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More concordance homomorphisms
from knot Floer homology

IRVING DAI
JENNIFER HOM
MATTHEW STOFFREGEN
LINH TRUONG

We define an infinite family of linearly independent, integer-valued smooth concor-
dance homomorphisms. Our homomorphisms are explicitly computable and rely on
local equivalence classes of knot Floer complexes over the ring F[U, V]/(UV = 0).
We compare our invariants to other concordance homomorphisms coming from knot
Floer homology, and discuss applications to topologically slice knots, concordance
genus and concordance unknotting number.
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1 Introduction

Beginning with the t—invariant [19], the knot Floer homology package of Ozsvéth and
Szabd [21] and independently J Rasmussen [26] has had numerous applications to the
study of smooth knot concordance. See Hom [12] for a survey of such applications.
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The goal of this paper is to add to the (already infinite) list of explicitly computable
homomorphisms from the smooth knot concordance group C to Z:

Theorem 1.1 For each j € N, there is a surjective homomorphism

i C— 1.

Moreover,
o0 o0
Dorc- Dz
j =1 J =1
is surjective. In particular, the ¢; are linearly independent.

Our homomorphisms are similar in spirit to Ozsvath, Stipsicz and Szabé’s Y —invariant,
which gives a homomorphism

Yk : C — Cont(]0,2]),

where Cont([0,2]) denotes the vector space of piecewise-linear functions on [0, 2].
Indeed, T is defined using #—modified knot Floer homology and can be thought
of as a generalization of t to the #—modified knot Floer homology setting. A slight
repackaging (by considering the slopes of Yk (¢)) yields a Z—valued homomorphism for
each rational value of ¢. Similarly, our invariants can be thought of as a generalization
of 7 to a shifted version of knot Floer homology. The homomorphisms ¢; are then
certain linear combinations of 7 associated to shifted knot Floer homology. Just as ¢
can be recovered from Y (¢), it can also be recovered from g; :

Proposition 7.6 Let K be a knot in S3. Then we have the following equality relating
the Ozsvith-Szabé t —invariant with ¢; :

T(K)=Y_ jo(K).

JEN

Both Y(¢) and ¢; factor through the local equivalence group of knot Floer com-
plexes (see Zemke [27, Theorem 1.5], forgetting the involutive part; equivalently,
stable equivalence from [12, Theorem 1]; equivalently, v —equivalence of Kim and
Park [13]). Following [27, Section 3], the knot Floer complex can be viewed as a
module over F[U, V]; local equivalence is then an equivalence relation between certain
such complexes. In our setting, the invariants ¢; actually factor through the local
equivalence group defined over the ring F[U, V]/(UV = 0), which is the same as the
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More concordance homomorphisms from knot Floer homology 277

group constructed using e—equivalence in Hom [8, Definition 1]. The advantage of
quotienting by UV = 0 is that the resulting local equivalence group is totally ordered;
this total order is the same as the order induced by ¢; see Hom [9]. Using this order,
we have the following characterization result:

Theorem 1.2 Every knot Floer complex coming from a knot in S3 is locally equiva-
lent mod UV to a standard complex (defined in Section 4.1) and can be completely
described by a finite (symmetric) sequence of nonzero integers (a; 1.22 , - Moreover, if
we endow the integers with the unusual order

—1<!—2<!—3<!---<!O<!---<!3<!2<!1,

then local equivalence classes mod UV are ordered lexicographically with respect to
their standard representatives.

1.1 Properties of ¢ ;

The homomorphisms ¢; have many properties in common with Y': both invariants
take a particularly simple form on homologically thin knots and L—space knots. We
use the convention that K is an L—space knot if K admits a positive L—space surgery.

Proposition 8.1 If K is homologically thin, then

(K) if j =1,
0 otherwise.

@; (K) ={

Proposition 8.2 Let K be an L—space knot with Alexander polynomial

n
Ak(D) =Y (=1,
i=0
where (b;)?_, is a decreasing sequence of integers and n is even. Define
¢i =byi_2—byi_1 forl1<ic< %I’l.

Then

@i (C)=#ci|ci=J}
Example 1.3 Consider the torus knot 73 4. We have that Az, , (1) = 10— 413 —t+1,
and so, by Proposition 8.2, we have
1 ifj=1,2,
(T —
¢j(T3.4) 0 otherwise.

See Figure 1 for a visual depiction of CFK* (T3 4).
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Figure 1: The knot Floer complex of 73 4.

Example 1.4 More generally, the torus knot 7}, ,+1 has Alexander polynomial

n—1 n—2
ATn,n+l (l‘) — Z l‘ni _ Z tni+i+1,
i=0 i=0

which yields (¢;)?~} = (1,2,...,n—1). Thus

1 ifj=12,...,n—1,
(T, —
¢ (Tnn+1) {O otherwise.
Remark 1.5 If K is an L—space knot, then, by Proposition 8.2, ¢;(K) > 0 for
all j. This provides an easy (although fairly weak) method for showing that a linear
combination of knots is not concordant to any L—space knot.

Remark 1.6 In Propositions 8.1 and 8.2 (as well as in the above examples), ¢; is
the (signed) count of the number of horizontal arrows of length j. We will see in
Definition 7.1 that ¢; is equal to the signed count of horizontal arrows in the standard
complex representative of K (in the sense of Theorem 1.2).

While Y () and ¢; have many properties in common, there do exist knots K for which
Yk (t) =0 while ¢; (K) is nontrivial. Let K, ; denote the (p, g)—cable of K, where
p denotes the longitudinal winding.

Proposition 1.7 Let K = T2,5 #—T4,5 #T2,3;2,5. Then TK([) = 0, while

2 if j =1,
i (K)=1-1 if j=2,
0 otherwise.
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Figure 2: The complex from Ozsvith, Stipsicz and Szabé [18, Figure 6].

Proof The fact that Yg (¢) = 0 follows from the proof of Hom [11, Theorem 2]. The
computation of ¢; (K follows from Proposition 8.2 and the fact that the ¢; are homo-
morphisms. (Note that T3 3.5 5 is an L—space knot; see the proof of [11, Lemma 2.1]
for the relevant Alexander polynomial.) |

Conversely, while we do not have an explicit topological example, there is no algebraic
obstruction to the existence of knots with ¢; (K) trivial and Yk (7) nontrivial.

Proposition 1.8 Suppose there exists a knot K whose knot Floer complex is given by
Figure 2. Then Yk (t) is nontrivial, while ¢; (K) = 0 for all j.

Proof The computation of Tx(¢) is given in Proposition 9.4 of Ozsvith, Stipsicz
and Szabé [18]. Since diagonal arrows vanish modulo UV, it is easily checked that
the above complex is trivial in local equivalence (see Section 3). This implies that
@;j(K) =0 forall j. |

1.2 Topological applications of ¢ ;

The homomorphisms ¢; have applications to Crs, the subgroup of C generated by
topologically slice knots. (That is, Crs is generated by knots bounding locally flat disks
in B*.) Let D denote the positively clasped, untwisted Whitehead double of 7> 3,
and let K, = Dy n1#—Tyunt1.

Theorem 1.9 Consider the topologically slice knots K, described above. For each
index n, we have ¢,(K,) =1 and ¢;(K,) = 0 for all j > n. In particular, the
homomorphisms

o0 o0
D~ D2
j=1 j=1

map the span of the K,, isomorphically onto @;";1 Z.
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Remark 1.10 The knots K, are the same knots as considered in [9]. However, there
is an error in the proof of the main result of [9]. Fortunately, the above theorem shows
that the knots K, do in fact generate an infinite-rank summand of Cts. Moreover, they
show this in a way that preserves the spirit of [9], namely by considering knot Floer
complexes modulo ¢—equivalence and extracting numerical invariants based on the
lengths of vertical and horizontal arrows.

We also have applications of ¢; to concordance genus and concordance unknotting
number. Recall that the concordance genus of K is defined to be
gc(K) =min{g(K’) | K and K’ are smoothly concordant},
where g(K’) denotes the Seifert genus of K'. Note that
ge(K) = ga(K),

where g4(K) denotes the smooth four-ball genus of K. The concordance unknotting
number of K is defined to be

uc(K) =min{u(K’) | K and K’ are smoothly concordant},

where u(K’) denotes the unknotting number of K’. Note that, again,

uc(K) > ga(K).

Since g4(K) > |t(K)|, the knot Floer homology of K provides lower bounds on both
gc(K) and u.(K). Here, we show that the invariants ¢; bound concordance genus
and concordance unknotting number as follows:

Theorem 1.11 Let
N(K) = 0 . if(pj(l?)=0forall Js
max{j | ¢;(K) # 0} otherwise.
Then

(1) ge(K)=iN(K), and
(2) uc(K)=N(K).
Let Torsy M denotes the U —torsion submodule of an F[U]-module M. The quantity

N(K) is bounded above by the maximal order of an element in Torsy HFK™ (K), as
follows:
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Proposition 7.27 If UM - Torsy HFK™(K) = 0, then ¢j(K)=0forall j > M. In
particular, N(K) < M.

The bounds in Theorem 1.11(2) are sharp (eg for the trefoil); it is unknown to the
authors whether the bound in Theorem 1.11(1) is sharp. Note that in many cases,
the bounds are rather weak; for example, N(7, ,+1) =n — 1, while g4(Ty n+1) =
(Tynt1) = %n(n —1). The proof of the concordance genus bound in Theorem 1.11(1)
is similar to the proof of Hom [10, Theorem 2], and indeed is strong enough to recover
[10, Theorem 3]. The proof of Theorem 1.11(2) relies on unknotting number bounds
from Alishahi and Eftekhary [1].

We have the following application of Theorem 1.11(2):

Theorem 1.12 There exist topologically slice knots {K, ;2 such that g4(K;,) =1
for all n, while u.(K,) >n.

The knots used to prove Theorem 1.12 are the same knots appearing in [10, Theorem 3].
In [17], Owens and Strle give examples of knots for which u.(K)—g4(K) =1. As far
as the authors know, Theorem 1.12 gives the first known examples of knots for which
U (K)— g4(K) is arbitrarily large.

1.3 Remarks

We conclude with a few remarks relating the present work with other results. In [24],
Ozsvath and Szabd define a bordered-algebraic knot invariant which is isomorphic to the
knot Floer complex over the ring F[U, V]/(UV = 0). Their bordered-algebraic knot
invariant is particularly amenable to computer computation. It should thus be possible
to implement an effective computer program to calculate the homomorphisms ¢; .

Theorem 6.1 is closely related to horizontally and vertically simplified bases for the knot
Floer complex, defined in Lipshitz, Ozsvath and Thurston [15, Section 11.5]. Indeed,
Corollary 6.2 states every knot Floer complex over F[U, V]/(UV = 0) contains a
direct summand with a simultaneously vertically and horizontally simplified basis, and
that this summand supports HF®(S3). This is closely related to the notion of loop-type
modules, defined in Hanselman and Watson [3, Definition 3.1]. (Note that over the
ring F[U, V], not every complex admits a simultaneously vertically and horizontally
simplified basis; see [9, Figure 3].)

Lastly, we point out that the techniques in this paper are the knot Floer analogues of the
techniques used in Dai, Hom, Stoffregen and Truong [2] to study the three-dimensional
homology cobordism group.
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Organization

In Section 2, we briefly recall the definition of the knot Floer complex, working over
the ring R = F[U, V]/(UV = 0). In Section 3, we introduce the notion of a knot-
like complex, and define the local equivalence group £ of knot-like complexes. In
Section 4, we define a particularly simple family of knot-like complexes, which we
call standard complexes. We use these to construct a sequence of numerical invariants
associated to any knot-like complex in Section 5. This is used in Section 6 to show that
every knot-like complex is locally equivalent to a standard complex. In Section 7, we
apply our characterization of knot-like complexes to define the homomorphisms ¢; .
In Section 8, we prove Propositions 8.1 and 8.2 (computing ¢; for thin and L-space
knots). In Section 9, we prove Theorem 1.9 (on an infinite-rank summand of Crg), and
in Section 10, we prove Theorems 1.11 and 1.12 (on applications of ¢; to g, and u.).
Finally, we conclude with some further remarks and open questions in Section 11.

Throughout, we work over F = Z /27 . We use the convention that N = Z~.

Acknowledgements

We would like to thank Akram Alishahi, Tye Lidman, Chuck Livingston, Brendan
Owens and Ian Zemke for helpful conversations. We would also like to thank Ryan
Stees and Weizhe Shen for helpful comments on an earlier version of this paper. Dai
was partially supported by NSF grant DGE-1148900. Hom was partially supported by
NSF grant DMS-1552285 and a Sloan Research Fellowship. Stoffregen was partially
supported by NSF grant DMS-1702532. Truong was partially supported by NSF grant
DMS-1606451.

2 Background on knot Floer homology

In this section, we give a brief overview of knot Floer homology, primarily to establish
notation. We assume that the reader is familiar with knot Floer homology as in [21; 26];
see [16; 12] for survey articles on this subject. Our conventions mostly follow those
in [28]; see in particular [28, Section 1.5].

Definition 2.1 Let R = F[U,V]/(UV = 0), endowed with a relative bigrading
gr = (gry, gry), where gr(U) = (—=2,0) and gr(V) = (0,—2). We call gr;; the
U —grading and gry, the V —grading.
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Let H = (¥,a,B,w,z) be a doubly pointed Heegaard diagram compatible with
(S3,K). Define CFK%(#) to be the chain complex freely generated over R by
x € Ty N Ty with differential

ox = Z Z Unw(¢)Vnz(¢)y’

YET«NTg pema(x,y)
w(g)=1

where, as usual, 72(x, y) denotes homotopy classes of disks in Sym# (X) connecting
x to y, and u(¢) denotes the Maslov index of ¢. The chain complex CFKx(#)
comes equipped with a relative bigrading gr = (gry;, gry,), defined as follows. Given
x,y € T NTg and ¢ € m2(x, y), let the relative grading shifts be given by

gry(x,y) = pn(P) —2ny(9), gry(x,y) = u(e) —2n:(4).

It follows that the differential has degree (—1, —1). (In the literature, gry; is usually
referred to as Maslov grading.) We define a relative Alexander grading by

A(x,y) = L(gry(x. y) —gry (x. y)) = nz(¢) —nw ().

Note that the variable U lowers gry; by 2, preserves gry, and lowers A by 1. The
variable V' preserves gry;, lowers gry, by 2 and increases A by 1. The differential
preserves the Alexander grading.

Up to chain homotopy over R, the chain complex CFK (#) is an invariant of K C §3,
and so we will typically write CFK% (K) rather than CFK7 (#). We now recall some
facts from [21]. The complex CFK%(K) has the following symmetry property. Let
CFKx (K) denote the complex obtained by interchanging the roles of U and V. (Note
that we thus also interchange the values of gry; and gry .) Then

CFKx(K) ~ CFK% (K).

The knot Floer complex behaves nicely with respect to connected sums. Indeed, we
have that
CFKR(Kl # Kz) =~ CFKR(Kl) Rr CFKR(Kz)

We also have that
CFKz(—K) ~ CFK%(K)",

where CFKx (K)Y = Homy (CFK%(K),R).

Remark 2.2 Since the differential preserves the Alexander grading, the complex
CFKy splits— as a chain complex over F, but not as an R—module — as a direct sum
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over the Alexander grading:

CFKr(K) = @) CFKr (K. ).
SEL
where
U:CFKyr(K,s) > CFKgr(K,s—1), V:CFKgr(K,s)— CFKgr(K,s+1).

The chain complex CFK% (K, s) is isomorphic to the complex Ay from [23]; that is,
H.(CFKx (K, s)) is isomorphic (as a relatively graded vector space) to IfF(S ]%, (K), ss),
the Heegaard Floer homology of large surgery on K in the spin® structure corresponding
to s.

The version of knot Floer homology we have constructed here follows slightly different
conventions than the usual definition in eg [21]. For the convenience of the reader, we
recall some of the most salient features of the standard knot Floer homology package,
and explicitly translate them into our setting. For further discussion, see Section 1.5
of [28].

First, consider the [F —vector space I-fﬁ((K ), which is defined by not allowing holo-
morphic disks in the definition of 9 to cross either the w or the z basepoint. In our
context, this is isomorphic to H«(CFK%(K)/(U,V)), where (U, V') denotes the ideal
generated by U and V. The Alexander grading is given by A = %(grU —gry) and the
Maslov grading is given by M = gry;.

Next, consider the IF[U]-module HFK™ (K), which is defined by taking the homology
of the associated graded complex of CFK™ (K) with respect to the Alexander filtration.
This is equivalent to allowing holomorphic disks to cross the w but not the z basepoint.
In our context, this yields H«(CFKxr(K)/V'), where again the Alexander grading is
given by A = %(grU —gry) and the Maslov grading is given by M = gry;. Itis a
standard fact that for knots in S3, the F[U]-module HFK™ (K) = H4(CFKx(K)/V)
has a single U —nontorsion tower.! By symmetry, it follows that H,(CFKx(K)/U)
has a single V —nontorsion tower.

We now claim that these two nontorsion towers satisfy the following grading normal-
izations:

(1) The U —gradings of all V —nontorsion classes in H«(CFKx(K)/U) are zero.
(2) The V —gradings of all U —nontorsion classes in Hx(CFKx(K)/V) are zero.

1By this, we mean that Hy(CFK® (K)/V)/U—torsion 2 F[U]. Note, however, that this copy of F[U]
is not required to be generated by an element with gry; = 0.
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Note that all V —nontorsion classes in Hx(CFKx(K)/U) have the same U —grading,
since multiplication by V' does not change gry; . Similarly, all U —nontorsion classes in
H.(CFK%(K)/V) have the same V —grading. To see the claim, consider the complex
CFKz(K) and set U =0 and V = 1. This means that we allow holomorphic disks to
cross the z but not the w basepoint, and we disregard the Alexander filtration. This
yields a complex whose homology computes }/I\F(S 3) > T, which is concentrated in
Maslov grading zero. Using the fact that the Maslov grading is equal to gr;;, some
thought shows that the V' —nontorsion tower of H.(CFK%(K)/U) is thus generated
by an element with gr;; = 0. By symmetry, we likewise have that any U —nontorsion
element in Hy«(CFKx(K)/V) has gry =0.

Finally, recall that the concordance invariant t(K) is defined to be the negative
of the maximal Alexander grading of any U —nontorsion element in HFK™ (K) =
H.(CFKz(K)/V). By the previous two paragraphs, this means that

7(K) = —max{3 gry (x) | x € Hy(CFKg(K)/ V) is not U~torsion}.
By symmetry, we conclude that, similarly,
7(K) = —max{% gry(x) | x € H«(CFK%(K)/U) is not V—torsion}.

The reader should think of the complexes CFK% (K)/U and CFKz(K)/V as delet-
ing horizontal and vertical arrows (respectively) in the pictorial representation of
CFKr . It may be helpful to keep in mind Figure 1. There, the V' —nontorsion tower of
H.(CFKz(K)/U) is generated by the top-left basis element, while the U —nontorsion
tower of H«(CFKRr(K)/V) is generated by the bottom-right basis element.

The following definition is particularly useful in applications of knot Floer homology
to concordance:

Definition 2.3 Let K; and K5 be knots in S3. We say CFK (K1) and CFKx (K>)
are locally equivalent if there exist absolutely U —graded, absolutely V —graded R—
equivariant chain maps

f:CFKg(K) — CFKgr(K2) and g:CFKg(K2)— CFKz(K1)

such that f and g induce isomorphisms on H.(CFKx(K;)/U)/V—torsion. Roughly
speaking, this means that f maps the top of the V —tower in H,(CFKz(K;)/U) to
the top of the V —tower in H4«(CFKy(K>)/U), and vice versa for g.

Local equivalence is considered in the involutive setting in [27, Section 2.3].

Geometry € Topology, Volume 25 (2021)



286 Irving Dai, Jennifer Hom, Matthew Stoffregen and Linh Truong

Remark 2.4 CFKg(K) is locally equivalent to CFK%(O), where O denotes the
unknot, if and only if CFKz(K) ~ CFK(O) & A, where A is a chain complex
over R with UV H,(A) = V"1 H,(A) = 0. It is straightforward to verify that local
equivalence over R and e—equivalence (see [9, Section 2]) are the same (after translating
between R—modules and bifiltered chain complexes over F[U, U™1]).

Theorem 2.5 [27, Theorem 1.5; 8, Theorem 2] If K; and K, are concordant, then
CFKx (K1) and CFK®(K>) are locally equivalent.

Theorem 2.5 follows from [27, Theorem 1.5] by forgetting the involutive component
and quotienting by UV, or from [8, Theorem 2] by translating from e—equivalence
and bifiltered chain complexes to local equivalence and R-modules.

3 Knot-like complexes and their properties

In this section, we consider abstract R—complexes satisfying many of the same formal
properties as CFKx(K). We show that modulo local equivalence, the set of such
complexes forms a group, with the operation induced by tensor product. Moreover, we
show that this group is totally ordered.

3.1 Knot-like complexes

We begin by defining knot-like complexes, so named because they are R—complexes
satisfying many of the properties of CFKz from the previous section.

Definition 3.1 A knot-like complex C is a free, finitely generated, bigraded chain
complex over R such that:

(1) H«(C/U) has a single V —nontorsion tower, lying in gr;; = 0.
(2) H«(C/V) has a single U —nontorsion tower, lying in gryy = 0.

Again, we mean by this that H.(C/U)/V —torsion is isomorphic to F[V], and that all
of the V —nontorsion elements in H4(C/U) have U —grading zero. A similar statement
holds for H,(C/V). The differential 9 is required to have degree (—1,—1).

Remark 3.2 We do not in general require any symmetry with respect to interchanging
U and V.
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Definition 3.3 Let C; and C, be two knot-like complexes. We say that C; < C; if
there exists an absolutely U —graded, relatively V —graded R—equivariant chain map

f2C1—>C2

such that f induces an isomorphism on H«(C;/U)/V —torsion. We call f a local

map. We say that two knot-like complexes Cy and C, are locally equivalent, denoted
by Ci~Cy,if C;1 <Cy and Cp < (.

We will also occasionally use the terminology:

Definition 3.4 Let C be a knot-like complex and let x € C. We say that x is a
V —tower class if [x] is a maximally V —graded, V —nontorsion cycle in H«(C/U).
Similarly, we say that x is a U —tower class if [x] is a maximally U —graded, U -
nontorsion cycle in H«(C/V). Thus f (as defined above) sends V —tower classes to
V —tower classes.

Remark 3.5 The f in Definition 3.3 is not required to be absolutely V —graded,
but rather only relatively V —graded. Thus, a priori the notion of local equivalence
in Definition 3.3 is strictly weaker than the notion of local equivalence presented
in Definition 2.3; ie we might have two knot-like complexes C; and C, which are
locally equivalent via maps f and g that introduce complementary V —grading shifts.
However, we will show in Lemma 6.9 that if C; and C; are locally equivalent (in
the sense of Definition 3.3) via f and g, then f and g induce isomorphisms on
H.(C;/V)/U—torsion (ie send U —tower classes to U —tower classes), even without
any symmetry requirements on the C;. Combined with the normalization conventions
of Definition 3.1, this shows that f and g are absolutely V —graded.

It is straightforward to verify that < is a partial order on the set of local equivalence
classes of knot-like complexes.

Remark 3.6 Our notion of local equivalence agrees with [27, Definition 2.4] after
forgetting tx and modding out by the ideal generated by U V. This definition of
local equivalence also agrees with the equivalence relation defined using ¢ from
[8, Section 4.1]; for this, see Theorem 6.1 and Corollary 6.2.

Let (U, V) denote the ideal generated by U and V. If C is a free, finitely generated
chain complex over R, then every element x in (U, V') can be uniquely expressed as
Xy + xy, where xy € imU and xy € im V.
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Definition 3.7 We say a chain complex over R is reduced if 3 =0 mod (U, V). In
a reduced complex, we can write d as the sum d = dy + dy, where if dx = y, then
dyx = yy and dyx = yy . Note that 8%] = 3%/ =0. Wecall dy the U —differential and
refer to elements with dyx = 0 as U —cycles; similarly, we call dy the V —differential
and refer to elements with dyx = 0 as V—cycles.

Lemma 3.8 Every knot-like complex C is locally equivalent to a reduced knot-like
complex C’.

Proof Suppose that C is not reduced. Then there exists x € C such that dx is not in
the ideal generated by U and V. We claim that we may complete {x, dx} to a basis
{x,0x,y1,...,yn} for C such that the y; generate a subcomplex C’ of C. To see
this, first complete {x, dx} to an R-basis {x, dx, y1,..., yn} for C, where d does not
necessarily preserve the span of the y;. Here, we are using the fact that if N is a (free)
submodule of a free module M, then a basis for N can be extended to a basis for M
if and only if M/N is also free. To apply this in our case, note that x and dx do not
lie in the image of (U, V). A grading argument then shows that no linear combination
of x and dx lies in the image of (U, V).

For each y;, we then write dy; as a linear combination of x, dx and the other basis
elements y;. By adding multiples of x to y;, we may assume that dx does not appear
in any differential dy;. This also shows that x does not appear in dy;, since then we
would have

0=0%y; = a(P(U, V)x+ ) Pi(U, V)yj)

for some polynomials P(U, V) and P;(U, V'), which would imply that dx appears in
some 0dy; .

It follows that

0— (x,dx) >C-L>C'—>0

is a split short exact sequence of freely generated R—complexes. Since (x, dx) is
acyclic by construction, the projection p: C — C’ and section s: C’ — C both induce
isomorphisms on homology. Hence C and C’ are locally equivalent. Since C is
finitely generated, we may iterate this procedure to arrive at a reduced complex. O

From now on, we will assume that all of our knot-like complexes are reduced.
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3.2 The local equivalence group of knot-like complexes

We now show that knot-like complexes modulo local equivalence form a group, with the
operation induced by tensor product. Moreover, we will show that the partial order <
is in fact a total order. We begin with some routine formalism:

Definition 3.9 The product of two knot-like complexes C; and C5 is C; @z C>.
Lemma 3.10 The product of two knot-like complexes is a knot-like complex.
Proof This is straightforward. |

Definition 3.11 Let K denote the set of local equivalence classes of knot-like com-
plexes, with the operation induced by ®.

Proposition 3.12 The pair (], ®) forms an abelian group.

Proof This is straightforward to verify. The identity is given by R with trivial
differential, and the inverse of [C] is [CV], where CY = Homg(C,R). O

Remark 3.13 See [27, Proposition 2.6] for the analogous result in the involutive
setting over the ring F[U, V].

We now come to the significantly more interesting proposition.
Proposition 3.14 The relation < defines a total order on K.
Proposition 3.14 is a consequence of the following lemma:

Lemma 3.15 Let C be a knot-like complex. If there does not exist a local map
f:R — C, then there exists a localmap g: C — R.

Proof The idea of the proof is we build a basis {x,#;} for C such that quotienting
by the span of {¢;} gives the desired local map. Roughly, we first find a basis for the
subcomplex A generated by elements w such that some U —power of w is in the image
of dy or some V —power of w is in the image of dy. We then extend this basis by an
element x representing a V' —nontorsion class in H.(C/U). We use the absence of a
local map from R to C in order to guarantee that x is not in A. Finally, we complete
this to a basis for all of C. We describe this argument more precisely below.
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We begin by finding a “vertically simplified” basis for C which is especially nice
with respect to dy . Since F[V] = R/U is a PID, the complex C/U admits a basis
B ={x,y;,zi} over F[V] such that

dyx =0, Jdyy;=V"z and dyz; =0

for some set of positive integers 7; . Since C is a free R—module, it is easily checked
that choosing any lift of B from C/U to C yields an R-basis for C, which (by
abuse of notation) we also denote by B = {x, y;, z; }. Moreover, since UV = 0, these
elements also satisfy the equalities dyx = 0, dyy; = V"iz; and dyz; = 0. We will
henceforth think of C as a free module over this basis, so that

C = Spang{x, y;,z;} ®F R.
Note that im dy is contained in Spang[y1{z; }. We will also have cause to consider the
F[U]-module C/V, which we identify with
C/V = Spang{x, yi, zi} ®F F[U],
as well as the IF —vector space C/(U, V'), which we identify with
C/(U,V) = Spang{x, yi, zi }.

These identifications allow us to view elements of C/(U, V) as elements of C/V (and
elements of C/V as elements of C) in the obvious way —an [ —linear combination
of basis elements in C/(U, V') may be viewed as the same linear combination in C/V,
and so on. That is, they specify lifts from C/(U, V) to C/V and from C/V to C.

Now let P be the submodule of C/V consisting of elements w such that some
U —power of w lies in the image of dy :

P={weC/V:U"w €imdy for some n > 0}.

Note that P has the property that if Uw € P, then w € P. Moreover, by the fact that
8%1 = 0, we have that every element w € P is a dy —cycle, that is, dyw = 0. Choose
an F[U]-basis pi,..., pr for P. Let p; denote the reduction of p; modulo U in
C/(U, V). Explicitly, if p; is a linear combination (over F[U]) of the basis elements
{x,yi,z;}, then p; consists of those terms which are not decorated by any powers
of U. Note that p; differs from the canonical lift of p; by an element in im U.

We claim that the p; are linearly independent as elements of C/(U, V'). Suppose not.
Then we have some linear combination

Pis -+ Py =0.
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Lifting this to C/V, this implies that p;, +---+ p;, = Uw for some w. However, this
means that w € P. Writing w as a linear combination of the p; gives a contradiction.

Consider the subspaces of C/(U,V) given by P = Spang{pi,....p;} and Z =
Spanp{z; }. Extend the linearly independent set {p;,..., p,} to a basis

{p_lv"-vp_r’zl.la"'ﬁzl.s}

for P+ Z in C/(U,V). We claim that x (viewed as an element of C/(U, V)) does
not lie in P + Z. Indeed, if it did, we would have x = p+ Yz, for some p € P
and sum of the z;; . Lifting this to C/V shows that

x—i—Zz,-j—l-UweP

for some w € C/V. By construction of P, we have that the above expression is a
dy —cycle. Viewing it as an element of C, we also see that it is a dy —cycle, since
dyx = dyz; = 0 and dy(Uw) = Udyw = 0. This means that we can specify a
local map from R to C by sending the generator of R to x + ) _z;; + Uw, which
generates the V —tower in C /U (by definition of x and the z;). This would contradict
the hypothesis of the lemma. Thus, x ¢ P + Z.

Now consider the set of generators S = {x, p1,..., pr,Zi;,...,zi;} in C/V. Itis
straightforward to check that this is linearly independent by reducing any putative linear
relation modulo U. We also claim that if Uw € Spang[g; S, then w € Spangy; S.
Indeed, suppose not. Then we have

Uw:U*x—i-ZU*pi—i-ZU*Zij,

where at least one term on the right-hand side appears with a U —exponent of zero.
Reducing both sides modulo U, we obtain a nontrivial linear relation among the
generators {x, pi,..., Pr.Zi,---,Zi}, a contradiction. It follows that we may extend
S to an F[U]-basis

X, P1y e s ProZiys ooy Zigo Whs oo, Wik
for all of C/V.2 This then gives an R—basis for all of C.
By construction,
D =Spang{p1,.... PreZiys- s Zigs Wiso.. , We}

2As in the proof of Lemma 3.8, we are using the fact that if N is a (free) submodule of a free module M,
then a basis for N can be extended to a basis for M if and only if M/N is also free.
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is a subcomplex of C. Indeed, the image of dy is contained in the span of the p;.
Similarly, the image of dy is contained in the span of the p; and z;; . To see this, note
that any z; is an [F-linear combination of the p; and the z;; . Hence (viewing these
as elements of C), we have

Ze=Y_ pi+ Y zi,+Uw

for some element w, since p; = p; mod U. Thus, for any y;, we have

Ay v = Vkz, =V (Zpi + ZZij + Uw) = |k (Zpi +Zzij>.
Hence 0D C D. Then the quotient map

C—>C/D=R

is a local map from C to R. |

Proof of Proposition 3.14 We need to show totality of <. Let C; and C, be two knot-
like complexes. Consider C; ® C,’. By Lemma 3.15, we have that either C; ® C,’ >R
or C1 ® C2V < R. By tensoring with C», either C; > C; or C; < (3, as desired. O

Remark 3.16 The group K should be compared to the group CFX defined in [9]
using e—equivalence. Indeed, CFK is isomorphic (as an ordered group) to the subgroup
of 8 generated by {CFK(K) | K a knot in S3}. In particular, the order < defined in
Definition 3.3 agrees with the order given by ¢.

4 Standard complexes and their properties

In this section, we define a convenient family of knot-like complexes called standard
complexes.

Remark 4.1 The reader should compare with [2, Section 4], which carries out the
analogous construction in the setting of almost (—complexes. Indeed, an almost (—
complex may be viewed as a complex over the ring F[U, Q]/(Q? = QU = 0). In our
case, this corresponds (roughly) to passing to the ring F[U, V]/(UV = V? =0).

4.1 Standard complexes

Let C be a knot-like complex generated by xo, ..., x,. We say there is a U™ —arrow
between x; and x; for m € N if one of the following occurs:

(1) dyx; =UMx;j,or

(2) dux; =U"x;.
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The arrow goes from x; to x; in (1) and from x; to x; in (2). We define V™" —arrows
analogously by replacing U with V.

Remark 4.2 In the traditional depiction of CFK® as a bifiltered complex in the
(i, j)—-plane, each generator (over ') is placed in its appropriate bigrading and is
decorated with a power of U. An arrow between two generators indicates that one
(with its U —power decoration) appears in the differential of the other. This is not quite
the same as the pictorial description we use here. Instead, we suppress writing the
decorations of our generators and use their spatial placement in the plane to determine
the appropriate U — or V —powers appearing in the differential. That is, a horizontal
arrow of length m from xj; to x; indicates that x; appears in the differential of xj
with a coefficient of U™, and similarly for vertical arrows and powers of V. It can
be shown, however, that (modulo an infinite number of translations) this produces the
same shape as in the previous picture.

Definition 4.3 Let n € 2N, and let (b1, ..., b,) be a sequence of nonzero integers.
A standard complex of type (b1, ...,by), denoted by C(by,...,by), is the knot-like
complex freely generated over R by

{'x()?-xla CECIRY 7xn}'

Each pair of generators x; and x;_; for i odd are connected by U Ibi |—arrows, and
each pair of generators x; and x;—; for i even are connected by V15l _arrows. The
direction is determined by the sign of b;, as follows. If b; is positive, then the arrow
goes from x; to x;_1, and if b; is negative, then the arrow goes from x;_; to x;. We
call n the length of the standard complex and {x;}7_, the preferred basis. Explicitly,
the differential on C(by, ..., b,) is as follows. For i odd,

duxi—y =UPilx; if b; <0,  dyxi =Ulxj_, if b >0,
while for i even,

oyXxi—1 = V'b"|x,- if b; <O, oy x; = Vb"x,-_l if b; > 0.
All other differentials are zero.

Note that x¢ generates H«(C(by,...,b,)/U)/V—torsion. Similarly, x, generates
H.(C(by,...,by)/V)/U-torsion. There is thus a unique grading on C(by,...,by)
which makes it into a knot-like complex: namely, gr;;(xo) =0 and gry (x,) = 0. The
fact that the differential has degree (—1, —1) then determines the rest of the gradings.
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X0 e4—e X

X2 04— X3
4

o Xg

Figure 3: The standard complex C(1,—2,2,—1). A horizontal (respectively,
vertical) arrow of length m from x; to x; means that dyx; = U™x; (respec-
tively, dyx; = V"™x;).

Note that gry; (x;) = gry (x;) =i mod 2; we refer to this as the parity of (the grading
of) a generator of C(b1,...,by).

Definition 4.4 A standard complex C(by,..., by) is symmetric it b; = —b,+1—;.

Example 4.5 We define the trivial standard complex C(0) = R to be the complex
generated over R by a single element with U — and V —grading zero.
Example 4.6 The standard complex C(1,—2,2,—1) is generated over R by

X0, X1, X2, X3, X4
with
aX() = 8x2 = aX4 = 0, 8x1 = UX() + V2X2, 8X3 = U2X2 + VX4.
The gradings of the generators are
gr(xo) = (0,-6).
gr(x1) = (=1.-5),
gr(x2) = (-2, -2),

See Figure 3 for a visual depiction of C(1,—2,2, —1), where a horizontal (resp. vertical)

gr(xz) = (=5.-1),
gr(x4) = (_67 O)

arrow of length m from x; to x; represents a U™ —arrow (resp. V" —arrow). Note that
to read off the standard complex from the figure, we start at x¢ and follow the unique
path to x4, recording the direction and length of each arrow that we traverse. Namely,
traversing an arrow of length m against the direction of the arrow yields a +m, while
traversing an arrow of length m in the direction of the arrow yields a —m.
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X2-e

X1+(—o X0

Figure 4: The standard complex C(—1,1).

Example 4.7 The standard complex C(—1, 1) is generated over R by
X0, X1, X2
with
8x0=Ux1, 8X1=0, 8x2=Vx1
and gradings
gr(xo) = (0’ 2)’ gr(xl) = (1’ 1)’ gI'(Xz) = (2?0)

See Figure 4 for a visual depiction.

Example 4.8 The standard complex C(1,-2,—1,1,2,—1) is generated over R by

X0, X1, X2, X3, X4, X5, X6
with nonzero differentials
ox1 = Uxo + V2xy, Oxp= Uxz, 0x4="Vx3, 0x5= U?x4 + Vxe
with gradings
gr(XO) = (Oa _4)’
gr(xl) = (_11 _3),
gr(XZ) = (_2’ O)’
gr(xz) = (—1,-1),

See Figure 5 for a visual depiction.

gr(xq) = (0,-2),
gr(xs) = (=3,-1),
gr(xe) = (—4.0).

X0 o(—o X1

X4 e X5

X3 o(—xoz * Xg
Figure 5: The standard complex C(1,-2,—1,1,2,—1).
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Lemma 4.9 The dual of C(by,...,by) is C(=b1,...,—by).
Proof This is a straightforward consequence of the definitions. |

4.2 An unusual order on the integers

Let Z' = (Z, <") denote the integers with the unusual order
—1< 23l Lo d3da

We will see shortly the utility of this strange order. Note that for a, b # 0, we have
a <'b if and only if é < %, where < denotes the usual order on Q. Since a >' 0 if
and only if @ > 0, the sign of a € Z' coincides with the usual definition (that is, a is
positive if a > 0 and negative if a < 0).

4.3 Ordering standard complexes

We consider Z'-valued sequences, with the lexicographic order induced by <'. We
take the convention that in order to compare two sequences of different lengths, we
append sufficiently many trailing zeros to the shorter sequence so that the sequences
have the same length.

Proposition 4.10 Standard complexes are ordered lexicographically as 7' —valued
sequences with respect to the total order on K.

The proof of Proposition 4.10 consists of a number of straightforward but technical
verifications regarding local maps between standard complexes. We have included the
details so that the reader will become accustomed to routine manipulations involving
these definitions.

Lemma 4.11 Let (ai,...,am) <! (b1, ...,by) in the lexicographic order on A
valued sequences. Then C(ay,...,am) <C(by,...,by) in K.

Proof If (ay,...,am)=(b1,...,by),thenitis clear that the complexes in question are
locally equivalent by taking the obvious identity map. Thus, assume that (a1, ..., an) <
(b1, ...,by). Suppose that the two sequences agree up to index k, so that a; = b; for

1<i<kanda <'by.

Let {x;} and {y;} be the preferred bases for C(ay,...,an) and C(by,...,by), re-
spectively. Define
f:C(al,...,am)—>C(b1,...,bn)
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by
yi if0<i<k,

JED =20 ik

In order to define f(xz), we proceed with some elementary casework based on the
value of k. First, suppose that kK < min{m,n}, and consider the parity of k:

(1) If k is odd:

(a) If ap <'by <0, thenlet f(x;)=U?% —b Vi - It is straightforward to verify that
f is a chain map; the only nontrivial checks are that dy f(xx_1) = f oy (xr—_1)
and df (xx) = fd(xg). To verify the former, we see that

Iy f(xXg—1) = U Yk—1 = U_bkyk,
while
fou(xg—1) = f(U_“kxk) = U % Uak_bkyk.

To verify the latter, we see that
8f (xi) = QU ype = UKDy yy.

This is zero, since either dy yr = 0 or dy y = V_bk+1yk+1 and UV = 0.
Meanwhile, fd(xz) = 0 since dxg is either equal to zero or V™% +1x, 4.

(b) If ar <0 < by, thenlet f(xg) =0. It is straightforward to verify f is a chain
map; the only nontrivial check is that dy f(xx_1) = f 9y (xx—_1). This follows
from the fact that by > 0 (ie dy yr—1 = 0).

(c) If 0 < ag <' b, then let f(xx) = U%Pky, 1t is straightforward to verify
that f is a chain map; the only nontrivial check is that df (xx) = fd(xg). This
follows from the fact that

0f (xx) = U2k yy = U2 @y yi + Dy y) = U U yye_y,
while
foxg) = fUxp—y = U yg—y.
(2) The case when k even is similar, but with V' playing the role of U.
Now assume that k > min{m, n}. We consider the following two cases:

(1) Suppose that n > m. Then k =m + 1, and

(bl):lzl == (al,...,am,bm+1,...,bn)
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with by 41 > 0. Let f be the obvious inclusion map. As above, it is easily checked
that f commutes with 9.

(2) Suppose that m > n. Then k =n + 1, and

(ai):'nzl = (b17'--7bnaan+l7--'7am)

with a,4+1 < 0. Let f be the obvious projection map. As above, it is easily checked
that f commutes with d.

It is clear that f is local, since f(xg) = yo. This completes the proof. |

Lemma 4.12 Let Cy = C(ay,...,an) and Co = C(by,...,by) be standard com-
plexes with preterred bases {x;} and {y;}, respectively. Suppose that a; = b; for all
1 <i <k andthat f:Cy — Cy is alocal map. Then f(x;) is supported by y; for all
0<ic<k.

Proof We proceed by induction on i . The base case i = 0 follows from the fact that
f islocal. Thus, let i <k, and assume that f(x;) is supported by y;. We show that
f(xi41) is supported by y;+1. Suppose that i is even. We consider the following two
cases:

(1) Suppose that a; y1 =b; +1 <0. Then dy f(x;) = f oy (x;) =U %+l f(x;11). By
the induction hypothesis, f(x;) is supported by y;. We have that dyyy; = U 1bit1 Vi+1
and that y; is the unique element in C, such that dy of it is supported by a U —power
of y;4+1. It follows that f(x;4+1) must be supported by y;4+1.

(2) Suppose that a; 1 =b;+1>0. Then dy f(xj41) = foy (xit1) = Ui+l f(x;).
By the induction hypothesis, f(x;) is supported by y;. We have that dy y;+1 =
U|bl’+1|y,~ and that y;4; is the unique basis element in C, such that dy of it is
supported by a U —power of y;. It follows that f(x;+1) must be supported by y;+1.

The case i odd is similar, but with V' playing the role of U. |
Lemma 4.13 Let (ay,...,am) >' (b1,....b,) in the lexicographic order on Z'—
valued sequences. Then there is no local map from C; = C(ay,...,an) to Cy =
Cby,....bn).

Proof Suppose that a; = b; for i <k and that a; >' by. We proceed by contradiction.
Assume there is a local map f: C; — C,. We begin by considering the case when
k <min{m,n}:
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(1) Suppose that k is odd. We have three further subcases:

(a) Suppose that by <' ax <0. Then dyxg_; = U9 !x and 8y yr_; = U'Pkly,.
Furthermore, y;_; is the unique basis element of C, such that dy of it is
supported by a U —power of y;. By Lemma4.12, f(xj_1) is supported by yr_1.
It follows that fdy (xx_1) = 0y f(xk—;) is supported by U'Pkly, . Hence
f(Ulaxlx; ) must be supported by UPkly, . which is a contradiction, since
by <'ay <0, ie |bg| < |ag|, where < denotes the usual ordering on Z.

(b) Suppose that by <0 < ay. Then dy yr—; = U'Pkly, and dyxx_, = 0. Further-
more, yx_1 is the unique basis element in C, such that dyy of it is supported
by a U—power of y;. By Lemma 4.12, f(x;_;) is supported by y;_;. But
0= foy(xr_1) = du f(xk_1), a contradiction, since the right-hand side is
supported by U Ik Vi -

(c) Suppose that 0 < by <' ag. Then dyxx = U% xj_y and dy vy = Ubkyk_l.
Furthermore, yy is the unique basis element in C, such that dyy of it is supported
by a U—power of yr_1. By Lemma4.12, f(xz_1) is supported by yz_1. Then
oy f(xx) = fou(xx) = f(U% x_1), where the right-hand side is supported
by U% yx_,. Hence f(xj) must be supported by U% ~% y, . a contradiction
since 0 < by <' ag, ie by > ay, where < denotes the usual ordering on Z.

(2) The case when k is even is similar, but with I/ playing the role of U.
Now assume that k > min{m,n}. We consider the following two cases:

(1) Suppose n > m. Then k =m + 1 and (b;)7_; = (a1.....am.bm+1.....bn).
Then by41 <0, that is, gy ym = U'Pm+1ly, 1 and y,, is the unique element in C,
such that dy of it is supported by a U —power of y,,4+1. By Lemma 4.12, f(x,,) is
supported by y,,. But 0 = fy (xm) = 0y f(xm) # 0 since dy f(xy,) is supported
by Ulbmttly, 1.

(2) Suppose m >n. Then k =n +1 and (a;)/; = (b1.....bu.an+1.....am).
Then aj+1 > 0, that is, dyx,4+1 = Ulan+ilx, . Furthermore, no U —power of yj,
appears as dy of any element in C,. By Lemma 4.12, f(xj,) is supported by y,. But
Oy f(xns1) = fOy(xns1) = f(Uen+1lx,) is supported by Ul4n+1ly,  a contradic-

tion.

This completes the proof. a

Proof of Proposition 4.10 The proposition follows immediately from Lemmas 4.11
and 4.13. m
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4.4 Semistandard complexes

In future sections, we will also find it useful to have the following generalization of
standard complexes:

Definition 4.14 Let n €2N—1,and let (by, ..., by) be a sequence of nonzero integers.
The semistandard complex C’(by, ..., by) is the subcomplex of the standard complex
C(b1,...,by, 1) generated by x¢, X1, ..., X,. We call these the preferred generators of
C’(by,...,by). (The choice b, 41 = 1 here is unimportant; any b, 41 > 0 is allowed.)

We stress that a semistandard complex is not a knot-like complex; indeed, for C’ a semi-
standard complex, H4(C'/U)/V—torsion has two V —towers, which are generated by
xo and X, . Note that since n is odd, the gradings of x¢ and x;, have opposite parities.

We use the symbol ’ to distinguish semistandard complexes from standard complexes;
that is, C’(by1,...,b,) denotes a semistandard complex (where n is odd) while
C(by,...,by) denotes a standard complex (where n is even).

Definition 4.15 A grading-preserving R—equivariant chain map
f:C'(by,...,by)—C

from a semistandard complex to a knot-like complex C is said to be local if the class
of f(xo) generates H«(C/U)/V—torsion.

Example 4.16 The semistandard complex C’(1,—2,—1, 1, 2) is generated over R by

X0, X1, X2, X3, X4, X5

with nonzero differentials
dx1 = Uxg+ V3x3, 0xa=Uxz, 0xs=Vx3, 0x5=U?x4.

See Figure 6 for a visual depiction.

X0 od—e X

X4 o o X5

X3 o(—xoz
Figure 6: The semistandard complex C’(1,—-2,—1,1,2).
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4.5 Short maps

It will often be useful for us to consider module maps from a standard complex
C(b1,...,by) to a knot-like complex C that are chain maps except possibly at xj.
We make this notion precise with the following definition:

Definition 4.17 Let C; = C(by,...,by,) be a standard complex and C, a knot-like
complex. An absolutely U —graded, relatively V —graded module map f:Cy — C is
called a short map, denoted by

f:C(bl,...,bn)’\f)Cé,
if fo(xj)+0f(x;)=0forl1<i<n—1and foy(x,)+0dy f(x,)=0.If f induces
an isomorphism on H4(C;/U)/V —torsion, then we call f a short local map.

We similarly define short maps for semistandard complexes:

Definition 4.18 Let Cy = C’(by, ..., by,) be a semistandard complex and C a knot-
like complex. An absolutely U —graded, relatively V —graded module map f: C; — C»
is called a short map, denoted by

f:C'(by1,....by) ~ C,
if fo(x;)+0df(x;)=0for1<i<n-—1and foy(x,)+ dy f(x,) =0. If the class
of f(xg) generates H«(C>/U)/V—torsion, then we call f a short local map.

The following lemma states that given a short map, we can extend it to an actual chain
map (from a different domain).

Lemma 4.19 (extension lemma) Let

£:Cr,....by)~C

be a short map from a standard complex to C. Then there exists an R —equivariant
chain map

g:C(bl,...,bn,bn+1,...,bm)—>C

for some b; with n + 1 <i < m such that f and g agree on the generators of
C(by,...,by) (viewed as generators of C(b1,...,by,by+1,...,by) in the obvious
way). Moreover, if f is local, then g is local.
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Proof Consider f(x,). If dy f(x,) = 0, then f is already a chain map and we
are done. Thus, suppose that dy f(x,) = U€z for some z € C and ¢ > 1. Define a
short map f": C’'(by,...,by,—1) ~ C by setting f'(x;) = f(x;) for 0 <i <n and
f'(xp+1) = U~ 1z. We now consider several cases:
(1) If ¢ > 1, then extend the domain of f’ to C(by,...,by,—1,—1) by setting
f'(xn4+2) = 0. It is easily checked that f’ then provides the desired R—
equivariant chain map.

(2) If ¢ = 1 and dyz = 0, then we may again extend the domain of f’ to
C'(by,....by,—1,—1) by setting f'(x,+2) = 0. It is easily checked that
f’ then provides the desired R—equivariant chain map.

B) If c=1and dyz = V4w for some w € C and d > 1, then we proceed as
in the beginning of the proof, except replacing the role of U with V. That is,
extend the short map

f:C'(by,....,by,—1)~C
to a short map

7 Cbr,... by, —1,—1) ~ C.

Iterate this procedure. Note that both the U— and V —gradings of the final
preferred generator of C(b1,...,b,,—1,—1,...,—1,—1) increase as the length
of standard complex increases. Since C is finitely generated, the gradings of its
generators are bounded above. Hence it is easily checked that at some point this
process must terminate, yielding the desired extension.

Since g(xo) = f(x0), it is clear that g is local if f is local. |
The analogous result holds for semistandard complexes:

Lemma 4.20 Let
f:C'(by,...,by) ~C

be a short map from a semistandard complex to C. Then there exists an R —equivariant
chain map
g: C(bl,...,bn,bn+1,...,bm) %C

for some b; with n + 1 <i < m such that f and g agree on the generators of
C'(by,...,by). Moreover, if f is local, then g is local.

Proof This is analogous to the proof of Lemma 4.19. O
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5 Numerical invariants a;

In this section, we define a sequence of numerical invariants (a;) for any knot-like
complex C, analogous to those constructed in [2, Section 6]. Up to sign, these are the
same as the invariants defined in [9, Section 3], which are also denoted by (a;). In the
next section, we will see that the a; compute successive parameters in the standard
complex representative of C.

Let C be a knot-like complex. Define
a1(C) =sup'{by € Z' | C(by.....by) < C}.

Here, sup' denotes the supremum taken with respect to the (unusual!) order on Z'. We
define a; (C) for k > 2 inductively, as follows. Suppose that we have already defined
ai =a;i(C) for 1 <i <k.If ap =0, define ag4;(C) = 0. Otherwise, define

ag+1(C) =sup'{by1 € Z' | Clar.....ax.bis1.....bn) <C}.

That is, we consider the set of standard complexes < C whose first k& symbols agree
with the previously defined a; . We then take the supremum over the family of (k+1)%
symbols appearing in this set.3

It will be convenient for us to have the following terminology:

Definition 5.1 Let C be a knot-like complex, and let n be a positive integer. Let

(ai,...,an) be the sequence given by the first n invariants, a; = aq; (C) for 1 <i <n.
We say that (ay, ..., an) — and, similarly, the standard complex C(ay,...,a,) —is n—
maximal with respect to C . Here, we identify C(ay,...,a,,0,...,00=C(ay,...,an).

The following proposition (combined with the extension lemma) shows that the supre-
mum in the definition of a; is always realized:

Proposition 5.2 Let a; = a;(C). For each n € N, there is a short local map
f:C(ay,...,an) ~C.
Here, we identity C(ay,...,a,,0,...,0)=C(ay,...,an).

This is a consequence of the following lemmas:

31t will be implicit in the proof of Proposition 5.2 that this set of standard complexes is nonempty. More
precisely, if ay,...,ay are all defined and nonzero, then there exists a standard complex of the form
C(at,....ax,bg41,...,by) whichis <C.
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Lemma 5.3 Let
f:C'(b1,....by) = C

be a local map from a semistandard complex to a knot-like complex C. Then there
is some b,41 > 0 such that we have a short local map from the standard complex
Cb1,...,bn,byy1) to C,

g:C(by1,...,by,byy1)~C.
Proof Let C'=C’(by,...,by). Since x, isacyclein C’/U, we have that f(x,) is
acycle in C/U. Moreover, the class of f(x,) must be V —torsion in C /U, since xy,

has odd grading and H.(C/U)/V—torsion is supported in U —grading zero. It follows
that there exists some y € C and m > 0 for which dyy = V" f(x,). Now define

x;) ifi=1,...,n,
g(xi) = S ) a
ifi=n+1.
Note that b, +1 = m. By construction, g is a short local map. |

Lemma 5.4 Let {t;};ieN be a sequence of integers with t; — oo, and let
Ji:Cr,....bp—1,—t;) > C

be a sequence of short local maps from standard complexes to a knot-like complex C.
Then there exists a short local map

fZC(bl,...,bn_l,bn)’v)C

for some by, > 0.

Proof As i increases, the V —grading of the final generator x, of C(by,...,by—1,—t;)
also increases. Since C is finitely generated, it follows that for sufficiently large i, we
have f;(x,) = 0. Restriction to the first n — 1 generators thus yields a local map from
the semistandard complex C’(b1,...,by—1) to C. Now apply Lemma 5.3 to obtain
the desired result. i

Lemma 5.5 Let {t;};en be a sequence of integers with t; — co, and let
fl‘ : C/(bl, ... ,bn_l,—t,‘) ~C

be a sequence of short local maps from semistandard complexes to a knot-like com-
plex C. Then there exists a short local map

FiCb1,... by_1) ~C

from the standard complex C(by,...,by—1) to C.
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Proof As i increases, the U —grading of the last generator x,, of C' (b1, ..., by—1,—t;)
also increases. Since C is finitely generated, it follows that for sufficiently large i, we
have f;(x,) = 0. Restriction to the first n — 1 generators then yields a local map from
the standard complex C(bq,...,b,—1) to C. O

We are now ready to prove Proposition 5.2:

Proof of Proposition 5.2 We prove that the supremum in the definition of a; is always
realized (modulo trailing zeros). We proceed by induction. Suppose that ai,...,ax
are defined and nonzero. Let F be the family of standard complexes appearing in the
definition of ay ;. By examining the order on 7', we see that the only subsets of Z'
which fail to attain their supremum are those which are unbounded below (in the usual
sense). Hence the only case we have to worry about is when the family of (k+1)%
symbols appearing in F has sup' equal to zero.

If k is odd, then truncating each element of F to its first k + 1 generators provides a
family of standard complexes and local maps as in the statement of Lemma 5.4. This
is a contradiction, since Lemma 5.4 (combined with the extension lemma) then implies
that the relevant sup' is strictly greater than zero. Thus, we may assume that k is
even. Then truncating each element of F to its first k + 1 generators yields a family
of semistandard complexes to which we may apply Lemma 5.5. In this situation, we
see that ag .y is realized as a trailing zero, completing the proof. |

6 Characterization of knot-like complexes up to local
equivalence

We now prove that every knot-like complex is locally equivalent to a standard complex.
In fact, we prove a slightly stronger statement in Corollary 6.2 below:

Theorem 6.1 Every knot-like complex is locally equivalent to a standard complex.
Corollary 6.2 Let C be a knot-like complex, and assume C is locally equivalent
to C(ai,...,an). Then C is homotopy equivalent to C(ay,...,an) @ A for some

R—complex A.

Theorem 6.1 immediately implies Theorem 1.2:
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Proof of Theorem 1.2 Following Section 2, to every knot in S3, we can associate
a knot-like complex. By Theorem 6.1, every knot-like complex is locally equivalent
to a standard complex, and by Proposition 4.10, standard complexes are ordered
lexicographically. This proves Theorem 1.2 modulo the claim that the standard complex
associated to any knot is symmetric. We delay this until the end of the section; see
Lemma 6.10. m

Roughly speaking, we will show that if C is a knot-like complex, then the numerical
invariants a; (C) defined in the previous section compute successive parameters in the
desired standard complex representative of C. Our main technical result will be to
show that the a; (as defined previously) eventually become equal to zero:

Proposition 6.3 Let C be a knot-like complex. Then a; (C) =0 for all i sufficiently
large.

The proof of Proposition 6.3 will be given at the end of the section. First, we show
how this implies Theorem 6.1:

Proof of Theorem 6.1 Let C be a knot-like complex with numerical invariants a; .
By Propositions 5.2 and 6.3, there exists some standard complex C; < C which realizes
the a; . It is easily checked from the fact that standard complexes are lexicographically
ordered that C; must be the maximal standard complex < C. Dualizing, let C, be
the minimal standard complex with C < C,. If C; # (3, then (using the fact that
standard complexes are lexicographically ordered) there exists a standard complex C3
lying strictly between them. This complex contradicts either the maximality of C; or
the minimality of C,. Thus we must have the local equivalence C; = C = C;. O

To prove the more refined Corollary 6.2, we use the following series of lemmas
concerning self-maps of standard complexes:

Lemma 6.4 Let
f:C(by,...,by) —>C(by,...,by)

be a local map such that f(x;) is supported by x; for some i # j. Then

(bit1s.- - bn) < (bjr1.....bn).

Here, we mean that (byyq,...,bn) = (0) if k =n.
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Proof First assume that i is even. By grading considerations, this implies that j is
also even. We have the following casework:

(1) Suppose that b; 1 <0. Then dy x; = Ulb"+1|xi+1. Hence dy f(x;)= foyx; €
im U'%i+11 Since f(x;) is supported by X;j, it follows that dyx; € im Ulbitil,
This implies that b; 11 >! bi 1. (Here, we use the fact that no U —power of x; 11
appears in dy of any standard basis element other than x;.)

(2) Suppose that b; ;1 > 0. Then dyx;+1 = UP+1x;. Hence dy f(xj41) =
Ubi+1 f(x;) is supported by Ub"+1xj . In particular, Ubi+1xj~ is in the image
of dy, which implies that b; 11 >'b; +1. (Here, we use the fact that x j+1 is the
unique basis element whose image under dyy can be supported by a U —power
of x;.)

(3) Suppose that i = n, so that ;-1 = 0. Then dyx; = 0. Hence dy f(x;) = 0.
Since f(x;) is supported by x;, it follows that dyx; = 0. (Here, we use the
fact that no U —power of x; 1 can appear in dy of any standard basis element
other than x;.) This implies that b; 11 > 0.

If strict inequality holds in any of the above cases, then we are done. On the other
hand, if b; 1 = bj 41, then it is easily seen that f(x;1) is supported by x; 1, and
we proceed inductively. By the hypothesis that i # j, the sequences (b;j+1,...,bn)
and (bjy1,...,by) are of different lengths, and hence cannot be equal. The case i
odd is similar, with the role of U played by V. O

Lemma 6.5 Any local map
f:C(b1,...,by) —>C(by,...,bp)

must be injective.

Proof Suppose not. Then there exists some linear combination ), r;x; with r; € R
such that f (Zl rix,') =0. Since f is graded, we may assume that Zi rix; is grading-
homogenous, so that each r; is a monomial (that is, r; € {0, 1, U, Uz ....V,V?%, ... H.

We impose a partial order on the set of monomials in R by defining 1>U >U?>--->0
and 1 >V > V? >...> 0. Among the nonzero coefficients r;, choose a maximal
element r;, with respect to this partial order. Let / ={j | r; =r;,}. Foreach j €I,
consider (bj+1,...,by). Label the elements of I = {j1,..., jm} so that

Bjr41s-bn) < Byt bn) < oo < (Bjt1s. . ba).
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Consider f(x;;). By Lemma 4.12, f(x;,) is supported by x;, . By Lemma 6.4,
f(xj;) fori =2,...,m cannot be supported by x;, . By the R—equivariance of f
and maximality of r;,, there is no other term in f (Zi# i x,-) that can cancel r;, x;, ,
contradicting the fact that f (Zl ri x,-) = 0. Hence f must be injective. O

We thus have:
Lemma 6.6 Any local self-map of a standard complex to itself is an isomorphism.

Proof Let f be alocal self-map of a standard complex C. It is clear that f must
be absolutely V' —graded. Hence f restricted to each bigrading is a linear map from a
finite-dimensional F —vector space to itself, which is injective by Lemma 6.5. (Note
that C is finitely generated.) It follows that f is surjective. a

Using Lemma 6.6, we now prove Corollary 6.2:

Proof of Corollary 6.2 By Theorem 6.1, for a knot-like complex C, we have local
maps
f:C(ay,...,ay) > C and g:C —C(ay,...,an).

Then go f is alocal map from C(ay,...,a,) to itself, which is an isomorphism by
Lemma 6.6. It follows that the short exact sequence

0— Clai,....an)L>C > C/im f =0
splits. |

We now turn to the proof of Proposition 6.3. We begin with the following lemma:

Lemma 6.7 Let C be a knot-like complex and let a; = a; (C). Suppose we have a
short local map
f:C(ay,...,ay)~ C.

Then f(x;) is not in im(U, V) for any 0 <i < n.* In particular, f(x;) # 0 for

0<i<n.

Proof We first show by contradiction that f(x;)¢imU. Let j =min{i | f(x;) €im U}
be the minimal index for which f(x;) € im U, and let f(x;) = Un;. (Note that n; is
allowed to be zero.) Since f is local, we have that f(xg) #0€ H«(C/U),s0 j #0.

#Note that 0 is considered to be in im(U, V).
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Suppose that j is odd. If a; # 1, define a local map
g:C'(ar,...,.aj—1)~»C

by setting g(x;) = f(x;) for 1 <i < j and g(x;) = n;. By the extension lemma,
g extends to a local map. This contradicts the maximality of a;, since a; — 1 >'a .
If a; =1, we have that dyx; = Ux;j_;. Since dy f(x;) = fou(x;) = Uf(xj—1),
we have dyn; = f(xj—1). Since C is reduced, it follows that f(x;—1) € imU,
contradicting the minimality of j.

Now suppose that j is even. Assume a; < 0. Since f(x;) =0 mod U, it is easily
checked that the restriction of f gives a local map

g:C'(ay,...,aj—1) — C.

Applying Lemma 5.3 and then the extension lemma shows that this contradicts the
maximality of a;. Thus, we may assume a; > 0. Then

V& f(xj—1) =9y f(x;) = dyUn; =0.
This implies that f(x;_1) € im U, contradicting the minimality of ;.

The case f(x;) ¢ imV is similar. Indeed, let j = min{i | f(x;) € im V'}, and let
f(x;j) = Vn;. (Note that n; is allowed to be zero.) Since H«(C/U) does not have
any V —nontorsion classes of positive grading, it follows that j # 0. The remainder of
the proof follows by interchanging the roles of U and V in the argument above. O

Before proceeding, we will need the following technical result, which will allow
us to rule out when certain complexes are n—maximal. The reader may wish to
postpone reading the proof of Lemma 6.8 until after seeing its utilization in the proof
of Proposition 6.3.

Lemma 6.8 Let
f:C(by1,....by)~>C and g:C(c1,...,cn)~>C

be short local maps from standard complexes to a knot-like complex C. Let {y;}", and
{xi}_, denote the standard bases for C(by, ..., bp) and C(c1,...,cy), respectively.
Suppose that f(ym) = g(x»), and we have the inequality of reversed sequences

(bms-- - b1) <' (cns ... c1)

with respect to the lexicographic order on Z'—valued sequences. Then C(cy, ..., cp)
is not n —maximal (with respect to C).
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Proof Assume that the sequences (b, ...,b1) and (cy, ..., cy) first differ in their
(I+1)™ terms, so that by,_; = cp—; for 0<i <[ and b,,_; <' ¢,_;.> This means that
the final / 4+ 1 generators of C(by, ..., by,) (and the arrows going between them) are
isomorphic to the final / + 1 generators of C(cq,...,c,). Our goal will be to define a
new local map

h:C(c1,...,cn)—>C

which has the property that h(x,—;) = g(xn—i) + f(ym—i) forall 0 <i </[. Since f
and g are chain maps, it is evident that /4 is a chain map, at least when restricted to the
generators x,—; for 0 <i < /. Below, we give the full verification and construction
of h. In order to conclude the proof, we then note that h(x,) = g(x,) + f(ym) =0,
and apply Lemma 6.7.

We define h on all generators except x,,_;_; as follows. Let

(6-1) h(x;) = g(xi) for 0<i<n-—1-2,
(6-2) h(xn—i) = g(xn—i)+ f(ym—i) for 0 <i <I.

It is clear that the chain map condition dh = hd holds for all generators x; with
i <n—1[—2,as well as all generators with i > n — /. The main subtlety will thus be
to define h(x,_;_1). We have the following casework:
g(Xn—g—1) + UPm=17n=1 f(yp g 4)
if ¢,,_; and b,,_; same sign and n — [ odd,
(63)  (xn—1—1) =1 8 (n——1) + VEr=1=n=1 f(y_y1)
if ¢,,_; and b,,_; same sign and n — [ even,

g(xn_1-1) if ¢,_; and b,,_; have different signs.

Here, we consider hg = co = 0 to be of a different sign than either positive or negative.
For the sake of concreteness, we explicitly describe % in the two cases when m < n and
n <m. If m <n, then all three of (6-1), (6-2) and (6-3) are utilized when defining /.
In particular, since m and n are both even and /! < min(m, n), we have n —/ —2 >0,
and thus /(xo) = g(xo). However, if n < m, then the form of 4 may change slightly
depending on the value of /. More precisely, if we are in the boundary case when
[ = n, then h is defined on all generators by (6-2):

h(xp—i) = g(xpn—i) + f(ym—i) for 0 <i <n.

SHere, [ < min(m, n). Note that we allow = min(m, n), with the convention that bg = ¢ = 0.
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Similarly, if / =n — 1, then only (6-2) and (6-3) are used:
h(xp—i) = g(xn—i) + f (Ym—i) for 0 <i <n,
h(x0) = g(x0) + UPm="+17 £ (ym—p).

Note that in all other cases, we again have h(xg) = g(xo).

We now check that % is a chain map. As in Section 4, this consists of a number of
technical but straightforward verifications. For simplicity, assume for the moment that
[ < n —1. First consider the case when n — [ is odd. Note that this also implies m — [
is odd, so m—[ > 0. It is clear that dyh(x,,_;j_>) = hdy (x,_;_>) and dyh(x,_;) =
hdy (x,_;). For the remaining chain map conditions, we proceed with casework based
on the signs of ¢,_;_; and c¢,_;. First, we consider the possible signs of ¢,,_;_1
to verify that hdy (x,,_;_») = dyh(x,_;_») and hdy (x,_;_1) = dyh(x,_;1_1). We
then consider the possible signs of ¢,,_; to verify that hdy (x,_;_1) = dph(x,_1_1)
and hdy (x,—1) = duh(xp—).

(1) Suppose ¢,_;—1 <0. Then dyx,_;_p = VIen—1=1lx, ;| and dyx,_;_, = 0.
Assume that ¢,_; and b,_; have the same sign. We compute

hdy (Xp—1—2) = V=1 h(x, )
= Vien—1=1l(g (xy_y—1) + UL f(y0_1_1))
= Vien—i=tlg(x, ;1)
Iy h(xXp—i—2) = 0y g(Xn—i—2) = gy (xp_y—) = VIr==tlg(x, ;).
Similarly,
hdy (Xp—1-1) =0,
Oy h(xn—i—1) = By (§(Xp—y—1) + UL~ f(y,u_1_1)) = g0y (Xp—y—1) =0,

as desired. If ¢,,_; and b,,_; have different signs, then the same computation holds,
except that the UPm—1=Cn~1 f(y, ;1) terms vanish.

(2) Suppose ¢;,_j—1 > 0. Then dyx,_; , =0 and dyx, ;1 = Vr—i-lx, ; ,.
Assume that ¢,,_; and b,_; have the same sign. We compute

hdy (xp—1—2) =0, dyh(xp_1—2) =y g(xp—;—2) = gy (xy—;—2) = 0.
Similarly,

hoy (xp—1—1) = h(Vr=1= xpy_j_5) = V==l g(xy_1_2),
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Ay h(xy_g—1) = Iy (g(xn_y_1) + UPn=17n=1 f(y, ;1)) = gdy (xp_1_1)
= Vor==-lg(xy—1-2),

as desired. If ¢, _; and b,,_; have different signs, then the same computation holds,
except that the UPm——=¢n—1 f(y, ;1) terms vanish.

(3) Suppose ¢,_; <0. Then dy x,_;_1 = Uln~tlx,_; and dy x,,_; = 0. We compute
hdy (Xn—i—1) = WU x,_p) = U=l (g (eu) + [ (7m-1)).
0 h(n—1-1) = 90 (§(in—t—1) + U171 f (1))

= g0y (Xn—1-1) + U7 [y (Ym-1-1)
— Ulcn—z\g(xn_l) + ybm—1—cn—1 f(Ulbm—zlym_l)

= Ulen—1l(g(xp_) + f Ym—1))-

In the penultimate equality above, we are using the fact that b,,_; <' ¢,_; < 0 to
conclude that dy (y,,—1—-1) = U|bm—l|ym_1 ; we use this again in the final equality to
write |b,,_j| = —b;y—; and |c,_;| = —cp,—_;. Similarly,

hoy (xy—1) =0, duh(xy—1) = 0u(§(xn—1) + f(Ym-1)) =0,
where in the second equality above, we again use b,,_; <' ¢,_; <O0.

(4) Suppose ¢,—; > 0. Then dyx,_;_;1 =0 and dyx,,_; = Ur—Ix,_;_1. We
consider two further subcases, based on whether b,,_; <0 or b,,_; > 0.

(a) Suppose b,,_; <0, so that g yy—;—y = U'Pm—tly_; and 9y yp—; = 0. Then

hdy (xy,—1—1) =0, Jdyh(x,—1—1) = dug(xy—j—1) =0.
Similarly,
hoy (xp—1) = h(U " xp_1—1) = U g(xp—1—1),
duh(xy—1) = 0w (§(xn—1) + f(Ym—1)) = U1 g(xp_1—1),
as desired.

(b) Suppose b,,_; > 0, so that dyy,,—;—1 = 0 and Ay y,,—; = me—lym_l_l.
Then

hdy (xp—1-1) =0,
A h(Xn_1-1) = du(g(Xp_y—1) + UPm=1=n=1 f(y,, 1 1)) =0,
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Similarly,
hoy (xp—1) = h(U " xp_1_1)
= U (g(xp—1-1) + U7 (1))
= U g(xnoi—1) + U f(Ym—i—1),
duh(xp—1) = 9y (& (Xn—1) + f(Ym—1))
= U g(Xpoi—1) + U f(ymi-1),

as desired.

This shows that /4 is a chain map, at least when / <n —1 and n —/ is odd. The proof
when n —1 is even follows by interchanging the roles of U and V. (There is a slight
reinterpretation of case (4) when / = m, which we leave to the reader.)

Finally, we consider the remaining cases when / =n or [ =n —1. If [ = n, then
the only nontrivial check is to show that dk(xo) = hd(x¢). In this situation, we have
Cm—n <' bo = 0. First, suppose that ¢y—;+1 = b1 < 0. Then

I(x0) = f (x0) + g (Yn—m) = U'P1 £ (x1) + Ulen=m+1lg (3, 1),
hd(xo) = h(UP1lxy) = UP1a(xy) = UL (f(x1) + gnem+1))-
The case by > 0 is analogous. The situation when [ = n — 1 is similar in flavor, and

we leave it to the reader.

We now claim that % is a local map. If / < n — 1, then h(xg) = g(xo), and so
clearly A is local. If [ = n — 1, then h(xo) = g(xo) + UPm—r+17¢1 f(y,,_ ). Hence
h(xo) and g(xo) are equal in C/U, and h is again local. Finally, if / = n, then
h(xo) = g(x0) + f(Ym—n). Since by_n <' co =0, we have that dy ym_p = 0 and
Oy Ym—n1 = VIbm=nly _ Hence f(ym—n) is a V—torsion cycle in Hy(C/U).
Since g(xo) generates H,(C/U)/V—torsion, this shows that / is local, as desired.

By construction, h(x,) = f(ym) + g(x,) = 0. Applying Lemma 6.7, we conclude
that C(cy,...,cn) is not n—maximal with respect to C. |

We are now ready to prove Proposition 6.3:

Proof of Proposition 6.3 We proceed by contradiction. Suppose that a; # 0 for all
indices i . Let n be very large. By Proposition 5.2, we have a short local map

g:C(ay,...,an) ~>C.
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Since C is finitely generated, it follows from Lemma 6.7 that for n sufficiently large,
we must have g(x,,) = g(x,) for some m < n. Indeed, Lemma 6.7 implies that the
gradings of the g(x;) must lie in a bounded interval, since otherwise some g(x;) would
be in imU or im V. Hence g(x,) = g(x;,) for some m < n.

Consider the short local map
f:C(ay,...,am)~C

obtained by restricting g. On one hand, C(ay,...,an) and C(ay,...,a,) are ev-
idently m— and n—maximal with respect to C. However, since m # n, we have
that either (an,...,a1) <! (an,...,ay) or (an,...,ay) <! (am,...,a1). Hence we
may apply Lemma 6.8, either with the maps f and g, or vice versa. This gives a
contradiction. |

We now justify Remark 3.5 and show that if C; and C, are locally equivalent via maps
f and g, then f and g take U —tower classes to U —tower classes:

Lemma 6.9 Let C; and C, be knot-like complexes. It C; and C, are locally equiv-
alent via f and g, then f and g induce isomorphisms on Hy«(C;/V')/U—torsion.

Proof By passing to the same local representative, we may assume that C; is a
standard complex. Then g o f is a local map from a standard complex to itself, which
is an isomorphism by Lemma 6.6. In particular, g o f induces an isomorphism from
H.(C1/V)/U-torsion to itself, factoring through the composition

H.(C1/V)/U—torsion PN H.(C»/V)/U-torsion 4> H(C1/V)/U-torsion.

Since each of the above terms consists of a single U —tower, it is clear that the induced
maps must individually be isomorphisms. a

Finally, we show that the standard complex associated to any knot is symmetric:

Lemma 6.10 Let K be a knot in S3, and let C = C(ay,...,a,) be the standard
complex representative of CFKx (K). Then C is symmetric.

Proof Given Lemma 6.9, it is clear that the definition of local equivalence is in fact

completely symmetric with respect to interchanging the roles of U and V. That is, we
may require the maps f and g in Definition 3.3 to be absolutely U — and V —graded,
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and induce isomorphisms on both H.(C;/U)/V —torsion and H«(C;/V)/U—torsion.
Now suppose that f and g are such local equivalences between C and CFKz(K).
Then it is not hard to see that we have local equivalences between these two complexes
with the roles of U and V reversed; ie

C ~ CFKz(K).

However, we already know that CFK% (K) is homotopy equivalent to CFK% (K), so
C ~ C. It is easily checked that passing from C to C reverses the order of the standard
complex parameters, showing that C is symmetric, as desired. O

7 Homomorphisms

In this section, we construct an infinite family of linearly independent homomorphisms
from R to Z.

7.1 Some Z-valued homomorphisms

We begin with the following definition:

Definition 7.1 Let C = C(ay,...,dan) be a standard complex. Define
@i (C) =#a; |a; = j, 1 odd} —#{a; | a; = —j, i odd}.

That is, ¢;(C) is the signed count of the number of times that j appears as an odd
parameter a,xy1. Equivalently, ¢;(C) is the signed count of horizontal arrows of
length j. If C is any knot-like complex, then we define ¢;(C) by passing to the
standard complex representative of C afforded by Theorem 6.1.

The goal of this section is to prove the following theorem:

Theorem 7.2 For each j € N, the function
Qj: R—>7Z

is a homomorphism.

Note that the product of two standard complexes is not a standard complex. Thus, to
compute ¢;(C1 ® C2) directly, we would first have to determine the standard complex
representative of C; ® C,. However, it turns out that we do not currently have an
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explicit description of the group law on £ in terms of the standard complex parameters
(see Section 11). Instead, we prove Theorem 7.2 by expressing each ¢; as a linear
combination of other auxiliary homomorphisms. The construction of these (and the
proof that they are additive) will occupy our attention for the next two subsections.

Before proceeding, we show that Theorem 1.1 follows readily from Theorem 7.2:
Proof of Theorem 1.1 By Theorem 2.5 and the behavior of CFKy (K) under con-
nected sum, we have a homomorphism

C—> R

sending [K] to [CFK%(K)]. Now compose with ¢; . (We henceforth abuse notation
slightly and also refer to the composition C — & — Z as ¢;.) Surjectivity of

o0 o0
@¢j:6—>@Z
j=1 j=1

follows from the observation that ¢; (T; +1,i+2#—T;,i+1) = §;; (see Example 1.4), or
alternatively by considering the knots in Proposition 9.1. |

We now introduce the first of our auxiliary homomorphisms:

Definition 7.3 Let C be a knot-like complex and let C(ay,...,a,) be the standard
complex representative of C given by Theorem 6.1. Define

P(C)=-2) j¢j(C)+) sgna;.

j>0 i=1

It is clear that ¢; is an invariant of the local equivalence class of C. To see that P is a
homomorphism, we use the following alternative definition:

Lemma 7.4 The integer P(C) is equal to the U —grading of a U —tower generator.

Proof By Corollary 6.2, C is homotopy equivalent to C(ay,...,a,) ® A, where
a; =a;(C) and A is some R—complex. Since C is a knot-like complex, U ! H,(C) =
F[U,U~'], and so the U -nontorsion classes in C are supported by the standard
summand C(ay,...,a,). It is then clear that x, is a U-tower generator in C.
A straightforward computation shows that gry;(x,) is given by the expression in
Definition 7.3. |
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Given this, we immediately have:
Proposition 7.5 The function P: R — 27 is a surjective homomorphism.

Proof The fact that P is a homomorphism follows from the Kiinneth formula. To see
that P is surjective, we observe that P(C(1,—1)) = —2. |

Before proceeding, we show Proposition 7.6 from the introduction:

Proposition 7.6 Let K be a knot in S3. Then we have the following equality relating
the Ozsvath-Szab6 t —invariant with @; :

t(K)=Y_ jg;(K).

jeN

Proof It is sufficient to consider the local equivalence class of CFK%(K). Let
C =C(ay,...,an) be the local equivalence class of CFKx (K). Then C is symmetric,
so Y7_;sgna; =0 and P(C) = gry (x,) = —21(K). m]

7.2 Shift homomorphisms

We now introduce an auxiliary family of endomorphisms sh,, : & — R for m € N. Com-
posing these with P gives an infinite sequence of homomorphisms P osh,,: R — 2Z.
In the next subsection, we show that the ¢; are certain linear combinations of the
P oshy, (divided by 2). Our present goal will be to define the shy,, and show that they
are additive. This will be the most technical part of the argument, and will require the
introduction of several auxiliary definitions.

Definition 7.7 Let C = C(ay,...,a,) be a standard complex. Let sh,, (C) be the
standard complex given by

shy(C) =C(d},...,a,),

where .
a; +1 if aj > m,
!/ .
a; =4va;—1 1if a; <—m,
a; if |a;| <m.

That is, shy, fixes U" — and V" —arrows for n < m and takes U”— and V" —arrows to
U™T1_and V" +! _arrows, respectively, for n > m.
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The majority of this subsection will be devoted to proving the following theorem:

Theorem 7.8 For all m > 1, the function shy, : 8 — K is a homomorphism; that is,
for knot-like complexes C1 and C,, we have the local equivalence

shy (C1 ® C2) ~ shy (C1) ® shy, (C2).

It will also be helpful to decompose shy, as a composition of a shift in U and a shift
in V (denoted by shy ;; and shy,,,, respectively):

Definition 7.9 Given a standard complex C = C(ay,...,ay), let

shym(C)=C(d},...,a,),

where, for i odd, )
ai+1 if a; = m,
/

a;,=4a;—1 1if a; <—m,
a; if |a;| <m,
and, for i even,
/

Similarly, let
shym(C) = C(a’l, .. .,a;l)

where, for i even, ]
ai+1 if a; >m,

al'-: ai—1 if aj <—m,
a; if |a;| <m,
and, for i odd,
/
al‘ = ai.

It follows from the definitions that shy, = shy ,, o shy .

Lemma 7.10 Let C =C(ay,...,ay) be a standard complex. Then

shym(C)Y =shym(CY) and shy,(C)Y = shy,(CY).

Proof The result follows from the definition of shy , and shy , combined with
Lemma 4.9. O

We now introduce some convenient terminology:
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Definition 7.11 Let C be a knot-like complex (not necessarily a standard complex)
with an R-basis {x;}. We say that {x;} is U —simplified if for each x;, exactly one of
the following holds:

(1) dyx;i = Uka for some j and k,
(2) dyx; = Uk x; for some j and k, or
(3) aux,- =0 and Xi ¢ im 8U~

If dx; = ka,- (or vice versa), we say that x; and x; are U —paired. Since Hx(C/V)
has a single U —tower, it follows that at most one of the x; satisfies (3). We define a
V —simplified basis and V —paired basis elements analogously. (See for example the
proof of Lemma 3.15.)

Example 7.12 Let C = C(ay,...,an) be a standard complex with preferred basis

{xi}7_; this basis is clearly both U —and V —simplified. We will find it convenient to
n/2

i=1

relabel our basis elements slightly. We denote the U —simplified basis {w, y;, z; }
for C by

w = .Xn
and, foreach 1 <i < %n,
X2i—1 if azi—1 >0, X2i—1 if az;—1 <0,
Yi = . Zi = .
X2i—2 if azi—1 <0, X2i—2 if azi—1 > 0.

Setwise, the U —simplified basis is of course identical to the standard preferred basis,
but we fix notation so that dyy y; = Ulazi-1 |Z,~ . (That is, y; and z; are U —paired.) We
can likewise define the V —simplified basis in the obvious way.

Definition 7.13 For C = C(ay,...,an), let {w, y;,z;} and {w’, y/,z]} be the U-
simplified bases for C and shy ;, (C), respectively. Define an R—module map
Sum:C — shy,(C)
by setting
SU,m (r)=r '
for each r € {w, y;, z; }, and extending R-linearly. That is, sy, simply effects the
correspondence between the unprimed generators of C and the primed generators of

shy,m(C). Note that sy, induces an isomorphism of ungraded R-modules, although
we stress that sy, is not graded (even relatively). Furthermore, it is easily checked that
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SU.mOy = 0y Sy,m. On the other hand, sy, does not commute with dgy. Explicitly,
we have

sUmOuyi) =sumU=11z)) = U92=11z] 9y (symyi) = du () = U921z,
Note that the above expressions may differ by a power of U, depending on the value

of |azi—1].

Example 7.14 Let C; =C(ay,...,ay,) and C = C(by, ..., by,) be standard com-
plexes. Abusing notation slightly, let w, y; and z; denote the U —simplified bases
for both C; and C5; it will be clear from context which generators lie in C; and C5.
Then the obvious tensor product basis for C; ® C; is not U —simplified. Instead, we
define a U —simplified basis for C; ® C, as follows. For 1 <i < %nz, let

o =wy, pi=w®z,
and, for 1 <i §%n1,let

yi=yiQw, & =2z Qw.
For 1 <i S%nl and 1 < f%nz,deﬁne

Ulbiilwialy, @ z; + 2@ y; i lazi—1] < |b2j-1l.

€ i =ViQVi, R R )
R i {Yi®zj+U|a2’_l b2j=1lz; @y if |agi—1| > |b2j—1],

and

@z if |azi—1| < |bzj-1],
Th',j={yl j | i | | J | 9i,j=Zi®Zj-

zi®y; if |azi—1] > |b2j-1l,
Finally, let
w=wRuw.

Note that the following basis elements are U —paired:
o, Bt Avindiy L€y iy, Amij. b}
For notational convenience, we relabel the basis elements
{kry =it Ulyiy Ulder 1 Udnijt, Ay ={Bit U{8i} UL, 3 UL0;,,),

so that {w, k7, A;} is a U —simplified basis and dyx; = U® A; for some e;. The reader
should check that if «; is one of ¢; ; or n; ;, then

e; = min(|az;i—1],|b2j—1]).

If k; is an «;, then e; = |ba;—1|, while if k; is a y;, then e; = |az;—1].
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! ! ! !/ /
i,y Sijo My Or, @'} for

shy,m(C1) ® shy,m(C2) by considering both factors as standard complexes in their

We analogously define a U —simplified basis {a/, B, y/, 5. €

own right. (That is, o, = w’ ® y/, and so on.) We relabel this basis {o’, /cl’, )L;} as
before, so that K; and /\} are U —paired. As above, we have 8UKI/ =U e;A;, where

ey = min(jaz;_y |, b5 1),

whenever i is one of ¢; ;or n; ; (similarly for the other cases). An examination of
Definition 7.9 then shows that we may write

e, =e+1(l),

where o if
=1, O

1 if g >m.

Definition 7.15 Let C; and C, be standard complexes. Define an R—module map

oum: C1 ® C2 = shy,m(C1) ® shy,m(C2)
by setting

oum(§) =¢

for £ € {w, k7, A;}, and extending R-linearly. As in Definition 7.13, oy, induces an
isomorphism of ungraded R-modules. Furthermore, we claim that 07,0y = dy oy, m.-
To see this, observe that

oUm =Sum ®sum mod U.

Indeed, this congruence is obviously an equality for all basis elements not of the form
vi,j or n;,j. For n; ;, we again have equality using the fact that |az; 1| < |bzj—1] if
and only if |a5; ;| < [by;_,|. For basis elements of the form y;,;, a straightforward
casework check establishes the congruence. The fact that s¢/ ,, commutes with dy then
shows that oy ,dy = dyoy,,. Again, however, note that oy, does not commute
with dg .

We now introduce an auxiliary technical definition which we will need to prove
Theorem 7.8:

Definition 7.16 An almost chain map f:C(ay,...,an) — C from a standard com-
plex with preferred basis {x;}7_, to a knot-like complex is an ungraded R-module
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map such that, for 1 <i <n,
(1) for i odd,
(@) if a; <0, thatis, dyxj—1 = U%ilx;, we have
9y f(xi—1) = UM% f(x;) mod U@+
(b) if @; >0, thatis, dyx; = Ul%!x;_;, we have
dy f(xi) = UM f(x;—y) mod UIH;
(2) for i even,
(a) if a; <0, that is, dyx;—; = V19ilx; we have
v f(xi—1) = V4l f(x;) mod V4t
(b) if a; > 0, thatis, dyx; = V19ilx;_;, we have
By f(xi) = V4! f(xi—1) mod VI4il*1,
We stress that an almost chain map is not in general a chain map, and may not even be

grading-homogeneous.

The main import of the (admittedly unmotivated) notion of an almost chain map will
be the following lemma, which explains how to extract a genuine chain map from a
given almost chain map. In our context, it will be easier to construct almost chain maps,
which is why we have introduced Definition 7.16. In what follows, let [x], , denote
the homogeneous part of x in bigrading (u, v).

Lemma 7.17 Let f:C(ay,...,an)— C be an almost chain map. Let (u;, v;) be the
bigrading of the generator x; in C(ay,...,an). Suppose that [ f(x0)]ug,v, represents
a V —tower class in C and 9y [ f (xn)]u,,v, = 0. Then there exists a genuine local map

g:C(ay,...,an) > C
such that g(x;) = [f(x;)]u;,»; mod (U, V) forall 0 <i <n.

Proof For each 0 <i <n, consider the ansatz

g(xi) = [f(x)]u;,v; +Upi +Vqi,

where p; and ¢; are undetermined elements of C(ay,...,a,) with bigrading (u;, v;).
In order to determine p; and g;, we substitute our ansatz into the chain map condition
for g. We begin by using the condition dy g = gdy to help determine the p;:
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(1) Leti be odd, and suppose a; < 0. Then dyx;—1 = Ul%ilx; and dyx; = 0. Using
Definition 7.16, write

du f(xi—1) = U £(x;) + Uleil+iy,

for some (possibly nonhomogeneous) element n; € C(ay,...,a,). Note that since
8%] =0, we have dy f(x;) + Udyn; = 0. We now compute

guxi—1) = Ulilg(x;)
= U ([ f ()l 0, + Upi + Vi)
= U1 f (i) 0 + U4
dug(xi—1) = du ([f (xi—D]u;_y,viy + Upi-1 +Vqi-1)
= UM £ )l + U 03l 42,0042 + Udu pias

where in the last line, we have used the fact that 3y f(xi—1) = Ul%l f(x;)+ Ui+ 1p;
We likewise compute

gy x;) = g(0) =0,
dug(xi) = du ([f (x)lu; w; + Upi + Vqi)=du [ f (xi)lu; ,v; + Udu pi-
Examining the first pair of equalities above, we see that it suffices to set p;—1 =0

and p; = [7;i]u;+2,v;+2. The second pair of equalities then follows from the fact that
du f(xi) + Udyni =0.

(2) Leti be odd, and suppose a; > 0. Then dx; = U% x;_; and dyx;j—1 =0. A
similar analysis as above (interchanging the roles of i and i — 1 and replacing |a; |
with a; ) shows that if we set p;—1 = [9i—1)u;_, +2,v;_,+2 and p; = 0, then we have
(gdu +dug)(xi-1) = (gdu + Iy g)(xi) =0.

In this manner, by considering all odd indices 1 <i <n, we see that we can choose
the p; for 0 <i < n so that (gdy + dyg)(x;) = 0 for all 0 < i < n. Define
pn = 0. Then dyg(x,) = dy[f(Xn)]u,;,»; = 0 by hypothesis, while gdy (x,) = 0.
This establishes the dgy —condition for all generators X; .

Interchanging the roles of U and V/, an analogous argument (where we consider the case
when i is even) allows us to choose the ¢; such that (gdy + dyg)(x;) =0 forall 0 <
i <n. (To establish the dy —condition for x¢, we use the fact that dy [ f(x0)]ug,vo =0,
since [ f(x0)]uo,v, Tepresents a V —tower class in C by hypothesis.) By construction,
g is a graded, R—equivariant chain map which is clearly local. This completes the
proof. |
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Now let C3 = C(cy,...,cn;) be a standard complex, and let f: C3 — C; ® Cz
be a local map. Our goal will be to construct a shifted map fy,, from sh, C3 to
shy, C1 ® shy, C>. We do this by first constructing an almost chain map between the
desired complexes, and then applying Lemma 7.17. The construction of f/, (and
the verification that it is an almost chain map) will be the most technical part of the
argument and will occupy our attention for the next few pages.

Definition 7.18 Let {w, y;,z;} and {w’, y/,z/} be the U—simplified bases for C3
and shy,,; (C3), respectively. Define

Jum:shym(C3) = shym(C1) ® shy,m(C2)
by first setting

fU,m(r,) = UU,mf(r)

whenever 1’ € {w’, z/}. To define fy . (y;), we proceed with some casework. Write
f(y;) in terms of the U —simplified basis for C; ® C5, so that

SON=D ki+ Y UPij+ > Vi —i—ZP U V)X + QU V)w
Jehi JE€J2 JEJ3
for some pj,q; € N, P;, Q € R and disjoint index sets Jq1, J> and J3. We define

Sfum(y}) based on the value of |ca;—1]. If [c2;—1| < m, let

Sum(¥)) = oum f(i)
= oym( Y ki > Ui+ Y Vq/K]-i-Z P;(U.V)Aj+0(U. V)a))
JeJJ1 J€J2 J€J3
as before. If |cpi—1| > m, let

fU,m(Y,,) :UU,m( Z U?(j)lcj + Z Upj"'?(j),(j + Z VqJ'Kj

J€J1 J€J2 J€J3

+ Y Pi(U.V)A; + Q(U. V)a)),
J
where

_, . 1 if e; <m,
T(jH)=9. ..~
0 if ej >m.

Observe that 7(j)+7(j) = 1. In addition, note that if f(y;) is supported by «;, then
ej > |cai—1|. This follows from the fact that dy f(y;) = f(dy;) is in im Ulezi-il,
while dyk; = U® A;. Hence, in particular, if |c;—1| > m, then for any j € J;, we
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must have T(j) =0. (Thus we could have omitted the very first instance of U 7() in the
above definition of {7, ( ylf), but we have left it in for future notational convenience.)

We also note that
fW'etz) = foy (i) =du f(r) = YUY+ Y UPT2,,

Jj€J1 Jj€JI>
hence

(7-1) Ul =tloy m fzi) = Y US0umAj)+ Y UP oy m()).
jed J€J2
Finally, note that

(7-2) oum f(r) = fumSum(r) mod U

for all r € {w, y;,z;}. Indeed, if r = w or z;, this congruence is an equality by
definition, whereas if » = y;, then the claim follows from the fact that (in the |c2;—1|>m
case) T(j) =0 forall j € J;.

Lemma 7.19 Let f:C3 — C1 ® C, be alocal map. Then fy ,, is an almost chain
map.

Proof Let {w, y;,z;} be the U—simplified basis for C3 = C(cy, ..., cn;). It suffices

to show

Ulezi-loy . £(2:) mod Ule2i—11+1if |cpi 1| <m
7-3) d = A ! '
( ) UfU,m(yz) U|czi_1|+10U,mf(Zi) mod U|02i_1|+2 if |C2i—1| >m,
and that
(7-4) W fum(') = fumdy(r’) mod U

for all " € {w’, y/,z/}. (The mod U in the above equation is not necessary, since our
complexes are reduced by assumption, but is included for emphasis.)

We first consider (7-3). Suppose |c2;—1| < m. Then

v fum(yi) = aU( > oumk)+ Y Up'iUU,m(Kj))

JjeJ1 jeJr

= Z Ue./+r(j)k} + Z UP-er-/'th(j)A}
J€J1 jeJ2

=2 U Doyny)+ 3 UM UST Doy, (2)
jed1 J€J2

= UlCzi—llaUmf(Zl.) mod Ule2i-11+1
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Here, to obtain the last line, we compare the third line with (7-1), and use the fact that
if 7(j)=1,then e; >m > |cz;—1].

Now suppose |c2i—1| > m. We have

3UfU,m(y,{) = 3U( Z U?(j)UU,m(Kj) + Z Upj—ﬁ(j)UU,m(Kj))

jedi JE€J2
_ Z Uej"rlk} + Z Upj-i-?(j)Uej"‘f(j),\}

jeJi JE€J2
= > U9 oym@)+ Y U oy m(d))
jeJi jedr

= Ul loy . f(20),
where in the last line we have used (7-1).
‘We now consider (7-4). We have
Iy fum(r') = dvoumf(r) mod U
=oyumfov(r) mod U
= fumSumdy(r)  mod U
= fumdv(sum(r)) mod U
= fumdv (') mod U

for any r’ € {w’, y/.z}} (in fact, for any r € C3), where the first equivalence is by
definition, the second since dy commutes with oy, and f, the third by (7-2) and the
fourth since dy and sy, commute. O

We now verify the remaining hypotheses of Lemma 7.17. In the proofs of the following
lemmas, we denote the standard preferred basis for shy,(C3) by {x/}, and the U-
simplified basis by {w’, y}. z}} as usual.

Lemma 7.20 With the notation as above, [ fy.m (x(/))]u(),vé represents a V —tower class.

Proof Note that x; is one of w’, yj/- or ZJ/- for some j. If xq = w’ or zJ/., then
Ju,m(x4) = 0U,m f(xo). The result now follows from the fact that f is local and oy
induces an ungraded isomorphism between (C1®C»)/ U and (shy, (C1)®sh,, (C2))/U.
If xy = y]’-, then fu,m(x)) = ou,m f(xo) mod U, and the result follows as before. O

Lemma 7.21 With the notation as above, 3y [ fu,m (X;)]u/, v, = 0.
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Proof Recall that x;, = w’. Therefore, we have fy ,(x),) = oumf(xs). Since f
is an R—equivariant chain map and x, is a U—cycle, it follows that f(x,) is also
a U—cycle. An examination of the definition shows that oy, takes U—cycles to
U —cycles, so dy fum(x,) =0. O

Putting everything together, we have:

Lemma 722 Let f:C3 — C; ® Cy be a local map. Then there exists a local map
g shy,m(C3) = shym(C1) ® shy,m(C2).

Proof ByLemma7.19, fy, isanalmost chain map; by Lemma 7.20, [ fu,m (xé))]u{),v{)
represents a V —tower class; and by Lemma 7.21, 9y [ fu,m(xp)ly;, v, = 0. Thus
Lemma 7.17 gives us the desired local map. O

By reversing the roles of U and V, we may similarly define fy ,. We record the
analogous set of lemmas below:

Lemma 7.23 Let f: C3 — C1 ®C, be a local map. With the notation as above, fym
is an almost chain map.

Proof The proof is identical to the proof of Lemma 7.19 after reversing the roles of
U and V. |

Lemma 7.24 With the notation as above, [ fv (x(/))]ug),v(/) represents a V —tower class.

Proof By definition, fy,m(x(y) = ov,m f(xo0). Since f islocal, f(xo) represents a
V —tower class, and it is easy to check that oy ,, takes V —tower classes to V' —tower
classes. O

Lemma 7.25 With the notation as above, dy [ fv,m (X;)]y; v, = 0.

n

Proof We have
AU fvm(xy) = frmiu(x,) =0,

where the first equality follows by the analogue of (7-4). a

Lemma 7.26 Let f:C3 — C; ® Cy be a local map. Then there exists a local map

g Sl'lV,m (C3) — ShV,m C1)® ShV,m (C2).
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Proof ByLemma7.23, fy ,, isanalmost chain map; by Lemma 7.24, [ fym (x(/))]%,vé
represents a V —tower class; and by Lemma 7.25, 0y [ fv,m(x,)ly, »;, = 0. Thus
Lemma 7.17 gives the desired local map. |

We now finally turn to the proof of Theorem 7.8:
Proof of Theorem 7.8 Suppose that C3 ~C; ® C». Let f: C3 — C; ® C, be alocal

map. By Lemma 7.22, we have a local map

g: shym(C3) — shy n (C1) ® shy,;m (C2),
that 1s,

(7-5) shy,m(C3) = shy,m(C1) ® shy,m(C2).

Dually, we have Cy’ ~ CY ® C,’, and, by the same argument,

(7-6) shym(C3') < shym(Cy) ® shym(C)).

Dualizing (7-6), applying Lemma 7.10, and combining with (7-5), we obtain
shy,m(C1) ® shy,m(C2) < shy m(C3) < shym(C1) ® shy,,(C2).

Thus we have
shy m(C3) ~ shy n (C1) ® shy,m(C2).

The analogous argument replacing U with V' (using Lemma 7.26 instead of Lemma
7.22) shows that

shy, m (shy,m (C3)) ~ shy , (shy ;, (C1)) & shy, p (shy m (C2)).

Since shy , o shy ,, = shy,, it follows that

shim (C1 ® C2) ~ shy (C1) @ shi (C2),

as desired. O

7.3 Proof of Theorem 7.2

We now turn to the proof that the ¢; are additive. By considering the composition
Poshy,:R—27 for meN,

we obtain infinitely many homomorphisms from £ to 2Z. The proof of Theorem 7.2
relies on considering certain linear combinations of these homomorphisms.
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Proof of Theorem 7.2 Let C € K. Since all of our maps are local equivalence
invariants, we may assume that C = C(ay, ..., d,) is a standard complex. For any
m € N, write

Pishm(C)==2 > joi(C)=2 (j +Dg;(C)+ > sgna;.
1<j<m j=m i=0

Here, we have simply used the definition of sh,, together with the definition of ¢; as
a count of standard complex parameters. This implies that

(7-7) P(sh(C)) = P(C) = =2 ) ¢;(C).

Jjz=m
We now use (strong, downward) induction to show that ¢; is a homomorphism for all
J € N. Fix C1,C3 € 8, where C; =C(ay,...,an,) and Co = C(by,...,by,). For

N > max{a;,bj},

we have o (C1) = N (C2) = oy (C1 ® C2) = 0. This establishes the base case. Thus,
assume that ¢; is a homomorphism for all j > M + 1. We will show that @y is also
a homomorphism. Indeed,

~2Y " (¢ (C1) +¢;(C2)) = P(shy (C1)) + P(shar (C2)) — P(C1) — P(C2)
/=M = P(shy (C; ® C3)) — P(C1 ® Cy)

=-2 Z 9 (C1 ® Ca),
jzM
where the first and third equalities follow from (7-7), and the second equality follows
from the fact that P and shps are homomorphisms. By the inductive hypothesis,
we have that ¢; is a homomorphism for all j > M + 1. It follows that ¢y is a
homomorphism as well. This completes the proof. |

74 HFK™ and ¢;

We are now ready to prove Proposition 7.27. Recall that

0 if ;(K) =0 for all j,

N(K) = max{j | ¢;(K) # 0} otherwise.

Proposition 7.27 If UM - Torsy HFK™(K) = 0, then ¢;j(K)=0 forall j > M. In
particular, N(K) < M.
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Proof Let C = C(ay,...,ay) be the standard complex representative of HFK™ (K)
given by Theorem 6.1 and Corollary 6.2. Recall that H,(CFKz(K)/V) =~ HFK™ (K).
Then UM . Torsy HFK™(K) = 0 implies UM - Torsy H«(C/V) = 0, which in turn
implies that a; < M for i odd. The result now follows from the definition of ¢;. O

8 Thin knots and L—space knots
In this section, we prove Propositions 8.1 and 8.2.

Proposition 8.1 If K is homologically thin, then

1K) ifj=1,

(K) =
¢ (K) 0 otherwise.

Proof By [25, Theorem 4], it follows that if K is a thin knot, then CFKz(K) is
locally equivalent to the standard complex C(ay,...,a,) where n = 2|t(K)| and
a; = sgnt(K) for i odd and a; = —sgnt(K) for i even. That is, the a; are an
alternating sequence of 1, starting with 41 if t(K) > 0 and —1 if t(K) <0. The
result follows. |

Proposition 8.2 Let K be an L—space knot with Alexander polynomial

Ag(@) =) (=D,

i=0

where (b;)!_, is a decreasing sequence of integers and n is even. Define

ci = b2i—2 _bZi—l for 1 El < %n.
Then
0 (C) = #ici | = ji

Proof By [22, Theorem 1.2] (cf [18, Theorem 2.10]), we have that if K is an L—space
knot, then CFKx (K) is the standard complex

C(CI, _Cn, 02» _C}’l—lv c3’ _Cn—z, ceey Cn7 _Cl)

The result now follows from the definition of ¢; . O
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9 An infinite-rank summand of topologically slice knots

The goal of this section is to prove Theorem 1.9. Let D be the (untwisted, positively
clasped) Whitehead double of the right-handed trefoil. Let Ky, = Dy p41# =Ty pnt1.
The knots K, are topologically slice and will generate a Z°°—summand of Cts. Indeed,
the knot D has Alexander polynomial one, and hence is topologically slice. Thus, the
cable Dy ,41 is topologically concordant to the underlying pattern torus knot 75, ;4 1,
and so Dy, 1 #—T, n+1 is topologically slice.

Proposition 9.1 Let D, 51 denote the (n,n 4 1) cable of the (untwisted, positively
clasped) Whitehead double of the right-handed trefoil. Then

n if j =1,
9j(Dpny1) =41 ifl<j<n—lorj=n,
0 ifj=n—1>1lorj>n.

Proof By [8, Lemma 6.12], the knot D is e—equivalent to 7 3. Thus, by Proposition 4
of [8], we may consider CFKz (72,3:n,n+1), Where 15 3., »,+1 denotes the (n,n+1)—
cable of T, 3, instead of the locally equivalent CFKz(D; n+1). The advantage of
this approach is that 7 3., ,+1 is an L—space knot [4, Theorem 1.10] (cf [7]), and so
CFKR(T2,3:n,n+1) is a standard complex and completely determined by its Alexander
polynomial [22, Theorem 1.2].

It follows from [8, Lemma 6.7] (also see the proof of [5, Proposition 6.1]) that

n-l n-2
ATn,ﬂ+1 (t) = Z tln —1 Z l‘l(n‘f‘l)‘
=0 i=0
Recall that the Alexander polynomial of a cable knot is determined by

Ak, ,(t)=Ax(t?)- AT, ,(1).

This gives
n—1 _ n—2 )
ATZ,S:n,n-H (t) = AT2,3(tn) ' ATn,n-i—l (t) = ([zn - + 1) . (Z (" —1 Z tl(n+1)).
i=0 i=0

For small values of n, we have

ATy 4n s () =10—2+2 141, Ay, (@)=t =t 43—t 7 10—t 41—t + 1.
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For n > 4, we rearrange and simplify as follows. We first observe the telescoping sum

n—1
(—z”+1)-(2t”’) =1
i=0
We also have
n—2 n—2
(=" 4 1) (_t Z[i(n—i-l)) = YD S =D
i=0 j=1

and
n+1

2n) (thn tztl(n+1)) thn Zt](n-H)l

Putting the two simplifications together, we get

n—2
AT2!3;ngn+1(l‘) —1—¢ 4+ tn+1 _[n+2 + Z(_tj(n-‘rl)—l + [j(n+1) _[j(n-l-l)-‘rl)
Jj=2
n+1
+ Z tin _tl’lz _ t(n—l)(n+1)—l _ tn(”+1)_1 + [(n—l)(n-i-])

n—2
e R A e S (R L AR
j=2

+ tnz—n _ [n2—2 + tnz—l _ tn2+n—1 + tn2+n.
In particular, the number of terms in the Alexander polynomial is 4-(n — 1) + 1.
Thus, we have
4(n—1)
ATy s (0= Y (=17,
i=0
where (b; )4(" D is the decreasing sequence of integers found above. Defining
ci=byio—byi 1 for 1 <i<2(n—1),
one readily checks that, for 1 <i <2(n—1),

1i—1) ifiisodd, i >1,
Ci(T2,3;n,n+1) =3n ifi = 2(71 - 1).
1 otherwise.
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Since 72 3:n,n+1 is an L—space knot, by Proposition 8.2 we have ¢; (72 3:n,n+1) =
#{c; | c; = j}, and the calculation of @;(Dy ,+1) (which equals ¢; (T2 3:1,n+1))
follows immediately. |

We now prove Theorem 1.9 to produce an infinite-rank summand of Crs.

Proof of Theorem 1.9 Recall Example 1.4, which states that the torus knot 7}, ,,+1

has 1 ifj=1,2,....,n—1,

¢j (Tn,n+1) 0 otherwise.

By Proposition 9.1 and the fact that ¢; is a homomorphism (Theorem 7.2), we have
that

on(Kn) = (Pn(Dn,n—H) _(/)n(Tn,n—H) =1

and ¢;(K,) = 0 if j > n. The theorem now follows from a straightforward linear
algebra argument; see for example [18, Lemma 6.4]. O

10 Concordance genus and concordance unknotting number

In this section, we discuss applications of our homomorphisms to concordance genus
and concordance unknotting number.

10.1 Concordance genus

Recall that knot Floer homology detects genus [20]. Using the conventions and notation
from Section 2, we have that

g(K) = 3 max{A(Ix]) = A(Iy]) | [x]. [¥] # 0 € H«(CFKR(K)/(U.V))}.

Proof of Theorem 1.11(1) Suppose that K’ is concordant to K. Let N = N(K) =
N(K') =max{j | ¢;(K) # 0}. By Theorem 6.1 and Corollary 6.2, we have that there
exist [x], [y] #0 € H«(CFK(K")/(U,V)) with gr(x) —gr(y) = (1—2N, 1). Then

|A(x) —A(y)| =N,
implying that g(K’) > %N. Thus, g.(K) > %N, as desired. O
10.2 Concordance unknotting number

We recall the following definitions and results from [1]. (The results are originally
stated over the ring F[U, V]; quotienting by UV yields the results as stated here.)
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Let u/(K) be the least integer m such that there exist grading-homogenous R-—
equivariant chain maps

f:CFKg(K) >R and g:R — CFKr(K)

such that g o f* is homotopic to multiplication by U™ and f o g is multiplication
by U™.

Theorem 10.1 [1, Theorem 1.1] The integer u'(K) is a lower bound for the unknot-
ting number u(K).

Proof of Theorem 1.11(2) Suppose that K’ is concordant to K. Let N = N(K) =
N(K') =max{j | ¢;(K’) # 0}. This implies

UM Torsy H«(CFKR(K')/ V) #0,
where Torsyy M denotes the U —torsion submodule of an F[U]-module M.
Let u' = u/(K’). Then there exist grading-homogenous R—equivariant chain maps
f:CFKz(K') >R and g:R — CFKz(K')

such that g o f is homotopic to multiplication by U " and f o g is multiplication
by U™ Now quotient by V. Since g o f factors through R, it follows that U*" must
annihilate Torsy H«(CFK(K')/V), ie u’ > N. This implies that u.(K) > N, as
desired. d

Proof of Theorem 1.12 Let K, denote D, 1#—D,_1,1 for n € N, where, as above,
D denotes the positively clasped, untwisted Whitehead double of the right-handed
trefoil. The knots K, are topologically slice, since D, 1 is. These knots are used
in [10, Theorem 3]. In particular, by [10, Lemma 3.1], we have that g4(K,) = 1 for
all n. By [10, Lemma 3.3], we have that a;(Dy,,1) =1 and az(Dy,1) = —n. (There
is a difference in sign conventions between a, in [10] and the present paper.) By [10,
Lemma 3.2], we have that |az; (Dy,1)| <n for all i, with equality if and only if i =1
by [10, Lemma 3.3]. It follows that ¢, (Dy,1) =1 and ¢;(Dy,1) =0 forall i > n.
Hence N(K,) = n, and, by Theorem 1.11(2), we have that u.(K,) >n. O

11 Further remarks

We conclude with some remarks on knot-like complexes.
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11.1 Realizability

The question of which knot-like complexes can be realized by knots in S3 is difficult.
See [6; 14] for some restrictions. Note that their restrictions apply to the homotopy
type, rather than local equivalence type, of knot-like complexes. For example, the
standard complex C(2,—2) is not realizable [6, Theorem 7] up to homotopy, but is
realizable up to local equivalence [11, Lemma 2.1].

Instead, we turn to the following purely algebraic question:

Question 11.1 Which knot-like complexes are the mod U V' reduction of chain com-
plexes over F[U, V]?

Indeed, in Section 2, we defined the complex CFK%(K) over the ring R, but the
definition works equally well over [F[U, V]. Thus, in order for a knot-like complex C
to be realizable as coming from a knot K C 3 up to homotopy (resp. local) equivalence,
it is necessary for C to be homotopy (resp. locally) equivalent to a complex that is the
mod UV reduction of a complex over F[U, V].

Naively, one may hope to “undo” modding out by U V. That is, given a standard complex
C(ai,...,an) = (R(x;), d), one may hope to define a chain complex over F[U, V'] by
C’' = (F[U,V]{x;),d"), where 0’ is obtained by extending 9 linearly with respect to
F[U, V]. However, in general, 3’2 will not be zero. As the following examples show,
in some cases, the failure of 3’2 = 0 can be remedied, while in other cases, it is fatal.

Example 11.2 We apply the above procedure to the standard complex
c1,-2,-1,1,2,-1)
from Example 4.8. Let C’ be generated over F[U, V] by
X0, X1, X2, X3, X4, X5, X6
with nonzero differentials
Ox1 =Uxo+V3?xy, xo=Uxs, x4="Vxs, 0x5=U?x4+ Vxe.

Then 0'?x1 =UV?x3#0 and ' 2x5 = U?Vx3 #0. However, if we instead endow C’
with the differentials

3,)61 =Uxgp + VZX2 + UVxy, 8’x2 = Uxs,
x4 = Vxs, x5 =UVxs+U?x4 + Vxg,

then C’ becomes a chain complex, as desired. Note that this change to the differential
is equivalent to adding diagonals arrow from x; to x4 and from x5 to x5 in Figure 5.
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Example 11.3 We attempt to apply the above procedure to the standard complex
C(1,1), generated by xg, x1 and x, with

8)C0 = 0, axl = UX(), 3)62 = V)Cl.

Then 0'x; = UVxg # 0 and there is no way to modify 9’ so that is squares to zero
and reduces mod UV to 9.

More generally, one can show that any standard complex beginning with the parameters
a1 =1 and a; > 0 cannot be realized as the mod U V' reduction of a chain complex
over F[U, V], even up to local equivalence.

11.2 Group structure of K

Theorem 6.1 gives us a complete description of £ as a set; namely, the elements of K&
are in bijection with finite sequences of nonzero integers. A natural question is the
following:

Question 11.4 s there is an explicit description of the group structure on K?

In many simple cases, the group operation in K simply concatenates or merges the
sequences associated to the standard representatives.

Example 11.5 It follows from [25, Theorem 4] that

ca,-necd,-1ny)~ca,-1,1,-1).
More generally,

c(l,-1,1,-1,....1,-)®C(,-1) ~C(1,—1,1,—1,...,1,—1),

where the length of the right-hand side is the sum of the lengths of the factors on the
left-hand side.

Example 11.6 By [11, Lemma 2.1], we have that
c(1,-3,3,-H®CQ2,-2)~C(1,-3,2,-2,3,—1).

However, in general, the group operation in & is more complicated:

Example 11.7 One can show that

C2,-2)®C(l,-1)~C(1,-1,2,1,—1,-2,1,—1).
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Despite the seemingly complicated product structure exhibited in Example 11.7, the

standard complex representative of a product of two standard complexes is highly

constrained by the fact that ¢; is a homomorphism for each j € N.
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