel our basis elements slightly. We denote the U –simplified basis fw; yi ; zig
n=2
iD1

for C by
w D xn

and, for each 1� i � 1
2
n,

yi D

�
x2i�1 if a2i�1 > 0;
x2i�2 if a2i�1 < 0;

zi D

�
x2i�1 if a2i�1 < 0;
x2i�2 if a2i�1 > 0:

Setwise, the U –simplified basis is of course identical to the standard preferred basis,
but we fix notation so that @Uyi D U ja2i�1jzi . (That is, yi and zi are U –paired.) We
can likewise define the V –simplified basis in the obvious way.

Definition 7.13 For C D C.a1; : : : ; an/, let fw; yi ; zig and fw0; y0i ; z
0
ig be the U –

simplified bases for C and shU;m.C /, respectively. Define an R–module map

sU;m W C ! shU;m.C /

by setting
sU;m.r/D r

0

for each r 2 fw; yi ; zig, and extending R–linearly. That is, sU;m simply effects the
correspondence between the unprimed generators of C and the primed generators of
shU;m.C /. Note that sU;m induces an isomorphism of ungraded R–modules, although
we stress that sU;m is not graded (even relatively). Furthermore, it is easily checked that
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sU;m@V D @V sU;m . On the other hand, sU;m does not commute with @U . Explicitly,
we have

sU;m.@Uyi /D sU;m.U
ja2i�1jzi /DU

ja2i�1jz0i ; @U .sU;myi /D @U .y
0
i /DU

ja0
2i�1
jz0i :

Note that the above expressions may differ by a power of U, depending on the value
of ja2i�1j.

Example 7.14 Let C1 D C.a1; : : : ; an1
/ and C2 D C.b1; : : : ; bn2

/ be standard com-
plexes. Abusing notation slightly, let w , yi and zi denote the U –simplified bases
for both C1 and C2 ; it will be clear from context which generators lie in C1 and C2 .
Then the obvious tensor product basis for C1˝C2 is not U –simplified. Instead, we
define a U –simplified basis for C1˝C2 as follows. For 1� i � 1

2
n2 , let

˛i D w˝yi ; ˇi D w˝ zi ;

and, for 1� i � 1
2
n1 , let


i D yi ˝w; ıi D zi ˝w:

For 1� i � 1
2
n1 and 1� j � 1

2
n2 , define

�i;j Dyi˝yj ; �i;j D

�
U jb2j�1j�ja2i�1jyi ˝ zj C zi ˝yj if ja2i�1j � jb2j�1j;
yi ˝ zj CU

ja2i�1j�jb2j�1jzi ˝yj if ja2i�1j> jb2j�1j;
and

�i;j D

�
yi ˝ zj if ja2i�1j � jb2j�1j;
zi ˝yj if ja2i�1j> jb2j�1j;

�i;j D zi ˝ zj :

Finally, let
! D w˝w:

Note that the following basis elements are U –paired:

f˛i ; ˇig; f
i ; ıig; f�i;j ; �i;j g; f�i;j ; �i;j g:

For notational convenience, we relabel the basis elements

f�lg D f˛ig[ f
ig[ f�i;j g[ f�i;j g; f�lg D fˇig[ fıig[ f�i;j g[ f�i;j g;

so that f!; �l ; �lg is a U –simplified basis and @U �l DU el�l for some el . The reader
should check that if �l is one of �i;j or �i;j , then

el Dmin.ja2i�1j; jb2j�1j/:

If �l is an ˛i , then el D jb2i�1j, while if �l is a 
i , then el D ja2i�1j.
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We analogously define a U –simplified basis f˛0i ; ˇ
0
i ; 

0
i ; ı
0
i ; �
0
i;j ; �

0
i;j ; �

0
i;j ; �

0
i;j ; !

0g for
shU;m.C1/˝ shU;m.C2/ by considering both factors as standard complexes in their
own right. (That is, ˛0i D w

0˝ y0i , and so on.) We relabel this basis f!0; �0
l
; �0
l
g as

before, so that �0
l

and �0
l

are U –paired. As above, we have @U �0l D U
e0

l�0
l
, where

e0l Dmin.ja02i�1j; jb
0
2j�1j/;

whenever �0
l

is one of �0i;j or �0i;j (similarly for the other cases). An examination of
Definition 7.9 then shows that we may write

e0l D el C �.l/;

where
�.l/D

�
0 if el <m;
1 if el �m:

Definition 7.15 Let C1 and C2 be standard complexes. Define an R–module map

�U;m W C1˝C2! shU;m.C1/˝ shU;m.C2/

by setting

�U;m.�/D �
0

for � 2 f!; �l ; �lg, and extending R–linearly. As in Definition 7.13, �U;m induces an
isomorphism of ungraded R–modules. Furthermore, we claim that �U;m@V D @V �U;m .
To see this, observe that

�U;m � sU;m˝ sU;m mod U:

Indeed, this congruence is obviously an equality for all basis elements not of the form

i;j or �i;j . For �i;j , we again have equality using the fact that ja2i�1j � jb2j�1j if
and only if ja02i�1j � jb

0
2j�1j. For basis elements of the form 
i;j , a straightforward

casework check establishes the congruence. The fact that sU;m commutes with @V then
shows that �U;m@V D @V �U;m . Again, however, note that �U;m does not commute
with @U .

We now introduce an auxiliary technical definition which we will need to prove
Theorem 7.8:

Definition 7.16 An almost chain map f W C.a1; : : : ; an/! C from a standard com-
plex with preferred basis fxigniD0 to a knot-like complex is an ungraded R–module
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map such that, for 1� i � n,

(1) for i odd,

(a) if ai < 0, that is, @Uxi�1 D U jai jxi , we have

@Uf .xi�1/� U
jai jf .xi / mod U jai jC1I

(b) if ai > 0, that is, @Uxi D U jai jxi�1 , we have

@Uf .xi /� U
jai jf .xi�1/ mod U jai jC1I

(2) for i even,

(a) if ai < 0, that is, @V xi�1 D V jai jxi , we have

@V f .xi�1/� V
jai jf .xi / mod V jai jC1I

(b) if ai > 0, that is, @V xi D V jai jxi�1 , we have

@V f .xi /� V
jai jf .xi�1/ mod V jai jC1:

We stress that an almost chain map is not in general a chain map, and may not even be
grading-homogeneous.

The main import of the (admittedly unmotivated) notion of an almost chain map will
be the following lemma, which explains how to extract a genuine chain map from a
given almost chain map. In our context, it will be easier to construct almost chain maps,
which is why we have introduced Definition 7.16. In what follows, let Œx�p;q denote
the homogeneous part of x in bigrading .u; v/.

Lemma 7.17 Let f W C.a1; : : : ; an/!C be an almost chain map. Let .ui ; vi / be the
bigrading of the generator xi in C.a1; : : : ; an/. Suppose that Œf .x0/�u0;v0

represents
a V –tower class in C and @U Œf .xn/�un;vn

D 0. Then there exists a genuine local map

g W C.a1; : : : ; an/! C

such that g.xi /� Œf .xi /�ui ;vi
mod .U; V / for all 0� i � n.

Proof For each 0� i � n, consider the ansatz

g.xi /D Œf .xi /�ui ;vi
CUpi CVqi ;

where pi and qi are undetermined elements of C.a1; : : : ; an/ with bigrading .ui ; vi /.
In order to determine pi and qi , we substitute our ansatz into the chain map condition
for g . We begin by using the condition @Ug D g@U to help determine the pi :
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(1) Let i be odd, and suppose ai <0 . Then @Uxi�1DU jai jxi and @Uxi D 0. Using
Definition 7.16, write

@Uf .xi�1/D U
jai jf .xi /CU

jai jC1�i

for some (possibly nonhomogeneous) element �i 2 C.a1; : : : ; an/. Note that since
@2U D 0, we have @Uf .xi /CU@U �i D 0. We now compute

g.@Uxi�1/D U
jai jg.xi /

D U jai j.Œf .xi /�ui ;vi
CUpi CVqi /

D U jai jŒf .xi /�ui ;vi
CU jai jC1pi ;

@Ug.xi�1/D @U .Œf .xi�1/�ui�1;vi�1
CUpi�1CVqi�1/

D U jai jŒf .xi /�ui ;vi
CU jai jC1Œ�i �uiC2;viC2CU@Upi�1;

where in the last line, we have used the fact that @Uf .xi�1/DU jai jf .xi /CU
jai jC1�i .

We likewise compute

g.@Uxi /D g.0/D 0;

@Ug.xi /D @U .Œf .xi /�ui ;vi
CUpi CVqi /D @U Œf .xi /�ui ;vi

CU@Upi :

Examining the first pair of equalities above, we see that it suffices to set pi�1 D 0
and pi D Œ�i �uiC2;viC2 . The second pair of equalities then follows from the fact that
@Uf .xi /CU@U �i D 0.

(2) Let i be odd, and suppose ai > 0. Then @xi D U aixi�1 and @Uxi�1 D 0. A
similar analysis as above (interchanging the roles of i and i � 1 and replacing jai j
with ai ) shows that if we set pi�1 D Œ�i�1�ui�1C2;vi�1C2 and pi D 0, then we have
.g@U C @Ug/.xi�1/D .g@U C @Ug/.xi /D 0.

In this manner, by considering all odd indices 1� i � n, we see that we can choose
the pi for 0 � i < n so that .g@U C @Ug/.xi / D 0 for all 0 � i < n. Define
pn D 0. Then @Ug.xn/ D @U Œf .xn/�ui ;vi

D 0 by hypothesis, while g@U .xn/ D 0.
This establishes the @U –condition for all generators xi .

Interchanging the roles of U and V , an analogous argument (where we consider the case
when i is even) allows us to choose the qi such that .g@V C@V g/.xi /D 0 for all 0�
i � n. (To establish the @V –condition for x0 , we use the fact that @V Œf .x0/�u0;v0

D 0,
since Œf .x0/�u0;v0

represents a V –tower class in C by hypothesis.) By construction,
g is a graded, R–equivariant chain map which is clearly local. This completes the
proof.
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Now let C3 D C.c1; : : : ; cn3
/ be a standard complex, and let f W C3 ! C1 ˝ C2

be a local map. Our goal will be to construct a shifted map fU;m from shm C3 to
shm C1˝ shm C2 . We do this by first constructing an almost chain map between the
desired complexes, and then applying Lemma 7.17. The construction of fU;m (and
the verification that it is an almost chain map) will be the most technical part of the
argument and will occupy our attention for the next few pages.

Definition 7.18 Let fw; yi ; zig and fw0; y0i ; z
0
ig be the U –simplified bases for C3

and shU;m.C3/, respectively. Define

fU;m W shU;m.C3/! shU;m.C1/˝ shU;m.C2/

by first setting
fU;m.r

0/D �U;mf .r/

whenever r 0 2 fw0; z0ig. To define fU;m.y0i /, we proceed with some casework. Write
f .yi / in terms of the U –simplified basis for C1˝C2 , so that

f .yi /D
X
j2J1

�j C
X
j2J2

U pj �j C
X
j2J3

V qj �j C
X
j

Pj .U; V /�j CQ.U; V /!

for some pj ; qj 2 N , Pj ;Q 2 R and disjoint index sets J1 , J2 and J3 . We define
fU;m.y

0
i / based on the value of jc2i�1j. If jc2i�1j<m, let

fU;m.y
0
i /D �U;mf .yi /

D �U;m

� X
j2J1

�jC
X
j2J2

U pj �jC
X
j2J3

V qj �jC
X
j

Pj .U; V /�jCQ.U; V /!

�
as before. If jc2i�1j �m, let

fU;m.y
0
i /D �U;m

� X
j2J1

U x�.j /�j C
X
j2J2

U pjCx�.j /�j C
X
j2J3

V qj �j

C

X
j

Pj .U; V /�j CQ.U; V /!

�
;

where
x�.j /D

�
1 if ej <m;
0 if ej �m:

Observe that �.j /Cx�.j /D 1. In addition, note that if f .yi / is supported by �j , then
ej � jc2i�1j. This follows from the fact that @Uf .yi / D f .@yi / is in imU jc2i�1j ,
while @U �j D U ej�j . Hence, in particular, if jc2i�1j �m, then for any j 2 J1 , we
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must have x�.j /D0. (Thus we could have omitted the very first instance of U x�.j / in the
above definition of fU;m.y0i /, but we have left it in for future notational convenience.)

We also note that

f .U jc2i�1jzi /D f @U .yi /D @Uf .yi /D
X
j2J1

U ej�j C
X
j2J2

U pjCej�j ;

hence

(7-1) U jc2i�1j�U;mf .zi /D
X
j2J1

U ej �U;m.�j /C
X
j2J2

U pjCej �U;m.�j /:

Finally, note that

(7-2) �U;mf .r/� fU;msU;m.r/ mod U

for all r 2 fw; yi ; zig. Indeed, if r D w or zi , this congruence is an equality by
definition, whereas if rDyi , then the claim follows from the fact that (in the jc2i�1j�m
case) x�.j /D 0 for all j 2 J1 .

Lemma 7.19 Let f W C3! C1˝C2 be a local map. Then fU;m is an almost chain
map.

Proof Let fw; yi ; zig be the U –simplified basis for C3 D C.c1; : : : ; cn3
/. It suffices

to show

(7-3) @UfU;m.y
0
i /�

�
U jc2i�1j�U;mf .zi / mod U jc2i�1jC1 if jc2i�1j<m;
U jc2i�1jC1�U;mf .zi / mod U jc2i�1jC2 if jc2i�1j �m;

and that

(7-4) @V fU;m.r
0/� fU;m@V .r

0/ mod U

for all r 0 2 fw0; y0i ; z
0
ig. (The mod U in the above equation is not necessary, since our

complexes are reduced by assumption, but is included for emphasis.)

We first consider (7-3). Suppose jc2i�1j<m. Then

@UfU;m.y
0
i /D @U

� X
j2J1

�U;m.�j /C
X
j2J2

U pj �U;m.�j /

�
D

X
j2J1

U ejC�.j /�0j C
X
j2J2

U pjU ejC�.j /�0j

D

X
j2J1

U ejC�.j /�U;m.�j /C
X
j2J2

U pjU ejC�.j /�U;m.�j /

� U jc2i�1j�U;mf .zi / mod U jc2i�1jC1:
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Here, to obtain the last line, we compare the third line with (7-1), and use the fact that
if �.j /D 1, then ej �m> jc2i�1j.

Now suppose jc2i�1j �m. We have

@UfU;m.y
0
i /D @U

� X
j2J1

U x�.j /�U;m.�j /C
X
j2J2

U pjCx�.j /�U;m.�j /

�
D

X
j2J1

U ejC1�0j C
X
j2J2

U pjCx�.j /U ejC�.j /�0j

D

X
j2J1

U ejC1�U;m.�j /C
X
j2J2

U pjCejC1�U;m.�j /

D U jc2i�1jC1�U;mf .zi /;

where in the last line we have used (7-1).

We now consider (7-4). We have

@V fU;m.r
0/� @V �U;mf .r/ mod U

� �U;mf @V .r/ mod U

� fU;msU;m@V .r/ mod U

� fU;m@V .sU;m.r// mod U

� fU;m@V .r
0/ mod U

for any r 0 2 fw0; y0i ; z
0
ig (in fact, for any r 2 C3 ), where the first equivalence is by

definition, the second since @V commutes with �U;m and f , the third by (7-2) and the
fourth since @V and sU;m commute.

We now verify the remaining hypotheses of Lemma 7.17. In the proofs of the following
lemmas, we denote the standard preferred basis for shm.C3/ by fx0ig, and the U –
simplified basis by fw0; y0j ; z

0
j g as usual.

Lemma 7.20 With the notation as above , ŒfU;m.x00/�u00;v00 represents a V –tower class.

Proof Note that x00 is one of w0, y0j or z0j for some j. If x00 D w0 or z0j , then
fU;m.x

0
0/D �U;mf .x0/. The result now follows from the fact that f is local and �U;m

induces an ungraded isomorphism between .C1˝C2/=U and .shm.C1/˝shm.C2//=U.
If x00 D y

0
j , then fU;m.x00/� �U;mf .x0/ mod U, and the result follows as before.

Lemma 7.21 With the notation as above , @U ŒfU;m.x0n/�u0n;v0n D 0.
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Proof Recall that x0n D w
0. Therefore, we have fU;m.x0n/ D �U;mf .xn/. Since f

is an R–equivariant chain map and xn is a U –cycle, it follows that f .xn/ is also
a U –cycle. An examination of the definition shows that �U;m takes U –cycles to
U –cycles, so @UfU;m.x0n/D 0.

Putting everything together, we have:

Lemma 7.22 Let f W C3! C1˝C2 be a local map. Then there exists a local map

g W shU;m.C3/! shU;m.C1/˝ shU;m.C2/:

Proof By Lemma 7.19, fU;m is an almost chain map; by Lemma 7.20, ŒfU;m.x00/�u00;v00
represents a V –tower class; and by Lemma 7.21, @U ŒfU;m.x0n/�u0n;v0n D 0. Thus
Lemma 7.17 gives us the desired local map.

By reversing the roles of U and V , we may similarly define fV;m . We record the
analogous set of lemmas below:

Lemma 7.23 Let f W C3!C1˝C2 be a local map. With the notation as above , fV;m
is an almost chain map.

Proof The proof is identical to the proof of Lemma 7.19 after reversing the roles of
U and V .

Lemma 7.24 With the notation as above , ŒfV;m.x00/�u00;v00 represents a V –tower class.

Proof By definition, fV;m.x00/D �V;mf .x0/. Since f is local, f .x0/ represents a
V –tower class, and it is easy to check that �V;m takes V –tower classes to V –tower
classes.

Lemma 7.25 With the notation as above , @U ŒfV;m.x0n/�u0n;v0n D 0.

Proof We have
@UfV;m.x

0
n/D fV;m@U .x

0
n/D 0;

where the first equality follows by the analogue of (7-4).

Lemma 7.26 Let f W C3! C1˝C2 be a local map. Then there exists a local map

g W shV;m.C3/! shV;m.C1/˝ shV;m.C2/:
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Proof By Lemma 7.23, fV;m is an almost chain map; by Lemma 7.24, ŒfV;m.x00/�u00;v00
represents a V –tower class; and by Lemma 7.25, @U ŒfV;m.x0n/�u0n;v0n D 0. Thus
Lemma 7.17 gives the desired local map.

We now finally turn to the proof of Theorem 7.8:

Proof of Theorem 7.8 Suppose that C3�C1˝C2 . Let f W C3!C1˝C2 be a local
map. By Lemma 7.22, we have a local map

g W shU;m.C3/! shU;m.C1/˝ shU;m.C2/;

that is,

(7-5) shU;m.C3/� shU;m.C1/˝ shU;m.C2/:

Dually, we have C_3 � C
_
1 ˝C

_
2 , and, by the same argument,

(7-6) shU;m.C_3 /� shU;m.C_1 /˝ shU;m.C_2 /:

Dualizing (7-6), applying Lemma 7.10, and combining with (7-5), we obtain

shU;m.C1/˝ shU;m.C2/� shU;m.C3/� shU;m.C1/˝ shU;m.C2/:

Thus we have
shU;m.C3/� shU;m.C1/˝ shU;m.C2/:

The analogous argument replacing U with V (using Lemma 7.26 instead of Lemma
7.22) shows that

shV;m.shU;m.C3//� shV;m.shU;m.C1//˝ shV;m.shU;m.C2//:

Since shV;m ı shU;m D shm , it follows that

shm.C1˝C2/� shm.C1/˝ shm.C2/;

as desired.

7.3 Proof of Theorem 7.2

We now turn to the proof that the 'j are additive. By considering the composition

P ı shm W K! 2Z for m 2N;

we obtain infinitely many homomorphisms from K to 2Z. The proof of Theorem 7.2
relies on considering certain linear combinations of these homomorphisms.
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Proof of Theorem 7.2 Let C 2 K. Since all of our maps are local equivalence
invariants, we may assume that C D C.a1; : : : ; an/ is a standard complex. For any
m 2N , write

P.shm.C //D�2
X

1�j<m

j'j .C /� 2
X
j�m

.j C 1/'j .C /C

nX
iD0

sgn ai :

Here, we have simply used the definition of shm , together with the definition of 'j as
a count of standard complex parameters. This implies that

(7-7) P.shm.C //�P.C/D�2
X
j�m

'j .C /:

We now use (strong, downward) induction to show that 'j is a homomorphism for all
j 2N . Fix C1; C2 2 K, where C1 D C.a1; : : : ; an1

/ and C2 D C.b1; : : : ; bn2
/. For

N >maxfai ; bj g;

we have 'N .C1/D 'N .C2/D 'N .C1˝C2/D 0. This establishes the base case. Thus,
assume that 'j is a homomorphism for all j �M C 1. We will show that 'M is also
a homomorphism. Indeed,

�2
X
j�M

.'j .C1/C'j .C2//D P.shM .C1//CP.shM .C2//�P.C1/�P.C2/

D P.shM .C1˝C2//�P.C1˝C2/

D�2
X
j�M

'j .C1˝C2/;

where the first and third equalities follow from (7-7), and the second equality follows
from the fact that P and shM are homomorphisms. By the inductive hypothesis,
we have that 'j is a homomorphism for all j � M C 1. It follows that 'M is a
homomorphism as well. This completes the proof.

7.4 HFK� and 'j

We are now ready to prove Proposition 7.27. Recall that

N.K/D

�
0 if 'j .K/D 0 for all j;
maxfj j 'j .K/¤ 0g otherwise:

Proposition 7.27 If UM �TorsU HFK�.K/D 0, then 'j .K/D 0 for all j >M. In
particular, N.K/�M.
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Proof Let C D C.a1; : : : ; an/ be the standard complex representative of HFK�.K/
given by Theorem 6.1 and Corollary 6.2. Recall that H�.CFKR.K/=V /ŠHFK�.K/.
Then UM �TorsU HFK�.K/D 0 implies UM �TorsU H�.C=V /D 0, which in turn
implies that ai �M for i odd. The result now follows from the definition of 'j .

8 Thin knots and L–space knots

In this section, we prove Propositions 8.1 and 8.2.

Proposition 8.1 If K is homologically thin, then

'j .K/D

�
�.K/ if j D 1;
0 otherwise.

Proof By [25, Theorem 4], it follows that if K is a thin knot, then CFKR.K/ is
locally equivalent to the standard complex C.a1; : : : ; an/ where n D 2j�.K/j and
ai D sgn �.K/ for i odd and ai D �sgn �.K/ for i even. That is, the ai are an
alternating sequence of ˙1, starting with C1 if �.K/ > 0 and �1 if �.K/ < 0. The
result follows.

Proposition 8.2 Let K be an L–space knot with Alexander polynomial

�K.t/D

nX
iD0

.�1/i tbi ;

where .bi /niD0 is a decreasing sequence of integers and n is even. Define

ci D b2i�2� b2i�1 for 1� i � 1
2
n:

Then

'j .C /D #fci j ci D j g:

Proof By [22, Theorem 1.2] (cf [18, Theorem 2.10]), we have that if K is an L–space
knot, then CFKR.K/ is the standard complex

C.c1;�cn; c2;�cn�1; c3;�cn�2; : : : ; cn;�c1/:

The result now follows from the definition of 'j .
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9 An infinite-rank summand of topologically slice knots

The goal of this section is to prove Theorem 1.9. Let D be the (untwisted, positively
clasped) Whitehead double of the right-handed trefoil. Let Kn DDn;nC1 #�Tn;nC1 .
The knots Kn are topologically slice and will generate a Z1–summand of CTS . Indeed,
the knot D has Alexander polynomial one, and hence is topologically slice. Thus, the
cable Dn;nC1 is topologically concordant to the underlying pattern torus knot Tn;nC1 ,
and so Dn;nC1 #�Tn;nC1 is topologically slice.

Proposition 9.1 Let Dn;nC1 denote the .n; nC 1/ cable of the (untwisted , positively
clasped ) Whitehead double of the right-handed trefoil. Then

'j .Dn;nC1/D

8<:
n if j D 1;
1 if 1 < j < n� 1 or j D n;
0 if j D n� 1 > 1 or j > n:

Proof By [8, Lemma 6.12], the knot D is "–equivalent to T2;3 . Thus, by Proposition 4
of [8], we may consider CFKR.T2;3In;nC1/, where T2;3In;nC1 denotes the .n; nC1/–
cable of T2;3 , instead of the locally equivalent CFKR.Dn;nC1/. The advantage of
this approach is that T2;3In;nC1 is an L–space knot [4, Theorem 1.10] (cf [7]), and so
CFKR.T2;3In;nC1/ is a standard complex and completely determined by its Alexander
polynomial [22, Theorem 1.2].

It follows from [8, Lemma 6.7] (also see the proof of [5, Proposition 6.1]) that

�Tn;nC1
.t/D

n�1X
iD0

t in� t

n�2X
iD0

t i.nC1/:

Recall that the Alexander polynomial of a cable knot is determined by

�Kp;q
.t/D�K.t

p/ ��Tp;q
.t/:

This gives

�T2;3In;nC1
.t/D�T2;3

.tn/ ��Tn;nC1
.t/D .t2n� tnC 1/ �

� n�1X
iD0

t in� t

n�2X
iD0

t i.nC1/
�
:

For small values of n, we have

�T2;3I2;3
.t/D t6�t5Ct3�tC1; �T2;3I3;4

.t/D t12�t11Ct8�t7Ct6�t5Ct4�tC1:
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For n� 4, we rearrange and simplify as follows. We first observe the telescoping sum

.�tnC 1/ �

� n�1X
iD0

t in
�
D 1� tn

2

:

We also have

.�tnC 1/ �

�
�t

n�2X
iD0

t i.nC1/
�
D�t C

n�2X
jD1

.tj.nC1/� tj.nC1/C1/C t .n�1/.nC1/

and

.t2n/ �

� n�1X
iD0

t in� t

n�2X
iD0

t i.nC1/
�
D

nC1X
iD2

t in�

nX
jD2

tj.nC1/�1:

Putting the two simplifications together, we get

�T2;3In;nC1
.t/D 1� t C tnC1� tnC2C

n�2X
jD2

.�tj.nC1/�1C tj.nC1/� tj.nC1/C1/

C

nC1X
iD2

t in� tn
2

� t .n�1/.nC1/�1� tn.nC1/�1C t .n�1/.nC1/

D 1� t C tnC1� tnC2C

n�2X
jD2

.tjn� tjnCj�1C tjnCj � tjnCjC1/

C tn
2�n
� tn

2�2
C tn

2�1
� tn

2Cn�1
C tn

2Cn:

In particular, the number of terms in the Alexander polynomial is 4 � .n� 1/C 1.

Thus, we have

�T2;3In;nC1
.t/D

4.n�1/X
iD0

.�1/i tbi ;

where .bi /
4.n�1/
iD0 is the decreasing sequence of integers found above. Defining

ci D b2i�2� b2i�1 for 1� i � 2.n� 1/;

one readily checks that, for 1� i � 2.n� 1/,

ci .T2;3In;nC1/D

8<:
1
2
.i � 1/ if i is odd; i > 1;
n if i D 2.n� 1/:
1 otherwise.
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Since T2;3In;nC1 is an L–space knot, by Proposition 8.2 we have 'j .T2;3In;nC1/ D
#fci j ci D j g, and the calculation of 'j .Dn;nC1/ (which equals 'j .T2;3In;nC1/)
follows immediately.

We now prove Theorem 1.9 to produce an infinite-rank summand of CTS .

Proof of Theorem 1.9 Recall Example 1.4, which states that the torus knot Tn;nC1
has

'j .Tn;nC1/D

�
1 if j D 1; 2; : : : ; n� 1;
0 otherwise.

By Proposition 9.1 and the fact that 'j is a homomorphism (Theorem 7.2), we have
that

'n.Kn/D 'n.Dn;nC1/�'n.Tn;nC1/D 1

and 'j .Kn/ D 0 if j > n. The theorem now follows from a straightforward linear
algebra argument; see for example [18, Lemma 6.4].

10 Concordance genus and concordance unknotting number

In this section, we discuss applications of our homomorphisms to concordance genus
and concordance unknotting number.

10.1 Concordance genus

Recall that knot Floer homology detects genus [20]. Using the conventions and notation
from Section 2, we have that

g.K/D 1
2

maxfA.Œx�/�A.Œy�/ j Œx�; Œy�¤ 0 2H�.CFKR.K/=.U; V //g:

Proof of Theorem 1.11(1) Suppose that K 0 is concordant to K. Let N DN.K/D
N.K 0/Dmaxfj j 'j .K/¤ 0g. By Theorem 6.1 and Corollary 6.2, we have that there
exist Œx�; Œy�¤ 0 2H�.CFKR.K

0/=.U; V // with gr.x/� gr.y/D .1� 2N; 1/. Then

jA.x/�A.y/j DN;

implying that g.K 0/� 1
2
N . Thus, gc.K/� 1

2
N, as desired.

10.2 Concordance unknotting number

We recall the following definitions and results from [1]. (The results are originally
stated over the ring F ŒU; V �; quotienting by UV yields the results as stated here.)
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Let u0.K/ be the least integer m such that there exist grading-homogenous R–
equivariant chain maps

f W CFKR.K/!R and g WR! CFKR.K/

such that g ı f is homotopic to multiplication by Um and f ı g is multiplication
by Um .

Theorem 10.1 [1, Theorem 1.1] The integer u0.K/ is a lower bound for the unknot-
ting number u.K/.

Proof of Theorem 1.11(2) Suppose that K 0 is concordant to K. Let N DN.K/D
N.K 0/Dmaxfj j 'j .K 0/¤ 0g. This implies

UN�1 TorsU H�.CFKR.K
0/=V /¤ 0;

where TorsU M denotes the U –torsion submodule of an F ŒU �–module M.

Let u0 D u0.K 0/. Then there exist grading-homogenous R–equivariant chain maps

f W CFKR.K
0/!R and g WR! CFKR.K

0/

such that g ı f is homotopic to multiplication by U u
0

and f ı g is multiplication
by U u

0

. Now quotient by V . Since g ı f factors through R, it follows that U u
0

must
annihilate TorsU H�.CFKR.K

0/=V /, ie u0 � N. This implies that uc.K/ � N, as
desired.

Proof of Theorem 1.12 Let Kn denote Dn;1 #�Dn�1;1 for n 2N , where, as above,
D denotes the positively clasped, untwisted Whitehead double of the right-handed
trefoil. The knots Kn are topologically slice, since Dm;1 is. These knots are used
in [10, Theorem 3]. In particular, by [10, Lemma 3.1], we have that g4.Kn/D 1 for
all n. By [10, Lemma 3.3], we have that a1.Dn;1/D 1 and a2.Dn;1/D�n. (There
is a difference in sign conventions between a2 in [10] and the present paper.) By [10,
Lemma 3.2], we have that ja2i .Dn;1/j � n for all i , with equality if and only if i D 1
by [10, Lemma 3.3]. It follows that 'n.Dn;1/ D 1 and 'i .Dn;1/ D 0 for all i > n.
Hence N.Kn/D n, and, by Theorem 1.11(2), we have that uc.Kn/� n.

11 Further remarks

We conclude with some remarks on knot-like complexes.
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11.1 Realizability

The question of which knot-like complexes can be realized by knots in S3 is difficult.
See [6; 14] for some restrictions. Note that their restrictions apply to the homotopy
type, rather than local equivalence type, of knot-like complexes. For example, the
standard complex C.2;�2/ is not realizable [6, Theorem 7] up to homotopy, but is
realizable up to local equivalence [11, Lemma 2.1].

Instead, we turn to the following purely algebraic question:

Question 11.1 Which knot-like complexes are the mod UV reduction of chain com-
plexes over F ŒU; V �?

Indeed, in Section 2, we defined the complex CFKR.K/ over the ring R, but the
definition works equally well over F ŒU; V �. Thus, in order for a knot-like complex C
to be realizable as coming from a knot K�S3 up to homotopy (resp. local) equivalence,
it is necessary for C to be homotopy (resp. locally) equivalent to a complex that is the
mod UV reduction of a complex over F ŒU; V �.

Naively, one may hope to “undo” modding out by UV . That is, given a standard complex
C.a1; : : : ; an/D .Rhxi i; @/, one may hope to define a chain complex over F ŒU; V � by
C 0 D .F ŒU; V �hxi i; @0/, where @0 is obtained by extending @ linearly with respect to
F ŒU; V �. However, in general, @0 2 will not be zero. As the following examples show,
in some cases, the failure of @0 2 D 0 can be remedied, while in other cases, it is fatal.

Example 11.2 We apply the above procedure to the standard complex

C.1;�2;�1; 1; 2;�1/

from Example 4.8. Let C 0 be generated over F ŒU; V � by

x0; x1; x2; x3; x4; x5; x6

with nonzero differentials

@0x1 D Ux0CV
2x2; @0x2 D Ux3; @0x4 D Vx3; @0x5 D U

2x4CVx6:

Then @0 2x1DUV 2x3¤0 and @0 2x5DU 2Vx3¤0. However, if we instead endow C 0

with the differentials

@0x1 D Ux0CV
2x2CUVx4; @0x2 D Ux3;

@0x4 D Vx3; @0x5 D UVx2CU
2x4CVx6;

then C 0 becomes a chain complex, as desired. Note that this change to the differential
is equivalent to adding diagonals arrow from x1 to x4 and from x5 to x2 in Figure 5.

Geometry & Topology, Volume 25 (2021)



336 Irving Dai, Jennifer Hom, Matthew Stoffregen and Linh Truong

Example 11.3 We attempt to apply the above procedure to the standard complex
C.1; 1/, generated by x0 , x1 and x2 with

@x0 D 0; @x1 D Ux0; @x2 D Vx1:

Then @0x2 D UVx0 ¤ 0 and there is no way to modify @0 so that is squares to zero
and reduces mod UV to @.

More generally, one can show that any standard complex beginning with the parameters
a1 D 1 and a2 > 0 cannot be realized as the mod UV reduction of a chain complex
over F ŒU; V �, even up to local equivalence.

11.2 Group structure of K

Theorem 6.1 gives us a complete description of K as a set; namely, the elements of K
are in bijection with finite sequences of nonzero integers. A natural question is the
following:

Question 11.4 Is there is an explicit description of the group structure on K?

In many simple cases, the group operation in K simply concatenates or merges the
sequences associated to the standard representatives.

Example 11.5 It follows from [25, Theorem 4] that

C.1;�1/˝C.1;�1/� C.1;�1; 1;�1/:

More generally,

C.1;�1; 1;�1; : : : ; 1;�1/˝C.1;�1/� C.1;�1; 1;�1; : : : ; 1;�1/;

where the length of the right-hand side is the sum of the lengths of the factors on the
left-hand side.

Example 11.6 By [11, Lemma 2.1], we have that

C.1;�3; 3;�1/˝C.2;�2/� C.1;�3; 2;�2; 3;�1/:

However, in general, the group operation in K is more complicated:

Example 11.7 One can show that

C.2;�2/˝C.1;�1/� C.1;�1; 2; 1;�1;�2; 1;�1/:
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Despite the seemingly complicated product structure exhibited in Example 11.7, the
standard complex representative of a product of two standard complexes is highly
constrained by the fact that 'j is a homomorphism for each j 2N .
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